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The fluid dynamic approach to 
equidistribution methods for grid generation 

and adaptation 

Gian Luca Delzanno a , John M. Finn a 

a T-5, Applied Mathematics and Plasma Physics, Los Alamos National Laboratory, 
Los Alamos, NM 87545, USA 

Abstract 

The equidistribution methods based on Lp Monge-Kantorovich optimization[Finn 
and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Da­
corogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily 
in the context of grid generation. It is shown that the first class of methods can be 
obtained from a fluid dynamic formulation based on time-dependent equations for 
the mass density and the momentum density, arising from a variational principle. 
In this context, deformation methods arise from a fluid formulation by making a 
specific assumption on the time evolution of the density (but with some degree of 
freedom for the momentum density). In general, deformation methods do not arise 
from a variational principle. However, it is possible to prescribe an optimal deforma­
tion method, related to Ll Monge-Kantorovich optimization, by making a further 
assumption on the momentum density. Some applications of the Lp fluid dynamic 
formulation to imaging are also explored. 

Key words: Adaptive grid generation, Monge-Ampere equation, 
Monge-Kantorovich optimization, grid tangling, equidistribution, Newton-Krylov, 
multigrid preconditioning, moving meshes, image morphing 
PAGS: 02.70.-c 

Introduction 

Equidistribution is an established guiding principle in grid generation [1-4]. 
The idea is rather simple and therefore attractive: given a prescribed density or 
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monitor function PI, one wants to generate a grid such that its cell volumes are 
inversely proportional to Pl. If PI represents the error in discretizing a PDE on 
a grid, equidistribution is even more attractive. The fact that equidistribution 
of the local truncation error leads to global minimization of the total error has 
recently been established [5,6]. 

Equidistribution alone cannot determine uniquely the new grid in two (2D) 
and three (3D) dimensions. Therefore the task becomes to determine a grid 
which is optimal in some sense among the infinite number of grids that satisfy 
a given equidistribution principle. There are several ways to do so. A com­
mon approach is to minimize a combination of grid property integrals (cost 
functions) with some global user-provided weights to determine the relative 
contributions of each term in the minimization procedure. For instance, a 
very popular approach is that of Brackbill and Saltzman [7], where a combi­
nation of integrals, smoothness (which measures global grid cell distortion), 
orthogonality, and cell volume (whose minimization gives equidistribution) 
has been employed. Notice that in this approach the global grid property in­
tegrals compete against each other and therefore the final grid never satisfies 
any constraint, including equidistribution. For this reason, we do not refer to 
these methods as equidistribution methods. 

Another approach is to introduce a variational principle in which equidistri­
bution is enforced exactly by a local Lagrange multiplier. (In this case, the 
Lagrange multiplier is computed as part of the minimization procedure and is 
not a global user-provided parameter.) This is the case of Refs. [8,9,?] where we 
introduced a powerful grid generation method based on L2 Monge-Kantorovich 
(MK) optimization. [See also Ref. [10].] In short, the method minimizes the L2 
norm of the displacement of the grid points contrained to satisfy locally the 
equidistribution principle. This minimization procedure gives rise to the L2 
Monge-Ampere (MA) equation, a single, nonlinear equation with no tunable 
parameters, and with theorems of existence and uniqueness in 2D and 3D. In 
addition, the L2 MA equation is elliptic and therefore one can use modern 
fast solvers for its solution. Indeed, in Ref. [8] we solved the L2 MA equation 
by using Newton-Krylov methods with multigrid preconditioning and showed 
that L2 MK optimization indeed provides a robust, efficient and scalable grid 
generation method. Recently, we have also extended L2 MK optimization to 
Lp [11]. The Lp method shares many of the properties of L2 : it gives rise to a 
single, nonlinear, elliptic equation (of the form of a generalized MA equation) 
with no tunable parameters and for which theorems of existence and unique­
ness exist. We have explored a number of values of p in the range 1 < p < 2.5 
and concluded that, at least for the example considered in Ref. [11], p = 2 
gives the best quality grids according to several well-defined measures. 

On the other hand, there is another grid generation method based on equidis­
tribution in the literature. This is the deformation method proposed by Liao 
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and Anderson [12], based on the general deformation procedure of Refs. [13,14J. 
To the best of our knowledge, is the only other method present in the literature 
that can achieve equidistribution exactly. As we shall discuss in some depth, 
there is no apparent connection between the deformation method and Lp MK 
optimization (or any other form of optimization) for general values of p. The 
deformation method is a ODE-based method where a continuous deformation 
of the initial grid by a suitable flow determines the new equidistributed grid. 
In principle the deformation method has considerable freedom associated with 
the choice of the flow. Analytical formulas for simple domains were given if 
in Refs. [12,15J but these choices can lead to bad quality grids (and even grid 
tangling), as shown in Ref. 

This paper complements and extends in several ways the work on some of the 
equidistribution methods used for grid generation (that is, the methods arising 
from Lp MK optimization as well as the deformation method). In particular 

(1) We show that Lp MK optimization formulated in terms of the Lp MA 
equation is equivalent to a fluid dynamic formulation, based on time­
dependent equations for the (mass) density and the momentum density. 

(2) We show 	that the deformation method can be obtained from a fluid 
formulation by making a specific assumption on the time evolution of 
the density. With this assumption (but allowing a degree of freedom for 
the momentum density), any connection with the underlying variational 
principle of the Lp fluid dynamic formulation (and the related optimality) 
is lost. 

(3) We show that it is possible to obtain an optimal deformation method by 
choosing a specific form of the momentum density as well as the mass 
density. With this choice, the optimal deformation method is then linked 
with L1 MK optimization. However, there does not appear to be such a 
connection for p =1= 1. 

(4) Toward the end of the paper, we explore the application of the Lp fluid 
dynamic formulation to find a warping transformation between two given 
images. We compare Lp with 1 < p < 2 with L2 and conclude that L2 
leads to a better warping algorithm, principally because of problems near 
the boundary for p < 2. However, we emphasize some limitations on the 
use of L2 for this application. 

