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RECURSIVE BIAS ESTIMATION FOR HIGH 
DIMENSIONAL REGRESSION SMOOTHERS 

By 	 HENGARTNER AND l:::RIC 

Muntpellier SupAgru, Los 	 and 

In multivariate nonparametric analysis, sparseness of the covari­
ates also called curse of dimensionality, forces one to use smooth-

parameters. This leads to biased smoother. Instead of focusing 
the smoothing parameter, we fix it to some 

value to ensure an over-smoothing of the data. The 
resulting smoother has a small variance but a substantial bias. In this 
paper, Wf: propose to iteratively correct of the bias initial estimator 

an estimate of the latter obtained by smoothing the residuals. We 
examine in details the convergence of the iterated procedure for clas­
sical smoothers and relate our procedure to L 2-Boosting, For mul­
tivariate thin plate spline smoother, we proved that our procedure 
adapts to the correct and unknown order of smoothness for estilllat ­

an unknown function m belonging to rt(v) (Sobolev space where 
m should be than dj2). We apply our method to simulated 
and real data alld show that our method compares favorably with 
existing procedures. 

1. 	Introduction. Regression is a fundamental data analysis tool for 
between pairs of observations (X'i, }~) 1 i 

specifies a parametric family of regrei'iSiOll 
of the response variable Y 

X E . 

val­
the 	regres­

estima.te 

to 
treatment of vario1ls classical 
values at tIl(' observed co­

regression is (l Slll ootlw1', 

smoother, l,erncl, l1l'iU8S( 
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or a smoother, because the predicted values are less than 

-= 5'>-Y, 

where is a n x n smoothing matrix. Smoothing matrices SA 
on a tuning parameter, which we denote by).., that governs the 

tradeoff bet.ween t.he smoothness of the estimate and the goodness-of-fit of 
smoother to the data, by cont.rolling effective size the local neigh­

borhood of the exploratory variable over which the responses are averaged. 
We parameterize the smoothing matrix such that large values of ).. will pro­
duce very smooth curves while small ).. will produce a more wiggly curve that 
wants to interpolate the data. For example, tuning parameter).. is the 

for kernel smoother, span size for running-mean smoother, 
the number nearest neighbors for k-nearest. neighbor smoothers. and 
scalar that governs the relat.ive inmortance sum 
smoot.hness term. 

It is well known t.hat. given n uniformly dist.ribut.ed point.s in t.he cube 
[-1, l]d, the expected number of points t.hat are covered by a 
at. t.he origin with radius E < 1, scales &<; nEd. This is to say that covariates in 

dimensions are typically sparse. This phenomenon is sometimes called 
the curse of dimensionality. As a consequence, nonparametric smoothers 
must average over larger neighborhoods, which in turn produces more 

biased smoothers. Optimally selecting the smoot.hing parameter does 
not alleviate this problem, therefore, the common wisdom is to avoid 

in higher dimension and focus instead on 
as additive models 

The impact of the curse of dimensionality is lessened for very smooth 
regression funct.ions. For example, regression functions with 2d cOlltinuous 

have minimax mean squared error of n --4/5, a value recognized as 
the minimax rnean squared error of estimates for twice difFerentiable univari­
ate regression functions. The difficulty is that in practice, the smoot.hness 

regression function is typically unknown. Nevertheless, there are 
potential gains (in terms of rates of convergence) if one considers multivari­
at.e smoothen; that adapt to the smoothness of the regression function. 

This paper present.s a simple and illtuitive procedure based on repea.ted 
applicat.ion of classical 
that. adapts to the 
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Hl'X.'URSIVE BlAS ESTI1IIATION 3 

COllstructed as iteratively, ovcr-srnooths 
data. That is. the pilot has a variance at the cost 

That bias can be estimat cd by 
smoother, possibly using the same smoothing 

frol1l the pilot smoother. The bias estimation and 
bias correction steps can be iterated to generate a. sequence of correct 
8moothers. Section 2 discuss the behavior of that sequence, and we give C011­

on the smoothing matrix which ensures cOllvergence of that sequence 
of slIloothers to the vector of responses Y. '0/e propose to select a smoother 
hom that sequence that minimizes an estimate of the prediction error, 
A,S calculat,ed by cross-validation or generalized cross-validation. 

In Section 3, we show that this procedure A,pplied to m1l1tivA,riate thin 
splines adapts to the smoothness of the regression function. FbI' 
considerations, we sometimes prefer to use kernel based smothers instead 
of thin spline smoothers. In Section 4, we give 
illg kernel that guarantees good behavior of the sequence 
corrected smoothers. 

Beyond the nice theoretical properties of our estimA,to1'.. we show in both 
sirnulated and real data that our smoother significantly improves on the 
prediction mean square errors over popular competing multivariate non­

models, including additive models, projection pursuit 
and MARS. FbI' example, prediction mean 

Los Angeles ozone data set ??, using our fully nonparametric smoother on 
explanatory variables, is at 13% smaller than the competing cur­

rent state-of-the-art smoothers. The gains are even more impressive for the 
Boston housing data ??, where the prediction mean squA,red error of our 

llonparametric smoother using thirteen explanatory variable is 30% 
its 

2. Iterative bias reduction. the general itera­
1'.ive bia..s reduction 

2.1. Preliminaries. Suppose that ) x are related 
through nonparametric regression 

(2.1 m(X1 )+c;, i=l, ... ,n, 

where me) is an unknown smooth functio11 1 and the disturballces Ci arc 
independent mean zero and variance random variables that arc indepen­
dellt of all the covariatE's ( .... , X 11)' It is helpful to rc,vrite Equation 1) 
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ill vector form by setting Y = (Yi, .. . ,Y,l)t, rn = (m(X1 ), .... 1rI(Xn))! and 

c = (el,'" , E17)t, to get 

(22) 	 Y m+E. 

