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The fluid dynamic approach to
equidistribution methods for grid generation
and adaptation

Gian Luca Delzanno?, John M. Finn?

aT.5, Applied Mathematics and Plasma Physics, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

Abstract

The equidistribution methods based on L, Monge-Kantorovich optimization[Finn
and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Da-
corogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily
in the context of grid generation. It is shown that the first class of methods can be
obtained from a fluid dynamic formulation based on time-dependent equations for
the mass density and the momentum density, arising from a variational principle.
In this context, deformation methods arise from a fluid formulation by making a
specific assumption on the time evolution of the density (but with some degree of
freedom for the momentum density). In general, deformation methods do not arise
from a variational principle. However, it is possible to prescribe an optimal deforma-
tion method, related to L1 Monge-Kantorovich optimization, by making a further
assumption on the momentum density. Some applications of the L, fluid dynamic
formulation to imaging are also explored.

Key words: Adaptive grid generation, Monge-Ampére equation,
Monge-Kantorovich optimization, grid tangling, equidistribution, Newton-Krylov,
multigrid preconditioning, moving meshes, image morphing

PACS: 02.70.-¢

1 Introduction

Equidistribution is an established guiding principle in grid generation [1-4].
The idea is rather simple and therefore attractive: given a prescribed density or

Email addresses: delzanno@lanl.gov (Gian Luca Delzanno), finn@lanl .gov
{(John M. Finn).

Preprint submitted to Elsevier Science 9 March 2009


mailto:finn@lanl.gov
mailto:delzanno@lanl.gov

monitor function p;, one wants to generate a grid such that its cell volumes are
inversely proportional to p;. If p; represents the error in discretizing a PDE on
a grid, equidistribution is even more attractive. The fact that equidistribution
of the local truncation error leads to global minimization of the total error has
recently been established [5,6].

Equidistribution alone cannot determine uniquely the new grid in two (2D)
and three (3D) dimensions. Therefore the task becomes to determine a grid
which is optimal in some sense among the infinite number of grids that satisfy
a given equidistribution principle. There are several ways to do so. A com-
mon approach is to minimize a combination of grid property integrals (cost
functions) with some global user-provided weights to determine the relative
contributions of each term in the minimization procedure. For instance, a
very popular approach is that of Brackbill and Saltzman [7], where a combi-
nation of integrals, smoothness (which measures global grid cell distortion),
orthogonality, and cell volume (whose minimization gives equidistribution)
has been employed. Notice that in this approach the global grid property in-
tegrals compete against each other and therefore the final grid never satisfies
any constraint, including equidistribution. For this reason, we do not refer to
these methods as equidistribution methods.

Another approach is to introduce a variational principle in which equidistri-
bution is enforced ezactly by a local Lagrange multiplier. (In this case, the
Lagrange multiplier is computed as part of the minimization procedure and is
not a global user-provided parameter.) This is the case of Refs. [8,9,7] where we
introduced a powerful grid generation method based on Ls Monge-Kantorovich
(MK) optimization. [See also Ref. [10].] In short, the method minimizes the Ly
norm of the displacement of the grid points contrained to satisfy locally the
equidistribution principle. This minimization procedure gives rise to the Lo
Monge-Ampere (MA) equation, a single, nonlinear equation with no tunable
parameters, and with theorems of existence and uniqueness in 2D and 3D. In
addition, the Ly MA equation is elliptic and therefore one can use modern
fast solvers for its solution. Indeed, in Ref. [8] we solved the L, MA equation
by using Newton-Krylov methods with multigrid preconditioning and showed
that Lo MK optimization indeed provides a robust, efficient and scalable grid
generation method. Recently, we have also extended L, MK optimization to
L, [11]. The L, method shares many of the properties of Lo: it gives rise to a
single, nonlinear, elliptic equation (of the form of a generalized MA equation)
with no tunable parameters and for which theorems of existence and unique-
ness exist. We have explored a number of values of p in the range 1 < p < 2.5
and concluded that, at least for the example considered in Ref. [11], p = 2
gives the best quality grids according to several well-defined measures.

On the other hand, there is another grid generation method based on equidis-
tribution in the literature. This is the deformation method proposed by Liao



and Anderson [12], based on the general deformation procedure of Refs. [13,14].
To the best of our knowledge, is the only other method present in the literature
that can achieve equidistribution exactly. As we shall discuss in some depth,
there is no apparent connection between the deformation method and L, MK
optimization (or any other form of optimization) for general values of p. The
deformation method is a ODE-based method where a continuous deformation
of the initial grid by a suitable flow determines the new equidistributed grid.
In principle the deformation method has considerable freedom associated with
the choice of the flow. Analytical formulas for simple domains were given if
in Refs. [12,15] but these choices can lead to bad quality grids (and even grid
tangling), as shown in Ref. [8].

This paper complements and extends in several ways the work on some of the
equidistribution methods used for grid generation (that is, the methods arising
from L, MK optimization as well as the deformation method). In particular

(1) We show that L, MK optimization formulated in terms of the L, MA
equation is equivalent to a fluid dynamic formulation, based on time-
dependent equations for the (mass) density and the momentum density.

(2) We show that the deformation method can be obtained from a fluid
formulation by making a specific assumption on the time evolution of
the density. With this assumption (but allowing a degree of freedom for
the momentum density), any connection with the underlying variational
principle of the L, fluid dynamic formulation (and the related optimality)
is lost.

(3) We show that it is possible to obtain an optimal deformation method by
choosing a specific form of the momentum density as well as the mass
density. With this choice, the optimal deformation method is then linked
with L; MK optimization. However, there does not appear to be such a
connection for p # 1.

(4) Toward the end of the paper, we explore the application of the L, fluid
dynamic formulation to find a warping transformation between two given
images. We compare L, with 1 < p < 2 with Ly and conclude that L,
leads to a better warping algorithm, principally because of problems near
the boundary for p < 2. However, we emphasize some limitations on the
use of Lo for this application.

