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RECURSIVE BIAS ESTIMATION FOR HIGH
DIMENSIONAL REGRESSION SMOOTHERS

By PiErrE-ANDRE CORNILLON, NICcoLAS HENGARTNER AND ERricC
MATZNER-LOBER

Montpellier SupAgro, Los Alamos National Laboratory and Urdversity
Rennes 2

In multivariate nonparametric analysis, sparseness of the covari-
ates also called curse of dimensionality, forces one to use large smooth-
ing parameters. This leads to biased smoother. Instead of focusing
on optimally selecting the smoothing parameter, we fix it to some
reasonably large value to ensure an over-smoothing of the data. The
resulting smoother has a small variance but a substantial bias. In this
paper, we propose to iteratively correct of the bias initial estimator
by an estimate of Lthe latter obtained by smoothing the residuals. We
examine in details the convergence of the iterated procedure for clas-
sical smoothers and relate our procedure to L-Boosting. For mul-
tivariate thin plate spline smoother, we proved that our procedure
adapts to the correct and unknown order of smoothness for estimat-
ing an unknown function m belonging to H'v) (Sobolev space where
m should be bigger than d/2). We apply our method to simulated
and real data and show that our method compares favorably with
existing procedures.

1. Introduction. Regression is a fundamental data analysis tool for
uncovering functional relationships between pairs of observations (X;.Y,),7 =
..., n The traditional approach specifies a parametric family of regression
functions to describe the conditional expectation of the response variable YV
given the independent multivariate variables X € R? and estimates the
free parameters by minimizing the squared error between the predicted val-
ues and the data. An alternative approach is to assume that the regres-
sion function varies smoothly in the independent variable z and estimate
locally the conditional expectation m(xz) = E[Y|X = z]. This results in
nonparametric regression estimators. We refer the interested reader to [e.g.
6, 7. 14, 15, 21, 35, 38} for a more in depth treatment of various classical
regression smoothers. The vector of predicted values }AQ at the observed co-
variates X; from a nonparametric regression is called a regression smoother,
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or simply a smoother, because the predicted values V; are less variable than
the original observations V,.
Operationally, linear smoothers can be written ag

m = S)\Y,

where ) is a n x n smoothing matrix. Smoothing matrices S typically
depend on a tuning parameter, which we denote by A, that governs the
tradeoff between the smoothness of the estimate and the goodness-of-fit of
the smoother to the data, by controlling the effective size of the local neigh-
borhood of the exploratory variable over which the responses are averaged.
We parameterize the smoothing matrix such that large values of A will pro-
duce very smooth curves while small A will produce a more wiggly curve that
wants to interpolate the data. For example, the tuning parameter A is the
bandwidth for kernel smoother, the span size for running-mean smoother,
the number of nearest neighbors for k-nearest neighbor smoothers, and the
scalar that governs the relative imiportance of sum of squared errors and the
smoothness penalty term.

It is well known that given »n uniformly distributed points in the cube
(-1, 1]d, the expected number of points that are covered by a ball centered
at the origin with radius € < 1, scales as ne?. This is to say that covariates in
high dimensions are typically sparse. This phenomenon is sometimes called
the curse of dimensionality. As a cousequence, nonparametric smoothers
must average over larger neighborhoods, which in turn produces more heav-
ily biased smoothers. Optimally selecting the smoothing parameter does
not alleviate this problem, and therefore, the common wisdom is to avoid
general nonparametric smoothing in higher dimension and focus instead on
fitting structurally constrained regression models, such as additive models
[21, 22, 27].

The impact of the curse of dimensionality is lessened for very smooth
regression functions. For example, regression functions with 2d coutinuous
derivatives have minimax mean squared error of n~4/°, a value recognized as
the minimax mean squared error of estimates for twice differentiable univari-
ate regression functions. The difficulty is that in practice, the smoothness of
the regression function is typically unknown. Nevertheless, there are large
potential gains (in terms of rates of convergence) if one considers multivari-
ate smoothers that adapt to the smoothness of the regression function.

This paper presents a simple and htuitive procedure based on repeated
application of classical multivariate linear sinoothers to construct a sinoother
that adapts to the smoothness of the regression function. Our smoother is
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constructed as iteratively, starting from a pilot soother that over-smooths
the data. That is, the pilot smoother has has a small variance at the cost
of carrying a substantial bias. That bias can be estimated by smoothing
the residuals from the pilot smoother, possibly using the same smoothing
matrix, and subtracted from the pilot smoother. The bias estimation and
bias correction steps can be iterated to generate a sequence of bias corrected
smoothers. Section 2 discuss the behavior of that sequence, and we give con-
ditions on the smoothing matrix which ensures convergence of that sequence
of smoothers to the vector of responses Y. We propose to select a smoother
from that sequence that minimizes an estimate of the prediction error, such
as calculated by cross-validation or generalized cross-validation.

It Section 3, we show that this procedure applied to multivariate thin
splines adapts to the smoothness of the regression function. For practical
considerations, we sometimes prefer to use kernel hased smothers instead
of thin spline smoothers. In Section 4, we give conditions on the smooth-
ing kernel that guarantees good behavior of the sequence of iterative bias
corrected smoothers.

Bevond the nice theoretical properties of our estimator, we show in both
simulated and real data that our smoother significantly improves on the
prediction mean square errors over popular competing multivariate non-
parametric regression models, including additive models, projection pursuit
regression and MARS. For example, prediction mean squared error for the
Los Angeles ozone data set 77, using our fully nonparametric smoother on
eight explanatory variables; is at least 13% smaller than the competing cur-
rent state-of-the-art smoothers. The gains are even more impressive for the
Boston housing data 77, where the prediction mean squared error of our
fully nonparametric smoother using thirteen explanatory variable is 30%
sialler than its competitors.

Finally, the proofs are gathered in the Appendix.

2. Iterative bias reduction. This section presents the general itera-
tive bias reduction framework for linear regression simoothers.