This paper is organized as follows. In Sec. 2 we review briefly the minimization 
procedure behind Lp Monge-Kantorovich optimization. In Sec. 3 we discuss a 
time-dependent Lp variational principle which leads to the formulation of a set 
of fluid dynamics equations for the evolution of density and momentum. We 
show that these equations are equivalent to the Lp MK formulation. In Sec. 
4 we review the deformation method, how it can be cast in a fluid framework 
and how it can be linked to the L1 MK variational principle, using a specific 
choice of momentum density. In Sec. 5 we discuss implementation details. In 
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deals with the proof that in the Ln fluid dynamic formulation the velocitv is 

Sec. 6 we show numerical experiments with the fluid dynamics equations, check 
some of the theoretical predictions, and evaluate the results from the point of 
view of imaging applications. In Sec. 7 we draw conclusions. The Appendix 

Lp Monge-Kantorovich optimization 

Let X C }R2 be a bounded domain with boundary oX. We define a two­
dimensional coordinate transformation in physical space between the coordi­
nates of an initial grid Xo (xo, Yo) and the ones of the final grid Xl (Xl, Yl) 
as 1./J : X --+ X, i. e. Xl = 1./J(Xo). We will assume that the boundary oX 
maps to itself. Both the initial grid Xo and the final grid Xl are mapped from 
the unit square e (e,1]) E :::: == [0,1] x [0,1], the logical space. The grid on 
:::: is uniform. 

Let us begin by reviewing 
[11], where we want to miruUUz.c. 

J.a,~lVU<:tl principle for Lp 

JIXI XoI P JFp Po(Xo)dxo - ).(xt) (XI)J(XO) - Po(Xo)] dXo· 
x p x 

That is, we minimize the Lp norm of the distance Xl - Xo subject to the con­
straint that the Jacobian of the map satisfies a given equidistribution principle, 
that 

'1""7 ( ) OXlOYl OXI OYI I Po(Xo)J( Xo ) VXl Xo -- - -- equas -- (2)
oXo oYo oYo OXo PI (Xl) 

In Eq. (1), ).(XI) is a Lagrange multiplier which enforces the equidistribution 
principle locally, and Po(Xo) and PI(XI) are two given densities or monitor 
functions on X. densities are positive 
dition Ix Po(xo)dxo Ix Pl(XI)dxI = 1. 'Ia,l\.lllO 
to Xl we 

Xl 
Xl 

Xo _ \7l).(Xo) (3) 

(\71 \7Xl) or, alternatively, 

Xl - Xo 
Xl 

= \7<I>(xo), (4) 
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where V' == V'Xo and 4>(Xo) is the Lp-Legendre transform of "\(XI) . Further 
manipulations lead to 

Xl - Xo = a(Xo)V'4>(xo) (5) 

with 

a(Xo) = 1V'4>1 . (6) 

Equation (5) is substituted into the equidistribution principle (2) to obtain 
the Lp MA equation 

a ( 04» a ( [)q» [04> 04>] Po(xo)!:l a(Xo)!:l + ~ a(Xo)~ + a(Xo)!) ,a(xo)~ = -(-) - 1.(7)
uXo uXo uYo uYo ux 0 uYo PI Xl 

The quantity [f, g] = €ij(of /OXO,i) (og/OXO,j) is the Poisson bracket (with sum­
mation over repeated indices), with €12 - €21 = 1 and €ll = €22 O. The 
boundary conditions require mapping boundary points to boundary points. 
That is, for straight boundary segments we require 

ft· V'4> = 0 (8) 

on the boundary ax, with ft the unit vector normal to the boundary. (Bound­
ary conditions for curved boundary segments in 2D are described in Ref. [9].) 
Equation (7) is nonlinear and elliptic and has been solved [together with 
boundary conditions (8)] with Newton-Krylov techniques in Ref. [11]. 

Fluid dynamic formulation for Lp 

Let us postulate a Lp variational principle to obtain a flow x(t) whose time-l 
map x(O) -+ x(l) on the volume X is the optimal map Xo -+ Xl' of the Lp 
form of Monge--Kantorovich optimization [11]. This will allow us to determine 
the flow x(t) and the density p(x, t) which interpolates between Po(Xo) and 
Pl(Xl) in an optimal manner. We begin by considering 

Wp JI 

dt Jdx {p(x, t)lv(x, t)iP + Sex, t) [Otp(x, t) + V'. (p(x, t)v(x, t))]} .(9)
° x p 

Minimization of the first term gives a 'most efficient' flow p(x, t) that trans­
ports from Po(Xo) to Pl(Xl), i. e. satisfies p(x, 0) Po(x), p(x, 1) Pl(X) on 
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X. The quantity S(x, t) is a local Lagrange multiplier ensuring that p(x, t) 
satisfies the continuity equation 

OtP + V . (pv) = O. (10) 

We will treat the p = 2 case and the case of more general p separately. 

3.1 L2 formulation 

For the special case p = 2, Eq. takes the 

j dt Jdx {P(X, t)~(x, t)' + S(x, t) t) + V . (p(x, t)v(x, 
o x 

} 

In a fluid dynamics context, the first term in the integrand represents the 
kinetic energy density. Taking the first variation with respect to p(x, t) and 
v(x, t), respectively, we find, upon integrating by parts in x and t 

v VS, (12) 

VS = 
v2 

(13)Ot S + V ' 2' 

(The endpoint terms obtained from integrating by parts in time are zero be­
cause p is specified there. The terms on oX are zero because the normal 
component v . it equals zero we 

OtS -~IVSI2. 

This is the Hamilton-Jacobi or ray optics (Eikonal) equation. We use this 
equation together with the continuity equation (with Eq. (12)) 

OtP + V . (pVS) 0 (15) 

in the following manner: we choose an initial condition S(x,O) and fix the 
initial density p(x,O) Po(x). We then integrate Eqs. (14), (15) in time to 
t = 1, and consider the residual R(x) == p(x, 1) - PI(X). We vary S(x, 0) to 
drive the residual R to zero on V. In practice this is achieved by Newton's 
method, discussed in Sec. 5. 
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One more observation is in order. If take the gradient of Eq. (14) and use 
Eq. (12), we find 

1 2
OtV = -:{~7v . 