This paper is organized as follows. In Sec. 2 we review briefly the minimization
procedure behind L, Monge-Kantorovich optimization. In Sec. 3 we discuss a
time-dependent L, variational principle which leads to the formulation of a set
of fluid dynamics equations for the evolution of density and momentum. We
show that these equations are equivalent to the L, MK formulation. In Sec.
4 we review the deformation method, how it can be cast in a fluid framework
and how it can be linked to the L; MK variational principle, using a specific
choice of momentum density. In Sec. 5 we discuss implementation details. In



Sec. 6 we show numerical experiments with the fluid dynamics equations, check
some of the theoretical predictions, and evaluate the results from the point of
view of imaging applications. In Sec. 7 we draw conclusions. The Appendix
deals with the proof that in the L, fluid dynamic formulation the velocity is
constant along streamlines.

2 L, Monge-Kantorovich optimization

Let X C R? be a bounded domain with boundary 8X. We define a two-
dimensional coordinate transformation in physical space between the coordi-
nates of an initial grid xp = (2o, 70) and the ones of the final grid x; = (z1,11)
as P : X — X, 1. e. x3 = ¥(xp). We will assume that the boundary 8X
maps to itself. Both the initial grid xy and the final grid x; are mapped from
the unit square & = (£,7) € E = [0,1] x [0,1], the logical space. The grid on
= is uniform.

Let us begin by reviewing the variational principle for L, MK optimization
[11], where we want to minimize:

Fy = / po(xo)dxo - / M) o1 (1) T 3%0) = o) dxa. (1)

That is, we minimize the L, norm of the distance x; — %, subject to the con-
straint that the Jacobian of the map satisfies a given equidistribution principle,
that,

B Jz10y1 Oz ayl Po(Xo)
J(x0) = Vx1(x0) = dro Byo By 3580 uals pl(xl) @

In Eq. (1), A(x1) is a Lagrange multiplier which enforces the equidistribution
principle locally, and po(xp) and pi1(x;) are two given densities or monitor
functions on X. The densities are positive and satisfy the normalization con-
dition fy po(x0)dxe = [y p1(X1)dx; = 1. Taking variations of F, with respect
to x; we find [11]

o = V) (3)

(Vy = Vy,) or, alternatively,

X1 — Xp
%1 — Xo[>7



where V = V,, and ®(xp) is the L,—Legendre transform of A(x;) [11]. Further
manipulations lead to

X1 — X = a(xg)V®(xo) (5)
with
a(xo) = |V®|#1. (6)

Equation (5) is substituted into the equidistribution principle (2) to obtain
the L, MA equation [11]

9 o 9 o 0% 0@ | _ po(xo)

: 8$0 (G(X()) 8(130) + 8y0 (G(X()) 8?,‘0) + [G(X()) 8330’ a(xn)é?yg N pl(xl)
The quantity [f, g] = €;;(0f/0z0,:)(0g/Oxp ;) is the Poisson bracket (with sum-
mation over repeated indices), with €12 = —e2; = 1 and €13 = €39 = 0. The

boundary conditions require mapping boundary points to boundary points.
That is, for straight boundary segments we require

AV =0 (8)

on the boundary 0.X, with fi the unit vector normal to the boundary. (Bound-
ary conditions for curved boundary segments in 2D are described in Ref. [9].)
Equation (7) is nonlinear and elliptic and has been solved [together with
boundary conditions (8)] with Newton-Krylov techniques in Ref. [11].

3 Fluid dynamic formulation for L,

Let us postulate a L, variational principle to obtain a flow x(¢) whose time-1
map x(0) — x(1) on the volume X is the optimal map x; — Xy of the L,
form of Monge-Kantorovich optimization [11]. This will allow us to determine
the flow x(¢) and the density p(x,t) which interpolates between po(x,) and
p1(X;) in an optimal manner. We begin by considering

1.(7)

1 )
W, = O/ dt ! dx{ﬁii‘-ﬁl;_(i‘zﬂ'_ +806,1) [Biplx,2) + - (o, v (x, tm} 9)

Minimization of the first term gives a 'most efficient’ flow p(x,t) that trans-
ports from pp(xp) to p1(x;1), i. e. satisfies p(x,0) = po(x), p(x,1) = p1(x) on



X. The quantity S(x,t) is a local Lagrange multiplier ensuring that p(x, 1)
satisfies the continuity equation

Sp+ V- (pv) =0. (10)

We will treat the p = 2 case and the case of more general p separately.

3.1 Ly formulation
For the special case p = 2, Eq. (9) takes the form[16,17]

[ dt [ dx { pLx, "5)"(" D L S(x, 1) [Bup(x, 1) + ¥ - (p(x, Dv(x, t))]} (11)

In a fluid dynamics context, the first term in the integrand represents the
kinetic energy density. Taking the first variation with respect to p(x,t) and
v(z,t), respectively, we find, upon integrating by parts in x and ¢

v=VS§, (12)

2

BS+v-VS= % (13)

(The endpoint terms obtained from integrating by parts in time are zero be-
cause p is specified there. The terms on 0X are zero because the normal
component v - i1 equals zero there.) Substituting, we obtain

S = -—-;»1\75[2. (14)

This is the Hamilton-Jacobi or ray optics (Eikonal) equation. We use this
equation together with the continuity equation (with Eq. (12))

Bup+ V- (pVS) =0 (15)

in the following manner: we choose an initial condition S(x,0) and fix the
initial density p(x,0) = po(x). We then integrate Egs. (14), (15) in time to
t = 1, and consider the residual R(x) = p(x,1) — p1(x). We vary S(x,0) to
drive the residual R to zero on V. In practice this is achieved by Newton’s
method, discussed in Sec. 5.