2.1. Preliminaries. Suppose that the pairs (X;, i) € R x R are related
through the nonparametric regression model

(2.1) Yi = m{X))+e. i=1,...,n,

where m(-) is an unknown smooth function, and the disturbances &; are
independent mean zero and variance ¢ random variables that are indepen-

dent of all the covariates (X, ..., X,). It is helpful to rewrite Equation (2.1)
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in vector form by setting Y = (Y1,...,Y,),, m = (m(X1). .. .. m(X,))" and
s =(g1...., &)L to get

(2.

NS

) Y = m+e.
Lincar smoothers can be written as
(2.3) my = SY,

where S is an n X n smoothing matrix and m = Y = (}71, . ,}7”)17 denotes
the vector of fitted values. Typical smoothing matrices are contractions, by
virtue that the fitted values have smaller norm than the raw data, that is
1SY]| < ||Y||. We refer to Buja et al. [6] for in depth discussion of such
shrinkage smoothers.

Let I be the n x n identity matrix. The bias of the linear smoother (2.3)

(2.4) B(my) = E/m|X]—m=(S—-1I)m
(2.5) = —E[(I-9)Y],

and its variance is
V(| X) = §S'a?,
respectively.
2.2. Bias reduction of Linear Smoothers. The expression (2.5) for the
bias suggests that it can be estimated by smoothing the negative residuals
'Rl == —(Y — ﬁll) = *(I - Sl)Y That iS,

(26) bl = —SQRl = —SQ(I - S])Y

estimates the bias. Correcting the pilot smoother m; by subtracting b, from
the pilot smoother m,; yields a bias corrected smoother

ﬁlg = 51Y+52(I— Sl)Y
= (S1+ 8- 5))Y.

Since 7hg is itself a linear smoother, it is possible to corrected its bias as well.
Repeating the bias reduction step k times produces to the linear smoother

(2.7) My = S1IY + 85I =S)Y + -+ Se(I = Spy) (I = S1)Y.

ProrosiTion 2.1 (Residual smoothing estimator). After k iterations,
the bias corrected estimator (2.7) can be explicitly writien as

(2.8) e = [ — (=S~ Sp1)---(I—S)]Y.
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Remark. An alternative approach is to estimate the hias by plugging in an
estimator m = S,Y for the regression function m into the expression of the
bias (2.4). This produces the estimator

for the bias. Iteratively correcting the bias using that estimate produces,
after k steps, the linear smoother

My = S\Y 4 (I =5)SY + -+ (I—8){I—~S)-5Y
(2.9) = [T = (1= ST = Sa)...(I = SV

While in general, the these two estimates for the bias lead to distinct
bias corrected smoothers (2.7) and (2.9), these two smoothers are identical
when the same smoothing matrix is used at every step of the procedure. The
resulting k™ iterated bias corrected smoother becomes

(2.10) iy = [I — (I - S|V

In the univariate case, smoothers of the form (2.10) arise from the Ls-
boosting algorithm when setting the convergence factor i of that algorithin
to one. Thus we can interpret the Lo-boosting algorithm as an iterative bias
reduction procedure. Breiman [3] noted a similar interpretation for the bag-
ging algorithm applied to the residuals of nonparametric smoothers. From
that interpretation, it follows that the Ly-boosting of projection smoothers,
as is the case for bin smoothers and regression splines, is ineffective since
the estimated bias

h=2S8(I-98)Y =0.

Bihilmann and Yu [4] present the statistical properties of the La-boosted
univariate smoothing splines, while 7 | describes the behavior of univariate
kernel smoothers after a single bias-correction iteration.

From a historical perspective, the idea of estimating the bias from resid-
uals to correct a pilot estimator of a regression function goes back to the
concept of twicing introduced by Tukey [36] to estimate bias of misspecified
multivariate regression models, The idea of iterative debiasing regression
smoothers is also present in Breiman [3] in the context of the bagging algo-
rithnt. More recently, the interpretation of the Lo-boosting algorithm as an
iterative bias correction scheme was alluded to in Ridgeway [311's discussion
of Friedman et al. [18] paper on the statistical interpretation of boosting.
Finally. Di Marzio and Taylor [12] studied one-step bias correction of univari-
ate kernel regression smoothers, and showed that it corresponded to making
on iteration of the Ly boosting algorithm of Bithlmann and Yu {4].
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2.3. Predictive smoothers. As defined by (2.3), smoothers predict the
conditional expectation of responses only at the design points. It is useful
to extend regression smoothers to enable predictions at arbitrary locations
x € R? of the covariates. Such an extension allows us to assess and compare
the quality of various smoothers by how well the smoother predicts new
observations.

To this end, write the prediction of the linear smoother 5 at an arbitrary
location z as

mx) = S(2)tY,
where S(z) is a vector of size n whose entries are the weights for predicting
m{xz). The vector S(x) is readily computed for many of the smoothers used
inn practice.

Next, writting the iterative bias corrected smoother 7 as

My, = Mg +;81-+ "'%~gk
= SI+I-8)+T -8+ -+
= S.»@Im

it follows that we can write predict m(z) by
(2.11) p(z) = S(z) B

This formulation is computationally advantageous because the vector of
weights S(z) only needs to be computed once, while the iterative bias cor-
rection scheme leads to the sequential update rule for the coefficients 5

Br = Br—1 + B,
where R = Y — my is the residual vector from the previous fit.

2.4. Convergence properties of iterative bias corrected smoothers. The
squared bias and variance of the k" iterated bias corrected smoother i
(2.10) are

By = m (1= $)%) (1~ $)'m
and
Vi) = oI (=8 ((T— (I~ 5M)".

respectively. This shows that the qualitative behavior of the sequence of
iterative bias corrected sinoothers My can be related to the spectrum of
I — 8. The next theorem collects the various convergence results for sequence
of iterated hias corrected linear smoothers.
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RECURSIVIE BIAS ESTIMATION i
THEOREM 2.2.  Suppose that the singular values X, of I — S satisfy
(2.12) 1< A< for j=10000. n.
Then we have that

bell < Ibr 1l and  lim by =0,
R 00

Rl < 1Bl and  lim R =0,
k—oo

lim 7, =Y  and  lin B[y — m|?] = no®.
k—oc k—r00

Conversely, if I — S has a singular value |A;| > 1, then

lim ||bg]] = lim [|Ryi| = lim ||l = co.
K0 | koo

The assumption that for all j, the singular values —1 < \;(J — S) < 1
implies that 7 — 8 is a contraction, so that ||[(/—8)Y || < ||Y{]. This condition
however does not imply that the smoother S is itself a shrinkage smoother
as defined by Buja et al. [6]. Conversely, not all shrinkage smoothers satisfy
condition (2.12) of the theorem. In Section 5, we will give examples of com-
mon shrinkage smoothers for which |A,(I — §)| > 1, and show numerically
that for these shrinkage smoothers, the iterative bias correction scheme fails.
The reason of this failure lies with the fact that by overestimates the true
bias by, and hence the iterative bias corrected smoother repeatedly over-
corrects for the bias of the smoothers, which results in a divergent sequence
of smoothers.

