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A Structural Framework for Anomalous Change Detection and 

Characterization 


Lakshman Prasad*, James Theiler 
Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, NM 87545 

ABSTRACT 

We present a spatially adaptive scheme for automatically searching a pair of images of a scene for unusual and 
interesting changes. Our motivation is to bring into play structural aspects of image features alongside the spectral 
attributes used for anomalous change detection (ACD). We leverage a small but informative subset of pixels, namely 
edge pixels of the images, as anchor points of a Delaunay triangulation to jointly decompose the images into a set of 
triangular regions, called trixels, which are spectrally uniform . Such decomposition helps in image regularization by 
simple-function approximation on a feature-adaptive grid . Applying ACD to this trixel grid instead of pixels offers 
several advantages. It allows : 1) edge-preserving smoothing of images, 2) speed-up of spatial computations by 
significantly reducing the representation of the images, and 3) the easy recovery of structure of the detected anomalous 
changes by associating anomalous trixels with polygonal image features. The latter facility further enables the 
application of shape-theoretic criteria and algorithms to characterize the changes and recognize them as interesting or 
not. This incorporation of spatial information has the potential to filter out some spurious changes, such as due to 
parallax, shadows, and misregistration , by identifying and filtering out those that are structurally similar and spatially 
pervasive. Our framework supports the joint spatial and spectral analysis of images, potentially enabling the design of 
more robust ACD algorithms. 
Keywords : Segmentation, Delaunay triangulation, anomalous, change, feature 

1. INTRODUCTION 

The problem of Anomalous Change Detection (ACD) in 
images pertains to the detection of unusual differences 
between a pair of images of a palticular scene, each taken 
at a different time. Here, one is not interested in pervasive 
changes such as due to lighting, seasonal variation , camera 
imaging characteristics , or non-local image editing. Rather, 
one is looking for changes that are of a rare kind in 
comparison to the statistics of the collective changes across 
the two images. Figure I illustrates this with two images of 
the same scene (Figs. lea) & I(b) .) The image on the left is 
blurred and contrast-enhanced compared to the one on the 
right. Thus it is different from the image on the right in 
every location. ,In addition, the image on the right shows an 
additiona'l 'vehicle' on the road segment shown in inset 
I (d) as a real anomalous change. 

It is important to emphasize that ACD is different from 
the problem of anomaly detection wherein one is looking 
for objects or features that are somehow unusual with 
respect to the features in the rest of the image. In particular, 
the occurrence of the same unusual feature in two different 
images of a scene is not considered unusual in ACD as its 
peculiarity is ofa similar nature in both images. Figure I: Pervasive versus anomalous changes 
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2. FRAMEWORK FOR ANOMALOUS CHANGE DETECTION 

Theiler and Perkins 1,2 have proposed a spectral framework for ACD in a pair of images. In this framework they propose 

an anomalous change detector in terms of level curves of the likelihood ratio 

P(x,y) 
(1)

P(x)P(y) 

Here P(x,y) is the probability distribution of (x,y) with x being the vector of spectral values ofa pixel in one image andy 
being that ofthe corresponding pixel in the other image. P(x) and P(y) are the corresponding marginal distributions 
given 

P(x) = f P(x,y)dy, (2) 

and 

P(y) = f P(x,y)dx, (3) 

In general, the underlying distribution P is not known but a sampling of it is available at the corresponding pixel pairs 
{(x"y,)}, I .. N (the normal class) taken from the two images. A resampling approach2 is employed to estimate the 
background class, wherein the x and yare treated as if they are independent and the samples {(x"YJ)} id I. N correspond 
to samples from the distribution P(x)P(y). A binary classification scheme to separate the two classes is then employed to 
train a discriminant f (x,y) where f (x,y) » 0 represents the anomalous changes. We refer the reader to Theiler and 
Perkins1

,2 for a detailed discussion of this framework, which we will refer to in the rest of this paper as the framework 
for anomalous change detection (FACD). 