One more observation is in order. If take the gradient of Eq. (14) and use
Eq. (12), we find

1
OV = ——Q-sz‘

Since V x v =0, we conclude

Ov+v-Vv=0. (16)

That is, Egs. (10) and (16) are the equations for a pressureless irrotational
fluid. (See Ref. [18].) This last relation implies that v(x,¢) is constant along
the trajectory, i. e.

v(x, t) = v(xo(x,t),0) = vo(x0), (17)

where xo(x, ) is the initial position of the fluid element located at x at time
t: This means that the orbit dx/dt = v(x,¢) is a straight line given by

x(t) = xg + tvo(xg). (18)

Its time-1 map xo — x; = x(1) is given by

2
X0

x(1) = x¢ + v(Xg) = Xg + VS(x%0,0) = V [—é—- + S(xo, 0)} . (19)

In general the time-1 map for a gradient flow is not a gradient map. However,
in this special case with constant velocity trajectories, this property does hold.

It is easy to see now that this flow produces the same map as the usual Lo
Monge-Kantorovich theory, i. e. by solving the Monge-Ampere equation [8].
Indeed, the flow in Eq. (19) takes po(xo) to p1(x1) and is a gradient map. Thus,
S(x,0) is a solution of the Monge-Ampeére equation, and these solutions are
known to be unique.

3.2 L, formulation

Taking variations of W, of Eq. (9) with respect to p(x,¢) and v(z,t) leads to
v = |v[*PVS, (20)

p
8,S +v VS = '—‘2—, (21)



with the integrations by parts in ¢ and x justified as in Sec. 2.1, assuming
the normal component v - fi vanishes on the boundary 0X. Substituting, and
defining ¢ such that 1/p+ 1/¢ = 1, we find

Iv| = [VS|7T = |VS|*! and v=|VS|F3VS =|VS[©2VS,  (22)

8,8 = ﬁ-%-ﬂvs 1 —élvsrx. (23)

We solve this L, analog of the Hamilton-Jacobi equation coupled with the
continuity equation (10) with v = |V.S|972VS. As for L, we drive the residual
R(x) = p(x,1) — p1(x) to zero using Newton’s method, by varying S(x, 0).

We now show that Eq. (16) holds for L, as it does for L,. The outline of the
derivation is the following: we differentiate Eq. (12) with respect to time to
obtain

3-p

Byv = — fr3 vH;:ﬁ’éé-w , (24)

where f = |V S| and & = V§/|VS|. From Eq. (12) we conclude

9—p s
Vxv=_ zl’fi——?wxvs; (25)
this implies
v2
Btv—vaxv+V—2—-:{) or (26)

v +v -Vv=0.
For more details see Appendix A.

As in Sec. 2.1, this implies that the orbits x(¢) are constant velocity straight
lines, i. e. Egs. (17) and (18) again hold. However, Eq. (19) is replaced by

x(1) = X + V(Xo) = Xo + [VS(%0, 0)| 71 V.S (xo, 0). (27)

This map Xg — X; = X(¢ = 1) is not a gradient map. However, this equation is
of the same form as Eqgs. (5), (6) (Eq. (14) of Ref. [11}) which, when substituted
into the continuity equation, leads to the L, Monge-Ampére (L, MA) equation
7. It was shown in Ref. [11] that the L, MA equation is a generalized Monge-
Ampeére equation and is elliptic. Further, the boundary condition v - i =



- VS = 0on 0X is identical to that used in Ref. [11]. We conclude that the
time-1 map from the L, flow produces the identical map as the L, map found
in Ref. [11]. This conclusion is based on the known uniqueness properties of
the L, MA equation, which is a generalized Monge-Ampére equation.

5.8 Smoothed L,

For a smoothed L, variational principle such as the one introduced in Ref. [11],
we use the variational

Wi(e) = /1 dt / dx {p(x, ) [\/52 V(. 0)? - e] + 8(x,8) [Bip(x,£) + V - (p(x, ) (x, t))}} (28)
0 X

Taking variations with respect to p(x,t) and v(x,t) we obtain, similar to the
results of Sec. 3.2,

eVS
JI—|VS|?
8,8 = [5\/1 [vSp - s} : (29)

Similar manipulations to those in Appendix A show that

v +v-Vv=0.

Again, the velocity is constant along the streamlines, v(x, t) = vo(xo). Further,
the time-1 map

eVS

X(t=1)=m+m

is identical to the smoothed L; map of Ref. [11], Eq. (39).

(30)

4 Optimality and the deformation method

There is one other equidistribution method in the literature, the deforma-
tion method of Liao and Anderson [12]. It is based on the method of Moser
[13], Banyaga [19] and Dacorogna and Moser [14]. Originally the method was

9



designed to handle only a density po(xg) # 1 with p1(x;) = 1 but it was mod-
ified in Ref. [15] to treat p1(x;) # 1 with po(xg) = 1. The deformation method
was applied to 2D grid generation in Refs. [20,21] and to moving meshes in
Refs. [22,23]. Other applications of the deformation method can be found in
Refs. [24,25].

Let us now review this method, which is based on the solution of a second order
time-dependent ODE (in 2D) and reaches the new equidistributed grid by a
continuous deformation of the initial grid. Specifically, the method consists of
two steps. Here we treat the general case of pg(xo) # 1 and p1(x;) # 1, which
can be found in Ref. [25]. First, one needs to find a solution of

V-u(x) = po(x) — p1(x) = g(x)
u-i=0 ondX. (31)

It is obvious that Eq. (31) does not have a unique solution. Then, the following
system of equations needs to be solved for x(xp,t) with ¢ € [0, 1]

dx . u(x)
@ =YD = T D
X(xo,t = 0) = %o (32)

and the new grid is obtained as

x(t = 1) = Xo. (33)

The derivation [12,15,25] proceeds as follows: define the function

H(x,t) = [tp1(x) + (1 — t)po(x)] det Vx(xo, t). (34)
The next step is to show that H does not depend on time along the trajectory,
i.e. dH/dt = 0H/dt + v(x,t)- VH = 0. Thus, H(xq,0) = H(x3,1) implies

po(x0) = pi(x1)detVxy = p1(x1)J(X0), (35)

showing that the equidistribution principle is satisfied.
In order to compute a grid by this method, Liao and Anderson [12], and Liao

and Su [15] have proposed analytical solutions valid for simple domains such
as the unit square. One example of these solutions is