Linear smoothers can be written as 

(2.3) 	 m1 =SY, 

where S is an n x n smoothing matrix and m = Y = (Y1, ... , yn)l, denotes 
the vector of fitted values. Typical smoothing matrices are contractions, by 
virtue that the fitted values have smaller norm than the raw data, that is 
IISYII ::; IIYII· We refer to Buja et a1. [6] for in depth discussion of such 
shrinkage smoothers. 

Let 1 be the n x n identity matrix. The bias of the lillear srnoother (2.3) 

(2.4) B(ml) lE[m1IX]- rn = (S - I)rn 

(2.5 ) -lE[(1 - S)YJ, 

and it.s variance is 

V(m1IX) = SS'(72, 

respectively. 

2.2. Bias reduction of Linear Smoothers. The expression (2.5) for the 
bias suggests that it can be estimated by smoothing the negative residuals 
-R1 = -(Y - ml) = -(1 - SI)Y' That is, 

(2.6) 	 b1 := -S2R1 = -S2(1 - Sd Y 

estimates the bias. Correcting the pilot smoother ml by subtract.ing b1 from 
t he pilot smoother ml yields a bias corrected smoother 

rn2 	 SlY + S2(1 - Sl)Y 

(S1 + S2(1 - Sd)Y. 

Since rn2 is itself a linear smoother, it is possible to corrected its bias as well. 
H.epeating the bias reduction step k times produces to the lillCc1.r smoother 

(2.7) rn'k S1 Y + S2(1 - Sl)Y + ... + Sd 1 - Sk-d ... (I - SdY. 

PROPOSITION 2.1 (Residual smoothing estimator). After I.' 'iterations, 
the bws corrected estimator (2.7) can be explicitly UJT'itten u.s 

(2.8) rnk [1 - (1 - Sd(1 - Sk-d··· (1 - SIllY. 
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5 RECUHSIVE BIAS ESTI\IATION 

Remark. An alternative is to estimate the bias by LlMMlill', In an 
estimator 1n S'2 Y for tIl/? function rn, into the "v,~"·,,,c,, 
biR,s (2.4). This produces the estimator 

b= 
the bias. 

Ii: sLeDS. the linear smoother 
that estimate 

SIY+(1 

[I (I ~ 

SdS'2Y+'+(/ 

)(1 
SI)(1 8 2 )···8k Y 

While in the these two estimates for the bias lead to distinct 
corrected smoothers .7) and (2.9), these two smoothers are identical 

when the same smoothing matrix is used at every step of the procedure. The 
kth iterated bias corrected smoother becomes 

(2. [1 ~ (1 S)k]y' 

In the univariate case, smoothers of the form (2.10) arise from the L2­
boosting algorithm when setting the convergence factor IJk' of that 
to one. Thus we can interpret the L 2-boosting algorithm as an iterative bias 
reduction procedure. Breiman [3] noted a similar interpretation for the 
ging algorithm applied to the residuals of nonparametric smoothers. From 
that interpretation. it follows that the L 2-boosting of 
as is the case for bin smoothers and regression splines, is ineffective since 
the estimated bias 

b S(1 S)Y O. 

Biihlmann R,nd Yu [4J present the statistical properties of the L2-boosted 
univariate smoothing splines, while? 1describes the behavior of univariate 
kernel smoothers after a single bias-correction iteration. 

a hIstOrICal perspectlve, the idea estimating the bias resid­
to correct a pilot estimator of a regression to the 

concept of twicing introduced by Tukey [361 to estimate 
multivariate regression models. The idea 

is also present in Breiman 
rithm. More recently, the 
iterative bias correction scheme was alluded to in Ridgeway 
of Friedman et a!. [18] paper on the statistical 
Finally, Di Marzio R,nd Taylor [12] studied one-step bias correction of univari­
ate kernel regression srnoothers, and showed that it corresponded to 
on iteration of the boosting algorithm of Biihlmanll alld Yn 
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PTedictive smoothers. As defined by (2.3), predict the 
conditional expectatioll responses only at the design It is useful 
to extend regression smoothers to enable predictions at arbitrary locations 
:1' E ~d of the covariates. Snch an extension allows us to assess and compare 
the of various smoothers by how well the smoot.her predicts new 
observations. 

this end, write the the linear 8 at an 
x as 

where 8(x) is a vector of size n whose entries are the for predicting 
. The vector is readily computed for many the smoothers used 

Next, the it,erative bias smoother as 

+ b1 + ... + 
+ (1 8) + {I - 8)2 + ... + (1 . 8)k-ljY 

8(3k, 

it follows that we call write m(:r) by 

(2.11) iii.), (;r:) 

This formulation is computationally advantageous because vector of 
8(x) needs to computed once, while the iterative bias cor­

rection scheme leads to the seauential update rule for the coefficients 

iJl.,] + 
where Rk = Y is the residual vector from the previous fit. 