2.5. Data-driven selection of the number of bias reduction steps. The-
orem 2.2 states that the limit of the sequence of iterated bias corrected
smoothers is either the raw data Y or has norm || V|| = oo. It follows that
iterating the bias correction algorithm until convergence is not desirable.
However, since each iteration of the bias correction algorithm reduces the
bias and increases the variance, often a few iteration of the bias correction
scheme will improve upon the pilot snioother. This brings up the important
question of how to decide when to stop the iterative bias correction process.

Viewing the latter question as a model selection problem suggests stop-
ping rules for the number of iterations based on Mallows’ (), [28], Akaike In-
formation Criteria (AIC). Akaike [1], Bayesian Information Criterion (BIC),
Schwarz [33], cross-validation, L-fold cross-validation, and Generalized cross
validation Craven and Wahba [10], and data splitting Hengartner et al. {23].
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Each of these data-driven model selection methods estimate an optimum
number of iterations & of the iterative hias corrvection algorithm by mini-
mizing estimates for the expected squared prediction error of the smoothers
over some pre-specified set K = {1,2,.... A/, } for the number of iterations.

We rely on the extensive literature on model selection to provide insight
into the statistical properties of stopped hias corrected smoother. In partic-
ular, Theorem 3.2 of Li [26] describes the asymptotic behavior of the gen-
eralized cross-validation (GCV) stopping rule applied to smoothers. Results
on the finite sample performance for data splitting for arbitrary smoothers is
given in Theorem 1 of Hengartner et al. [23]. In nonparametric smoothing,
the AIC criteria has a noticeable tendency to select more iterations than

needed, leading to a final smoother mi e that typically undersmooths the
data. As a remedy, Hurvich et al. [25] introduced a corrected version of the
AIC under the simplifying assumption that the nonparametric smoother m
is unbiased, which is rarely hold in practice and which is particularly not
true in our context.

Extensive simulations of the above mentioned model selection criteria,

both in the univariate and the multivariate settings [8] have shown that

GCV
. race(S,
kcoy = argmin {log 5% — 2log (1 . trace(Si) k))}
ke n

is a good choice, both in terms of computational efficiencies and of producing
good final smoothers.

3. Iterative bias reduction of multivariate thin-plate splines smoothers.
In this section, we study the statistical properties of the iterative bias re-
duction of multivariate thin-plate spline sinoothers. Given a smoothing pa-
rameter A, the thin-plate smoother of degree vy minimizes

(3.1)

é}th g
A, .. 61%

2
f(x)

k23
min > (Vi — f(X,))7 + X /
= 1 m
B + : + (IR

Thin-plate smoothing splines are attractive class of multivariate smoothers
for two reasons: First, the solution of (3.1). once cast within a Reproduc-
ing Kernel Hilbert Space (RKHS) framework see Gu [20], is numerically
tractable and second, the eigenvalues of the sinoothing matrix are approxi-
matively known (c.{. Utreras [37]).
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RECURSIVE BIAS ESTIMATION 9

3.1, Numericol Frample. It is easy to establish that the eigenvalues of
the associated smoothing matrix lie between zero and one. In light of Theo-
rem 2.2, the sequence of bias corrected thin-plate spline smoothers, starting
from a pilot that oversmooths the data, will converge to an interpolant of
the raw data. As a result, we anticipate that after some suitable number of
bias correction steps, the resulting bias corrected smoothier will be a good
estimate for the true underlying regression function.

Fic 1. True regression function m{zy,z2) (5.2) on the square [—10,10} x [~10,10] used
in our numerical examples.

This behavior is confirmed numerically in the following pedagogical ex-
ample of a bivariate regression problem: Figure 1 graphs Wendelberger’s test
function Wendelberger [39]

m(ry, xzg) = %CXI) {—((9:;_: —2)? 4 (9y — 2)2)/4} +
+TE exp {‘((9.7,‘ + 1)%/49 + (9y + 1)2/10)} +
1 2 ,
b exp { (92~ 1) + (9 = 32)/4)} -
(3.2) ———:i)— exp {————({9:8 — 4y 4 9y - 7}2}}

that is sampled at 100 locations on the regular grid {0.05,0.15,...,0.85,0.95}2.
The disturbances are mean zero Gaussian with variance producing a signal
to noise ratio of five. Figure 2 shows the evolution of the bias corrected
smoother, starting from a uearly linear pilot smoother in panel (a). After
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500 iterative bias reduction steps, the smoother shown in pauel (b) is visu-
ally close to the original regression function. Continuing the bias correction
scheme will eventually lead to a smoother that interpolates the raw data. To
illustrate this. we show the bias corrected smoother after 50000 iterations in
panel {¢). Notice how noisy that estimator is, compared to the one in panel
{1b). This example shows the importance of suitably selecting the number of
bias correction iterations.

Fic 2. Thin-plate spline regression smoothers from 100 noisy observations from 3.2 (see
Figure 1) evaluated on a reqular grid on [-10,10] x [=10,10]. Panel (a) shows the pilot
smoother, panel (b) graphs the bias corrected smoother after 500 wterations and panel (c)
graphs the smoother after 50000 iterations of the bias correction scheme.