10



z 1

ve(e,) = 5 | [ o)t~ h(z) [ o(t,9)dt+ K@) [ [ ols.t)deds]
L0 1] 0 0 B

(36)
LT 1 y 1 .
w(a,) = | [ 9@, 0)dt = h(y) [ g(z, )t + K (@) [ [ glt, )des |,
K 0 00 ]
(37)
where h € C! is any function on [0, 1} such that
B(0) = K'(0) = K'(1) = 0, h(1)=1. (38)

However, these solutions are notan optimal choice in any sense. Indeed, in
Ref. [8] we showed for a challenging example, with p; = 1 and p;(x;) fairly
complex, the deformation method [with the velocity field described by Eqgs.
(36) and (37) with h(z) = [1 + cos(w(z — 1))]/2] produced highly elongated
cells which resulted in grid tangling for a 64 x 64 grid. In a later paper, Liu
et al. [21] used u(x) = Vw(x), leading to

V2w = py(x) — p1(x) on X,
Vw-fi=0 ondX.
(39)

This obviously has a unique solution for u. This gradient flow approach is also
the choice adopted in Ref. [25].

It is clear that in the deformation method there is freedom in choosing the
velocity field. The remainder of this section will be devoted to understand how
this flow can be chosen such that the deformation method can be linked to a
variational principle.

First, we show that the deformation method can be expressed in fluid terms
similar to that in Section 3, in order to make the derivation in Egs. (31)-
(35) more transparent. Suppose we assume that the density evolves in time
according to

p(x,t) = p1(x)t + (1 — t)po(x), (40)

a linear interpolation in time of the initial and final densities. Since dp/0t =
p1 — po, substitution into the continuity equation (10) leads to the following
equation for the momentum density u(x) = p(x,¢)v(x,t):

V-ux) = po(x) — p1(x). (41)

11



Furthermore, the equation for the flow can now be cast in the form

B up) u(x)
TG v Rl o g e b (42)

Now the link between the fluid dynamic L, formulation and the deformation
method becomes clear. In the fluid dynamic L, formulation, we solve the con-
tinuity equation (10) and Egs. (22) and (23) for the time-dependent velocity
field. The continuity equation transports the density from pg to p; according to
this optimal flow. The latter is obtained such to minimize the first term in Eq.
(9) and is dependent on p. As soon as we make a specific assumption on the
time evolution of the density such as Eq. (40), the continuity equation leads
to an equation for the velocity field consistent with this assumption. Clearly
this velocity field will not be optimal [since the optimal one is determined
by Eqs. (22) and (23)] and therefore any relationship with the underlying L,
variational principle is lost. Thus, it appears that the deformation method can
be formulated in a fluid context at the price of losing the connection with a
variational principle and its associated optimality.

One further comment is in order. One could in principle consider more complex
time dependencies of the density than that in Eq. (40). For instance, one could
consider

p(x,t) = p1(x)t + (1 — t)po(x) + (1 — t)pa(x), (43)

with pe any function on X. Notice that the density pat £ = 0 and t = 1 are
unchanged by this term. Substitution of Eq. (43) into the continuity equation
(10) as before leads to

V- u(x,t) = po(x) — pr(x) + (2t — 1)pa(x). (44)
Writing pv = u(x,t) = uy(x) + tua(x), we find

V- uy (%) = po(x) — p1(x) — pa(x),
V - up(x) = 2p2(%). (45)

Furthermore, the solution of

dx B u; (x) + up(x)t

@t~ @)t (1— pox) + (1 — D)pa(x) "

leads to p(x,0) = po(x) and p(x, 1) = p;(x). That is, Eqs. (45) and (46) repre-
sent an alternative deformation method which still satisfies the same equidis-
tribution principle. (Notice as before that Egs. (45) and (46) do not have

12



unique solutions.) Of course, one could generalize the deformation method
even further by expanding the density in a series of the form ¥, ,t™(1 —
)" Pmn(x), resulting in a more complex method involving a more general mo-
mentum density u(x,t) = Y t*ug(x). This little exercise reveals that there
is nothing special behind the assumption (40) leading to the deformation
method. However, it is not at all clear that the added complexity in, for
example, Eq. (43), leads to much.

The considerations above point clearly to the importance of the choice of the
flow in determining the new equidistributed grid for the deformation method.
The question then becomes whether it is possible to pick this flow in such a
way to regain a connection with a variational principle or, in other words, to
obtain an optimal deformation method. It turns out that the answer to this
question has been provided by Evans and Gangbo [26]. This was done (see also
Trudinger and Wang [27] and Caffarelli et al. [28]) in the context of finding
an alternative proof of the existence of a solution for the L, MK optimization
problem (and not in the context of grid generation.) The proof in Ref. [26]
is quite complex and we refer the interested reader there for mathematical
details. Here we only report the results. Ref. [26] starts with solutions of the
equation

V-u(x) = po(x) — p1(x) with u(x) = |[VW(x)|22VW(x) = b(x) VW.(47)

(As noted earlier, ¢ — 2 equals = (2 — p)/(p — 1).) We require n- VW =0 on
0X. There is some similarity with Eq. (22), but note that here the momentum
density pv = u(x) is of the form in Eq. (47), whereas in Eq. (22) the velocity
v = u/p is of this form. The next step is to solve dx/dt = v = u/p, where
p(x,t) is of the form (40), i. e.

dx _ [VW(X)|"2VW(x)
dt — tpi(x) + (1 —t)po(x)
x(0) = xp. (48)

Evans and Gangbo [26] proved that the time-1 map produced by this method
x; = X(Xop, 1) is, in the limit p — 1, the solution of the L; MK optimization
problem [Eq. (1) with p = 1].

Thus, when p — 1 Eqgs. (47) and (48) give the optimal deformation method,
which is linked to the L, variational principle. We must emphasize that, al-
though the flow discussed here and the flow of Sec. 3.2 in the limit p — 1
produce the same optimal L, map, the flows are not identical and the densi-
ties are also distinct. As we discuss further in Sec. 6, the density found using
the methods of Sec. 3.2 is not of the form (40). Related to this is the fact that
the momentum density in Eq. (47) depends on x but not on time, whereas

13



u = pv of Sec. 3.2 has explicit time dependence.

