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Constrained-scarch density functional theory gives valuable insights iuto the fundamentals of den-
sity functional theory. It provides exact results aud bounds on the gronnd- and excited-state deunsity
functionals. An important advantage of the theory is that it gives guidance in the construction of
functionals. Here we engage constrained search theory to explore issues associated with the fune-

tional behavior of “stretched bonds” in melecular hvdrogen.
with familiar valence bond wavefuunctions ordinarily used to describe molecular hydrogen.

A constrained seareh is perforimed
The

effective, one-clectron hamiltonian is computed and eompared to the corresponding ancorrelated,
Hartree-Fock effective hamiltonian. Analvsis of the functional suggests the need to constrnet differ-
ent functionals for the same density and to allow a competition mnong these functions. As o vesult
the correlation energy functional is composed erplicitly of enerpgy gaps from the different functionals.

I. INTRODUCTION

Stretched chemical bonds arise in almost any dyuam-
ically evolving system that requires making or bhreaking
honds. Being of such fundamental density functional the-
ory (DFT) methods [1 10] of many kinds have been ap-
plied to these sitnations with decidedly limited success
(11. 12]. There are no reasous in principle that DFT
should fail in most of these situations, and so the limita-
tions are viewed as an artifact of the actual approxima-
tions that have been made to date [13 15, Developing
systematic improvements to these functionals has proven
particularly difficult.

To overcome these problems, several prowinent strate-
gies have emerged.  One constrains the energy func-
tional to satisfy a set of limiting cases and conditions
[12, 16]. A second takes advantage of the general ob-
servation that the Hartree-Fock and local density ap-
proximations under and over correlate electrons. The
resulting functionals fall into the hybrid DFT category
15, 10, 17]. A third strategy splits the electron-electron
repulsion operator into short and long-range components
that arc modeled differently [17, 1%]. Each of these
strategies aud their combinations henefirs from exact or
nearly exact limits, bounds, s special cases. In the
interest of gaining further strategic insights and find-
ing/constructing/generating an important limiting case,
we appeal to the constrained search formulation of DFT
3. 19] to investigate the stretched Ha mwolecule in its
gronnd state,

For bowd states. one can construct a variational en-

ergy E for any trial wavefunction o:
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where H is the lmiltonian operator for some system of
interest. Setting the functional derivative of Ejv) with
respect to © equal zero recovers the time-independent
Schridinger equation. The solution with lowest encrgy
o is the ground state and its energy is Eg = Eligl. Al-
ternatively. one may guess trial wavefunctions. A scarch
over all trial wavefunctions in the appropriate Hilbert
space also vields the ground state energy. Thus, one
may write Ey min,. £ In variational form, one
often decomposes ¢ into a linear combination of basis
states. The number of basis states is arbitrary. lnereas-
ing the mmber of hasis states and executing the mini-
mization process produces an upper bound to £y, As is
well-known, mdertaking the minimization process with
wavefunctions is exceedingly difficult for most svstems of
interest. DFT methods have become prevalent for this
reason.

The central quantity in DFT is the particle number-
density a(r). produced hy averaging over the (spatial)
coordinates of all but one particle of the square of . In
“Lowdin” normalization. for an N particle system,
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ri is a probability. Density functional theory seeks to
express the fundamental problems of electronic structnre
theory (a restricted class of H) in tenus of n instead of .
The key issue in DF1' is to define the enerpy E|n| for an



arbitrary density n that can be derived from phvsically
allowed wavefunctions as defined. for instance, hy Lieb
19|,

In defining E'n!, one most often proceeds by breaking
down H iuto independent-particle kinetic energy; three
potential energy components, external. classical. and
independent-particle (or Hartree-Fock) exchange: and a
dependent-particle correlation energy.  Hohienberg and
Kolm showed that Ein] can be partitioned into a uni-
versal part Fn] that is independent of the configuration
of the nuelei in the system (for conlombic systems), and
the external potential contribution ey [n] that depends
linearly on n [1]. That is,

Eln] = Fn] + teu(n]. (3)

where
Vext [1t] = /dr Vet (r)n(r), (1)