2.4. Convergence 
squared bias and variance 

10) are 

smoothers. 
smoother 

mt 8lr (1 Tn. 

v (/2(1 - S)k) ((1 )Y 
respectively. This that qualitative behavior of the sequence of 
iterative bias correcl eel smoothers iih can be related tu the spectrurn of 
1 - The next theorem collects the various convergence results for sequence 
of iterated bias correct ed linear smoothers. 
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7 HECUHS1VF B1AS ESlL\L\TJON 

THEOREj\l 2.2. 	 the va.lues of J S 

(2.12) 	 1 < 1 j = 1. ... ,/I. 

we have that 

II < and = 0, 

< IIR,,·_·l a.nd lim 0, 
h;--> 00 

lim y and lim 2] na2. 
k----.oc 	 k-->oo 

Conversely, if I - S has a. valne IAJ I> 1, then 

II IIRk!1 lim II = 00.
k.....,oo 

The assumption that values -1 < Aj(I - S) < 1 
implies that I - S is a II < IWil· This condition 

smoother S is it.self a shrinkage smoother 
. Conversely, not all shrinkage smoothers 

condition (2. of the theorem. In Section 5, we will examples of com­
mon shrinkage smoothers for which IAJ (1 I > 1, and show numerically 

these shrinkage smoothers, the iterative bias correction scheme fails. 
lies with the fact that bh; overestimates the true 

bias bk , and hence the iterative bias corrected smoother repeatedly over­
corrects for the bias of the smoothers. which results in a divergent sequence 

smoothers. 

2.5. Data.-dTiven selection of the number' o.f bias n:d1Lction steps. The­
orem 2.2 states the limit of the sequence iterated bias corrected 
smoothers is either the raw data Y or has norm IIYool1 00. It follows that 
iterating the bias correction algorithm until cOllvergence is not desirable. 
However, since each iterRtion the bias correction algorithm reduces the 
bias and increases variance. often a few iteration of the bias correction 
scheme will improve upon the pilot smoother. This brings up the 
question how to decide when to stop the iterative bia.s correction process. 

Viewing 	the latter question as a model selection problem stop-
rules for the Ilumlwl" of iterations based on Mallows' Cp [28], Akaike In­

. Akaike [1]. 
L-fold cross-va 

, alld data 
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Each of these data-driven 
iterations k of 

the 
over some pre-speclhed set K 

We rely on the extensive 
into the statistical bias corrected smoother. In 

Theorem 3.2 of Li [26] the asymptotic behavior of the gen~ 
era1ized cross-validation (GCV) rule applied to smoothers. 
on the finite sample performance for data splitting for arbitrary is 
given in Theorem 1 of Hengartner et al. [2:3]. In 110nparametric smoothing, 
the AIC criteria has a noticeable tendency to select more iterations than 
needed, leading to a final smoother that typically undersmooths the 

data. As a remedy, Hurvich et al. introduced a corrected version 
AIC under the simplifying 
is unbiased, which is rarely hold in oractice and which is 

that the nonparametric smoother in. 

true in our context. 
simulations 

2 log (1 _trac:t(S'k)) } {log 

is a good choice, both in terms of computational efficiencies and of producing 
good final smoothers. 

3. Iterative bias reduction of multivariate thin-plate splines smoothers. 
In this section, we study the 
duction of multivariate thin-plate SHlOOtllCTS. Glven a smootllmg pa­
rameter A, the 

n 


+A I 
 dx1.2 
i=-l 11· 1d () 

11 + '</ 

smoothing splines are attractive class of multivariate smoothers 
two reasons: First, the solution of 1). once cast within a Reproduc­
Kernel Hilbert Space (RKIIS) framework sec Gll [20], is numerically 

tractable and second, the eigenva.lues of nhe smoothing matrix are approxi­
ma.tively known (c.f. Utrera.s [37]). 
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3.1. NUmtTical E:mmple. It is easy to est ahlish that tbe of 
the associated smoothing matrix lie zerO and olle. In light of Theo­
ren) ') ') t hD ...:!Cu....1l1onr-,o Af h~ ~Q rrn" r/::>I' , 

rn(Xl, on thl' SI}1JGT!' [-1O,1OJ X [-lO,1O] used 

'in OUT numeTical p.xam,7ltl's. 

jJ"'UcLtsUts,L,C1.1 ex­
test 

rn(Xl 1 4 
3 

cxp{-((9:t: + )/4} + 

+ 4 
3 

exp {-((9,T + 1)2/49 + (9y + 1)2/1O)} + 
1 

'2cxP{··((9.[ 7) +(9y-3)2)/4)} 

51 expl{' } 

U(1,lll.. '='''' are mean zero l..:iauSSlall \\'ith variance 
to lloise ratio of Figure 2 shows the evolutioll of the bias 
smoother, from a !learly linear pilot smoot hel' in panel ( a). 
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:)00 itt'rative bias reduction steps, the smoother shown in (b) IS V1SU­

regression function. correcti()11 
lead to a smoother interpolates the raw data, 

this. we the bias corrected flOOOO iterations in 
Notice how noisy that estimator compared to the one in 

(b). This example shows the importance of suitably selecting the number of 
bia.s correction iterations. 

FlU 2. Thin-plate spline regression smoother's fr'O'm. 100 noisy obser'va.tions 8.2 (see 
1) evaluated on a regular gT'id on 110.101 x [-]0,101, Pa.nel (a) shows the p'ilot 

smoothfr, panel (b) the bias corrected smoother o/l.er sao ~temtions and panel (c) 
I.he 8m oother after 50000 itemt'ions of thl' bias correctIOn sche'me, 

3.2. to smoothness of the function. Let 0 be an 
open bounded subset of and suppose that the unknown func­
tion Tn belongs to Sobolev space 71(1/) (0) H(v), where II is an integer 
such that v > Let S denote the smoothing matrix of a thin-plate 

of order 1/0 v (in practice we will take the smallest possible 
vo = ) and fix the parameter .\0 > 0 to some 
large Our next theorem states that there exists a number of bias re­
ductioll k = k(n), depending on the size, for which resulting 
estimate achieves the minimax rate of convergence, In of that the-

that an iterative bias corrected with the number 
by GCV, will achieve the minimax rate of convergence. 

