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ABSTRACT 

Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem 
that human analysts try to solve by applying world knowledge. Often there are known observables that can 
be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each 
of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary 
observables may provide sufficient context for detection by a machine learning algorithm. 

We describe an approach for automatic detection of facilities that uses an automated feature extraction 
algorithm to extract auxiliary observables, and a semi-supervi~ed assisted target recognition algorithm to then 
identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image 
data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature 
extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as 
parking lots, large buildings, sports fields and residential areas and then combine these features using Genie 
Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data. 

Keywords: facility rlo+Qr>+in" feature extraction, target recognition, machine learning, remote sensing 

1. INTRODUCTION 

Detecting complex targets in satellite imagery such as industrial facilities, is a difficult task which has a 
data and time intensity that quickly overwhelms human analysts. Accordingly, automated target detection is a 
huge area of research. Target detection in satellite imagery tends to be focused on the detection of more compact 
objects, such as vehicles or particular buildings. These generally have a well defined structure. Target 
detection algorithms generally involve finding some defining characteristics or features of the target of interest 
and looking for the best match to these characteristics or features in the data. I. 2 

Facility detection is a related area to target detection, if one simply considers that the specific facility type is 
the target (a facility being defined as a building or complex of buildings, installations, or place that provides a 
particular service or is used for a particular industry). However, there are differences between facility detection 
and what is commonly thought of as target detection. Facilities, as targets, tend to be larger, more complex and 
more varied from one example to another. Facilities of a particular type will obviously have similar characteristics, 
but in general the variability of the interrelationships between useful features is much greater. 

There has been some research into developing algorithms to find that are larger and more complex 
than the traditional targets. Zhenwei et al3 describe an approach for regions of interest detection in remote sensing 
imagery. Their approach involves breaking the image up into tiles, calculating some linear-feature measure for 
each tile, based on length of edges and then grouping the tiles using the mean-shift segmentation method. This 
approach allows the detection of regions of interest such as airports, ba.'led on the detection of the large linear 
features of the runways. 
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Sengupta et al4 describe an approach for detection of regions of human settlement. The approach involves 
clustering of the images ba..<;ed on spectral information, then breaking the image into tiles and calculating features 
from the class statistics for the tiles, dimensionality reduction of the feature space followed by clustering of the 
reduced-dimensionality data and labeling as human settlement tiles based on the class-label statistics calculated 
in the first spectral clustering. A second human-settlement is done using co-registered panchromatic 
imagery, based on tiling of the image, calculation of the number of corner and edge points in each tile and a tile 
labeled as human settlement by thresholding based on the corner and edge-point numbers (or clustering based 
on these numbers and some other gray-level texture The intersection of the first spectral-labeling 
technique and the second gray-level labeling technique the final human settlement labeling 

In this paper we present a new complex such as 
an automated feature extraction "nnr"",,,h the Genie Pro automated feature extraction 

at LANL with a , , 
appropriate modifications to the Genie Pro software. The in feature extraction or classification is to 

in an image, designating to which class it belongs. The assignment of class 
based on a set of features calculated for each pixel. The goal in target detection is to 

define the locations of targets of interest. This can be achieved identifying only a single pixel for each target. 
The distinction between target detection and feature extraction is subtle. This distinction is further discussed 
in sections 2.1.1 and 2.1.2. While this distinction may be the application of this combination approach 

dramatic results for detecting specific facility in satellite imagery. 

2. ALGORITHMS 

2.1 Genie Pro 

Turning raw satellite imagery into semantically meaningful maps and overlays is an important area of activity 
in remote sensing. Image analysts have the task of transforming imagery into maps of terrain classification such 
as crop types, road networks, buildings, etc. To be useful, this information needs to be up to date and it is 
therefore necessary that the analysis be performed quickly and as accurately as possible. Manual extraction of 
these features is time consuming and expensive and thus there is an urgent need for automated tools to assist 
analysts in deriving these maps. Genie Pro is one such tool. 

Genie Pro is a general purpose, interactive, adaptive tool for developing pixel classification algorithms for 
image analysis, using training data provided by a human expert. 5,6 Genie Pro is a rewrite of the original GENIE 
software,7-9 incorporating enhancements in usability, stability, reliability, performance and responsiveness. 