Since V x v 0, we conclude 

OtV + v . Vv = O. (16) 

That is, Eqs. (10) and (16) are the equations for a pressureless irrotational 
fluid. (See Ref. [18J.) This last relation implies that vex, t) is constant along 
the trajectory, i. e. 

vex, t) = v(Xo(x, t), 0) vo(xo), (17) 

where xo(x, t) is the initial position of the fluid element located at x at time 
to' This means that the orbit dx/dt = vex, t) is a straight line given by 

x(t) = Xo + tvo(Xo). (18) 

Its time-l map Xo -l- Xl = x(l) is given by 

x(l) = Xo + v(Xo) = Xo + VS(xo, 0) V [~5 + S(Xo, 0)] . (19) 

In general the time-l map for a gradient flow is not a gradient map. However, 
in this special case with constant velocity trajectories, this property does hold. 

It is easy to see now that this flow produces the same map as the usual L2 
Monge-Kantorovich theory, i. e. by solving the Monge-Ampere equation [8J. 
Indeed, the flow in Eq. (19) takes Po(xo) to PI (Xl) and is a gradient map. Thus, 
S(Xo, 0) is a solution of the Monge-Ampere equation, and these solutions are 
known to be unique. 

9.2 Lp formulation 

Taking variations of Wp of Eq. (9) with respect to p(x, t) and vex, t) leads to 

V IvI2
- P VS, (20) 

OtS + v . V S = Ivl
P 

(21)P , 
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with the integrations by parts in t and x justified as in Sec. 2.1, assuming 
the normal component V· Ii vanishes on the boundary ax. Substituting, and 
defining q such that l/p + l/q = 1, we find 

Ivl I\7Slp~l = I\7Slq-l and v = I\7SI~\7S I\7SIQ-2\7S, (22) 

ats = p II\7SI~ = -!1\78IQ. (23) 
p q 

We solve this Lp analog of the Hamilton-Jacobi equation coupled with the 
continuity equation (10) with v 1\78IQ- 2\7S. As for L 2, we drive the residual 
R(x) == p(x, 1) Pl(X) to zero using Newton's method, by varying 8(x, 0). 

We now show that Eq. (16) holds for Lp as it does for L2• The outline of the 
derivation is the following: we differentiate Eq. (12) with respect to time to 
obtain 

'\1J 2 - p ~ ~ atV= v +--ee· (24)[ p-l 

where J I\7SI and e = \78/I\7SI. From Eq. (12) we conclude 

2 P 3-2p
\7 x v = --J p-l \7J x \78; (25)

p-l 

this implies 

2vatv - v x \7 x v + \7'2 = 0 or (26) 

atv + V· \7v=O. 

For more details see Appendix A. 

As in Sec. 2.1, this implies that the orbits x(t) are constant velocity straight 
lines, i. e. Eqs. (17) and (18) again hold. However, Eq. (19) is replaced by 

~ 
x(l) Xo + v(Xo) = Xo + 1\78(xo, O)lp-l \7S(xo, 0). (27) 

This map Xo ---)0 Xl x(t = 1) is not a gradient map. However, this equation is 
of the same form as (5), (6) (Eq. (14) of Ref. [11]) which, when substituted 
into the continuity equation, leads to the Lp Monge-Ampere (Lp MA) equation 
7. It was shown in Ref. [11] that the Lp MA equation is a generalized Monge­
Ampere equation and is elliptic. Further, the boundary condition v . Ii = 
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ft . \78 0 on oX is identical to that used in Ref. . We conclude that the 
time-l map from the Lp flow produces the identical map as the Lp map found 
in Ref. [11]. This conclusion is based on the known uniqueness properties of 
the Lp MA equation, which is a generalized Monge-Ampere equation. 

3.3 Smoothed Ll 

For a smoothed Ll variational principle such as the one introduced in Ref. [11], 
we use the variational 

W1(e) = J1 

dt Jdx {p(x, t) [Ve2+ VeX, t)2 - e] + sex, t) [Otp(x, t) + \7. (p(x, t)v(x, } .(28) 
o x 

Taking variations with respect to p(x, t) and vex, t) we obtain, similar to the 
results of Sec. 3.2, 

eV8 
v 
 VI -1\7812 


Ot8 [eVl - - e] . (29)IV812 

Similar manipulations to those in Appendix A show that 

OtV + V· \7v = O. 

Again, the velocity is constant along the streamlines, Vex, t) vo(Xo). Further, 
the time-l map 

eV8 
x(t = 1) = Xo + V (30)

1 -1\7812 

is identical to the smoothed Ll map of Ref. [11], Eq. (39). 

4 Optimality and the deformation method 

There is one other equidistribution method in the literature, the deforma­
tion method of Liao and Anderson [12]. It is based on the method of Moser 
[13], Banyaga [19] and Dacorogna and Moser [14J. Originally the method was 
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designed to handle only a density Po(xo) =1= 1 with PI (Xl) = 1 but it was mod­
ified in Ref. [15] to treat PI(XI) =1= 1 with Po(xo) = 1. The deformation method 
was applied to 2D grid generation in Refs. [20,21] and to moving meshes in 
Refs. [22,23]. Other applications of the deformation method can be found in 
Refs. [24,25]. 

Let us now review this method, which is based on the solution of a second order 
time-dependent ODE (in 2D) and reaches the new equidistributed grid by a 

grid. Specifically, the method consists of 
two steps. Here we treat the general case of Po(Xo) =1= 1 and PI (Xl) =1= 1, which 
can be found in Ref. [25]. First, one needs to find a solution of 

V'. u(x) Po(x) - PI (X) == g(x) 
U . fi. ° on ax. (31) 

It is obvious that Eq. (31) does not have a unique solution. Then, the following 
system of equations needs to be solved for x(Xo, t) with t E [0,1] 

dx
dt vex, t) = u(x) 

x(Xo, t 0) = Xo (32) 

and the new grid is obtained as 

X(t 1) = Xo. (33) 

The derivation [12,15,25] proceeds as follows: define the function 

H(x, t) = [tPI(X) + (1 - t)Po(X)] detV'x(xo, t). (34) 

The next step is to show that H does not depend on time along the trajectory, 
i. e. dH/ dt = aH/ at + vex, t) . V'H O. Thus, H(Xo, 0) H(x!, 

Po(Xo) PI (Xl )detV'XI PI (XI)J(Xo), (35) 

showing that the equidistribution principle is satisfied. 