3.2, Adaptation to smoothness of the regression function. Let £ be an
open bounded subset of R? and suppose that the unknown regression func-
tion m belongs to the Sobolev space H () = H®), where v is an integer
such that v > d/2. Let S denote the smoothing matrix of a thin-plate
spline of order 1y < v (in practice we will take the smallest possible value
vy = [d/2]) and fix the smoothing parameter Ay > 0 to some reasonably
large value. Our next theorem states that there exists a number of bias re-
duction steps k£ = k(n}, depending on the sample size, for which the resulting
estimate my, achieves the minimax rate of convergence. In light of that the-
orem, we expect that an iterative bias corrected smoother, with the number
of iterations selected by GCV, will achieve the minimax rate of convergence.

THEOREM 3.1.  Assume that the design X; € Q, 4 =1,...,n satisfies the
following assumption: Define

hinar(n) =sup inf |z — X;|, and hypn(n) = min | X; — X5,
zeQ=ln 1] ’

and assume that there exists a constant B > 0 such that

i Imax ('31)

< B Vn.
hmin(") = "
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RECURSIVE BIAS ESTIMATION bl
Suppose that the true regression function m € H,

If the initial estimator ™y = SY s obtain with S o thin-plate spline of
degree vg. with [d/2] < vy < v and a fized smoothing parameter Ay > 0
not depending on the sample size n, then there is an optimol number of bias
reduction steps k(n) such that the resulting smoother my satisfies

2
1< , i 1
w | ( 23ox) ~mx) ) | =0 ()

o

which is the optimal minimax rate of convergence for m € H¥)

Remark. Rate optimality of the smoother iy is achieved by suitable selec-
tion of the number of bias correcting iterations, while the smoothing param-
eter Ap remains unchanged. That is, the effective size of the neighborhoods
the smoother averages over remains constant.

THEOREM 3.2, Suppose that the noise € in (2.1) has finite tenth moment,
that 15, B[] < oo. Let koov € Kn = {1,...,n%}. a > 1, denote the
mder in the sequence of bins corrected smothers whose associated smoother
minymize the generalized cross-validation criteria. Then as the sample size
n grows to infinity,

e — m||*

infrex, [l — ml?

— 1, in probability.

While adaptation of the Ly-boosting algorithm applied to univariate smooth-
ing splines was proven by [4], the application of bias reduction to achieve
adaptation to the smoothness of multivariate regression function has not
been previously exploited. The practical importance of our procedure is re
vealed in both our simulation study and our analysis of classical multivariate
test datascts in Section 5. In both instances, our method makes substantially
better predictions over state-of-the-art structural inodels such as additive re-
gression smoothing, MARS, and projection pursuit regression.
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4. lterative Bias reduction of Kernel smoothers. The smoothing
matrix S of thin plate spline is symmetric and has eigenvalues in (0. 1]
are kuown (see for example [37]). In particular, the first My = (””::d]l)
eigenvalues are all equal to one. This feature limits the practical usefulness
of thin plate spline smoothers in iterative bias correction schemes.

Recall that our procedures requires a heavily biased pilot smoother. One
measure of the smoothness (and hence of the bias) of the pilot smoother
is the trace of the smoothing matrix, often called the effective degree of
freedoin of the smoother, with large effective degrees of freedom associated
with noisy sinoothers and small effective degrees of freedom associated with
smooth smoothers. In light of Theorem ??, we want vy > d/2. It follows that
the effective degree of freedom increases with the dimension. In particular
the effective degree of freedom is at least 5,28, 165,1001 for d = 4,6,8, 10,
respectively.

A possible resolution to this problem is to approximate the thin plate
spline smoother with a kernel smoother, with an appropriate kernel. See
Messer [29], Silverman [34] for example. In this section, we discuss kernel
based smoothers in general, and we give a necessary and sufficient condition
on the kernel that ensures that the iterative bias correction scheme is well
behaved. We supplement our theorems with numerical examples of both
good and bad behavior of our scheme.

4.1. Kernel type smoothers. The smoothing matrix S of Nadaraya kernel
type estimators has entries S;; = K(dy(Xy, X;))/ >0 K{dp(X;, X;)). where
K{(.) is typically a symmetric function in R (e.g., Uniform, Epanechnikov,
Gaussian ), and dp, (x, ) is a weighted distance between two vectors o, y € R,
The particular choice of the distance d(-,-) determines the shape of the
neighborhood. For example. the weighted Euclidean norm

d .
(z; —u5)?
\; h‘j

where h = (hy,..., hy) denotes the bandwidth vector, gives rise to elliptic
neighborhoods.

dh(mv y) =

¥

4.2. Spectrum of kernel smoothers. To apply Theorem 2.2, we need to
characterize the spectrum of I — 5. While the smoothing matrix S is not
symmnetric, it has a real spectrum. To see this, write 5 = DK, where K i
symmetric matrix with general element K,; = K{dy(X;, X;)) and D is diag-
onal matrix with elements Dy; = 1/ 5, K(dn(X;, X;)). If g is an eigenvector
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RECURSIVE BIAS ESTIMATION 13
of 5 associated to the eigenvalue A. then
Sq=DRq = D'? (DVPRDV) D /7g = Aq,

and hence )

(D1/2K91/2> (le/‘zq) — (D »1/2(1) ‘

Hence the symmetric matrix 4 = DV2KD!/? has the same spectrum as S.
Since S is row-stochastic, all its eigenvalues are bounded by one. Thus, in
light of Theorem 2.2, we seek conditions on the kernel K to eusure that its
spectrumn is non-negative. Necessary and suficient conditions on the smooth-
ing kernel K for S to have a non-negative spectrum are given in the following
theorem.

THEOREM 4.1, If the inverse Fourier-Stieltjes transform of a kernel K ()
i5 a real positive finite measure, then the spectrum of the Nadaraya- Watson
kernel smoother lies between zero and one.

Conversely, suppose that Xq,..... X, are an independent n-sample from
a density [ (with respect to Lebesgue measure) that is bounded away from
zero on a compact set strictly included in the support of f. If the inverse
Fourier-Stieltjes transform of a kernel K{-} is not o positive finite measure.
then with probability approaching one as the sample size n grows to infinity,
the meazimum of the spectrum of I — 5 4s larger than one.