2.1.1 Automated Feature Extraction 

Most mapping tasks can be seen as variations on the 'pixel labeling' problem: assigning a label to every pixel 
in an image that represents a category or feature of the scene under that pixel. Accurately assigning a label 
to a pixel requires making use of the information in the image in a highly data- and task-specific way. Genie 
Pro knows very little about specific labeling tasks. Instead it has the ability to learn from examples provided 
by an image analyst. Genie Pro has a flexible and general purpose approach to pixel classification that can 
be applied to a great variety of different targets and different imagery types. The essential idea is that rather 
than deciding in advance what kinds of attributes or characteristics will be useful in classifying pixels, Genie 
Pro has a "toolbox" of image processing operators with which it can develop attributes that it determines to be 
most useful. It searches the space of possible "attribute extractors" that derive numerical values from local 
neighborhoods. These attributes can then be combined using a more conventional machine learning framework 
(statistical classifier) to produce a final predicted class label for the Attribute extractors are themselves 
composed of simple image processing operations joined together into small pipelines. The 
resulting flexible structure allows the attribute extractors to derive numerical measures that describe a 
of characteristics: from spectral characteristics, through texture on to morphological properties 
and spatial context. 

For further details about the Genie Pro tool and how it works, the interested reader is referred to the 
blished work in the area.5,6,10 



2.1.2 Assisted Target Recognition {ATR)/Target Detection 

While pixel-by-pixel classification tools such as Genie Pro, as described above, are useful in broad area mapping 
applications, they are less well-suited to the detection of discrete objects. Pixel classifiers, however, do have 
many advantages: they are simple to design, they can readily employ formal machine learning tools and they 
are widely available on a variety of platforms. By making some minor modifications, these pixel classifiers can 
be used in object/target-detection settings. 

For target detection problems, what is ultimately desired is not necessarily an image in which each pixel has 
been individually labeled as target or non-target. Often, the desired output is not even an image, but a list of 
target locations. To be useful to an analyst, a target detector need identify only a single pixel for each object. 
Once the attention of the analyst has been focused, there is little gain in having multiple pixels identified for a 
single target. 

Thus, for the target-detection scenario, instead of having a metric that attempts to precisely delineate every 
pixel comprising the objects/targets of interest, we define a new metric that aims to focus the analyst's attention 
to these targets, without the distraction of many false alarms. The metric used is related to the multiple-instance 
problemll - 13 in machine learning. In this metric, a target is a set of pixels (typically compact and contiguous), 
and the classification associated with the target is given by the "or" of the classifications assigned to each of the 
pixels. That is, if any of the pixels in the target are "hits" then the target is detected. Any hits outside the target 
are false alarms. To apply this metric, the targets in the training data must be fully delineated and separately 
identified. Since the output of many pixel classifiers is a continuous real-valued quantity (to which a threshold 
is applied to make the ultimate decision as to the pixel label), this target-detection scoring is implemented by 
replacing all the pixels in each target object with the maximum-valued pixel in that object. This usually permits 
a much higher threshold than would be needed to hit all or most of the pixels in a target; and an increased 
threshold will, in general, produce fewer false alarms outside the object. 

For further details about the target-detection (focus-of-attention) metric and modifications, the interested 
reader is referred to the previously published work in the area. 14 , 15 

3. DATA SETS AND EXPERIMENTS 

3.1 Data 

The data we used for the experiments described here was Quickbird 16 multi-spectral imagery (4 band: Blue, 
Green, Red and Near Infra-Red). The particular set of Quickbird data used was that taken over Albuquerque 
on April 23rd 2002. The "whole", scene covering the city of Albuquerque, consisted of 4 images, each being 
approximately 4,000 pixels on a side: 

l. 	02APR23174958-M2AS.1UCI-005560582010_0LPOOl: labeled as RICI in Fig. I (a) 

North-western part of the city of Albuquerque. 


2. 	 02APR23174958-M2AS--RIC2-005560582010_0LPOOI: labeled as RIC2 in Fig. 1 (b) 

North-eastern part of the city of Albuquerque. 