In order to compute a grid by this method, Liao and Anderson [12], and Liao 
and Su [15] have proposed analytical solutions valid for simple domains such 
as the unit square. One example of these solutions is 
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1 [X I 
Vx(X, y) = 2" Jg(t, y)dt - h(x) Jg(t, y)dt + ] j g(S, t)dtdS] , 

o 0 o 0 

(36) 

1 [ Y I 11 I 1 
Vy(X,y) = 2 ! g(x,t)dt- Jg(x, t)dt + h'(x) J J g(t, s)dtds , 

000 

(37) 

where h E Cl is any function on 1J such that 

= h'(O) = 0, h(l) = 1. (38) 

However, these solutions are notan optimal choice in any sense. Indeed, in 
Ref. [8] we showed for a challenging example, with PI = 1 and Pl(XI) fairly 
complex, the deformation method [with the velocity field described by Eqs. 
(36) and (37) with h(x) [1 + cos(7r(x - 1))]/2] produced highly elongated 
cells which resulted in grid tangling for a 64 x 64 grid. In a later paper, Liu 
et al. [21J used u(x) = \7w(x), leading to 

\72w = Po(x) - PI (x) on X, 
\7w· ft = 0 on ax. 

(39) 

This obviously has a unique solution for u. This gradient flow approach is also 
the choice adopted in Ref. 

It is clear that in the deformation method there is freedom in choosing the 
velocity field. The remainder of this section will be devoted to understand how 
this flow can be chosen such that the deformation method can be linked to a 
variational principle. 

First, we show that the deformation method can be expressed in fluid terms 
similar to that in Section 3, in order to make the derivation in Eqs. (31)­
(35) more transparent. Suppose we assume that the density evolves in time 
according to 

p(x, t) PI(X)t + (1 - t)po(x), (40) 

a linear interpolation in time of the initial and final densities. Since ap/at 
PI - Po, substitution into the continuity equation (10) leads to the following 
equation for the momentum density u(x) p(x, t)v(x, t): 

\7. u(x) Po(x) - Pl(X). (41) 
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Furthermore, the equation for the flow can now be cast in the form 

dx ( ) u(x) u(x)vxt -- (42)
dt ' p(x, t) 

dynamic Lp formulation and the deformation 
dynamic Lp formulation, we solve the con­

and (23) for the time-dependent velocity 
t:;YUtLLIUll transports the density from Po to PI according to 

this optimal flow. The latter is obtained such to minimize the first term in Eq. 
(9) and is dependent on p. As soon as we make a specific assumption on the 
time evolution of the density such as Eq. (40), the continuity equation leads 
to an equation for the velocity field consistent with this assumption. Clearly 
this velocity field will not be optimal [since the optimal one is determined 
by Eqs. (22) and (23)] and therefore any relationship with the underlying Lp 
variational principle is lost. Thus, it appears that the deformation method can 
be formulated in a fluid context at the price of losing the connection with a 
variational principle and its associated optimality. 

One further comment is in order. One could in principle consider more complex 
time dependencies ofthe density than that in Eq. (40). For instance, one could 
consider 

p(x, t) PI (x)t + (1- t)Po(x) + t(1 - t)P2(X), (43) 

with P2 any function on X. Notice that the density pat t = 0 and t 1 are 
unchanged by this term. Substitution of Eq. (43) into the continuity equation 
(10) as before leads to 

\7 . u(x, t) po(x) - PI (x) + (2t -l)fJ2(x). (44) 

pv u(x, t) = UI (x) + tU2(X), we 

\7 . UI (x) = po(x) - PI (x) - P2(X), 

\7 . U2(X) = 2p2(X). 


Furthermore, the solution of 

dx UI(X) + U2(X)t- - v - ---,-------,.----=-.:...,...:.----:--:~.:...,.-___:_---:--:- (46)
dt - - PI (x)t + (1 - t)Po(x) + t(1 - t)P2(X) 

leads to p(x, 0) = Po(x) and p(x, 1) = Pl(X). That is, Eqs. (45) and (46) repre­
sent an alternative deformation method which still satisfies the same equidis­
tribution principle. (Notice as before that Eqs. (45) and (46) do not have 
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unique solutions.) Of course, one could generalize the deformation method 
even further by expanding the density in a series of the form :Em n tm(1 
t)npm,n(x), resulting in a more complex method involving a more ge~eral mo­
mentum density u(x, t) = :Ek tkUk(X). This little exercise reveals that there 
is nothing special behind the assumption (40) leading to the deformation 
method. However, it is not at all clear that the added complexity in, for 
example, Eq. (43), leads to much. 

The considerations above point clearly to the importance of the choice of the 
flow in determining the new equidistributed grid for the deformation method. 
The question then becomes whether it is possible to pick this flow in such a 
way to regain a connection with a variational principle or, in other words, to 
obtain an optimal deformation method. It turns out that the answer to this 
question has been provided by Evans and Gangbo [26]. This was done (see also 
Trudinger and Wang [27] and Caffarelli et at. [28]) in the context of finding 
an alternative proof of the existence of a solution for the L1 MK optimization 
problem (and not in the context of grid generation.) The proof in Ref. [26] 
is quite complex and we refer the interested reader there for mathematical 
details. Here we only report the results. Ref. [26] starts with solutions of the 
equation 

\1. u(x) = Po(x) - PI (x) with u(x) = I\1W(x)IQ-2\1W(X) = b(x)\1W(47) 

(As noted earlier, q 2 equals = (2 - p)/(p - 1).) We require ft· \1W 0 on 
aX. There is some similarity with Eq. (22), but note that here the momentum 
density pv = u(x) is of the form in Eq. (47), whereas in Eq. (22) the velocity 
v = u/P is of this form. The next step is to solve dx/dt = v = u/p, where 
p(x, t) is of the form (40), i. e. 

dx I\1W(x)IQ-2\1W(X) 
dt tPl(X) + (1 - t)Po(x) 
x(O) = Xo. (48) 

Evans and Gangbo [26] proved that the time-l map produced by this method 
Xl = x(Xo, 1) is, in the limit p --j. 1, the solution of the L1 MK optimization 
problem [Eq. (1) with p = 1]. 

