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ABSTRACT 

Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be 
imaged at relatively high frame rates (1-2 fps) . The efficient exploitation of the large geo-spatial-temporal datasets 
produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent 
years there has been significant progress made on stabilization, moving object detection and tracking and automated 
systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, 
the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle 
route. TItis is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their 
points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion 
imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes 
noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle 
meetings) as output. The framework can be used to focus and direct human users and additional computation, and 
suggests a path towards high-level content extraction by learning from the human-in-the-loop. 

Keywords: Activity detection, tracking, wide-area low-frame .rate video 

1. INTRODUCTION 

Recently, wide-area airborne imaging sensors have come into practical use. 111ese systems image small city-sized areas 
at approximately O.5m / pixel and about 1 or 2 frames per second. Due to the wide field-of-view and long dwell times 
(hours / days / weeks), these collection systems allow us to observe many dynamic phenomena that were previously 
inaccessible in satellite and street-level imaging systems. Specifically, in an mban environment, wide-area motion 
imagery (WAMI) provides the possibility to track a large fraction of the vehicles within the scene from their point of 
origin to their final destination. TItis capability has many applications including defense and tactical scenarios, real-time 
emergency response and town planningl

. 

In this paper we develop a general purpose framework for vehicle activity detection in W AMI . Vehicle activity 
detection defines a general class of problem that we might want to solve if we had the complete list of vehicle routes. 
Examples include the general classification of vehicle routes into categories such as commuter, commercial or tourist but 
can also include many specialized classifications relevant to particular applications such as delivery, get-away or 
counter-intelligence. The definition of vehicle activity is clearly vague and very dependent on the end-user and final 
application. One approach is to choose a specific application and focus on specific activities relevant to that domain2

. 

However in this paper we suggest that a specific definition of activity detection is not required, and that in fact in many 
cases, it is not desired. Instead we address a fundamental problem faced by nearly all activity detection problems: the 
diffiCUlty (or impossibility) of extracting complete vehicle routes from W AMI. We propose that any practical solution to 
W AMI activity detection must be intimately related to the tracking problem, and suggest a framework that can help build 
robust representations for vehicle routes that are in some sense optimal for subsequent activity detection. 

Activity detection in W AMI has some similarity with activity detection problems faced in surveillance and security 
systems that use multiple, fixed, high frame-rate, narrow field-of-view video cameras3 

. Specifically, both datasets are 
have persistent data collection which allows systems to build and exploit statistical models of normal behavior over time 
and both systems have a fixed frame of reference which means models of the observable area can be used to provide 
contextual information relevant to many activities of interese. W AMI activity detection also has several unique 
characteristics which make it a new and interesting research problem. Specifically, airborne collection platforms bring a 
distinct set of chaUenges4

, the objects of interest are mostly vehicles which have different dynamics and associated 
activities compared to the more commonly studied activities associated with people. In addition vehicle activities 
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Figure 1. Content based search via interactive refmement of a world description. 

typically exist within the structured environment of a road networkS and within a much larger, and richer contextual 
background of a geo-spatial information system. 

We suggest that these differences mean W AMI activity detection depends much more critically on obtaining 
complete and accurate vehicle routes, compared to the narrow-field security camera application domain. In addition, the 
unique spatial and temporal resolutions that enable W AMI are precisely why obtaining complete vehicle routes is much 
more difficult in W AMI than in narrow-field, high frame-rate video tracking6

. What is gained in area and persistence is 
lost in detail and frame-rate which means: I) point-like moving objects (vehicles) move anywhere from 1 to 200 pixels, 
2) parallax introduces large amounts of motion clutter due to oblique viewing angles and 3) registration is often requued 
in real-time and is therefore approximate, e.g. stationary objects might move up to lOs of pixels. The main contribution 
of this paper is an approach to vehicle activity detection that can work with existing W AMI tracking system perfonnance 
and improve as tracking and other system components improve. 