THEOREtv1 3,1. Assume that the 0, 'i = 1, ' , . ,n the 
assumption: 

- Xii, and - Xjl . 
... n 

and (1,ssmne that theTe c:rists a constant B > 0 such thai. 

hmaJ: 
:; B 'in" 

h l7l 'in 
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11 RECURSIVE BIAS ESTBIATION 

thai tn{,e m 

If the estmwtor = SY 'is 
Va < V and a fixed 

on the sample size 11" then there is an 
recrw:twll steps 81Lch that the 

n 

lE I)rhk(X j ) - j»)'] 0 
J~l 

whuh ~s the opt.imal minimax rate of convergence for 'In E 

Remark. Rate optimality of the smoother r'hk is achieved by suitable selec­
tion of the number bias correcting iterations, while the smoothing param­
eter Ao rell1ltins unchanged. That the effective size of the neighborhoods 
the smoother averages over remains constant. 

TIIEOREI\I 3.2. Suppose that the noise E in (2.1) has tenth 
that 28, < 00. Let E Kn {I, ... ,nO'}, Cl' 1, deTwtc the 
inde.r in sequence of bias corrected smotheTS whose smoother 
minimize the genera.lized cross-validation cnteria. Then as the s·/.ze 
n g1ml1.5 to 

----==-=-------:= --+ 1. in probabiWy. 

algorithm applied to univariate smooth· 
proven of bias reduction to achieve 

to the smoothness of muhivariate regressIon 1UllctlOll has 
exploited. The practical of our procedme is re 

our simulation of classical multi varia! (' 
test datasets ill 5. In makes su hsl ant ially 
better predictiolls over state-of-the-art such as additive 1'('­

smoothing. and pursuit 
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4. Iterative Bias reduction of Kernel smoothers. The 
matrix S of plate spline is symmetric alld has eigenvalues 
are known (see for example III particular, the first A10 

are all equal to aIle. This feature limits the practical 
of plate spline smoothers in it.erative biCks correction schemes. 

Rf'call that our procedures requires a 
measure of the smoothness (and hence of 
is the trace the smoothing 
freedom of the smoother, with 

timoothers and small effective 
smooth smoothers. In light of Theorern 'l?, we want I/o > 
the effectivE' of freedom increases with the dimension. In partlCl' 
the effective of freedolTl is at least 5,28,165,1001 for d = 4,6.8, 
respectively. 

A possible resolution to problem is to approxirnate the thin plate 
smoother with a kernel smoother, with an appropriate kernel. See 

[291, [34] for example. In this section, we discuss 
smoothers in general, and we a necessary and sufficient 

on tlle kernel that ensures that the iterative bias correction scheme is 
behaved. We supplement our theorems with numerical examples of both 
good and bad behavior of our scheme . 

4.1. 	 J(ernel .5moothers. The smoothing matrix S of Nadaraya kernel 
entries Sij (Xi, Xj))1 (Xi, Xj)). where 

in ~ (e.g.) Unifonn, Epallechnikov, 
is a weighted distance between two vectors ;r, y E 

the 	distance d(·,·) determines the of the 
uclidean norm 

dL (Xj - Yj)2
dh(x, 

h2 
J 

h=(h], ... , denotes the vector, rise to 
neighborhoods. 

of kernel To 
the spectrum of I S. While smoothing matrix 8 is llot 

it has a real spectrum. To see this, write 8 = DOC, 
matrix general element K(dh(Xi ,)) and D is 

onal matrix with elements Dii 11 K(dh(X;, XJ )). If q is an 

imsart-aos veT. 2007/04/13 file: nouveauxNWH.tex date: March 2, 2009 



13 REGUR::iIVE HIi'd ESTJ:\IAT10:-I 

of S associated to the ),. then 

5q o = ),q, 

and hence 
(D =),(D 

the matrix A - D 1/ 
2 OCD has the same as 5. 

5 is row-stochastic, all its eigenva.lues are bounded by on(:, Thus, in 
of Theorem we seek conditions on the kernel J( to ensure that its 

is nOll-negative, Necessary sufficient conditions on the 811100th­
J( for 5 to have a spectrum are given in the 

theorem, 

THEOREM 4,1. If the iT/,verse 
is a real Watson 

smoother lies between zero and one, 
suppose that Xl, ' , , . Xn are an from 

a f (with respect to Lebesgue meo,$'ure) bounded away from 
zero on a compact set strictly included in the f, If the mverse 

a kcnwl .) is not a finite measure. 
one as the sample size n grows to 
I 5' is laraer than one. 