Thus, when p --j. 1 Eqs. (47) and (48) give the optimal deformation method, 
which is linked to the L1 variational principle. We must emphasize that, al­
though the flow discussed here and the flow of Sec. 3.2 in the limit p --j. 

produce the same optimal L1 map, the flows are not identical and the densi­
ties are also distinct. As we discuss further in Sec. 6, the density found using 
the methods of Sec. 3.2 is not of the form (40). Related to this is the fact that 
the momentum density in Eq. (47) depends on X but not on time, whereas 
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u pv of Sec. 3.2 has explicit time dependence. 

A few considerations are in order. First, note that Eq. (39) is the special case 
of Eq. (47), with p = 2. Note also that, unlike Eq. (39), Eq. (47) is nonlinear 
and therefore solution for W requires more sophisticated numerical techniques 
such as the Newton-Krylov method [29]. Another point relates to the similarity 
of Eq. (47) with Eq. (22), as noted in the previous paragraph. 

similarities and differences between Eq. (47) and Eq. (7), the Lp 
t;y'Ua.ulon. The first two terms of Eq. (7) correspond to the left hand side 

However, Eq. (47) does not contain the nonlinearities associated 
Poisson bracket in Eq. (7). Also, in Eq. (47) we have PI 

Eq. (7) we have PI (Xl)' which introduces an additional source 

Finally, we comment that Ref. [11] shows that a grid generation method based 
on Lp MK optimization with p -4 1 is more prone to generate highly distorted 
grid cells near the boundary. This observation leads to the conclusion that 
the optimal distortion method (with p = 1) might not be suitable for grid 
generation applications. 

It appears that this connection between the deformation method of grid gen­
eration and L1 Monge-Kantorovich optimization has not been reported in the 
literature, nor have the boundary problems of Lp with p -4 1. 

5 Numerical implementation 

In this section we discuss the details of the numerical implementation for the 
fluid dynamic formulation characterized by Eqs. (10), (22) and (23), and for 
the optimal deformation method, Eqs. (47) and (48). 

In the following, wherever needed, we use a standard, non-linear Newton­
Krylov solver [29], where we set the absolute error tolerance la = 10-4 and 
the relative error tolerance Ir = 10-4. The inner iterations are performed using 
the GMRES scheme, without restarting. The forcing parameter 'f/k is constant 
'f/k 10-3 . Since we do not focus on performance issues in this paper, we do 
not use a preconditioner for the GMRES iterations. 

5.1 Fluid Dynamic 

We use a uniform grid in xo, Yo even when Po =1= I?, although this choice may 
be suboptimal. To discretize Eqs. (10), (22) and (23), we consider a 
grid in x, with grid spacing Llx and Lly in the x and y directions, respectively. 

14 




The unknowns Si,j are located at cell centers (i and j label cell centers in the x 
and y directions) and we use ghost cells to enforce boundary conditions on S. 
Moreover, the velocity field Vi+l/2,j+1/2 is located at vertices while the density 
Pi,j is located at cell centers. The first order derivatives of S are computed as 

as) ~ Si+l,j + Si+l,j+l - Si,j 8i ,j+l 
( ax i+l/2,j+1/2 2.6.x 

a8) ~ Si,j+l + 8£+I,j+l - Si,j - 8i+l,j (50)( 
ay i+l/2,j+l/2 2.6.y 

We will also need \7S at cell centers: 

(\7S)£,j = (\7S)i+l/2,j+l/2 + \7SIi+1/2,j-l/2: \7Sli-l/2,j+l/2 + \7SI£-1/2,j-1/2 .(51) 

Consequently 

Vi+l/2,j+l/2 I\7SI?~~/2,j+l/2 (\7S)i+l/2,j+1/2' (52) 

The discretization at cell centers of the term \7 . (pv) in Eq. (10) is performed 
in a similar manner as in Eqs. (49) and (50) (interchanging i + 1/2 ---+ i and 
j + 1/2 ---+ j). In this case, the density Pi+l/2,j+1/2 in the vertices is needed 
and this is obtained from second order extrapolation from the values Pi,j at 
cell centers. Finally, we have 

p-l l\7SIP (53)at p ~,} 

ap·a;'}. = -\7 . (PV)i,j (54) 

for t E (0,1). The ODEs (53) and (54) are solved with a second order Runge­
Kutta scheme. We have performed convergence studies changing time step .6.t 
of the Runge-Kutta solver and grid spacings ~x and ~y (not shown) and 
choose .6.t = 0.01 for the results presented in this paper. 

The boundary conditions for S are implemented via ghost cells [8]. If we con­
sider for instance the x = 1 segment of ax, where as/ax = 0, we have 
Sn",+1,j Snx,j, second order accurate because this segment of the bound­
ary is at Xnx+1/2 1. (We use a similar formulation for the other boundary 
segments). For the corner ghost cells, we impose 

Snx +l,nl/+l = Snx+1,nl/ Snx ,nl/+l = SnX,nl/ 
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at the top-right corner and similarly for the other corners. nx and ny 
label the number of grid cells in the x and y directions. 

As discussed in Sec. 3, the fluid dynamic formulation proceeds as follows: 
instead of specifying p(x, 0) and S(x, 0) as initial conditions, we have p(x, 0) = 
Po(x) and p(x, 1) PI (x). Therefore one needs to start the integration of Eqs. 
(53) and (54) with an initial guess for S(x, 0); we then iterate until p(x, 1) = PI 
within a given tolerance. This is done by Newton-Krylov methods, where we 
drive to zero the residual R = p(x, t 1) PI(X). 