Remark 1: The assumption that the inverse Fourier-Stieltjes transform of
a kernel K(-) is a real positive finite measure is equivalent to the kernel
K () being positive a dehnite function, that is, for any finite set of points

T1, ..., Ly, the matrix
K(0) K(dp(rr,22))  Kldp(a,23)) .. K(dp(ziam))
I((dh(xg.xl)) ]((O) I((dh(zg,ig)) e }{(dh($2~lhn))
K{dp(zm.21)) K{dp(zm.z2)) K(dy(zm, z3)) ... K(0)

is positive definite. We refer to Schwartz [32] for a detailed study of positive
definite functions.

Remark 2: Di Marzio and Taylor Di Marzio and Taylor [13] proved the first
part of the theorem in the context of univariate smoothers. Our proof of the
converse shows that for large enough sample sizes, most configurations from
a random design lead to simoothing matrix S with negative singular values.
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4.2.1. Numerical implementation. lterative smoothing of the residuals
can be computationally burdensome. To derive an alternative. and com-
putationally more efficient representation of the iterative hias corrected
smoother, observe that

iy = [I-(1-S"Y
= |I- (QEJ’?D—I/Q - Dl/’le/QKDl/ZD-U?)k}Y
= [I-DV*(I - D*KD'/*)* D=1y
DI/Q[[ . (] _ A)i;]D—l/’QY

Writing

A= D'PRDY? = P4A,PY,
where P4 is the orthonormal matrix of eigenvectors and A4 diagonal ma-
trix of their associated eigenvalues, we obtain a computationally eflicient
representation for the smoother

e = DYEP4I - (I — AN PLD™Y2Y.

Note that the ecigenvalue decomposition of 4 needs only to be computed
once, and hence leads to a fast implementation for calculating the sequence
of bias corrected sinoothers.

4.2.2. Erample of Gaussian kernel smoother. The Gaussian and trian-
gular kernels are positive definite kernels {they are the Fourier transform
of a finite positive measure Feller [16]). In light of Theorem 4.1 the itera-
tive bias correction of Nadaraya-Watson kernel smoothers with these kernels
produces a sequence of well behavior smoother.

The anticipated behavior of iterative bias correction for Gaussian kernel
smoothers is confirmed in our munerical example. Figure 3 shows the pro-
gression of the sequence of bias corrected smoothers starting from a very
smootlh surface (see panel (a)) that is nearly constant. Fifty iterations (see
panel (b)) produces a fit that is visually similar to the original function.
Countinued bias corrections then then slowly degrades the fit as the smoother
starts to over-fit the data. Panel (c) show the smoother after 10000 iterations.
Continuing the bias correction scheme will eventually lead to a smoother
that interpolates the data. This examples hints at the potential gains that
can be realized by suitably selecting the number of bias correction steps.
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RECURSIVE BIAS ESTIMATION 15

F1¢ 3. Gaussion kernel smoother of the function m{xy,z2) from v = 100 equidistributed
points on [-10,10] x [~10,10], evaluated on a regular grid with k = 1 steration (o), 50
wevations (b) and 10000 wterations {c).

4.2.3. Kernel smoothers with Uniform and Epanechnikov kernels. The
Uniform and the Epanechnikov kernels are not positive definite. Theorem
4.1 states that for large enough samples, we expect with high probability
that I — S has at least one eigenvector larger than one. When this occurs,
the sequence of iterative bias corrected smoothers will behave erratically and
eventually diverge. Proposition 4.2 below strengthens this result by giving
an explicit condition on the configurations of the design points for which the
largest singular value of I — § is always larger than one.

ProroSITION 4.2. Denote by N; = {X; : K(dn(X;, Xi)) > 0} the the
set of distinctive points in the neighbors of X;.

If there exists a set Ny such that |N;| > 3 that contains points X;, Xy #
X; such that dh(Xg,Xj) < 1, dh‘(X‘,i.vXk-) < 1 and dh(Xj,Xk) > 1, then
the smoothing matric S for the Uniform kernel smoother has ot least one
negatwe eigenvalue.

If there exits a set N; such that |Nj| > 3 that contains points X;, Xy # X,
that satisfy

dh,(Xj, Xk) > 1'ni11{d;, (}Qj Xj), (ih(Xi, Xk)},

then the smoothing matriz S for the Epanechnikov kernel smoother has at
least one negative eigenvalue.

Remark. The proof of the proposition is readily adapted to multivariate
kernel smoothers whose kernel are defined as the product of univariate kernel
in each of the components,

The failure of the iterated bias correction scheme using Epancchnikov ker-
nel smoothers is illustrated in the numerical example shown in Figure 4. As
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for the Gaussian smoother, the initial smoother (panel (a)) is nearly con-
stant. After five iterations (panel (b)) some of the features of the Mexican
hat become visible. Continuing the bias corrections scheme produces an un-
stable smoother. Panel (¢) shows that after ouly 25 iterations, the smoother
hecomes noisy. Nevertheless, when comparing panel (a) with panel (b), we
see that some improvement is possible from a few iterations of the bias
veduction scheme.

Fia 4. Epanechnikov kernel smoother of the funciion m{zy,z2) from n = 100 equidis-
tributed points on [~10,10] x [~10,10]. evaluated on a regular grid with & = 1 deralion
{a). 5 iterations (b) and 25 tterations ().

5. Simulations and real example. In this section. we show that
our proposed iterative correction procedure works well for both simulated
aid real data. To provide a baseline for comparison, we first study the
performance of iterative bias corrected univariate smoothing splines. We
then proceed to show that our method has desirable finite sample proper-
ties in the multivariate setting and compares advantageously when applied
to the well known the Los Angeles Ozone data. All the numerical exani-
ples were computed using the ibr R-package [9], freely available at URL:
Littp://www.uhb.fr//sc_sociales/labstats/EML/ibr 0.01.tar.gz.

5.1. Selecting the smoothing parameter.  An important question is how
to chose the bandwidth of smoother. We know that for bias reduction to be
effective, we want to use a large bandwidth that oversmooths the responses,
as such pilot smoothers will be heavily biased. As a general rule, the larger
the bandwidth, the more biased the pilot smoother will be and the more
iterations of the bias reduction scheme will be required to obtain a “good”
smoother, Otherwise, the method is generally robust to the choice of the
bandwidth.