Although the motivating context for FACD is imagery, the generality of the framework extends to non-image data as 
well. In particular, even in the case of image data, it is not necessary that the elements of picture description be pixels. 
This suggests that one can perhaps incorporate spatial information in images, along with spectral information, to 
improve anomalous change detection. For instance, smoothing two images before ACD makes them less variable 
locally, making real anomalous differences between them stand out. However, smoothing can also affect or even 
obliterate the very changes soughe. Hence, avoiding smoothing across feature boundaries is prudent. Further, apart from 
knowing there is an unusual change, one would like to know, a) what changed? and b) is it significant, meaningful, or 
interesting? Consider, for example, two images of an outdoor scene captured an hour apart. Some typical changes that 

occur between two such images are: the change in the length of shadows cast by objects in the scene, change in 
the brightness of certain objects due to change in incident light and reflection, and parallax shift due to a slight change in 
the camera's position or viewing angle. None of these changes are remarkable from an ACD perspective, but 
nevertheless may qualify as unusual changes in the statistical landscape of the differences between the images. Worse 
still, they may dominate in the hierarchy of anomalousness over 'true' anomalous changes such as the appearance, 
disappearance, or displacement of an object. If one could tease out such pedestrian changes and suppress them, then an 
ACD algorithm would fare better at detecting true anomalous changes. Feature-adaptive smoothing to mitigate image 
noise and detection of image-light projection artifacts (such as parallax, shadows, and misregistration,) both require 
structural knowledge of the images. Structural information in an image is captured to a large extent by the contours that 
delineate its mostly uniform regions. In this paper we propose the use of feature boundaries in a pair of candidate images 
for F ACD to recast them in terms of spatially and spectrally adaptive regional primitives. F ACD, originally applied to 
pixels, will be applied to the spectral attributes of these primitives. Subsequently, the anomalous differences between 
these elements ofthe images will be further qualified based on their structural attributes to decide whether they are to be 
considered as true anomalous changes or, say, merely spatio-temporal artifacts of imaging. We propose the use of an 
image segmentation scheme that is particularly suited for this task. It first serves as a nonlinear image smoothing 
mechanism that preserves feature boundaries. Next, it delineates feature elements that can be evaluated based on their 
structures to determine the nature of the change and characterize it. 



3. POLYGONAL IMAGE SEGMENTATION 


Image segmentation is a key step in automating image understanding by computers. Segmentation decomposes an 
image into its constituent sal iellt features defining the semantic content of the image. Image segmentation sets the stage 
for object detection and recognition by providing a high-level representation of an image in terms of regions with 
spectral and spatial cohesiveness. Image segmentation may be thought of as analogous to perception in human vision. 

Most of the many approaches to segmentation can be broadly classified into one of two categories: 1) methods that seek 
structure by decomposing an image into spectrally uniform regions, and 2) methods that seek structure by identifying 
parts of an image that exhibit rapid spectral change, generally assuming that boundaries of objects are sites of such rapid 
change in intensity. In contrast, our method of segmentation is based on the premise that both region and boundary 
information are necessary for obtaining meaningful segmentations of images. So, rather than rely on regional uniformity 
or edge continuity alone for segmentation, we adopt a hybrid region-contour approach that performs segmentation using 
both aspects of images at the same time. 

We now briefly describe the key steps in our segmentation method. We refer the reader to our earlier work4
,5 for a more 

detailed discussion. Edge pixels of a digital (i.e., pixel-based) image (Fig. 2(a).) are detected by means of an edge 
detection algorithm such as the well-known Canny edge detector6 (Fig. 2(b).). Neighboring edge pixels are then linked to 
obtain contour chains. The space between the contour chains is decomposed into regional units that adapt to the local 
contour geometry. To achieve this, a constrained Delaunay triangulation (CDTf of contour chains is performed to obtain 
a complete tessellation of the intercontour regions without any triangle edge crossing a contour chain (Fig. 2(c).) 
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Figure 2. Key stages of edge-based polygonal image segmentation 


The reason for using a CDT as against some other kind of triangulation is that each edge of a CDT connects proximate 
points on the contour chains. Each edge is also transverse to the local axis of the region determined by the two contour 



elements connected by the edge. Thus the triangles serve as regional elements that capture the local geometry of the 
image region they represent, with their edges serving to relate contour fragments that bound a common region. The 

edges also help interpolate missing edge information to attain completions of object contours. Each triangle in 
the CDT is sampled for the aggregate spectral value of pixels in its interior (Fig. 2(d». 