Remark 1: The assumption transform of 
a kemel K (-) is a real positive measure is equivalent to the kernel 

positive a definite that is, for any finite set 
:rl, ' , . ,:l:m, the matrix 

K(dh , ,1:2)) 
• ,Dm)) 1 

K(d'l .cd) ]{ "tm )) 

( 
]{(dh (:rm, :1'1)) K( d h (Xm, K(d/i (:r71), :1:3 ]{(O) 

definite. We refer to [32] for a. ue~(::tllt;. study of 
fUllctions, 

Remark 2: Di :tvlarzio Taylor Di Marzio and Ta.ylor 
part of the theorem in the context of univariate smoothers, 
converse shows that for large sample sizes. most from 

a random design lead to 
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4.2.l. Iterative the residuals 
Call bE' To derive and C0111­

more efficient atiOll of the iterative 
s111oother, 

[I - (I S)k-lY 
[I (Dl/2 D- 1/ 2 D 1/ 2 Dl/2OCDl/2D­

[I - Dl/2(I - DI/2KDl/2)kD- 1 Y 

Dl/2[1 - (I A )"W- 1/ 2 y 

A Dl/2OCDl/2 	 P A ptA A A, 

where PA is the orthonormal matrix of eigenvectors and AA ma­
trix of their eigenvalues, we obtain a computationally efficient 

smoother 

'fnk [I· (I p~D-l 

Note that the computed 
once, and hence sequence 
of bias corrected 

4.2.2. of The \JeLU,.,,.,j 

gular kernels are 
of a f1nite 
tive correction of with these 

The correction Gaussian kernel 
srnoothers is confirmed in our numerical Figure 3 shows the pro­

of the sequence of bias corrected starting a very 

surface panel 	( a)) that is 
that is original fUllction. 

Continuing lead to smoother 
that interpolates potential 
can be realized selecting the 111lll1ber of bias correction 
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15 RECUHSIVE HL\S r-:STl\IATIO~ 

FIe; 3. Gaussia.n kernel smoother' the from 71 = ]00 
pO'ints on [10,10] x evabated on a with A: I itemtwn (a), 50 
dfTatwns (b) and 10000 2terations (c). 

4.2.3. KeT'1),el smoothers with UniJ01Tn and Epanechnikov kernels. The 
Uniform and the Epanechnikov kernels are not definite. Theorem 
4.1 states that for enough samples: we 
that I - S has at one eigenvector larger than one. When this occurs, 

corrected smoothers will erraticallv and 
4.2 

PROPOSITION 4.2. Denote by Hi = {Xj : K(d/i(Xj,X i )) > O} the the 
set of distinctive points in the neighbors of Xi· 

If there exists a set Hi s'uch that lol\f; I 2': 3 that contains points X j , X k -::J 
Xi such that dh(Xi,Xj ) I, dh(Xi.Xk) < 1 and dh lXA-) > 1, 
the smoothina matTix S faT the UnifoTm kernel has at least one 

> 3 that contains -::J 
that 

) X j }, }, 

then the smoothing matTix 8 for the hpanechnikov kernel smoother has at 
least one negative eigenvaluc. 

Remark. The proof of the proposition is readily adapted to multivariate 
kernel srnoothers whose are defilled as tile product of univariate kernel 
ill each of the components. 

failure of the iterated correction scheme 

in the numerical 
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for the Gaussian smoother, the initial srnoother (pc\lwl (a)) is llearly con­
st<\lli. After five iterations (panel (b)) some of the f(;at11lcs the 11,1e:r:'icon 

hut become visible. Continuing the bias corrections schcllle produces an U11­

st (lhlc smoother. Panel (c) shows that after only 25 iterations, the smoother 
becomes noisy. Nevertheless, when comparing panel wit h pancJ (b), we 
see that some improvement is possible from a few iterations of the bias 
reduction 

Fie; ..L kernel smoother- of the fv.ncl.ion from n 100 eqmdis­
x [~10, 101. evalv.aied on a wz!.h h: 1 ~teml.ion 

5. Simulations and real example. In this sectioll, we show that 
our proposed iterative correction procedure works well for both 
<\!ld real data. To provide a baseline comparison, we first study 
performance of iterative bias corrected univariate smoothing splines. We 
t hell proceed to show that our method has desirable finite sample proper­
ties in the multivariate setting and compares advantageously when applied 
to the well known the Los Angeles O~one data. All the numerical exam­
ples were computed using ibr R-package [9], freely available at URL: 
ht tn: I Iwww.uhb.frllsc-..Sociales/labstats/EMLlibr_O.Ol.tar.gz,. 

5.1. 8elechng the smoothing que~tioll is how 
t.o the bandwidth of smoother. We know that for reduction to be 
etfective, we want to use a that ovel'smooths tlw responses, 
,tei sHch pilot smoothers will be heavily a general the larger 

bandwidth, the more biased the pilot will be and the more 
i teratiolls of the bias reduction will be 

Otherwise, the method 

The bandwidth in each of the covariate depends on its scale. 
I t is common to first re~cale the data the bnndwidth. In our 
1l11111Prical experiments, we found it ,....,'",torn 
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17 HECUHSIVE JlI/\S ESTIl\IATlON 

to select the bandwidth on the effective freedom of 
matrix) of the univariate smoother in each the cOlnponents, 

for lhe degree of freedom we ranging 1.05 to 1.2. 
A of the latter choice is that there is no reference 
to 

5.2. Univariate case. Smoot.hing splines are a popular 
asymptotic and finite sample behavior. Here, we show 

applying the iterative bias correction scheme to smoothing splines. To do so, 
we compare iterative smoother using two different starting points, two 

stopping rules (GCV Cross Validation) and three sample si~e 
n bU , 100 and 500. We calculate the smoothing spline with the R-fllnctioll 
smooth.spline, which we apply to data from the following t.hree regressioll 
fUllctions 

Tn1 (T) 

1 48T + 218x2 - + 145x4 

1 1 . 1 1 
Tn3(:r:) exp(x- 3){x < 3}+exp [-2(:r:- 3)]{:r:::;' 3}' 

The explanatory variable X is a Uniform[O, 1] distributed random variable, 
an error (Gaussian or Student 5) with variance such that the to noise 
ratio is 80%. For 100 replications, we calculate on a finite grid in [0, 1J the 
quadratic error between the true function and the proposed estimate, Table 
(1) reports the median over the 100 replications of the ratio of the error 
obtained but tbe iterative estimator and the smoothing spline estimat.or. 