A few considerations are in order. First, note that Eq. (39) is the special case
of Eq. (47), with p = 2. Note also that, unlike Eq. (39), Eq. (47) is nonlinear
and therefore solution for W requires more sophisticated numerical techniques
such as the Newton-Krylov method [29]. Another point relates to the similarity
of Eq. (47) with Eq. (22), as noted in the previous paragraph.

Notice the similarities and differences between Eq. (47) and Eq. (7), the L,
MA equation. The first two terms of Eq. (7) correspond to the left hand side
of Eq. (47). However, Eq. (47) does not contain the nonlinearities associated
with the Poisson bracket in Eq. (7). Also, in Eq. (47) we have p;(xo) while in
Eq. (7) we have p;(x;), which introduces an additional source of nonlinearity.

Finally, we comment that Ref. [11] shows that a grid generation method based
on L, MK optimization with p — 1 is more prone to generate highly distorted
grid cells near the boundary. This observation leads to the conclusion that
the optimal distortion method (with p = 1) might not be suitable for grid
generation applications.

It appears that this connection between the deformation method of grid gen-
eration and L; Monge-Kantorovich optimization has not been reported in the
literature, nor have the boundary problems of L, with p — 1.

5 Numerical implementation

In this section we discuss the details of the numerical implementation for the
fluid dynamic formulation characterized by Egs. (10), (22) and (23), and for
the optimal deformation method, Egs. (47) and (48).

In the following, wherever needed, we use a standard, non-linear Newton-
Krylov solver [29], where we set the absolute error tolerance 7, = 10™* and
the relative error tolerance 7, = 10~%. The inner iterations are performed using
the GMRES scheme, without restarting. The forcing parameter 7 is constant
m = 1073. Since we do not focus on performance issues in this paper, we do
not use a preconditioner for the GMRES iterations.

5.1 Fluid Dynamic formulation

We use a uniform grid in zg, yg even when pg # 17, although this choice may
be suboptimal. To discretize Eqs. (10}, (22) and (23), we consider a uniform
grid in x, with grid spacing Az and Ay in the z and y directions, respectively.
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The unknowns S; ; are located at cell centers (¢ and j label cell centers in the x
and y directions) and we use ghost cells to enforce boundary conditions on S.
Moreover, the velocity field v;41/5 112 is located at vertices while the density
pij is located at cell centers. The first order derivatives of S are computed as

(55’) ~ Siv1;+ Sivr+1 — Siy — Sija (49)

Oz i+1/2,54+1/2 20z ’

(03') ~ Sij+1+ Sit1j+1 — Siyj — i+l (50)
dy i+1/2,j+1/2 2Ay

We will also need VS at cell centers:

(VS)it1/254172 + VSliwrjai-172 + VSlicaagerje + VSlicy5-172

(VS),; = . (51)
Consequently
Vit1/2,5+1/2 = lvsigﬁ/z,jﬂ/z (VS)1+1/2,J'+1/2- (52)

The discretization at cell centers of the term V - (pv) in Eq. (10) is performed
in a similar manner as in Egs. (49) and (50) (interchanging ¢ + 1/2 — ¢ and
j+1/2 — 7). In this case, the density p;i1/2,;41/2 in the vertices is needed
and this is obtained from second order extrapolation from the values p; ; at
cell centers. Finally, we have

8S§,j . p- 1 71 .
e \ L (53)

9pi ;

-5 =~V (V)i (54)

for t € (0,1). The ODEs (53) and (54) are solved with a second order Runge-
Kutta scheme. We have performed convergence studies changing time step At
of the Runge-Kutta solver and grid spacings Az and Ay (not shown) and
choose At = 0.01 for the results presented in this paper.

The boundary conditions for S are implemented via ghost cells [8]. If we con-
sider for instance the z = 1 segment of 9X, where 0S/0x = 0, we have
Snot1j = Sn,,j, second order accurate because this segment of the bound-
ary is at o,, 4172 = 1. (We use a similar formulation for the other boundary
segments). For the corner ghost cells, we impose

Snm+1,ny+1 = Snx—H,ny = Sn;,n,,—%l = Snx,ny
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at the top-right corner and similarly for the other corners. Here n, and n,
label the number of grid cells in the z and y directions.

As discussed in Sec. 3, the fluid dynamic formulation proceeds as follows:
instead of specifying p(x, 0) and S(x, 0} as initial conditions, we have p(x,0) =
po{x) and p(x, 1) = p1(x). Therefore one needs to start the integration of Eqgs.
(53) and (54) with an initial guess for S(x, 0); we then iterate until p(x,1) = p;
within a given tolerance. This is done by Newton-Krylov methods, where we
drive to zero the residual R = p(x,t = 1) — p;(x).

5.2  Optimal deformation method

As discussed in Ref. [8], it is efficient to solve equations like Eq. (47) for W on
a reference grid and then, as x is updated in time according to Egs. (48), use a
cubic spline interpolation to obtain the velocity field at the new x positions. In
order to solve Eq. (47), we use a uniform reference grid with grid spacing Az
and Ay where the unknowns are located at cell centers W, ; and the boundary
conditions are imposed via ghost cells. This is the same as what is done in
Sec. 5.1 and we omit further details here.

The discretization of the right hand side of Eq. (47) is done with a 5-point
stencil:

Wi Wi, Wi_1,;
V- (VW) Im =] bz_‘_l/z’j Ax 2 - (b¢+1/2,;; + bi—1/2,j) A-% + b§—1/2,j Aij +
W, . Wi Wi -
bi,j+1/2 Az,;-;l . (bz,_r’rl/q + bm 13;‘2) A o Loy bz,) 1/2 Z;, 21 (55)

where

b N Wirrga + Wiy, —Wiy — Wy 2 Wit — Wiy + Wi — Wy 2
HH1/25+1/2 2Az + 20y

and the off-vertex values b,z ; are averaged:

bisrjy = biv1/2,5+1/2 ;r bir1/2.5-1/2 (57)
(and similarly for b; ;41/2).