The bandwidth in each component of the covariate depends on its scale.
It s common to first rescale the data hefore selecting the bandwidth. In our
nunerical experiments, we found it preferable to leave the scales unchanged.
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RECURSIVE BIAS ESTIMATION 17

and to select the bandwidth based on the effective degree of freedom (trace of
the smoothing matrix) of the univariate smoother in each of the components,
with typical values for the degree of freedom we ranging from 1.05 to 1.2
A further advantage of the latter choice is that there is no explicit reference
to samiple size. )

5.2. Univariate case. Swmoothing splines are a popular smoothers with
good asymptotic and finite sample behavior. Here, we show the benefits of
applying the iterative bias correction scheme to smoothing splines. To do so,
we compare the iterative smoother using two different starting points, two
different stopping rules (GCV and Cross Validation) and three sample size
n = 50, 100 and 500. We calculate the smoothing spline with the R-function
smooth.spline, which we apply to data from the following three regression
functions

my{r) = sin{bnx)
mo(z) = 1-— 48z + 2182% — 3152° + 1452°

1 1 ) 1 1
ma(z) = exp(x-— g){x < —3-} + exp|—2(x — g)]{z > -1

The explanatory variable X is a Uniform[0, 1] distributed random variable,
an error (Gaussian or Student 5) with variance such that the signal to noise
ratio is 80%. For 100 replications, we calculate on a finite grid in [0, 1] the
quadratic error between the true function and the proposed estimate. Table
(1) reports the median over the 100 replications of the ratio of the error
obtained but the iterative estimator and the smoothing spline estimator.

TABLE 1
Medwon over 100 simulations of the number of iterations and median of the ratio of the
MSE obtained by the iterative debiasing estimation and the MSE obtained by the
stoathing splines smoother for n = 50 dala points.

error kicov Shicey krcov S cc kicv Spoen  Raov  Sp
Function 7y (2) = sin(bra)

Gaussian 4077 0.86 65 0.88 4191 0.84 88 0.83
Student 4115 0.87 70 0.88 4853 (.84 96 0.84
Function ma{z) = 1 — 48z -+ 21822 — 3152° + 14527
Gaussian 1219 1.09 21 1.12 1339 1.07 27 1.10
Student 1307 1.11 22 1.13 1714 1.07 30 1.09
Fuhction ma{z) = exp (z — $){z < 2} +exp[-2(x = H)]{z > 1}
Gaussian 135 0.93 3 0.93 138 0.92 3 0.93
Student 147 0.95 3 0.97 156 0.94 3 0.94

Eacli entry in the table reports the median number of iterations and the
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median of the ratio of the MSE obtained by the iterative debiasing estima-
tion and the MSE obtained by the smoothing splines smoother for n = 50
data points. As expected. Jarger smoothing parameter of the initial smoother
requires more iterations of the iterated algorithin to reach its optimum. In-
terestingly, the selected smoother starting with a very smooth smoother.
has slightly smaller mean squared error. In some cases, the iterative bias
correction has smaller mean squared error than the one-step smoother, with
improvements ranging from 5% to 15%.

5.3. Multivariote case. Here, we focus on the multivariate case X € R,
d > 1, and consider multivariate Gaussian kernel smoothers. Statistical lore
discourages using fully nouparametric methods in higher dimensions because
estimators suffer from the curse of dimensionality. Instead. of focuses on esti-
mating structurally constrained regressions models, such as additive models,
multiplicative models, or multivariate tensor product of spline basis in low
dimension such as MARS that have better statistical properties at the cost
of possible misspecification error.

Next we show via simulations that the iterative bias correction scheme us-
ing a fully nonparametric regression smoother compares advantageously to
the MARS algorithm of Friedman [17} and additive models using the back-
fitting algorithm of Hastie and Tibshirani [21]. For illustration, we consider
fitting the following test function

m{x) = 10sin (rz129) + 20(z3 — .5)2 + 1024 + bzs.

previously used by [17]. As in that paper, the covariate are independent Uni-
form distributions in each of the five variables, and Gaussian disturbances
with small variance’ were added to the response surface m(z).

For each sample size (n = 50, 100, 200), we generate the data as above,
use 90% of the data as a training set and predict the remaining 10% with
the R package mda for MARS and R package mgev for the additive model
my(x1)+- - - +ms(xs) without interaction. We compare the prediction mean
square error of these methods with our iterative bias reduction scheme using
a Gaussian kernel regression smoother with three choices of bandwidths
chosen such that the effective degree of freedom for each covariate is 1.05,
1.1, and 1.2. The results we report in Table 2 are over 100 replications of
the simulation.

Ythe variance is such that the signal to noise ratio is 95%.
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Tapre 2
Median over 100 sunulafions. unih the medion of iteraiion between parenthesis,

7 o= 5i) n = 100 1= 200
MARS 1.248 3.746 3.3h4
Add. 3.577 3.314 2.753
PPR 6.925 (1) 6.213 4.411
BRugi=1 50  3.531 (31) 2.239 (42) 1.842 (57)

BRugr=r20  3.122 (290)  2.014 (589) 1.747 (960)
BRug=1 10 3.179 (1740)  1.967 {5084)  1.707 (8780)
BRau-105 3.226 (14140)  1.970 (42930)  1.680 (76820)
TPSi 3.89 (431) 2.483 (361) 1.988 (287)

The pattern is similar to that seen in univariate simulations are found.
First, the smoother the pilot estimator, the bigger the number of iterations
chosen by GCV. Second, the smoother the pilot estimator, the better the
results. But here, for very small datasets {(n = 50 data points and d =
5 variables) the smoothest pilot estimator (df 1.05) tried leads to results
that are worse than the second smoothest (df 1.10). MSE obtained with
7o = 100 using these pilot estimators are nearly the same, whereas MSE
obtained with n = 200 shows that the smoothest leads to the best results.
Simulations in univariate settings with very wiggly curve (not shown in this
paper) have shown similar results: if the pilot smoother is too smooth (near
to the constant), it cannot capture the whole unknown function as well as
a less smooth pilot smoother.