In turn, one identifies independent-particle kinetic en-
ergy: two potential energy components, classical, and
independent-particle (or Hartree-Fock) exchange: and a
dependent-particle correlation energy. However, the de-
pendence of the dependent-particle correlation energy on
n is not known. Physical reasoning hased on experience
with certain model svstems. most notably the homoge-
neous electron gas, is used to estimate the exchange and
correlation energies. Recently, different approximations
for exchange energies have heen mixed in various livbrid
schewes (17, 18],

In constrained-search density functional theorv (CS-
DFT) [3]. to define E[n]. one collects together all of
the wavefunctions that reduce to a chosen fixed trial
n(r). We need to define Flo| = (0|F|v) /(¢]¢). where
F=1T+V, and T and V. are the kinetic energy and
electron-clectron repulsion operators, respectively. Now
the energy E{n] for that 1(r) can be assigued to the value
that minimizes the energy over that collection of wave-
functions,

Efr] = min E{v] = min F[w] + veq 0], (n)
v —n NIV

where ¢ - 1 means that ¢ reduces to n [3]. The desired
energy functional F has not vet been constructed in a
practical way from this expression. Nevertheless. it is
possible to examine DET from the constrained-search for
wodel systems., as well as to to explore other properties of
the functional |20-25]. Here we investigate a “stretchied”
Hy molecule. one prototype for the problem of stretched
bouds [26 30].

II. CONSTRAINED-SEARCH FUNCTIONAL

As an illustration of constrained search theory, we
allow only two basis states for the trial wavefunction.
o=y -+ Ay, Recognize that others have constructed

fimctionals based on even wore basis states [26. 31].
Then the electron density associated with v becomes

nyy(r) + 2An12(r) + Angy(r)

e A) = — 152 i (6)

where state-to-state overlap (5)2) has been neglected.
The state densities 1y, . and nes are defined from
the relationship n,;(r) = {t|A(r) vy, where 2(r) is the
particle mmmber operator at position r.

For this study these basis states have two very spe-
cial properties.  One is that they both reduce to the
same density, nyy = nge = n. The other is that the
trapsition density nyp is esseutially zero, The first as-
stmption is casy to illustrate from the Hy molecule with
hasis states ¢ = (04(1)0x(2) + 02(2)0r(1))/v2 and
= (00(1)61(2) + dr(1)éa(2))/V2, where o, and og
are the same orbital & centered on the left (L) and rvight
(R) atons, respectively. The hold wunbers refer to 3D
spatial coordinates. Spin variables scale ont of this il-
Iistration. These are the famons Heitler-London cova-
lent state and its ionic state companion that date back
to the beginnings of valence-hond (VB) and molecular-
orbital (MO) theories 32 34]. These basis states have
been ealled upon to illustrate Hubbard models and other
solid-state concepts related to charge fluctnations and
strongly correlated electrons, as well as in the coustruc-
tion of density functionals [26, 27, 29]. v dominates for
any bond-lengih of Ha, but ¢ does provide about 25 %
of the correlation energy. near the equilibrium bond dis-
tance, if the basis states are composed of just s-orbitals,
We impose no such restriction here on the orbital. These
basis states both demonstrably reduce to the same parti-
cle density. The second is an approximation that is com-
monly invoked, but of dubious quality near equilibrium.
However it does correspond to the “stretched hond™ cases
that have fignred prowminently in the development of con-
temporary density functionals.

In the stretched bond limit then, ji(r; A) = n(r). for
any A, to within as small of a tolerance as one chooses.
From the contiimity of density functionals [19, 35, 36/
especially those that satisfying ensemble representability,
one has a reasonable expectation that the errors to the
functionals introduced by the approximation to the den-
sity are small in some sepse. Returning to our CS-DFT
energy. we now have. for the two-state model,

F||, 5 EAFP_! + /\2}:‘22
1+ A2
= m‘\inFlA}, (7)

Fln] = min
uve=-n

where F,;, = (u _,gI"" [vy) are the F-matrix elements. An ex-
ample of F(A) is shown in Fig. 1. The minhmization ounly
involves A since. by assumption, any linear combination
of vy and v gives the same density, Conusequently, Fn|
might be gotten by finding the zeroes of its derivative



with respect to A, The well-documented solutions are

where AF = Fyy — Fy;. Because vey [n] is constant for
a chosen fixed n, it ean be added and subtracted from
the coutributions in AF. permitting us to realize that
AF = AH = Hys— Hyy, where H;; = (w;|H|w,). has the
physical meaning of the covalent-ionic energy gap.