The solution of Eq. (47) is obtained by Newton-Krylov methods, while the
integration of Eqgs. (48) is obtained by the second order Runge-Kutta method
(again with time step At = 0.01).
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6 Results

In this section, we investigate solutions of the L, equations. We first check
some of the theoretical predictions of Secs. 3 and 4. That is, we compare the
grids obtained by solving the generalized MA equation (7) and the L, fluid
dynamic formulation described in Egs. (10}, (22) and (23). We then show
studies of the time evolution of the density in the fluid dynamic formulation.
We also compare the fluid dynamic formulation with the optimal deformation
method (in the limit p — 1). Finally, we discuss some aspects of the fluid
dynamic formulation applied to imaging.

6.1 Comparison of the fluid dynamic formulation with the L, MK method

In this subsection, we compare the grid obtained by the fluid dynamic formu-
lation (Sec. 3) with the L, MK method, where the generalized MA equation
(7) is solved to get the final map (Sec. 2). We choose the following example

— OI
PolX0) = T3 T — 072 ¥ (90— 057
) Cy (58)

1464 [(z; — 0.2)2 + (y; — 0.3)?2]

where C and C are normalization constants such that [ po(xo)dxp = [x p1(X1)dx; =
1. The density pp is fairly broad: the ratio of the maximum to the minimum
density pmaz/ Pmin is 5.5. This ratio for p; is much larger, about 73. Thus, this
example is rather challenging. The corresponding 16 x 16 grids are shown in
Fig. 1, for p = 2,1.25, 1.1, 1.01. The solid line corresponds to the grid obtained
with the fluid dynamic formulation while the dashed line corresponds to the L,
MK method. This figure shows that the two methods produce approximately
the same grids (consistent with truncation errors), with larger differences as
p — 1. These differences decrease when the resolution is increased (not shown).
As discussed in Ref. [11], it is apparent that, as p — 1, the grid cells are much
more stretched relative to the p = 2 case and there is a crease connecting the
upper-right corner with the peak of p; at z; = 0.2, y; = 0.3. This is associated
with the behavior near the boundary and is related to the fact that domains
with fixed boundary points (such as the corners in the unit square) violate the
Eikonal equation [11]. For this reason, in Ref. [11] we concluded that L, for
p — 1 is not suitable for grid generation applications in such domains.
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Fig. 1. Grid lines, i. e. contours z(z',y’) = const and y(z',y’) = const for the
fluid dynamic formulation (solid line) and the L, MK method (dashed line) with
p =2,1.251.10,1.01 (16 x 16 cells).

6.2 Time evolution of the density for the fluid dynamic formulation

In this subsection, we discuss the time evolution of the density obtained by the
fluid dynamic formulations of Secs. 3 and 4. This is important in light of the
results of Sec. 4, where we showed that the deformation method (optimal or
not) can be obtained from a fluid dynamic formulation by assuming the form
of the density in Eq. (40). Here we check whether this interpolated density
is related to the density obtained by the L, fluid dynamic formulation of
Secs. 3.1, 3.2.

We focus on the example with densities given by Eq. (58). The results for
p = 2 are shown in Fig. 2, which shows 11 snapshots (equally spaced in time)
of the density evolution. Each snapshot consists of 15 equally spaced contours
of the density, between the minims and maximum at each time. It is evident
in Fig. 2 that the peak of the density (starting at = 0.7, y = 0.8) is advected
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Fig. 2. Contours of the density evolution from the fluid dynamic formulation with
p = 2 for the densities given by Egs. (58). Each subplot shows 15 equally spaced
density contours with the maximum and minimum contours indicated.

toward its final position (z = 0.2, y = 0.3). Around the peak the contours
remain roughly circular, although there is some distortion near the boundary.

Figure 3 shows the evolution of the density for p = 1.01. The evolution is
similar to that of Fig. 2, although there is a much stronger interaction with
the boundary (particularly at early times, near the upper-right corner). The
crease (discussed in the context of Fig. 1) connecting the upper-right corner
with the peak of the density is also visible in the contours. Although there
are some differences between the density evolution for 0 < ¢ < 1, these two
are quite different from the linear interpolation of the density between po and
o plotted in Fig. 4. This figure shows clearly how the linearly interpolated
density exhibits structures associated with the two peaks of py and p;. Rather,
the densities in Figs. 2 and 3 show simple motion of the maxima between those
of pg and py.
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Fig. 4. Contours of the density evolution according to Eq. (40) for the densities
given by Eqgs. (58), with each subplot showings 15 equally spaced density contours.

21


http:p(X,y.t=0.9);Pmin~0.21
http:p(x.y,t=1);Pmln=0.11
http:Pma.=6.09
http:p(x,y,t=0.8);Pm1n=0.24
http:P(X.y.I=0.7j;Pmin=0.27
http:Pmax=4.72
http:p(x,y,I=O.5);Pmln=0.34
http:Pma.=3.35
http:p(x.y.I=o.4);Pmln=0.37
http:Pmax=1.98
http:Pma.=1.66
http:P(X.y.I=0.1);Pmin~0.42
http:Pmax~1.82
http:p(X.y.t~0);Pmin=O.35

6.3 Comparison of the fluid dynamic formulation with the optimal deforma-
tion method

In this subsection, we compare the fluid dynamic formulation with the optimal
deformation method. As discussed in Sec. 4, the optimal deformation is defined
in the limit p — 1, for which the method is linked to the L; MK variational
principle. However, we perform the comparison also for p > 1, where the
method is not actually related to a variational principle. The results are shown
in Fig. 5 for the same densities given by Eq. (58). The solid lines are the grid
lines obtained with the optimal deformation method of Sec. 4 [Egs. (47) and
(48)], and the dashed line is from the fluid dynamic formulation of Sec. 3. In
this figure, we have 32 x 32 cells and p = 2,1.5,1.3,1.1, 1.05, 1.01. For large
p, one can see that the two grids are completely different. We note that for
p = 2 the optimal deformation method corresponds to the method used in
Refs. [?]LJL98,germans), cf. 39. However, as p — 1 the two grids converge
to the same solution. This is the numerical confirmation of the mathematical
proof given by Evans and Gangbo {26] that, in the limit p — 1, the optimal
deformation method is equivalent to the Ly MK variational principle.