5.4. Los Angeles Ozone Data. We consider the classical data set of ozone
concentration in the Los Angeles hasin which is as a standard dataset com-
paring the performance of multivariate smoothers {Breiman [2], Bithlmann
and Yu [4, 5]). The sample size of the data is n = 330 and the number
of explanatory variables d = 8. We use a multivariate Gaussian kernel and
select the bandwidth so that the univariate smoother in each of the vari-
ables has the same trace, i.e., the same effective degree of freedom. These
are chosen equal to 1.05, 1.1, 1.2 and 1.5 in order to investigate the influ-
ence of such parameter. We cowpare our iterative bias procedure with Mars
using R package mda, with additive models estimation using R package
mgcv and Lo-Boosting proposed by Bithlmann and Yu [4], Wthh we recall
here. Multivariate Lp-Boosting proposed by Bithlmann and Yu [4] leads to
component-wise additive model

d
{n?ouw — Z ]E
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where the component f‘“'“ﬂ is obtained hy choosing the univariate smoother
S»;(X,) which leads to the best improvement in smoothing the residuals of
previous iteration k — 1.

The estimate mean squared prediction error is obtain by randomly split-
ting the data into 297 training and 33 test observations and averaging
50 times over such random partitions. We use the same configuration as
Bithlmann and Yu [4] and reporting theirs results we obtain the following
table :

TABLE 3
Predicted mean Squared Error on test observations of ozone data for different methods.

Method ! Mean Predicted Squared Error
LoBoost with component-wise spline 17.78
additive model (backfitted with R} 17.44
Projection pursuit (with R) 16.89
MARS (with R) 17.49

iterative bias reduction with GCV stopping rule
and multivariate Gaussian kernel] with
1.05 initial DDL per variable and 297 iterations | 14.85

1.1 initial DDL per variable and 64 iterations 14.83
1.2 initial DDL per variable and 15 iterations 14.86
1.5 initial DDL per variable and 3 iterations 14.98

We can see (table 3) that, as in univariate setting, the smoother the pilot
estimator is, the better the final estimation is, at the cost of increasing
computation time. The combination of iterated of GCV and bias corrected
estimator leads to a diminution of more than 12% over other multivariate
methods.

5.5. Boston housing data. We apply our method on the Boston housing
data. This dataset, cearted by [? | has been extensively analyzed see for
example [? ] or more recently by [13]. The data contains 506 census tracts in
the Boston area taken from 1970 census and each instance has 13 explanatory
variables (1 is binary and the explanatory variable is the median value of
owner-occupied homes in $1000’s. The sample size of the data is n = 506
and the number of explanatory variables d = 13. We use here a multivariate
Gaussian kernel and select each individual bandwidth in order to have the
same degree of freedon1 by variable. These are chosen equal to 1.05, 1.1, 1.2
and 1.5 in order to investigate tlie influence of such parameter. We compare
our iterative bias procedure with a classical multivariate regression model,
with Mars using R package mda, with additive models estimation using R
package mgcv and with projection pursuit regression.
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The estimate mean squared prediction error is obtain by randomnly sphit-
ting the data into 350 training and 156 test observations and averaging 50
times over such random partitions. We obtain the following table :

TABLE 4 .
Predicted mean Squared Error on test observations of Boston housin data for different

methods.

Method [ Mean Predicted Squared Error

additive mode! (backfitted with R) 177

Projection pursuit (with R) 11.98

MARS (with R) 10.54

Multivariate regression 20.09

iterative biag reduction with GCV stopping rule
and multivariate Gaussian kernel with

1.1 initial DDL per variable and 1230 iterations | 7.25
1.2 initial DDL per variable and 253 iterations 6.75
1.5 initial DDL per variable and 29 iterations 6.97

We can see (table 4) that, the combination of of GCV and iterated bias
corrected estimator leads to a diminution of more than 30% of the prediction
mean squared error over other multivariate methods (and more than 40%
reduction if we transforme the Y on the log scale).

6. Discussion. In this paper, we make the connection between iterative
bias correction and the Ly boosting algorithm, thereby providing a new
interpretation for the latter. A link between bias reduction and boosting was
suggested by Ridgeway [31] in his discussion of the seminal paper Friedman
et al. [18], and explored in Di Marzio and Taylor [11. 12] for the special case
of kernel smoothers. In this paper, we show that this interpretation holds
for general linear sinoothers.

It was surprising to us that not all smoothers were suitable for boosting.
Our results extend and complement the recent results of Di Marzic and Tay-
Jor {12]. We show that many weak learners, such as the k-nearest neighbor
smoother and some kernel smoothers, are not stable under iterated bias es-
timation. We conjecture that positive defined kernels can equivalent kernels
of an appropriate L-spline Ramsay and Heckman [30].

Iterating the bias correction scheme until convergence is not desirable.
Better smoothers result if one stops the iterative schewe. Both in our sim-
ulations and application to real data, we show good performance of our
method for high dimensional smoothers, even for moderate sample sizes.

As a final remark, note that one does not need to keep the same sinoother
throughout the iterative bias correcting scheme. We conjecture that there
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are advantages to using weaker smoothers later in the iterative scheme, and
shall investigate this in a forthcoming paper.

APPENDIX A: APPENDIX
Proof of Theorem 2.2

Ibell? = |f— (I~ S)FLSY?
= |1 - S)I = $*2SY )12 < 1t = )| P[lbe ]2

2

< flbeali?

where the last inequality follows from the assumptions on the spectrum of
I — 5. Similarly, one shows that

IBl? = I =SV < W = SIPN R 1l < 1Rl

Proof of Theorem 3.1 Let vy < v and fix the smoothing parameter Ag.
Define S = S, »,. The eigen decompostion of S (Utreras, 1988) gives

1

/\1;~"’—“AM@:1 and )\j’m"ws

~vg—1

Va1 Let us evaluate the variance:

where Mg = (

- . 2
A » My 0.2 i ( 1 )k-rl
Virhg, Aa. = gl =4 = 1-1-—— .
(g, Ao Vo) g7 — + n Z (

- S2ua/d
" i=Mo+1 1+ >\} vo/e

Choose J, in j = My, ...,n, and split the sum in two parts. Then bound
the summand of the first sum by one to get