In Sections 2, 3 and 4 we describe the general technical approach and system components that we have implemented. 
Section 5 describes a basic set of activity detection tools that we propose provide an initial basis for a large class of 
activity detection applications and Section 6 describes our experimental evaluation of one of these activity detection 
tools. We conclude in Section 7 with a discussion of how the framework can be extended and improved and promising 
directions for future research. 

2. CONTENT BASED SEARCH OF WIDE AREA MOTION IMAGERY 

The traditional approach to intelligent searching of complex image and video datasets is through a feed-forward video 
exploitation pipeline. This pipeline translates raw pixels into a high-level representation, which we call a world 
description, that can be easily searched with traditional SQL (Structured Query Language) type queries. The feed­
forward pipeline for W AMI exploitation is similar to many other video exploitation systems and some of the 
components are described in Section 3. Typically this pipeline is tuned to a particular design point in the 
performance/cost trade space (as good as we can afford) and produces a fixed stream of meta-data that is stored in a 
database for future search. This approach presents a number of problems for activity detection in W AMI. First, activities 
are spread over large space and time and therefore there is huge variability in the data quality even within a single 
activity. Second, the tracking problem difficulty is highly variable over space and time which means it is almost 
impossible to decide what level of performance is sufficient. For example, busy multi-lane intersections can require 
orders of magnitude more computation to resolve to the same level of precision as single lane intersections with little 
traffic. This motivates the main idea behind our activity detection framework: the performance/cost design point of the 
tracking system is dynamic and is intimately linked to the activity detection queries made by the user. 

The main components of the proposed framework are shown in Figure 1 which we describe through example. An 
approximate world description is generated with a traditional feed-forward tracking pipeline at relatively low cost. This 
typically produces a large number of track segments (10-100 segments per route), and a large number of spurious tracks. 
A user then makes an activity detection query. For example, "find all vehicles that took a specific exit ramp to a specific 
shopping centre". A simple result (as returned by SQL) from this query would be very poor since it is likely that no 
vehicles were tracked successfully between these two (well separated) locations. Instead, our framework uses the query 
to select the relevant subset of the world-description and tracking model. This subset is then refined by using more 
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Figure 2. Feed-forward WAMI exploitation pipeline used to produce the world description. 

computation (better tracking) and interaction with the user (to resolve ambiguities and validate results). TItis process is 
user intensive, but produces improved results (R*) which also can be used to refine the activity query over time (Q*), so 
that similar queries are less user intensive in the future. In future work we also suggest that by observing high demand 
for particular queries, the feed-forward pipeline can selectively include components at different points in the 
performance/cost design space. That is, if a large number of the end-users all require the same world description 
refinements, then these results should be accessible through simple queries. In the next few sections we provide specific 
examples of how Figure 1 is implemented with W AMI. 

3. APPROXIMATE WORLD DESCRIPTION 

The feed-forward pipeline used to generate the initial vehicle track segments is very similar to other video exploitation 
pipelines and is shown in Figure 2. The first step involves stitching of multiple cameras, frame-to-frame stabilization and 
geo-registration. TItis is a nontrivial step for airborne video and is computationally intensive. The second step is moving 
object detection, where, through statistical modeling, each pixel is predicted to be either part of a moving object or part 
of the background7

• To improve tracking performance and to track vehicles through stops we can also apply appearance 
based object detection6

. Appearance based scene classification can also be used to dynamically update geo-spatial 
information systems and for identifying road networks and correct parallax affects of buildings. Our system also includes 
a motion filter for reducing appearance based object detection false alarms and for generating velocity estimates for 
moving objects8

. 

The most important component of Figure 2 for this paper is the tracking system. We briefly outline some of the 
design choices for W AMI tracking systems and describe the choices made for the activity detection experiments. Multi­
vehicle tracking involves the interaction of: 

• 	 Variables Xt = [Xl,t,X2 •t , ... , XN (t).t] which typically includes the predicted position and velocity of N(t) 
predicted vehicles in the scene at time t. 