Substituting A4 into F(A), the CS-DFT problem re-
duces to

Fln] = min{F(As). F(A_)}. (9)

The energies F(Ay) = F_ and F(A_) = Fy are just the
extreme points in Fig. 1 and are identical to the eigenval-
ues for the two-state lincar variational problem. Thus,

Fi[¢] = Flo] = \/(AF[0]/2)2 + Fjlol.  (10)

where F' = (Fyy+F),)/2. The energy functional contains
three different energies generated from the sane orbital,
that in tnrn determine the ground-state density.

This fimctional form is difficult to achieve from con-
ventional forms of Fln| particularly becanse of the quan-
tuin interference term Fy,. Its analysis begins by in-
terchanging between VB and MO wavefunctions [34].
Denote the gerade (g) or bonding and ungerade (u) or
anti-bonding MOs as og(-) = (o1.(-) + or(-))/V2 and
ou(-) = (61(-) — op(1:))/V2, respectively. where - de-
notes either one of the spatial coordinates. Now the
MO wavefunctions are simply t'.(1.2) = ¢,(1)0,(2) and
(1,2) = ou(1)ey(2). The VB wavefunctions may he
expressed as the linear combinations of MO wavefune-
tions, 1 = (U — U )/V2 and vy = (v + U)/ V2. re-
spectivelv. Expanding Fys in the MO wavefunctions, one
then obtains

QFIQZFM_Fuu:&Fgu- (11)

Again, hecanse veg[n| is constant for a chosen fixed n.
it can be added and subtracted from the contributions
in AF,,, permitting the identification AF,,, = AH,, =
Hyy — Hyy. where H;, = {L'.',-]H|L:',-f} for i =goru AH,,
can also be identified as the negative of the “HOMO-
LUMO" gap. With the appropriate substitution into
Eq. (10). one obtains

Filo] = Flo|£1/2\/AF[o] + AF[6].  (12)

While F_[o] represents the universal Fln/,

Fln] = Flo] - 1/2 \/AF2[(.->J' +AF3[0].  (13)
as formulated in this winiscule corner of Hilbert space.
determined here within the confines of an orbital-
dependent ansatz it does depend on three “subsidiary™

3

functionals specialized to the properties of the basis
states used to construct it. These subsidiary function-
als compete in a mamner comparable to how electron-
electron repulsion and electron hopping energies compete
in the Hubbard models [37, 38, 40]. Furthermore, one
observes that the sccond term in Eq. (13) precludes one
from cleanly separating kinetic. exchange and eorrelation
components. This feature comes about from application
of the constraint in Eq. (7).

Finally, because of the restricted munber of states in
the model, the present functional is an upper bhound
to the true functional. By coutinuity of the functional.
the error in this functional from the true functional be-
comes smaller as dissociation is approached asyimptoti-
callv. When approaching dissociation, and assimning that
we are close to an optimized o, the HONO-LUMO gap
closes, Thus

Fil¢] — Flo]+1/2|AF[d]. (14)

Interference from the ionic state ceases as a result of the
closure process, if the ionic contributions to Flé] and
AF[o] cancel precisely. If gradient approximations are
viewed from this perspective [8. 10 12, 17]. it is not clear
how well this sort of mechanism is accounted for. In con-
trast, the gap between the ionic and covalent states AH
approaches the cliemical harduess, T — A [20. 41]. the
difference hetween the ionization potential I and elec-
tron affinity A for the hydrogen aton. Therefore it never
closes.