TABLE 1 

Meuwn over 100 simulaiions of the number of iterat'iorts and meriw.n of the ratio of the 
MSE ol)iained bv the iterative esl'imatwn and the M~SE obtained by the 

splines smoother n = 50 data points. 

Eaell in the table the median number iterRtiolls and the 

imsart-aos ver, 2007/04/13 file: nouveauxNWH.tex date: March 2, 2009 

http:estimat.or


Hi 

the ratio of till" obtailled the iterative debiasing estima­
ohtained 1w the sllloothing splines smoother for n 50 

parameter the initial smoother 
requires more iterations of the iterated algorithm to reach its optimum. Ill­
terestingiy, the selected smoother starting with a very smooth smootheL 
has slightly smaller rneall squared error. III some cases, the iterative bias 
correction has smaller lllean squared error than the one-step smoother, with 
improvements ranging 

5.3. Multivariate case. Here, we focus on the multivariate case X E lRd, 

d > 1, consider multivariate Gaussian kernel smoothers. 
discourages using fully nOll parametric methods in higher dimensions because 
estimators suffer from t.he curse of dimensionality. Instead, of focuses on esti­

constrn.ined regressions models, such as additive models, 
models, or multivariat.e tensor product of Rpline basis in low 

dimension such as ivlARS that have better statistical properties at. the cost 
of possible misspecification error. 

we show via simulations that iterative bias correction scheme us­
ing a fully nonparametric regression smoother compares advantageously to 
the IVIARS algorithm of Friedman [17] and additive models using the back­
fitting algorithm of Hastie and Tibshirani [21]. For illustration, we consider 

the following test function 

10sin + 10;[;/1 

previously used by [17]. As in that paper, the covariate are independent Uni­
distributions ill of the five variables. and Gaussian disturbances 

as above, 
use YUio at tne data as a training set and predict the remaining with 

pac.-nccrscc mda for l'vIARS and R package mgcv for the additive model 
m}(:rl) +. +ms(x.s) without interaction. \'Ve compare the 
square error of these methods with our iterative bias reduction i)lAICCHlC 

a Gaussian kernel regression smoother with three choices of 
chosen such that the effective degree freedom each covariate is 1 
1.1, and 1.2. The results WE' reDort in Table 2 are over 100 renlications of 
the simulation. 

the variance is such the signal to noise ratio is 95%. 
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9 HECl'RSIVE BIAS E5TL\IATION 

TABLE 2 
AIedion (Yue'" 100 slmula/llm.). 

PPH 
BRddl = I ,,0 

BHddll=1.20 

BHddl=l 10 

BRd'll~_l (1) 

TPSi 

medio.n of iterot.ion betuwfn 

:H9 

pattern is similar to that seen in univariate simulatiolls are 
First, the smoother the pilot estimator, the bigger the number of iterations 
chosen by . Second, the smoother the pilot estimator, better the 
results. But here, for very small data.sets (n 50 data points and d 
5 the smoothest pilot estimator (df 1.05) tried leads to results 
that are worse than the second smoothest (df 1.10). MSE obtained with 
n 100 these pilot estimators are nearly same, whereas MSE 
obtained with n = 200 shows that smoothest to the best results. 

in univ<triate settings with very wiggly curve (not shown in this 
paper) shown similar results: if the pilot smoother is too smooth 
to the it cannot capture the whole unknown function as well as 

smoother. 

5.4. Los Angeles We consider the LLU::>::>ILtH 

concentration in the 
paring the performance of multivariate smoothers (Breiman [2], Biihlmann 
and Yu [4, 5]) The sample size of the is n 330 and the l1mnber 
of explanatory variables d 8. Vie use a multivariate Gaussian kernel and 

the bandwidth so that the univariate smoother in each of the vari­
ables has the same trace, i.e., the same effective degree of frf'edom. 
are chosen eaual to 1.05, 1.1, 1.2 and 1.5 in order to illvestigate the influ­

Biihlmann and Yu [111 leads to 

(Xj ), 

rngcv 
here. 

. \iVc compare our iterative bias procedure with Mars 
with additive models estimation using Il 

lllodel 

by Biihlmann and Yu [4], which we recall 

d 

il + 
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where the component f1kj.(J) is obtained by choosing the univariate smoother 
SAj(X j ) which leads to the best improvement in smoothing the residuals of 
previous iteration k - l. 

The estimate mean sqmtred predictioll enor is obtain by randomly split­
ting the data into 297 training and 33 test observations and averaging 
50 times over snch random partitions. We use the same configuration as 
Biihlmann and Yu [4] and reporting theirs results we obtain the following 
table: 

TABLE 3 
Predicted mean Squared ETTOr on test oiJSeT"()Q.twns of ozone data for dzfferent methods. 