In Fig. 6 we show orbits obtained from the optimal deformation method. On
the left we have p = 2 while on the right we have p = 1.01. The initial grid
points are uniformly distributed and each trajectory shown consists of 101
points equally spaced in time. One can see that for p = 2 the trajectories are
not straight lines. This is not surprising since for p = 2 the optimal defor-
mation method does not have any link with a L, MK variational principle
(for which we have shown in Sec. 3 that grid point trajectories follow straight
lines). On the other hand, for p = 1.01 the grid points follow straight line
orbits. However, one can see from Fig. 6 that these points do not move with a
constant velocity (as they do in the fluid dynamic formulation). Considering
for instance the trajectory of the point starting at z = y = 0.75, one can see
that at the beginning of the time evolution (¢ & 0) successive points are closely
packed, then the distance between to consecutive points increases (¢ = 0.5),
and toward the end (¢ = 1) consecutive points are again more closely spaced.
This means that the grid point originating at z = y = 0.75 accelerates at
the beginning and then decelerates. This is another indication that the flow
in the optimal deformation method is not optimal (according to the L, MK
variational principle) and, consequently, the ‘optimal’ evolution of the density
is not a linear interpolation between py and p;.

We conclude that for p > 1 the optimal deformation method bears no re-
semblance to the L, map or its L, fluid dynamical formulation, which has
constant velocity orbits and densities evolving as in Figs. 2 and 3. Close to
p = 1, on the other hand, the optimal deformation method does appear to
lead to the optimal L; map, but the densities are very completely different

22


http:2,1.5,1.3,1.1,1.05,1.01

T v T T YT
A AR Ly ! ! ' AT A N o ]
ALY A (Y] AN Al iER '
bR lf YW [ DLy WatuZom "' 213 I T
i " TY -7 U7 HEREU -H" ¢
AnENE o bl‘; BIFR i .: l‘! 1l 7 ; a1 3 ” -
3 . - " ip? ol
0.8 HAA BT EE 0.8 4 T [N
i PATY Rabg Ty bl Jinfd - L - efrge [ LT .
XA R T ) e 41 P e v
L ni o Y = i | (2 L e e
Ay e i f |57 71t o <.
06 . 4 y: v i - 06 i + 5 T
b ¢ _e‘ 132 M N ot . 17l = y F e
- o] L4g ied - g -
h. Hilr 1 oo ] ZJ7 S, 7h 1 T L - e
T3 - Cler il ] o =
et S {7 7 ZY VP
-4 T i) =, - =
0.4 T AP - - iy BV o P Y A A
. Ty e s ey S 0.4 e

X x’
p=1.3 p=1.1
1 ) ,"' VNS EINa P 1 / f:”f,’/,”z
- Ui
08 i /7 :h Ir"?’,," = 3}%%@75/?{/(//////
s P e P iinth //)/
0.6 A S :}E%I%W =
L S C W e ¥ NI ot el ) o
> S S ATC L2 s 5?' ‘:ﬁgﬁgfﬂé;z%fggéé =
0.4 o R ok e MY hsEEs e
= Biee
= ==
0.2 = e
: = S
% 02 04 06 08 1 06 08 1
X x
p=1.05 p=1.01
1 1

7

\i\§
.
N\

> 77 = Wi 22
i iz W27 7=

e e

e ) e

Bt s e s v

_@ﬁa&,‘ﬂ,‘ a,—-aw s “’

e e

S SEEseseee

R A s R o e S OO SO

o M g P T e
0 0.2 0.4 0.6 0.8 1 0.4 0.6 0.8 1

% x’

Fig. 5. Contours z(z’,y’) = const and y(z’,3’') = const for the optimal deformation
method (solid line), which is actually optimal only for p = 1, and the L, fluid
dynamic formulation (dashed line) with p = 2,1.5,1.3,1.1,1.05,1.01 (32 x 32 cells).

and the orbits, while apparently straight lines for p close to unity, do not have
constant, velocity.
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of 101 dots equally spaced in time.

6.4 Application of the L, fluid dynamic formulation to imaging

In this subsection, we discuss the application of the L, fluid dynamic formu-
lation to find the warping transformation between two given images. In this
context, the luminosity of the two images corresponds to the densities py and
p1. This is motivated by recent work presented in Refs. [30-33], where Ly MK
optimization was proposed as a tool to perform the warping between two im-
ages. Zhu et al [32] found that L, MK optimization can lead to the effect of
double-exposure, i. e. the fact that features of the initial image persist during
the warping transformation. An example of double-exposure is the linearly
interpolated density of Fig. 4. Zhu et al. [32] also speculated that L, MK
optimization (with 1 < p < 2) could improve upon L, in terms of reducing
double-exposure. Here, we wish to compare Ly with general L,.

Figures 2 and 3 already offer some insight. As already noted, these figures
involve an initial peaked density which is advected and compressed in time,
resulting in the more peaked final density p; peaked at a new position. By
comparing Figs. 2 and 3, i.e. its velocity is not constant along the trajectory,
it is clear that p = 2 performs better than p — 1. This is due to the problems
arising near the boundaries. Notice that Figs. 2 and 3 show no evidence of
double-exposure; this is probably because the specific example is rather simple
for imaging applications.