The “LDA+U" model is perhaps the closest analog
[39] to Eq. (13). In the present context, AF plays the
role of the Hubbard U. Indeed the present study could
he viewed as being related to the lattice DFT maodels
of Lopez-Sandoval and Pastor [40], and specifically to
the side note in their Reference 22, There a lattice of
fermions is treated within a Hubbard model framework,
but the optimum orbitals. for a given gap parameter U
and hopping integral  and for a given one-particle density
matrix, are determined by a constrained search process
[3]. Because AF and AFy, depend ou n. they are deter-
mined self-consistently with other energies i the model.
in contrast to the constant values of U typical of most
Hubbard models. Mechanistically, the different gap ener-
gies are engaged in an essential competition to determine
the optimumn density and energy.

One may also calculate the Euler-Lagrange equation
for the ground state of this system. which is F_ in this
specialized case, with respect to variations in ¢. the or-
bital that determines the electron density. Including a
constraint through Lagrange multiplier e_ that @ is nor-
malized. the effective one-electron hamiltonian is

dF[n]
b = bextO+ —— . 15
€O Uoxt @ 36 (15)
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FIG. 1: The shifted and scaled energy F*(\) = (F\(\) — F_)/(F — F_) as a function of the ionicity or state mixing parameter
A. Fy and F_ are the cigenvalues from Eq. (9). The starred values of Fiy and Fa2 are defined in an analogous way: F7|
corresponds to F*(0), while F3, corresponds to F*(c0). The curve labeled as “stretched” corresponds to a value of Ay = 0.5.
It is for illustration purposes only and does not correspond to literal values from the model wavefunction and molecule. The
assignment of roots is based on the assuiptions that AF > 0 and Fjz < 0.
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The second equality comes from the identity F = Fy; +
AF/2, followed by additional algebraic manipulations.
The Euler-Lagrange equation in terms of the universal
functional and its components is nonlocal through the
appearance 'of functionals for the gaps, in addition to
the more familiar nonlocal exchange and correlation con-
tributions within each subsidiary functional. Neverthe-
less, size consistency is achieved via cancellation and the
structure of the Fy, functional to be discussed later.
The functional derivatives 6 F' /8¢ and 6AF/d¢ are rel-
atively familiar, although the gap energy is somewhat
rare in density functional theory at the present time.
Since AH is a nonzero gap in this sytem, Eq. (15) may be
expanded in powers of AF,,/AF. Asymptotically then

OF 4P  AFu 0(AF - AF,,)
[ ) 2AF 8¢ ’

(16)

(17)

which is correct and analogous to Eq. (14). The ap-
proach of the Euler-Lagrange equation to this functional

form at dissociation is controlled by the rate of closure of
the HOMO-LUMO gap. If instead one relies on the first
part of Eq. (15), a careful cancellation of contributions
between F and AF is required. Any residual contamina-
tion from incomplete cancellation will lead to a residual
error in the ground-state energy.

III. EXCHANGE-CORRELATION
FUNCTIONAL

To further analyze the functional, we focus on the
exchange-correlation energy and functional. For this
purpose, note that, expressed in terms of the MO
wavefunctions, F' = (Fgg + Fyu)/2. From this form,
it is clear that Fg; can be identified as the sum of
Hartree-Fock kinetic Tyup(n] = (¥ug| — 1/2Altgg)
and electron-electron repulsion energy functionals.
The Hartree-Fock electron-electron repulsion en-
ergy consists of the classical coulomb energy Jin| =
1/2 [ drydron(r))n(r2)/|ry — re| and exact exchange
functional Kn; = —‘1/2fdrldrglﬂ,gg)(rl,rg)|2/|rl -
ra|, where ’)'gg)(rl ,T2) =
N[ dry. .. driyig(ra, ... . Oy)g(ry,xh, ..., ry).

Note too that F' = Fyg — AFy, /2.

With these identifications in hand, Eq. (13) may be



reformulated as
Fin] = (Fyeln]+ Fuuln])/2 - 172,/ 'AF2n| + AFZ, [n]
Tyein] + Jnl + Ko
~ 1/2 (-.u;.,iu \/AF- n]+ AR [n]) .

(18)

Since the first theee terius represent Hartree-Fock contri-
butions. the correlation energy is

Eeoreln] = =172 (AFm,iu] - \/AFi’IuI + AF? l1[n'])
(19

L contains differences in kinetic, exchange. aud correla-
tion energies among the states pertinent to this systenn,
Specifically it is a functional of two different energy gaps
related to the same density.