3. 	 02APR23174958-M2AS--R2CI-005560582010_0LPOOl: labeled as R2Cl in Fig. 1 (c) 

South-western part of the city of Albuquerque. 


4. 	 02APR23174958-M2AS--R2C2-005560582010_0LP001 : labeled as R2C2 in Fig. 1 (d) 

South-eastern part of the city of Albuquerque. 




(a) RICI 

(c) R2CI (d) R2C2 

Figure 1. Quickbird imagery used for experiments 

3.2 Experiments 

The basic experiment undertaken was to develop a method for finding facilities of interest within multi-spectral 
imagery using the Genie Pro feature extraction tool. The particular type of facility of interest for these experi­
ments was schools - speCifically, High Schools. The reason for choosing High Schools is that they are fairly large 
facilities, there are a reasonable number of examples with which to train and test detection algorithms and there 
is a lot of information available regarding their locations which can be used to develop training and test data 
sets and to determine performance measures for the algorithms, such as Google, Google Maps, Google Earth, 
Yahoo Maps, and the Community Link web page and map for Albuquerque. 17 

Limitations of time and space preclude a detailed description of our initial experiments in trying to develop 
facility-detection algorithms using just the raw multi-spectral image data - where we left it entirely up to the 
Genie Pro automated feature extraction software to find appropriate characteristic features of the facilities of 
interest, from only the raw image data, and the best combination of these features. Suffice it to say that 
the facility-detection algorithms developed using just the multi-spectral image data had an unacceptably high 



false-alarm rate. 

We restrict ourselves in this paper to describing our multi-stage approach that uses an expert's knowledge 
of the problem to assist our software in its search. This approach uses automated feature extraction (AFE) 
algorithms to extract a set of pre-defined (by the human expert) auxiliary observables followed by an assisted 
target recognition (ATR) algorithm to then identify facilities of interest. The multi-stage approach proceeds as 
follows. In the first stage, a subject-matter expert generates a list of features (what we refer to as auxiliary 
observables) that may be useful in detecting a particular type of facility. These auxiliary observables, on their 
own, may not be sufficient to enable accurate and reliable detection of the facilities of interest. However, in 
combination, they could provide information that the software can use to develop good detection algorithms. In 
the second stage, therefore, Genie Pro is used (in AFE mode) to derive algorithms capable of finding each of 
the defined auxiliary observables in the available data. In the third stage, the outputs of applying the auxiliary 
observable-detection algorithms to the available image data are stacked as additional 'pseudo-bands', together 
with the original image data, and provided as input to the Genie Pro software (now operating in ATR mode), 
which is used to develop an algorithm to detect the facilities of interest. 

3.2.1 Auxiliary Features 

For the High School detection problem, the list of auxiliary observables that were determined by the human 
analyst to be potentially useful was as follows: 

1. Athletic fields 

2. Parking lots 

3. Large buildings 

4. Residential areas 

None of these auxiliary observables, individually, is sufficient to define the presence of a High Schoo!. However, 
they are all features that one can see at most High Schools. How one should use this information, or combine 
the featu res, together with any additional useful information that can be gleaned from the original image data, 
is what we are asking our Genie Pro software to determine. 

For each of the auxiliary observable-detection problems, the optimization was a two-class problem: the feature 
of interest against a background of everything else. Figure 2 shows some examples of the training data provided 
for developing the AFE algorithms for finding the auxiliary observables. Figure 2 (a) shows an example for 
athletic fields, (b) for parking lots, (c) for large buildings and (d) for residential areas. In these images, for each 
of the auxiliary observable-detection problems the training data provided for the particular feature of interest 
is shown overlaid onto the original data in green, while the training data provided for the background is shown 
overlaid in red. 

3.2.2 High Schools 

Ground truth used by the human analyst to mark-up the training and test data for the High Schools was 
obtained from Google, Google Maps, Google Earth, Yahoo Maps and the Community Link web page and map 
for Albuquerque. 17 

For training data, an analyst marked up (delineated) the campus area for four High Schools, two in image 
RICl: Valley High School and Sandia Preparatory School and two in image RIC2: Albuquerque Academy and 
Sandia High Schoo!. In addition to the training data for the class of interest (High Schools), background training 
data was provided that included examples of industrial, commercial and retail areas, purely residential areas and 
golf courses. 