Method Mean Predicted Squared Error 

L 2 Boost with component-wise spline 17.78 
additive model (backfitted with R) 17.44 
Projection pursuit (with R) 16.89 
MARS (with R) 1749 
iterative bias reduction with GCV stopping rule 
and multivariate GaussiaJl kernel with 
1.05 initial DDL per variable and 297 iterations 14.85 
1.1 initial DDL per variable and 64 iterations 1483 
1.2 initial DDL per variable and 15 iterations 14.86 
1.5 initial DDL per varictble and 3 iterations 14.98 

We can see (table 3) that, as in univariate setting, the smoother the pilot 
estimator is, the better the final estimation is, at the cost of increasing 
computation time. The combination of iterated of GCV and bias corrected 
estimator leads to a diminution of more than 12% over other mnltivariate 
methods. 

5.5. Boston housing data. We apply our method on the Boston housing 
data. This dataset, cearted by [? ] has been extensively analyzed see for 
example [? ] or more recently by [13]. The data contains 506 census tracts in 
the Boston area taken from 1970 census and each instance has 13 explanatory 
variables (1 is binary and the explanatory variable is the median value of 
owner-occupied homes in $1000's. The sample size of the data is n = 506 
and the number of explanatory variables d = 13. We use here a multivariate 
Gaussian kernel and select each individual bandwidth in order to have the 
same degree of freedom by variable. These are chosen equal to 1.05, 1.1, 1.2 
and 1.5 in order to investigate the influence of such parameter. We compare 
our iterative bias procedure with a classical multivariate regression model, 
with IVlars using R package mda, with additive models estimation using R 
package mgcv and with projectioll pmsuit regression. 
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2 RECURSIVE BrAS ESTl!IJATlOl\' 

The estimate me<::m prediction errOl' is obtaill rail dOl lily split-
t he data into 3GO 

times over snch random 
156 test 50 

TABLE 4 
Predicted mmn SQuared Error on test 	obsenmtwns at Boslon hO'lJsm data 

methods. 

Method 

additive model 

JVrultivariate regression 
iterative bias reduction with GCV stopping rule 
and multivariate Gausfiian kernel with 
1.1 initial DDL per variable and 1230 iterations 
1.2 initial DDL per variable and 253 iterations 
1.5 initial DDL pel' variable and 29 iterations 

IVlean Predicted Squared Error 

11.77 
198 

1O.,'i,~ 

20.09 

725 
6.75 
697 

We can see (table 
corrected estimator to a diminution of more than 

iterated bias 
the prediction 

menn squared error over other multivariate (alld more than 
reduction if we the Y on the 

6. Discussion. In this paper, we make the connection iterative 
correction and the algorithm. providing a new 

for the latter, A link between bias and 
[31] in his discussion of the seminal paper 

explored in Di Marzio [11. 12] for the special case 
of kernel smoo1,hers. In this paper, we show that this intemretation holds 
for lillear Sll1ootllC'rs. 

It wa.s surprising to us that not all smoothers were snitable for boosting. 
Our results extend and complement the recent results of Di Marzio and Tay­
lor [12]. We show that many weak learners, such as the k-nearest neighbor 
smoother and some kernel s11100the1's, are not stahle under iterated bitls es­
timation. We conjecture that defined kernels can 

an appropriate L-spline 
the bias correction scheme until convergence is not 

Better smoothers result if one stops the iterative scheme. Both in our sim­
ulations and application to real data, we show good performance of our 
method for high dimensional smoo1,hers, even for modcrcite si~es. 

one does not need to keep sante smoother 
the iterative correcting scheme. coniecture that there 

As a final remark, note 
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to using aJl(1 

paper. 

< 2 

APPENDIX A: 

Proof of Theorem 2.2 

2 11- lSYl12 
S)k-2 SYI1 2 ::: 11211 1Jk 112 

where the follows from the on the of 
I - S. Similarly, one shows that 

11(1 2 _ 111­ 1112 < II 

Proof of Theorem 3.1 Let I/o < v and fix the smoothing parameter Ao. 
Define S S1/0,>'0' The decompostion of S (Utreras, 1988) 

1 
Ar\10 = 1 and Aj ~ 1 + 

( -,1/0 - 1 L 1 1 .where ~d+!lo-l . et us eva uate t 1e vanance: 

2 
2 n [ _ (1 1)vo) .fI~o + ~n j=~+ 1 1 + Aj211o/d 

I n in j = ... ,n, and split the sum in two Then 
the summand of the sum by one to 

2 
2 11 n [I/o) .fIr~o + 0 J n lifo + n F~+l (1 - (1 - 1 + 1) 

the function 1 (1 - ul ku for Ii E [0,1], we have 

21L'"'H a, I/o) (k + 1);C . t 1 C+n 
}=J" 

n 

< J" + (k + 1)2 
A2 j4!1o/d'

.r=.Jn 
n 
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BOllnding the sum the and evalllate the latter, one 

2 
2 I n a 

1/( ,Ao, vo) a-+ + 
n n 

If we want to balance the two terms of the variance, one has to choose 

the following nmllber of iterations Kn O(J~vOld). For such a choice the 
variance is order 

v vol o 

Let us evaluate the squared bias the decomposition of 

Sl/o,Ao = PvoAP~() and denote by ~ij,vo In the coordinate of m in the 
eigen vector space of 

1 n 


Ao, vol n L (1-· 

j=l 

1 ]" 1 n 
-; (l - A)2k+2 + "" (1 _ A)2k+2 2 n . .L.. J ~J,I/() 

]=Mo+1 J J=Jn+ 1 

Ifm 
rE'lation 

to it belongs to and rt(1I0) nlld we the 

1) 
n 

n 

L 
j=Mo+l 

<111< 

and with the following bound 
say 

> 0, we oMain that the term if 

b(1nb 

Ao, //0) 

< 

< 

n 

+ 1 L 
j=j,,+l 

+ j;;2v/d 1 
n 

n 

L 
+1 

the sarne lype of bound as in 

brink, Ao, < !'tf' + 

Thus bias is order 0 
the slluared and the variance lead to chuice 

O( 711 /(1 
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III 

we the dc~ij'E'd rate. 