Further insight can be gained by considering also the following example

po(o) = Cs exp [~2(zo — 0.5)* — 10(yo — 0.5)?]
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p1(x1) = Cyexp [~10(zy — 0.5)* — 2y — 05y (59)

where again Cs and Cy are normalization constants. This example corresponds
to an initial peaked density which is rotated by 90 degrees to give the final
density. The time evolution of the density is shown in Fig. 7 for p = 2 and
in Fig. 8 for p = 1.01. For p = 2, one can see that the density is compressed
in the z direction and expands in the y direction. (Notice that at ¢ = 0.5 the
density appears to be approximately rotationally symmetric.) This evolution
does not correspond to a pure rotation, which would be the simplest warping
transformation between pg and p;. The fact that L, MK optimization cannot
capture a pure rotation is not surprising, since for p = 2 the flow is a gradient
flow and therefore curl-free. The evolution for p = 1.01 is very similar to that
of p = 2. As in Fig. 3, the interaction with the boundary creates problems. In
this specific example, it generates artificial structures near the midpoints of
the boundary segments. Again, the evolution for p = 1.01 does not correspond
to a rotation. This has some significance since in principle the flow is not a
gradient flow for p = 1.01.

We conclude based on these few examples that p = 2 performs better than
p — 1 for image warping applications, primarily because of issues related to
the boundary for small p. We have noted that p = 2 does a reasonable job
for an example where the feature of the initial image is primarily moved to
a different location (Fig. 2), but it cannot move an initial image to a rotated
form of the image via a flow involving rotation, because for p = 2 both the
map and the flow are gradients.

7 Conclusions

In this paper we have analyzed some of the equidistribution methods de-
scribed in the literature and their application to grid generation. These are
methods where the Jacobian of the map satisfies a prescribed distribution
detVx1(xo) = po(Xo)/p1(x1). There are essentially two kinds of equidistribu-
tion methods in the literature. The first kind consists of a minimization pro-
cedure where the equidistribution principle is enforced locally by a Lagrange
multiplier [8,9,11]. In this class, we have focused on the so-called L, Monge-
Kantorovich optimization [8,9,11], where the L, norm of x; —Xg is minimized.
The second kind is the deformation method [12], where the equidistribution
principle is satisfied by a continuous deformation in time of the initial condi-
tion. In the deformation method there is a degree of freedom in choosing the
flow responsible for the deformation procedure.

While this work complements and extends previous work on these equidistri-
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Fig. 7. Contours of the density evolution from the fluid dynamic formulation with
p = 2 for the densities given by the linear interpolation formula of Egs. (59). Each
subplot shows 15 equally spaced contours of the density.
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27


http:pmax=2.11
http:p(x,y,t=1);Pmln=O.15
http:p(x,y,t=0.9);Pmln=0.15
http:Pma.=2.11
http:p(x,y,t=O.8);Pmin=0.15
http:Pma.=2.11
http:p(x,y,I=O.6);Pmln=0.15
http:Pma.=2.11
http:Pmin=0.15
http:pmaxz2.11

bution methods, there are four main contributions:

(1)

We have shown that L, MK optimization and the related generalized
L, MA equation are equivalent to a L, fluid dynamic formulation in
which a density obeying a continuity equation is advected by an optimal
time-dependent flow for 0 <t < 1. Therefore we present an alternative,
fluid dynamic method to reach the same equidistributed grid. While the
solution of the generalized L, MA equation (for which multigrid precon-
ditioning can work effectively) is our preferred way of computing the new
grid, this alternative method could be used if the other one fails. In this
regard, further work will be needed to find a suitable preconditioner for
the fluid dynamic method.

We have shown that the deformation method belongs to the family of
fluid methods. Thus this paper provides a unified theory of the equidis-
tribution methods based on L, MK optimization and the deformation
method. The deformation method is obtained from a fluid formulation
by assuming that the density evolves according to a linear interpolation
in time between the initial and final densities p; and py, and the velocity
obeys the continuity equation using this density. There is nothing spe-
cial about the linear interpolation assumption and one could generate an
infinite number of alternative deformation methods by simply assuming
more complicated time dependences of the density. However, the linear
interpolation in time is convenient from a practical point of view since
it gives rise to the simplest deformation method. Notice that, in general,
when an assumption is made on the time evolution of the density in the

fluid dynamic formulation (but without any assumption on the form of

the flow), any link with the underlying variational principle is lost.
Following the work by Evans and Gangbo [26], we have shown that the
deformation method can be linked to L; MK optimization by a suitable
choice of the flow. This aspect has not been recognized in the literature
related to the deformation method and, while theoretically developed by
Evans and Gangbo [26] (not in the context of grid generation but as a
proof of the existence of a solution of the L; MK problem), it has been
verified with numerical experiments here for the first time.

We have explored the application of the L, fluid dynamic formulation
developed here to imaging techniques. Specifically, the fluid dynamic for-
mulation in which a density is advected from an initial to a final density
is equivalent to a warping transformation between the two images. Here
the luminosity of the two images corresponds to the initial and final den-
sities. Ly MK optimization was applied to image warping in Refs. [30-32],
where it was argued that future work might focus on L, with 1 < p < 2,
which could offer improvements over p = 2. We have checked this hypoth-
esis and concluded that the Ly method is better than the L, method for
p < 2 because for smaller p artificial structures arise near the boundary.
(This type of problem has also been documented for the L, map problem
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in Ref. [11].) However, based on our results it is far from clear that the
p = 2 fluid dynamic formulation provides a competitive method for image
warping.
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Appendix A. Fluid momentum equation for L,

In this appendix we show details of the derivation of Eq. (26). Using Eq. (12)
leads to

2 — a 2-
Byv = ;:ll’-lvm???vsvs - 8,5 +|VS[=1V8,S

=% (2 ~Pes-vas + vazs) , (60)

where f = |VS| and & = VS/|VS|. Equation (23) implies V&,S = — f#TVS.
Substituting into Eq. (60}, we obtain

Sv = — ot (’Vf+2:péé.vf). (61)

p—1

Once more using Eq. (12) we find

va=2:§f1;—?Vf><vs and (62)
vaxv:f%i:TVSx(foVS) (63)
:f%i'?;:’;)(Vf—éé-Vf).
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Using Eq. (12) again, we find

v2__ 1

vy, (64)

2 p—1

Putting all this together, we find 8,v — v x V x v + Vv2%/2 = 0, that is

Ov+v-Vv=0, (65)

implying constant velocity trajectories.
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