Figure 3 shows the training data provided for High Schools. Figure 3 (a) shows all of the training data 
provided for image RICI, (b) shows all of the training data provided for image RIC2, (c) shows a close-up of the 
training data provided for one of the High Schools used in training (Sandia Preparatory School) and (d) shows 
a close up of some background regions, containing large buildings, parking lots, roads and residential areas. In 



(c) (d) 

Figure 2. Example training data Auxiliary Features: (a) Athletic Fields ; (b) Parking Lots; (c) Large Buildings; (d) 
Residential Areas. Note images shown are not necessarily at the same spatial scale. 

these images, just as for the auxiliary observables, the training data provided for the facility of interest is shown 
overlaid onto the original data in green, while the training data provided for the background is shown overlaid 
in red. 

Note that large sections of the images that contain the training data (RICI and RIC2) are unmarked and 
were therefore not seen/ used during training and thus this data can be considered testing data in addition to 
the two images containing no training data at all (R2CI and R2C2). 



(c) RICI: Training Data School Example (d) RIC2: Training Data Background Example 

Figure 3. Training data used for High School detection experiments. Green overlay areas show high schools marked up 
for training. Red overlay areas show background marked up for training. (a) Shows all training data for RICl image; 
(b) Shows all training data for RlC2 im&ge; (c) Shows an example close up of the training data marked-up for a school­
Sandia Preparatory School; (d) Shows an example close up of a background region - containing large buildings , parking 
lots, roads and residential areas 

4. RESULTS 

4.1 Auxiliary Features 

Figure 4 shows the results of applying the auxiliary observable-finding algorithms to some of the testing data 
- i.e. data not seen during training. Fig. 4 (a) shows the results for athletic fields, (b) shows the results for 
parking lots, (c) shows the results for large buildings and (d) shows the results for residential areas. In these 
images, just as for the training data shown above, the pixels determined by the auxiliary observable extraction 
algorithm to be the class of interest are overlaid in green and those determined to be background are overlaid in 
red. 



(c) (d) 

Figure 4. Example results applied to testing data (data not seen during training) for Auxiliary Features: (a) Athletic 
Fields; (b) Parking Lots; (c) Large Buildings; (d) Residential Areas. Note images shown are not necessarily at the same 
spatial scale. 

4.2 Schools 

There are a total of twelve High Schools known to be present in the regions covered by the Albuquerque Quickbird 
images. Four of these schools were used in training, leaving eight High Schools for testing. 

On the training data the High School detection algorithms performed extremely well. The algorithms had a 
detection rate (DR) of 100% and had zero false alarms, i.e. a false alarm rate (FAR) of 0%. 

On the test data, the High School detection algorithms detected 7 of the 8 High Schools, a detection rate 
(DR) of 87.5%. The one High School that was not detected was the one that does not have athletic fields on 
campus. With respect to false alarms these fell into several categories, as described below. 



Table 1. Number of false alarms for the enumerated 

I 
Category Number Number of FAs 

1 15 
2 7 
3 
4 

2 
2 

5 12 
6 19 
7 13 

98 
9 2 

1. 	 Bonus detections. These are detections of schools, other than High Schools: Elementary Schools and 
Middle Schools. We do not consider these true false alarms, as they are actually schools. However, they 
are not Schools, which was the specific type of school provided in the training data. 

2. 	 UNM Campus facilities. It is hard to decide whether these should be considered bonus detections or not. 
These are hits within educational facilities. But, they are not really "school", as such. 

3. 	 US Army RSRV Training Center. Similar to the UNM campus facilities, it is hard to decide whether or 
not these should be considered bonus detections. These are hits within an "educational facility" of sorts. 

4. 	 Unused industrial/construction areas, consisting of large patches of vegetation, near empty ground 
look a lot like a parking lot to the naked eye) and some large 

5. Large houses next to courses. 

6. buildings with parking lots next to golf courses. 