• 	 Observations Yt = [Yl,t,Y2•t , ... ,YM (t).t] which typically includes the observed position and velocity of M(t) 
vehicles in the scene at time t. 

• 	 A state transition model P(Xt IXt- I ), which simulates the vehicle trajectories. 

• 	 A likelihood function P(Yt IXt ) which relates the observations to the state variables. 

We must provide P(Xt IXt - I ), P(YtIXt ) and choose a solution method. The most common model, P(XtIXt- I ) , involves 
the independent propagation of each vehicle through time with constant velocity. TItis is the model used in this paper but 
more sophisticated models that have been shown to improve performance include: 1) interacting multiple models where 
each vehicle has a mode variable indicating constant velocity, turn or stop, 2) multi-vehicle interactions where vehicle 
motion is constrained to prevent collisions with other cars and 3) models that are dependent over space and time that 
constrain vehicle motion based on the structural constraints of the road network. The choice of likelihood function, 
P(Yt IXt ) , and solution method must jointly address the association problem. This problem arises because we typically do 
not have unique observables for each vehicle and therefore it is difficult to associate particular observations }j.t with the 
correct state variables Xu . The optimal solution is to consider all possible assignments, which grows exponentially in 
time. 
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Figure 3. Activity detection system used to interactively refme the world description. 

A common solution to the association problem is to simply choose a good association at each time-step and a simple 
way to choose a good association is to associate Xu with the closest observation. This method is greedy (decisions are 
not revisited) but is fast and simple to implement and is the method used to generate the initial world-description in this 
paper. If multiple variables (vehicles) compete for an observation then we assign it to the closest vehicle and leave the 
other vehicles unassigned. A slightly less greedy approach to finding a good association is to solve the assigrunent 
problem7. This approach simultaneously finds the assignment between all variables and observations that minimizes the 
sum of distances. This approach can be extended to multiple frames leading to a type of multiple-hypothesis tracking 
(MHT). It can also be used as a sub-routine within the Virtibi algorithm to propagate a collection of high probability 
associations through time, until evidence accumulates to choose the best associations9

. As we describe in the next 
Section., we will use the assigrunent problem to selectively enhance the initial tracking results based on activity detection 
requests from the user. 

4. ACTIVITY DETECTION SYSTEM 

The main components of the activity detection system are illustrated in Figure 3 and are described in the next few 
paragraphs. The primary inputs are track segments which are generated by a greedy, moving-object tracking system. 
Track segnlents are sequences of {location X, velocity V and time T} predicted to be generated from the same vehicle. In 
future systems there may be additional information available which can help improve activity detection significantly. For 
example using only tracks generated from moving object detection means it is not possible to differentiate between 
tracks iliat end due to the vehicle leaving the field of view, and tracks that end due to the vehicle stopping for brief 
periods of time, such as, at an intersection. In addition., the representation only includes one prediction for each vehicle 
for each time period. If a Multiple Hypothesis Tracking (MHT) system is used then there would be multiple predictions 
for each vehicle. While we have prototyped the framework using basic moving object based tracking as input, the 
framework can be easily extended to include additional sources of information as they become available and we discuss 
some of the ex1ensions throughout the paper. 

4.1 Meta-Track 

The tenn Meta-Track is used to describe a track that has been processed and attributed to simplify and improve the 
performance of subsequent stages of processing. For example, we found activity detection speed could be improved at 
minimal cost in performance by reducing the number of track samples. That is, the typical W AMI tracking system 
produces samples every 0.5s, but many of these samples are redundant (e.g. the vehicle is moving with constant velocity 
or is stopped at an intersection) and can be discarded. Using the Douglas-Peucker line approximation algorithm, we 
found iliat at an error of 3 pixels (approximately equivalent to stabilization error of our dataset), the size of the track 
could be reduced by an order of magnitude, and track segments were typically reduced to less than 10 points. 
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Figure 4: Left) Visualization of the largest and second largest clusters and Right) The number of tracks involved 
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4.2 Accumulated Statistics 