At dissociation, dFy /d¢ is the snrviving functional.
To further analyze the Euler-Lagrange equation. onr de-
sire is 1o observe how the ionic terms of the MO wave-
functions are cancelled. The 2-matrix for the covalent
state, in terms of the MO functions, may be expressed as

21,2) = D(1.2) 1/2(1){,"7(1.2} - D¥(1.2)

1/2 D}“‘u.z)DE“’(z.l}) . (20)

Superseript “(1)" denotes the covalent state (¢ ) terms.
Reduced matrices denoted by a *D7 indicate that they
originate from single-determinant wavefunctions.  The
“g" states are what would appear as the ground-state
with spin-restricted states in a Hartree-Fock calculation,
The remminder comprises the correlation 2-matrix. One
can observe here how carefully the ionic terms in the “g”
and “u” states must cancel each other in order to pre-
vent dissociation to an mnphysical state. This sitnation
is the counterpart to the one that arises in the cancel-
lation of self-interaction contributions between classical
and exchange parts of the Hartree-Fock 2-mnatrix.

The electyon-electron repulsion energy Ve, for the cova-
lent state and its various contributions may be expressed
from the 2-matrix and its components. For any 2-matrix
q2. in the Lowdin normalization,

Ve = (alrira)/lry —ral). (21)

Eachi contribution from Eq. (20} has this form. These
will be labeled as VA V& | and V.2, respectively. Re-
call too that V'
Hartree-Fock term originates from D3’ as it must. The
remaining terms define Vo [n]. the electron-clectron repul-
sion correlation energy. Substituting into Eq. (21) leads
to

= J[n] + Kn]. since the canonical

Vool u[ = Jn]+ K|

£172 (VA2 Inf = VB In) 172V ). (22)

H

Again the last term 1/’"[1'['” n| — Vag) [n] 1;{2":{:‘“ir;?)
represeut  the correlation energy  from the electron-
electron repulsion at dissociation.  These contributions
go to zevo becanse of cancellations among the various
components, DBy contrast, in terms of the VB orbitals,
Vee goes to zero at dissociation because the VB orbitals
do uot overlap.

Similarly. for the kinetic energy.

+1.1) = b®(1.1)

+ 1/2(D{™(1,1) - D!¥(1,1)). (23)

The off-diagonal component from '}i” rigorously vime-
ishes, The uncorrelated contributions come from the first
term. Thus, the correlation kinetic energy T, come from
the difference of D and D{*. Again cancellation is
required in order to achieve an accurate result.

IV. CONCLUSIONS

In snmunary, the present study on the stretched H,
molecule within the framework of constrained search
DFT provides insights into the coupling of contribu-
tions from different configurational wavefunctions. The
coupling is introdneed throngh the constraint from the
configurational wavefunctions having the same density,
These states were desigued from valence bond theory to
achieve size cousistency and correct dissociative limits.
Quantuin interference effects wichin this coupling, even
near dissociation, plays a central role. Here. it is ex-
pressed as a HOMO-LUMO gap. and constitntes a sub-
sidiary fimetional, Another gap representing ionization
and electron attaclhment processes appears as a second
snbsidinry functional. Tnterference from the ionic com-
poneuts of the trinl wavefunction arve eliminated by clo-
sure of the HOMO-LUMO gap. The correlation energy
is a explicit functional of these two gaps. Tn total, these
results constitnte an asymptotically correct form of the
{(orbital-dependent) density functional of the stretched
Hy molecule.

The asymptotically-correct form of the universal den-
sity functional is shown to depend on these three sub-
sidiary functionals.  The formulation of the model in
terms of 1-particle density matrices depends not only on
exact cancellation of self-interaction contributions, but
also, ionic ones. A second type of cancellation involves
correct closure of the HOMO-LUMO gap. This analvsis
sugaests that an advanced functional might need to or-
chestrate a variational competition among three or more
different fimctionals for the same electron density. The
general strategic sense of the model points toward find-
ing at least two states within the subset of wavefunctions
needed for a constrained search whose arbitrary combi-
nation are nearly the same in density, and allowing those
states to compete to produce a grounud state,
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