7. Municipal Parks, consisting of buildings with parking lots next to green areas. 

8. Large roads/runways next to courses. 

9. Electrical sub-station (consisting of some buildings and a parking area, etc.) adjacent to a golf course. 

Figure 5 shows the results of applying the High School-finding algorithms to some of the test data - i.e. 
data not SL'€n during training. Fig. 5 (a) and (b) show the detections for two High Schools: (a) is Del Norte 
High School and (b) is Albuquerque High School, (c) and (d) shows the detections for some true false alarms: 
(c) is Ross Enchanted Park and (d) are large buildings adjacent to UNM Golf Course, (e) and (f) show bonus 
detections: (e) is Onate Elementary School and (f) is Wilson Middle School. In these the centroids of 
the regions detected are overlaid as light blue squares, over a general red background overlay. 

5. DISCUSSION AND CONCLUSIONS 

The High School detection algorithm developed using the approach described here had very good performance. 
On the training data the algorithm had perfect results: 100% DR and 0% FAR. But that is on data seen during 

and one would expect that an algorithm optimized on a set of training data would work well on that 
data. On the test data, the developed High School detection algorithm wa."l able to successfully detect all but one 
of the High Schools in the Albuquerque area. The High School it wasn't able to detect (Freedom High 
was the only one that didn't have Athletic Fields on campus. Given that all the High Schools used in training 
had associated athletic fields and the human analyst had determined that athletic fields were a sufficiently useful 
feature for High School detection (they had been chosen as one of the auxiliary 0 bservables) the missed detection 
is perhaps not so surprising. 



With regard to false alarms on the test data, there were a total of 79 hits on non High School areas. Of 
these 79 false alarms, 15 were detections of schools other than actual High Schools: Elementary and Middle 
schools. Given that they are actual schools detections, but are not the High Schools that were the type used 
in training, we don't classify these as "true" false alarms, but instead use the term "bonus" detections. Similar 
to the Elementary and Middle School bonus 7 of the 79 false alarms were hits on UNM campus 
facilities. Given that these are hits on "educational" facilities we could perhaps put these hits into the bonus 
detection category as welL An additional 2 of the 79 false alarms were hits on a US Army RSRV 

to consider this an "educational" facility, but perhaps the link gets a little tenuous. 
<vV"'-<U/5 at the campus of the Center it is very easy to see similarities to a High School, and 

it is understandable why our algorithm should label this as a High School. Of the remaining false alarms, there 
were certain similarities between them. They consisted of regions having large buildings, near green areas, 

and golf courses and areas that looked like parking lots (such as runways and large, empty stretches 
that were not very far from residential area."l. In fact, for some of the false alarms that hit on 

Parks, a human analyst wasn't able to differentiate these areas from Middle or Elementary schools just 
from looking at the data. It was necessary to gather additional information from maps, etc. in order to make the 
determination. If we ignore the Middle and Elementary bonus detections, we have a total of 66 false alarms (that 
could be reduced to 57 if we took out the UNM Campus and Army Training Center hits). Our quickbird mage 
data covered an area of approximately 366 Km2 • For our 66 false alarms, then, our school detection algorithm 
therefore had a false alarm rate of 0.18 / Km2 or 1 false alarm / 5.5 Km2 . 

Our experiments have shown that our multi-stage approach of defining a set of auxiliary contextual obervables 
for which we develop automated feature extraction algorithms and use the outputs from these as inputs to the 
facility detection stage works very well, for the specific example facility type chosen. We used High Schools as 
our example "facility of interest" and chose a set of auxiliary observables that were relevant to that particular 
problem. For other facility detection problems it will be necessary to determine an appropriate set of auxiliaI 
obervables for which suitable feature extraction algorithms can be developed. What these auxiliary observables 
will be will depend on both the particular facility of interest and the type of data to be used. 
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(a) (b) 

(d) 

(e) (f) 

Figure 5. Example results for High Schools' Detection: (a) and (b) True Positives; (c) and (d) False Positives; (e) and (f) 
Bonus Detections (schools detected, but not High Schools). Overlaid blue squares highlight the centroids of the regions 
detected. Note images shown are not necessarily at the same spatial scale. 