5.2 Optimal deformation method 

As discussed in Ref. [8]' it is efficient to solve equations like Eq. (47) for W on 
a reference grid and then, as x is updated in time according to Eqs. (48), use a 
cubic spline interpolation to obtain the velocity field at the new x positions. In 
order to solve Eq. (47), we use a uniform reference grid with grid spacing 
and t:::..y where the unknowns are located at cell centers WiJ and the boundary 
conditions are imposed via ghost cells. This is the same as what is done in 

5.1 and we omit further details here. 

The discretization of the right hand side of Eq. (47) is done with a 5-point 
stencil: 

,....., Wi+l,j ( ) WiJ Wi-I,j\7. (\i'W) ,....., bi+I/2,j~ - bi+l/2,j + bi - I /2,j A 2 + bi-I/2,j~ + ux ux ux 
Wi,HI ( ) WiJ Wi,j-I

bi ,j+1/2 t:::..y2 - bi ,j+1/2 + bi,j-I/2 t:::..y2 + bi,j-I/2 t:::..y2 (55) 

where 

b ,....., [(Wi+lJ+l + Wi+I,j Wi,j-l - Wi,j)2 (Wi+l,j+l Wi+l,j + Wi,j-I - Wi,j) 2] 
i+l/2,j+1/2 ....., 2t:::..x + 2t:::..y 

and the off-vertex values bi+l/2J are averaged: 

b bi+l/2,j+1/2 + bi+l/2J-I/2 (57)i+l/2,j 2 

(and similarly for bi,j+1/2)' 

The solution of Eq. (47) is obtained by Newton-Krylov methods, while the 
integration of (48) is obtained by the second order Runge-Kutta method 
(again with time step t:::..t = 
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6 Results 

In this section, we investigate solutions of the Lp equations. We first check 
some of the theoretical predictions of Secs. 3 and 4. That is, we compare the 
grids obtained by solving the generalized MA equation (7) and the Lp fluid 
dynamic formulation described in Eqs. (10), (22) and (23). We then show 
studies of the time evolution of the density in the fluid dynamic formulation. 
We also compare the fluid dynamic formulation with the optimal deformation 
method (in the limit p --;. 1). Finally, we discuss some aspects of the fluid 
dynamic formulation applied to imaging. 

6.1 Comparison of the fluid dynamic formulation with the Lp MK method 

In this subsection, we compare the grid obtained by the fluid dynamic formu­
lation (Sec. 3) with the Lp MK method, where the generalized MA equation 
(7) is solved to get the final map (Sec. 2). We choose the following example 

0 1 


Po(Xo) 1 + 4 [(xo 0.7)2 


O2 (58)
PI (xI) = 1 + 64 [(Xl - 0.2)2 + (Yl - 0.3)2J 

where 0 1 and O2 are normalization constants such that Ix Po (Xo)dXo = Ix PI (xl)dxI 
1. The density Po is fairly broad: the ratio of the maximum to the minimum 
density Pmax/Pmin is 5.5. This ratio for PI is much larger, about 73. Thus, this 
example is rather challenging. The corresponding 16 x 16 grids are shown in 
Fig. 1, for p 2,1.25,1.1,1.01. The solid line corresponds to the grid obtained 
with the fluid dynamic formulation while the dashed line corresponds to the Lp 
MK method. This figure shows that the two methods produce approximately 
the same grids (consistent with truncation errors), with larger differences as 
p --;. 1. These differences decrease when the resolution is increased (not shown). 
As discussed in Ref. [11], it is apparent that, as p --;. 1, the grid cells are much 
more stretched relative to the p = 2 case and there is a crease connecting the 
upper-right corner with the peak of PI at Xl = 0.2, Yl = 0.3. This is associated 
with the behavior near the boundary and is related to the fact that domains 
with fixed boundary points (such as the corners in the unit square) violate the 
Eikonal equation [11]. For this reason, in Ref. [11} we concluded that Lp for 
p --;. 1 is not suitable for grid generation applications in such domains. 
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Fig. 1. Grid lines, i. e. contours x(x', y') = const and y(x', y') = const for the 
fluid dynamic formulation (solid line) and the Lp MK method (dashed line) with 
p 2,1.25,1.10,1.01 (16 x 16 cells). 

6.2 Time evolution of the density for the fluid dynamic formulation 

In this subsection, we discuss the time evolution of the density obtained by the 
fluid dynamic formulations of Secs. 3 and 4. This is important in light of the 
results of Sec. 4, where we showed that the deformation method (optimal or 
not) can obtained from a fluid dynamic formulation by assuming the form 
of the density in Eq. (40). Here we check whether this interpolated density 
is related to the density obtained by the Lp fluid dynamic formulation of 
Secs. 3.1, 3.2. 

We focus on the example with densities given by Eq. (58). The results for 
p = 2 are shown in Fig. 2, which shows 11 snapshots (equally spaced in time) 
of the density evolution. Each snapshot consists of 15 equally spaced contours 
of the density, between the minima and maximum at each time. It is evident 
in Fig. 2 that the peak of the density (starting at x = 0.7, Y 0.8) is advected 
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Fig. 2. Contours of the density evolution from the fluid dynamic formulation with 
p = 2 for the densities given by Eqs. (58). Each subplot shows 15 equally spaced 
density contours with the maximum and minimum contours indicated. 

toward its final position (x = 0.2, Y 0.3). Around the peak the contours 
remain roughly circular, although there is some distortion near the boundary. 