The second component of the activity detection system uses track segments accumulated over the entire dataset (or 
multiple datasets over ,the same goo-graphic location) to build spatial, temporal and track-centric models of normalcy. 
Example attributes include the total number of track points, or track point velocities, as a function of location. These 
attributes are used by activity detection tools in a number of ways. At an application level a user may be interested in 
activity that is unusual for a given location or time and therefore these accumulated statistics are exposed to the query 
system. In addition, the outliers with respect to normalcy modeling are by definition more detectable than normal events. 
This means that nonnalcy models can be used to focus computational resources on more fruitful locations and times. For 
example, detecting multiple vehicle meetings at a fast food drive-through, where multiple vehicle stops happen all the 
time, is typically impossible at the spatial and temporal resolutions of current W AMI systems and therefore without 
additional evidence, or sources of information, activity detection should be directed elsewhere. We use a number of 
standard statistical techniques to develop normalcy models depending on the attributes, including a simple count, mean 
and variance, as well as histograms. 

4.3 Track Network Graph 

The track network graph is one of the most important and useful components of the activity detection framework and 
provides the main data-structure upon which activity query tools operate. The first step in forming the track network 
graph is to cluster track segment start and end points. For moving object tracks, the start and end points are simply the 
first and last location from each track. We cluster start and end points independently and use a deterministic 
agglomerative clustering method based on minimum distance. This distance must be provided by the user as part of the 
query and represents the number of meters and number of seconds within which space/time a user believes vehicles may 
be interacting e.g. vehicles that stop within 25 meters of each other within 5 minutes are more likely to be involved in an 
activity than vehicles that stopped several kilometers away. Using a minimum distance clustering method allows clusters 
to have variable size and in fact clusters can grow arbitrarily large. On the left in Figure 4 are the end-points for the two 
largest clusters that we obtained from our dataset. It can be seen that large cluster distributions captures some of 
structure of the road network and this is because busy intersections have the highest density of vehicle stops. On the right 
in Figure 4 we show the number of track end-points as a function of cluster size for various interaction distances. This 
plot highlights how we use the track clustering to filter large portions of the world description: many activities of interest 
involve a small number of vehicles and by ignoring large clusters we essentially focus on parts of the world description 
that are easier to refine. 
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Figure 5: Graphical representation of the Track Network Graph 

Using the independent start and end point clusters, we form the Track Network Graph, which is illustrated in Figure 5. 
Track segments provide high confident links between start and end clusters. However links between end and start 
clusters must be predicted. Consider the case when a vehicle comes to a stop at an intersection, and then departs several 
seconds later. For moving object based tracking, this corresponds to two track segments. These segments are associated 
with end and start clusters, and we would predict a link between these clusters if the end cluster is relatively close in 
space to the start cluster, and if the start cluster occurs latter in time than the end cluster. A potential link between two 
clusters is referred to as a graph node, and in Figure 5, example nodes are depicted with dashed lines. 

Nodes are probabilistic and hence clusters can be associated with multiple nodes. TIle probabilistic node is key to 
robust activity detection: a node localizes the uncertainty in track identity that was not resolved during tracking and 
hence allows activity detection to be performed on noisy and incomplete tracks. Note, we do not have to consider aU 
possible nodes that link every end cluster with every start cluster. As described in the example, spatial and temporal 
constraints associated with the activity of interest are used to reduce the set of candidate nodes. The same interaction 
distance parameter is typically used to cluster vehicle starts and stops to determine if start and end clusters are close 
enough in space to be considered a node. 

The motivation for the Track Network Graph is most obvious for moving object tracks since track ends and track 
stops often correspond to a vehicle that stops and then starts. However, this concept generalizes to more complex 
tracking systems with minor modifications. For example, for appearance based tracking systems that track through stops, 
the track start and track end-points are not necessarily associated with vehicle stops, but they are associated with low 
track confidence. The activity detection algorithms will be different (and easier), but the key point is that nodes still 
localize track uncertainty and as we discuss in the next section, by predicting links within a node, we are essentially 
refining the feed-forward tracking estimates. 