At this point, each triangle is a unit comprising the image and is called a trixel (TRIangular eXcision ELement). A 
trixel, like a pixel, is regional unit of uniform color. However, it differs from a pixel in that it is not of fixed size. Its 
corners lie on image boundaries (i.e, contour chains) and its edges are potential completions of image boundaries in the 
segmentation process. Thus, the trixel serves as an image adaptive pixel that contains boundary information. As 
mentioned earlier, the task of image segmentation corresponds to the process of perception in human vision. 
Accordingly, we model our segmentation method after this process of perception by taking advantage of the optimality 
properties of CDTs to implement 'perceptual' filters that model certain well-known criteria for perceptual organization 
employed in human vision. Some examples of such criteria are proximity, transversality (a.k.a amodal completion), 
closure, and good continuation. Each criterion is implemented as a Boolean filter on the set of all triangle edges. We note 
that it is possible to restrict the criteria to purely structural and regional aspects of the image's edges, without appealing 
to the spectral values of the trixels4 

. The criteria jointly determine (via a Boolean expression involving the individual 
whether the edge between two adjacent triangles should be deleted or retained, or, what is the same, whether two 

adjacent triangles should be merged into a single polygon or not. Thus, whenever an edge is deleted, a region 
continuation is achieved. Similarly, whenever an edge is retained a contour continuation is achieved. Thus, our approach 
to segmentation explicitly accounts for the region-contour duality of inferring form from images. The trixels are 
represented as the vertices of a graph, with two adjacent trixels connected by an edge if their common edge is not 
retained as a contour completion element by the perceptual filters (Fig. 2(e»). Connected components of this graph 
correspond to trixel groupings, yielding a polygonal decomposition of the image with each polygon being assigned the 
area-weighted average color of the triangles constituting it (Fig. 2(f)). 

These polygons are attributed with structural information such as area, aspect ratio, orientation, etc, as needed in a 
specific application. This representation will enable further high-level processing of structural information to extract and 
recognize objects, detect features of interest based on generic structure or color properties, and efficiently represent 
images in terms of constituent features. 
The segmentation algorithm outlined above results in polygonal regions that correspond to objects or parts of objects. 

The triangles belonging to each such excised part can be used to efficiently compute geometric attributes of the part for 
its characterization and recognitions.9 . Examples of such attributes are its area, average width, intrinsic aspect ratio, etc. 
Thus each part is assigned a vector of shape attributes that characterizes it. Ideally, the set of attributes characterizing a 
shape or its parts should be invariant to rotation and translation. Scale invariance may be desirable when there is no 
control over the imaging distance of the objects of interest, such as in real-world imagery obtained from a video camera. 
However, in applications such as remote sensing, industrial machine vision, and radiographic object detection, the 
imaging distance from objects of interest is typically relatively fixed or easy to ascertain. In such cases, the observed 
size of an object is an important attribute that is relatively invariant because of the fixed/known range of imaging 
distance. Examples of such attributes are area and average width of a shape. The internal aspect ratio mentioned above is 
an example of an absolutely invariant attribute that is constant under translation, rotation, and scaling. There are many 
other ways to generate invariant attributes of shapes, such as the computation of invariant shape moments. 

4. APPLICATION TO ANOMALOUS CHANGE DETECTION 

The edge-constrained triangulation of an image, along with association of the average spectral value of the pixels in 
each triangle to the triangle, constitutes a local edge-adaptive smoothing operation that is restricted to non-edge pixels. 
This mitigates image noise by regularizing the variability of pixel values within each triangle. In this sense, as 
descriptors of images, the trixels are less susceptible to image noise than pixels. However, since we are interested in 
detecting changes between two images, we have to account for the possibility that there is a difference between the 
images. In this case the triangulation of one image will not conform to that of the other in regions where change has 
occurred. As a result, some trixels in one image will straddle some edges in the other. This means that neither 
triangulation will serve as a spatially adaptive smoothing grid for both images. This calls for a refined grid that adapts to 
the edges of both images. A natural solution is the triangulation on the union of edges of both images. That is to say, 



once we obtain the edge pixels of both images, we combine these edge pixels into a single edge image and compute the 
constrained Delaunay triangulation of this combined edge set. With this 'hyper-triangulation' we can compute the trixel­
smoothing of either image without straddling edges. Doing so will yield two spectral values for each trixel; one for each 
image. Thus distributions P(x,y) and P(x)P(y) can be estimated, as described in section 2, with the additional 
modification of associating a frequency to each trixel equal to its area relative to the total image. We have now 
reformulated F ACD for images sampled with trixels. This scheme can be expressed schematically as follows: 

A-f'A "­

" /'
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Here, A and B are two candidate images, a indicates edge detection, l1 indicates constrained Delaunay triangulation, and 
FACD(T, A, B) is anomalous change detection between A and B with respect to the triangulation T. 