Proof of Theorem 4.1 For pedagogical reasons, WP 

the llllivariate case. Let Xl,"" is an i.i.d. sample from a density f that 
is bounded away from zero on a compact set strictly included in the 
of f. Consider without loss of generality that 2:: c > 0 for all 

\Ve are interested in the sign of the quadratic form vt Au where the incli­
vidual entries A;; of matrix A are equal to 

R-h(Xi -

VLl Kh(Xi - X1)VLl !{h(Xj ... Xl) 

Recall the definition of the scaled kernel Kh (-) K( -jh)/h. If v is the vector 
of coordinate Vi then we have ut Au where 
lK is the matrix with individual entries K h (X~ X j ). Thus any conclusion 
on the quctdratic form carryon to the quadratic form vt Au. To show 

existence of a lK, we seek to construct a vector 
U = (Xd, ... , we can show that the Quadratic form 

Tl n 

= L L U7(X j )Uk(Xk)Kh 

J=lk~l 

converges in probability to a negative quantity as the size grows to 
\Ve show the latter by evaluating the of the quadratic 

form and applying the weak law of '-ti) (x) be a rcal 

in L2) its Fumier transform 

</J(t) J 
and its Fourier inverse 

'Pinv 

For kernels .) are real symmetric densities, we have 

k(t) Kinv(t). 

From Bochner's theorem. we know that if kemel K(-) is not 
definite, then there exists a bounded symmctric set A of positive 
mCHsure (dCllotf'd by IAI). such that 

(A.2) 	 (t) < 0 Vt A. 
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Let lj5(t) E 1.,2 be a real functioll supported on A, bou!lded by B 
(i.C'. IIj5(t)1 :::: B). Obviously, its inverse Fomi("l" transform 

e -h:iJ:i 

,x, 

is integrable and by virtue Parccval's 

2 < (X). 

version 

1:)1: = ('X
Loo I 

which when combined with equation (A.2), leads 11S to conclude that 

JOG fOG 
.CX). -CX) i.p(x)i.p(y)I{(:r y)dxdy < o. 

Consider the following vector 

U nh 

< b) 

< b) 

IXnl < b) 

With choice, the expected value of the quadratic form is 

IE[QJ IE [it, Ui(Xj)Uk (Xk)K" (X] - Xk)] 

1 

+--;:-­

h 

bound the 

b i.p(,~/ 11)2 clsI,' h 
b j (s) 

r ((0) j-iJ/ h 2 
< I~;chJ ,-b/Il i.p(u) du 
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any value small 
n large We (' th(' Cleconci 

h 

1 ('8 t)- d8dt(1- ~ 	 -K ­
17 h h 

~) h- I 	 (u v)dudv. 
1'1 

By virtue of the dominated convergence theorem, the value of the last inte­
converges to J~oo 1~(t)12k(t)dt < 0 as h goes to zero. Thus for h small 

(A.3) is less 	than zero, and it follows that we can make lEIOl < 0 
1'1 ? no, for some large no. Finally. convergence in 

form to its expectation is guaranteed by weak law of 
nurnbers for U statistics 19, for exaulDlpl. The conclusion of the theorem 

Proof of Proposition 4.2 To handle multivariate case, let each r-r")mnrm 

ft.) of the vector h be between three C01]­

secu tive points, and denote (Xi' XI) distance between two vectors 
to the vector chosen by the user. For if the usual Euclidean 

Ul"'~Gt!1Ce is we have 

d 'X
Xi, XJ) L ( 71 v, 2( 

1=1 h, 

can be written as K(dh(Xi , 

K is univariate. We are in the of the 
(see proof of Theorem 4.1). that if IK is semidefinite then all its 

p.39S] arc nonnegative. In particular, we can show 
that A is non-positive definite by prodncing a 3 x 3 principal minor with 

obtained 
is 

. X i2 ) 

. I)) J( )X i2 )) . Xi) ))l 

,Xi])) X 

[K(dh ))K(dlt (X )) .. ­ (X13 . 
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Let us E'valuate this quantity the Uniform and Epanechnikov kernels. 

Uniform kernel. Choose 3 ill {X index . i such that 

< 1, <: and ) 1. 

VVith this we readily 

det(IK[3] ) o Kh(O) [1{h(O)2 - OJ - 0 < O. 

Since a principal minor of IK is we conclude thi:l.t IK and A are not 
semidefinite positive. 

Epanechnikov kernel. vllUU1:>"; 

that ) > 
'Xi3 )=y:S; 1. 

iangular inequality, we 

det(lK[3]) < 0.75(0.752 
- K(y)2) I\(J:)(O.75K(x) - !{(y)K(min(.7:, y))) 

-K(min(x, y))K(:r)K(y) - O.75K(J· + y)2 

hand side of this equation is a bivariate function of x and y. Nu-
that function show that. small:r and y to 

of IKf31 can be 

FIG 5 C!ontour of an 1Lpper b01/,nd of as a flmction of y) 

Thus a principal minor of IK is llegative. and as a result, IK and A are not 
selllidetlnite 
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