Figure 3 shows the evolution of the density for p = 1.01. The evolution is 
similar to that of Fig. 2, although there is a much stronger interaction with 
the boundary (particularly at early times, near the upper-right corner). The 
crease (discussed in the context of Fig. 1) connecting the upper-right corner 
with the peak of the density is also visible in the contours. Although there 
are some differences between the density evolution for 0 < t < 1, these two 
are quite different from the linear interpolation of the density between Po and 
PI plotted in Fig. 4. This figure shows clearly how the linearly interpolated 
density exhibits structures associated with the two peaks of Po and Pl. Rather, 
the densities in Figs. 2 and 3 show simple motion of the maxima between those 
of Po and PI­
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Fig. 4. Contours of the density evolution according to Eq. (40) for the densities 
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6.3 	 Comparison of the fluid dynamic formulation with the optimal deforma­
tion method 

In this subsection, we compare the fluid dynamic formulation with the optimal 
deformation method. As discussed in Sec. 4, the optimal deformation is defined 
in the limit p ~ 1, for which the method is linked to the L1 MK variational 
principle. However, we perform the comparison also for p > 1, where the 
method is not actually related to a variational principle. The results are shown 
in Fig. 5 for the same densities given by Eq. (58). The solid lines are the grid 
lines obtained with the optimal deformation method of Sec. 4 [Eqs. (47) and 
(48)], and the dashed line is from the fluid dynamic formulation of Sec. 3. In 

figure, we have 32 x 32 cells and p 2,1.5,1.3,1.1,1.05,1.01. For large 
p, one can see that the two grids are completely different. We note that for 
p = 2 the optimal deformation method corresponds to the method used 
Refs. [?]LJL98,germans), cf. 39. However, as p ~ 1 the two grids converge 
to the same solution. This is the numerical confirmation of the mathematical 
proof given by Evans and Gangbo [26] that, in the limit p ~ 1, the optimal 
deformation method is equivalent to the L1 MK variational principle. 

In Fig. 6 we show orbits obtained from the optimal deformation method. On 
left we have p = 2 while on the right we have p = 1.01. The initial grid 

points are uniformly distributed and each trajectory shown consists of 101 
points equally spaced in time. One can see that for p 2 the trajectories are 
not straight lines. This is not surprising since for p = 2 the optimal defor­
mation method does not have any link with a Lp MK variational principle 
(for which we have shown in Sec. 3 that grid point trajectories follow straight 
lines). On the other hand, for p = 1.01 the grid points follow straight 
orbits. However, one can see from Fig. 6 that these points do not move with a 
constant velocity (as they do in the fluid dynamic formulation). Considering 
for instance the trajectory of the point starting at x = y 0.75, one can see 
that at the beginning of the time evolution (t >::::l 0) successive points are closely 
packed, then the distance between to consecutive points increases (t >::::l 

and toward the end (t>::::l 1) consecutive points are again more closely spaced. 
This means that the grid point originating at x = y 0.75 accelerates at 
the beginning and then decelerates. This is another indication that the flow 
in the optimal deformation method is not optimal (according to the Lp MK 
variational principle) and, consequently, the 'optimal' evolution of the density 
is not a linear interpolation between Po and Pl' 

We conclude that for p > 1 the optimal deformation method bears no re­
semblance to the Lp map or its Lp fluid dynamical formulation, which has 
constant velocity orbits and densities evolving as in Figs. 2 and 3. Close to 
p = 1, on the other hand, the optimal deformation method does appear to 
lead to the optimal L1 map, but the densities are very completely different 
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Fig. 5. Contours x{x', y') const and y(x', y') = const for the optimal deformation 
method (solid line), which is actually optimal only for p = 1, and the Lp fluid 
dynamic formulation (dashed line) with p 2,1.5,1.3,1.1,1.05,1.01 (32 x 32 cells). 

and the orbits, while apparently straight lines for p close to unity, do not have 
constant velocity. 

23 


http:2,1.5,1.3,1.1,1.05,1.01


Optimal deformation method p=2 

0.8 

0.6 

:... 
0.4 f;~/
0.2 --~ 

00 0.2 0.4 0.6 0.8 
x' 

Optimal deformation method p=1.01 

1[-

0/
0.8 

1
1 

,0.6 . 

~O.41/~ 
0.2f /~~ 


00 
 0.2 0.4 0.6 0.8 
x' 

Fig. 6. Time evolution of 9 uniformly spaced grid points according to the optimal 
deformation method with p = 2 (left) and p = 1.01 (right). Each trajectory consists 
of 101 dots equally spaced in time. 

6.4 Application of the Lp dynamic formulation to imaging 

In this subsection, we discuss the application of the Lp fluid dynamic formu­
lation to find the warping transformation between two given images. In this 
context, the luminosity of the two images corresponds to the densities Po and 
Pl. This is motivated by recent work presented in Refs. [30-33], where L2 MK 
optimization was proposed as a tool to perform the warping between two im­
ages. Zhu et at [32] found that L2 MK optimization can lead to the effect of 
double-exposure, i. e. the fact that features of the initial image persist during 
the warping transformation. An example of double-exposure is the linearly 
interpolated density of Fig. 4. Zhu et al. [32] also speculated that Lp MK 
optimization (with 1 < p < 2) could improve upon L2 in terms of reducing 
double-exposure. Here, we wish to compare L2 with general Lp. 

Figures 2 and 3 already offer some insight. As already noted, these figures 
involve an initial peaked density which is advected and compressed in time, 
resulting in the more peaked final density PI peaked at a new position. By 
comparing Figs. 2 and 3, i.e. its velocity is not constant along the trajectory, 
it is clear that p = 2 performs better than p -+ 1. This is due to the problems 
arising near the boundaries. Notice that Figs. 2 and 3 show no evidence of 
double-exposure; this is probably because the specific example is rather simple 
for imaging applications. 

Further insight can be gained by considering also the following example 

Po(Xo) = C3 exp [-2(xo - 0.5)2 lO(Yo - 0.5)2] 
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7 

Pl(xd = C4 exp I lO(Xl- - 2(YI - 0.5)2] (59) 

where again C3 and C4 are normalization constants. This example corresponds 
to an initial peaked density which is rotated by 90 degrees to give the final 
density. The time evolution of the density is shown in Fig. 7 for p = 2 and 
in Fig. 8 for p = 1.01. For p = 2, one can see that the density is compressed 

x direction and expands in the y direction. (Notice that at t = 0.5 the 
appears to be approximately rotationally symmetric.) This evolution 

does not correspond to a pure rotation, which would be the simplest warping 
transformation between Po and Pl. The fact that ~ MK optimization cannot 
capture a pure rotation is not surprising, since for p 2 the flow is a gradient 
flow and therefore curl-free. The evolution for p 1.01 is very similar to that 
of p = 2. As in Fig. 3, the interaction with the boundary creates problems. In 
this specific example, it generates artificial structures near the midpoints of 
the boundary segments. Again, the evolution for p 1.01 does not correspond 
to a rotation. This has some significance since in principle the flow is not a 
gradient flow for p 1.01. 