We can also independently compute polygons by perceptual grouping of these trixels as described in section 3. As 
mentioned before, the polygons are associated the area-weighted aggregate spectral value of their constituent trixels. For 
the purpose of structural F ACD, however, the polygons are associated the aggregate anomalousness score of their 
constituent trixels. [n effect, each polygon has a measure of anomalousness associated with it. This has two advantages: 

it puts the anomalousness of a trixel in context by associating it with an object or feature polygon. That is, a trixel's 
anomalousness is appreciated or devalued based on the collective contribution of its fellow trixels in its parent polygon. 
Second, the shape of a polygon can be used to characterize the nature of the change. This adds a new dimension to ACD 
by providing a structural component in deciding the nature and importance of an anomalous change. 
One can control the degree of spatial localization of an anomalous change by varying the sensitivity of the edge 

detector. A more sensitive edge detector would pick up fainter edges and the resulting triangulation would yield more 
trixels. The polygons resulting from perceptually grouping these trixels would also typically increase in number. An 
anomalous change encased in a smaller polygon would be stronger than when it is encased in a larger polygon. However, 
the finer polygonization will likely be structurally less informative because of oversegmentation and fragmentation of 
features. Thus, one can trade-off between anomaly localization and characterization. This structural tunability is in 
addition to the spectral tunability of the anomalous change detector where changing the level curve specifYing the 
detector sensitivity will trade-off between probability of detection and false alarm rate. 

5. EXPERIMENT AL RESULTS 

In this section we illustrate the benefits of applying F ACD to polygons instead of pixels. We will do so with two types 
of data; one set consists of multiband images of an indoor scene of objects on a table imaged with a long wave infrared 
(LWIR) hyperspectral sensor with 255 channels 10 (we will use the first three principal components of these images in 
our experiments), and the other consists of aerial grayscale images of a residential neighborhood. The indoor images 
used here show the introduction of a bottle containing a fluid, and the displacement of the bottle. The outdoor aerial 
scene images used here show the appearance of a vehicle on a road and its displacement along that road. In the first set, 
the goal is to detect the introduction and displacement of the bottle as anomalous changes between appropriate images, 
while ignoring changes in ambient lighting and contrast. In the second set, the goal is to detect the appearance of the car 
as the anomalous change while ignoring changes in parallax due to camera movement and misregistration of image 

In all figures to follow that show the result of FACD applied to either pixels or polygons, only those pixels/polygons 
whose anomalousness exceeds the mean value by two standard deviations are shown. [n the electronic online color 
version of this paper, anomalous polygons are outlined in red and are filled with a green color whose intensity is 
proportional to the anomalousness of the polygon. 

Between figures 3(a) and 3(b) the anomalous change is the introduction of the bottle in the right image. Figure 3(c) 
shows the anomalous change pixels obtained by applying FACD. Figure 3(d) shows the anomalous polygons obtained 
by applying FACD to trixels and then averaging their values over the polygons to which they belong. In this case, the 
sensitivity of the Canny edge detector was set at 0.1. The sensitivity specifies the maximum fraction of image pixels 
allowed to be edge pixels. Typically, the actual number of edge pixels detected with a specified sensitivity will be much 



less than the specified upper bound fraction of image pixels . For this value of sensitivity (i .e., 0.1,) the bottle and its 
reflection are detected as anomalous change polygons. On raising the sensitivity to 0.25 , the fluid-filled region of the 
bottle is identified as an anomalous pOllygon (figure 3( e)) . Figure 3(f) shows the polygon as a strong anomalous change. 
The latter polygon is more specific and localized but perhaps less informative from a shape-theoretic point of view. This 
ability to obtain the shape of the anomalous change by applying FACD to trixels instead of pixels helps qualify the 
change by shape analysis. 

Between figures 4(a) and 4(b), the anomalous change is that the bottle has been slightly displaced to the right in the 
image on the right. Figure 4(c) shows the anomalous pixels obtained by pixel-based FACD. Figure 4(d) shows the 
anomalous polygons obtained by trixel-based FACD. The bottle's displacement is detected as thin anomalous polygons 
in the joint triangulation of the two images ' edges that are absent as features in the polygonal segmentations of the 
individual images . Here we have a characterization of the nature of the anomalous change, namely movement. 