4.4 Activity Detection Query Tools 

A specific activity detection tool is a user-configurable query on the Track Network Graph. That is, several graph 
attributes relevant to the activity of interest are calculated and used to rank nodes, paths, and sub-graphs that correspond 
to the activities of interest. Note that for efficiency, attributes are typically only calculated when required by specific 
queries. This is because other query parameters, such as cluster size (number of vehicles), normalcy models, and geo­
spatial attributes can used to filter large parts of the Track Network Graph that are not relevant to the activity of interest. 
We suggest a loose basis for W NvlI activity detection that covers a large number of activities of interest, and includes 
activities that are often sub-components of more complex activities. These three categories are iUustrated in Figure 6 and 
include queries on: 

1. 	 Nodes: these activities correspond to multiple vehicle stopping and starting behavior (e.g. meetings) within a 
relatively small amount of space-time. 

2. 	 Paths: these activities are typically associated with a single vehicle and are related to the vehicle behavior with 
respect to normalcy models, geo:"spatial attributes (e.g. anomalous routes). 

3. 	 Sub-graphs: these activities are associated with multiple vehicles driving similar or related routes (e.g. 
coordinated driving). 
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4.4.1 Meeting Detection Tool 

The main technical challenge is to provide useful activity detection with the current tracking performance. For this 
reason, our initial prototype, and the focus of this paper, is the meeting detection tool. Meetings are locations where 
tracking is unreliable, or has failed. By providing a tool that robustly identifies actual meetings verse meetings due to 
track error, we not only identify a valuable activity, but also provide a mechanism to correct and account for track error 
and a way to build robust path and coordinated driving detection tools. 

The key node attribute for the meeting detection tool is the Association Cost. Given two sets of points from the end 
and start clusters, we calculate the association cost of a node by solving the assignment problem described in Section 3. 
This is very similar to how we would improve the tracking prediction, but in our case, it is only applied to nodes that 
relevant to the user query, and the attribute of interest is not the track identity, but the cost (or sum of distances) 
associated with the minimal association. This cost is zero if the end and start points are equal in nwnber and were in 
identical positions. Another node attribute is the Meeting Duration, which measures the time between the last point in 
the end cluster and the first point in the start cluster, e.g. length of a meeting. A different group of attributes are 
calculated independently for end and start clusters. These include Compactness, which measures the variance in spatial 
location of points within the cluster, the Direction, which measures the variance in velocity associated with points within 
the cluster, and the Arrival I Departure Duration, which is the difference between the maximum and minimum time of 
points within the cluster. 

These attributes can be selected by the user within a query with an associated weight. For user-convenience we 
developed a number of preset configurations for the attributes and weights that were found to work well in practice. In 
future work these attributes and weights can be optimized using machine learning techniques. The two key attributes that 
were found to most help identify legitimate meetings were the association cost and a normalcy model for stops in the 
area (probability of a stop at that location). Combined, these attributes lead to a query that detects multi-vehicle meetings 
and is extremely robust to noisy, missing and false tracks. Nodes that are predicted as meetings typically include one 
start and one stop cluster, however it is also useful to consider nodes with a single start, or stop cluster e.g. end clusters 
that do not have a start cluster which is sufficiently close might correspond to a meeting where the arrival was observed 
but the departure was outside of the collection window. This possibility can also be selected by the user, however as 
would be expected the quality of meeting detection is typically worse. 