We conclude based on these few examples that p 2 performs better than 
p --;. 1 for image warping applications, primarily because of issues related to 
the boundary for small p. We have noted that p 2 does a reasonable job 
for an example where the feature of the initial image is primarily moved to 
a different location (Fig. 2), but it cannot move an initial image to a rotated 
form of the image via a flow involving rotation, because for p = 2 both the 
map and the flow are gradients. 

Conclusions 

In this paper we have analyzed some of the equidistribution methods de­
scribed in the literature and their application to grid generation. These are 
methods where the Jacobian of the map satisfies a prescribed distribution 
det'Vxl(xO) Po(Xo)/Pl(Xt}. There are essentially two kinds of equidistribu­
tion methods in the literature. The first kind consists of a minimization pro­
cedure where the equidistribution principle is enforced locally by a Lagrange 

class, we have focused on the so-called Lp Monge­
Kantorovich optimization [8,9,11]' where the Lp norm of Xl -Xo is minimized. 
The second kind is the deformation method [12], where the equidistribution 
principle is satisfied by a continuous deformation in time of the initial condi­
tion. In the deformation method there is a degree of freedom in choosing the 
flow responsible for the deformation procedure. 

While this work complements and extends previous work on these equidistri­
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Fig. 7. Contours of the density evolution from the fluid dynamic formulation with 
p = 2 for the densities given by the linear interpola.tion formula of Eqs. (59). Each 
SUbplot shows 15 equally spaced contours of the density. 
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Fig. 8. Contours of the density evolution from the fluid dynamic formulation with 
p 1.01 for the densities given by Eqs. (59). Each subplot shows 15 equally spaced 
density contours, 
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bution methods, there are four main contributions: 

(1) 	 We have shown that Lp MK optimization and the related generalized 
Lp MA equation are equivalent to a Lp fluid dynamic formulation in 
which a density obeying a continuity equation is advected by an optimal 
time-dependent flow for 0 :s; t :s; 1. Therefore we present an alternative, 
fluid dynamic method to reach the same equidistributed grid. While the 
solution of the generalized Lp MA equation (for which multigrid precon­
ditioning can work effectively) is our preferred way of computing the new 
grid, this alternative method could be used if the other one fails. In this 
regard, further work will be needed to find a suitable preconditioner for 
the fluid dynamic method. 

(2) We have shown 	that the deformation method belongs to the family of 
fluid methods. Thus this paper provides a unified theory of the equidis­
tribution methods based on Lp MK optimization and the deformation 
method. The deformation method is obtained from a fluid formulation 
by assuming that the density evolves according to a linear interpolation 
in time between the initial and final densities PI and P2, and the velocity 
obeys the continuity equation using this density. There is nothing spe­
cial about the linear interpolation assumption and one could generate an 
infinite number of alternative deformation methods by simply assuming 
more complicated time dependences of the density. However, the linear 
interpolation in time is convenient from a practical point of view since 
it gives rise to the simplest deformation method. Notice that, in general, 
when an assumption is made on the time evolution of the density in the 
fluid dynamic formulation (but without any assumption on the form of 
the flow), any link with the underlying variational principle is lost. 

(3) Following the work by Evans and Gangbo [26], we have shown that the 
deformation method can be linked to L1 MK optimization by a suitable 
choice of the flow. This aspect has not been recognized in the literature 
related to the deformation method and, while theoretically developed by 
Evans and Gangbo [26J (not in the context of grid generation but as a 
proof of the existence of a solution of the Ll MK problem), it has been 
verified with numerical experiments here for the first time. 

(4) We have explored 	the application of the Lp fluid dynamic formulation 
developed here to imaging techniques. Specifically, the fluid dynamic for­
mulation in which a density is advected from an initial to a final density 
is equivalent to a warping transformation between the two images. Here 
the luminosity of the two images corresponds to the initial and final den­
sities. L2 MK optimization was applied to image warping in Refs. [30-32J, 
where it was argued that future work might focus on Lp with 1 < p < 2, 
which could offer improvements over p = 2. We have checked this hypoth­
esis and concluded that the L2 method is better than the Lp method for 
p < 2 because for smaller p artificial structures arise near the boundary. 
(This type of problem has also been documented for the Lp map problem 
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in Ref. [11].) However, based on our results it is far from clear that 
p 2 fluid dynamic formulation provides a competitive method for image 
warping. 
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Appendix A. Fluid momentum equation for Lp 

In this appendix we show details of the derivation of Eq. (26). Using Eq. (12) 
leads to 

2-p ~ 
atv --I\7SI \7S\7S· ats + !\7Slp-I \7atSp-1 

(~ - ~ee . \7ats + \7ats) , (60) 

where I I\7SI and e \7SII\7SI. Equation (23) implies \7atS = - Ip-I
1 

\7S. 
Substituting into Eq. (60), we obtain 

atv = (\7I + 2 - Pee· \71) . (61)
p-1 

Once more using Eq. (12) we find 

2 - P 3-2p

\7 X v = --I p-I \71 X \7S and (62) 
p 1 

5-3p 2 
v X \7 X v = I p-I X (\71 X \7S) (63)

p-1 

2 - P (\7I ee . \7f) . 
p-1 
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Using Eq. (12) again, we find 

2 
\7 v = 1 \7f. (64)

2 p-1 

Putting all this together, we find OtV - v x \7 x v + \7v2 j2 0, is 

Otv + v ·\7v=o, 

implying constant velocity trajectories. 
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