I 

We now turn to the outdoor aerial image data set. In figures 5(a) and 5(b) the anomalous change is the appearance of 
the car at the left edge of the image on the right. The other changes are caused due to change in the brightness of certain 
features and a slight parallax shift due to the aircraft's movement. Figure 5(c) shows the pixel-base'd FACD results and 
figure 5(d), that of the trixel-based FACD. In the latter case, a geometric filter has been applied to the polygonal FACD 
image, wherein thin polygons are identified using the geometry of shapes. The criterion for thinness is based on the 
notion of the intrinsic aspect ratio of a polygon easily computed from the triangles constituting it as mentioned at the end 
of section 3. By eliminating polygons whose intrinsic aspect ratio is less than a specified threshold , we obtain the 
reduced set of anomalous polygons shown in 5(d) with the polygon corresponding to the car being the strongest. We 
check for a pervasive presence (> 50%) of such polygons in the anomalous set before eliminating them as being non­
anomalous 

In figure 6(a) a later image of the car in image 5(b) further down the road is shown . The result of pixel-based F ACD on 
this image along with the image without the car in figure 5(a) is shown in figure 6(b) , An increase in parallax artifacts 



can clearly be seen as thin ridges of anomalous change pixels. Further, it should also be noted that the anoma1lousness of 
car is diminished with respect to other spurious anomalous changes. Figure 6(c) and 6(d) show anomalous change 

'-Jg --- - as result oftrixel-based FACD before and after filtering out thin 
, ... -= c i 

The abundance of thin polygons in FACD is not only a hallmark of parallax, but also of shadow encroachment with the 
passage of time. Thus the pervasive presence of thin anomalous polygons corresponding to dark regions in one of the 
images is indicative of shadow lengthening (or shortening in the other image) . Another common source of artifacts that 
confounds FACD is image misregistration. In the case of misregistration of a few pixels on average across the image, it 
manifests itself as locally linear shifts and gives rise to thin polygons. Here again, we can use trixel-based FACD to 
mitigate the effect. Figures 7( c) shows the result of pixel-based F ACD after a constant relative shift misregistration of 2 
pixe ls in each direction is applied to the image pair in figures 7(a) and 7(b). We note that the car is significantly 
attenuated as an anomaly with respect to the misregistration artifact pixels. In figure 7(d) we see a significant mitigation 
of the misregistration artifacts by elimination of thin polygons from the anomalous polygon population. 



In each of the cases illustrated so far, we do not attempt to correct the images to reverse the unwanted effects. Rather, 
we set the anomaly value of the false positives corresponding to the thin polygons to zero and renormalize the values of 
the remaining polygons. This reinstates the dominance of true anomalous changes in the hierarchy, bolstering robust 
detection. 

----r­

6. SUMMARY AND FUTURE WORK 

In this paper we have briefly presented a structural enhancement to the framework of anomalous change detection 1,2. 

The motivation for this is the need to mitigate common confounding factors affecting change detection in real-world 
imagery. Further, we would also like to identify and characterize anomalous changes to understand what changed 
between two images of a scene. We believe the proposed modification to FACD provides a flexible paradigm for 



addressing and automating spatial analysis in change detection. In particular, we have identified a generic structural 
property, namely thinness, as a hallmark of spurious anomalous changes due to parallax, shadows and misregistration 
that are a common source of errors in ACD. We have demonstrated by example how the proposed structural framework 

identify and mitigate such effects. 

Our future work will address the quantitative comparison of pixel-based vs trixel-based FA CD by comparing them on a 
common footing. One way to do this would be to remap anomalous polygons into pixels and use the resulting 
regularized anomalous values of pixels to perform pixel-based FACD. This will enable the comparison of detector 
efficiencies via ROC curves on a quantitative basis. Another aspect of spatial analysis that will provide contextual 
understanding of ACD is to discover spatial relationships between changes. This is important for applications to 
surveillance and tracking. We will draw upon hierarchical polygonal segmentation5

, which is an extension of image 
polygonization approach described in this paper to extract context of changes and relate them. 
Change detection is an important problem with strong implications to safety, security, and surveillance. While an 
exhaustive and thorough semantic understanding of imagery at large by computers is still a distant possibility, many of 
today's imminent image-based detection problems can be addressed with a judicious combination of spectral and spatial 
analysis. The structural framework for anomalous change detection is a step in that direction. 
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