4.4.2 Track and Coordinated Driving Detection Tools 

The final goal of the proposed framework is to detect activities of interest that occur of larger space/time than any one of 
the input track segments. We propose that the meeting detection query will play an important role in realizing these more 
complex queries. The key idea is that meeting detection provides a refined association probability that can be used to 



accumulate query attributes through paths and sub-graphs. The association cost from the assignment problem is the key 
attribute in our prototype, however we can also exploit any other attribute information that is found useful during 
meeting detection. When used for track and coordinated driving detection, meeting detection may also include multiple 
associations through which path and sub-graph attributes can be accumulated, much like multiple hypothesis tracking. 
How the proposed methods will scale with the number of track segments is an open question, however we propose our 
approach must be at least as efficient as the traditional approach of enhancing the feed forward tracking performance, 
and likely to be much better since tracking refinement is selectively applied. 

Additional attributes that could be accumulated over paths and sub-graphs for track and coordinated driving queries 
include measuring quantities between track points and also between two different tracks that are relatively close in space 
/ time. We use the reduced meta-track representation (less than 10 points / tracks) and produce a N by M characterization 
matrix, where N and M are the number of points. The matrix is populated by applying a function to every pairwise 
combination of points i.e., the (i, j)th element is a function of ith andt track points. This N2 representation is required to 
characterize track interactions at all scales. Some examples of pairwise functions that are may be of inetrest include 
Distance / Track Length for single tracks to characterize inefficient routes, and Relative Distance for multiple tracks to 
characterize vehicles driving in formation. Once the characterization matrix has been calculated, an additional function is 
applied to produce a small set of scalars used in the queries. The function depends on which pair-wise function is used 
but is typically a maximum or minimum. 

4.5 Geo-spatial and Accumulated Feedback Query Tools 

The geo-spatial and accumulated feedback components extend the activity detection query system to include geo-spatial 
context information, and user derived domain knowledge. Oeo-spatial attributes are an essential component of any 
practical W AMI activity detection and efficient interfaces between spatial and the W AMI moving object data types will 
be required. Scene characterization, as described in the world description, can also play a role here, and provide more 
timely geo-spatial infornlation. This is an ongoing topic of research for geo-spatial information systems. 

Accumulated feedback is an area where we see great opportunity with the proposed framework. At a simple level, 
accumulated feedback includes query triage results, where the user provides labels to the ranked list of activities returned 
by the query tools. Making optimal use of this feedback is a topic of ongoing research in machine learning and computer 
vision communities, but has been found to significantly improve queries in many application domains. A more ambitious 
role for accumulated feedback appears when one considers longer term data exploitation needs. Since W AMI is 
associated with an absolute geographic coordinate system, and since the amount of data and number of users and 
applications over a given area is growing rapidly, there is also a growing opportunity to exploit tool usage statistics. 
Much like has been observed in the internet search do~ we suggest that accumulating the queries, results and triage 
statistics from many users, over long periods of time will become as important as the activity detection tools themselves. 
These statistics can not only refine and improve query results, but also be used to tune the framework towards particular 
activities that are most relevant to specific applications and user communities. 

5. MEETING DETECTION EXPERIMENT 

An important part of the proposed framework is to provide basic tools that provide immediate value to an end user. This 
not only validates the approach, but also lays the foundation for accumulating user feedback, which we propose is key to 
the long term utility of the proposed framework. We therefore performed an extensive test of the meeting detection tool 
on several real-world W AMI datasets. The user task for the eX1>eriment was to detect two-, three- and four-car meetings. 
The user used the meeting detection tool to select prioritized "batches" of likely candidates. Because larger "batches" 
include an increasing number of false targets, which a user is required to remove, the test determined the difference 
between the tinle required to delete the false targets from a single or exhaustive set of prioritized "batches" provided by 
the tool against the time required to find the same meetings using a manual approach i.e. visual search of the dataset. 

The results are summarized in Table 1. The first four COlUIIUlS in Table 1 reflect the characteristics of the W AMI data 
set used for the test. Colwnns 5-8 provide the experimental results. Colwnn 9 is an informed estimate of the time 
required to conduct an equivalent search using visual inspection (20 frames per second, or lOx real-time, with no stops) 
- this estimate was subsequently verified as optimistic by W AMI end-users. The difference between the times in 
Colwnn 8 and 9 represents the efficiency that the Meeting Detection Tool provides analysts searching for meetings. As 
an example, in Row # 1 in Table 1, the user selected an initial batch of the 500 most promising meeting candidates from 
the thousands of possible meetings that the activity tool found . It took the analyst 90 minutes to review the 500 
candidates and eliminate 400 false positives. The 84 meetings found included half of the ground-truthed meetings in the 
data along with 



Detection rate verse workload 
1 

0'.9 

O.S
"C 
Q) 

0.7tl 
Q).. 
Q) 	 0.6 

"C 	 - AI (16)
III 
till 	 0.5 
l: 	 - A6(S)
tl 	 0.4 
Q) 	

O.~ - A.lO(4)E 
0 	 0.2 -	 ....... A12 (5)

l: 
0 	 0.1; 
u 
III 0... ..... o 	 SIlO iOOO 1500 2000 2500 3000 3500 4000 

1 2 4 6 8 10 12 14 16 
Analystwork (Numbllrofc:andidatas I hours) 

Figure 7: Rate of meeting detection for the 4 W AMI datasets. 

68 meetings that were not involved in the data collection. It took an additional 8.5 hours to find all of the 16 ground­
truthed meetings. . 

In Figure 7 we illustrate the rate of detection as estimated from the user triage of the initial batch size. Curves on this 
plot indicate the rank of the remaining ground-truthed meetings within the prioritized list generated by the query tool. 
The differences in the rate of improved efficiency between the four data sets reflect differences in the terrain and traffic 
characteristics of the four collection areas. The data reflects an improvement in search time of a factor between 3 and 10. 
On two of the 4 datasets the meeting detection tool appears to provide substantial increase in productivity for this task 
Using our tool the user is able to find about 75% of the meetings in about 2 hours. This should be compared to an 
optimistic estimate of 3 to 6 days for the unassisted user. Obtaining 100% detection of meetings is the final objective, 
and this will require system wide improvements. Tracking will need to be improved, and meeting detection optimized. 

Table 1. Sununary of meeting detection results obtained from 4 W AMI datasets containing ground-truthed meetings. 

!collection 
Area 

Coverage 
Time (min) 

Ground-
Truthed 

Meetings 

Candidates 
Considered 
By the User 
(Initial batch 

size) 

Total 
Meetings 
Identified 

User Time with 
Tool 

(Time to 
eliminate False 

Alarms) 

Detection Rate 
(%of 

Meetings 
found in initial 

batch) 

Total Analysis 
Time required 

for 100% 
detection 
(Estimate) 

Manual Analysis 
(24hr day) 

1 136 16 500 84 90 min 0.5 10 hours 7.5 days 
2 48 5 250 9 45 0.6 2 hours 2.5 days 
3 43 4 250 19 45 0.0 7.5 hours 2.5 days 
4 46 5 250 11 45 0.2 NA 2.5 days 
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6. SUMMARY 

To detect and characterize activities that operate over large space and time it is essential to maintain track identity over 
long periods of time. It is likely that practical tracking systems will not obtain sufficient performance for some time, if 
ever. Therefore to detect useful patterns of activity we suggest a framework where we will build increasingly complex 
classifiers using a graphical representation of noisy and incomplete track data. We have developed, prototyped and 
tested the first activity detection tool for this type of approach: a node classifier that can be used to detect multiple 
vehicle meetings. This classifier is key to combining other local attributes (such as track attributes) within a general 
framework for activity detection that can simultaneously detect complex activities while predicting sub-graphs though 
multiple noisy tracks that correspond to high probability routes. 

The idea of using activities to help resolve tracking ambiguities has been proposed using a-prior models of 
activitiesI 0. In this paper we have suggested an alternative approach where activity models are built implicitly, and 
constantly my monitoring tool usage statistics, and have provided a framework and initial basis for the approach in 
W AMI. In practice we expect that a combination of user statistics and a-prior activity models will be required to produce 
useful tools in a large number of applications, and this is a topic for future research. 
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