A’fo !} ~ ﬂf ()2 n l ket1
i <« g2 edn oy T § (] - —_—
Vi, Ao, o) 7 ‘ n n T Ml (1 1+ )\j?vwd>

2

As the function 1 — (1 — w)* < ku for u € [0, 1], we have

. odn e 1 ’
1/(:?”{},}%», )\g, 1/’0) ﬁ a ’f}, + (]\, Jf“ ]) . ;.}-1 (m
J=dJn ’

J . s 1

2vn 2

o — + (k -+ ]7) ——
" J—:;-H Aol

IA

imsart-aos ver. 2007/04/13 file: nouveauxNWH.tex date: March 2, 2009



RECURSIVE BIAS ESTIMATION 23

Bounding the sum by the integral and evaluate the latter. one has

2 1 g fdE 1
] o/d+ )

Jn
Vithe, Agovo) < 2_ k+1
Ty, Ao, vo) o +( 1R n )\2(41/«)/“’ }

If we want to balance the two terms of the variance. one has to choose

( qugtf)

the following muunber of iterations K, = O For such a choice the

variance is of order

. Jn
V(g Aoy vo) = O (?;) A
Let us evalnate the squared bias of 7ir.. Recall first the decomposition of
Svsne = PuyAP, and denote by p;,, = [F], ];m the coordinate of m in the
eigen vector space of Sy, -

) | QL %+2 2
6(3’(2,;4.5 Ag, o) = 7‘7' Z (1~ )‘.7) Hjug
1 & %42 2 1 < 2422
= Z (1—=2) Piwve T n Z (1=2%) HJ o
je=Mo+1 J=int]

If m belongs to H™) it belongs to and H*) and we have the following
relation

n

Z Q"W[d}u] v M < 0.
j=Mo+1

(A1)

3=

and with the following bound A; > 0, we obtain that the first term if bounded
by say A"

T

1 - ’
A/{;’_{_; Z j 21//(1 21 /d/?uo
1]'—:}!"{‘1

b, do,vo) € M+ A'Md Z PR
} =nt1

b{rny, Ao, vo)

7

Using the same type of bound as in equation {A.1) we get

bt Ao, vo) < M+ A"
Thus the bias is of order O(j, 2'//@)
Balancing the squared bias and the variance lead to the choice

Jn‘ - ()(7741/(1'*'2?/‘;%}})
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and we obtain the desived optimal rate.

Proof of Theorem 4.1 For pedagogical reasons, we present the proof in
the univariate case. Let Xy, ..., X, 1s an i.i.d. sample from a density [ that
is bounded away from zero on a compact set strictly included in the support
of f. Consider without loss of generality that f(z) > ¢ > 0 for all |a] < b.

We are interested in the sign of the quadratic form u!Au where the indi-
vidual entries A;; of matrix A are equal to

I(ALXi")(Q
VB = X0 KX — X0)
Recall the definition of the scaled kernel K () = K(-/h)/h. If v is the vector
of coordinate v; = u;/ /> Kn(X, — X}) then we have u'Au = v'Kuv, where

K is the matrix with individual entries K, (X; — X;). Thus any conclusion
on the quadratic form v'Kv carry on to the quadratic form u'!Au. To show

Ay =

the existence of a negative eigenvalue for K, we seek to construct a vector
U= (U (Xy),...,U,(X,)) for which we can show that the quadratic form

U'KU =3 3 Us(X)U(Xi) Kn(X; — X3
7=1k=1

converges in probability to a negative quantity as the sample size grows to
infinity. We show the latter by evaluating the expectation of the quadratic
form and applying the weak law of large number. Let (z) be a real function

in Lg, define its Fourier transform

o) = / e~ (1) da

and its Fourier inverse by

Piny(t) = /egmﬁycp(a')d;r.
For kernels K'(-) that are real symmetric probability densities, we have
[%Ot) = K'mv(t)

From Bochner's theorem, we know that if the kernel K(-) is not positive
definite, then there exists a bounded symmetric set A of positive Lebesgue
measure (denoted by |Al). such that

(A.2) Kty <0 Vie A
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Let ¢(t) € Lg be a real synunetric function supported on A, bounded by B
(i.e. |g(t)] < B). Obviously, its inverse Fourier transform

w(aw) — /x P - 2mimt = ( )(/f

is integrable and by virtue of Parceval’s identity
lell® = 1817 < B|A] < oc.

Using the following version of Parceval’s identity [see 16, p.620]

[ etk —pdedy = [~ @0P R

— 00

which when combined with equation (A.2), leads us to conclude that

/ / Py K (- y)dzdy < 0.

Consider the following vector

X3/t
@{gim 1< b)
U= 1 ({x;}? H( 2| < b)
nh
(X, | < b

With this choice, the expected value of the quadratic form is

E[Q] = Z Ui X)) U (X3 ) Kn (X5 — Xg)

Jyk==1

1 b 1 oo
- / bmw<s/h>21<h<03d.s

- b
n/ / ols/h)yp(t/h)Kp(s — t)dsdt
n?
= L+
We bound the first integral
L K0 [Pt/
LY I f(s)
1\'/7(0) /'()//1,

—b/h

ds

2
uw)°d
nch plu) du
B2|AIK (0
o BAKWD)
ch*
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Observe that for any fixed value h. the latter can be made arbitrarily small
by choosing n large enough. We evaluate the second integral by noting that

In = (l—-) / / ols/hye(t/hY K (s — t)dsdt
b
$
( ) // (s/hypl l/h <}; - U dsdt

b/h pb/h
<l - —> h1 / / (K (u — v)dudv.

b/h b/h
By virtue of the dominated convergence theorem, the value of the last inte-
gral converges to [0 |G(t H2K (1)dt < 0 as h goes to zero. Thus for h small
enough, (A.3) is less than zero, and it follows that we can make E[Q] < 0
by taking n > ng, for some large ng. Finally, convergence in probability of
the quadratic form to its expectation is guaranteed by the weak law of large
numbers for U statistics [see 19, for example]. The conclusion of the theorem

follows.
Proof of Proposition 4.2 To handle multivariate case, let each component

Il

(A.3)

h; of the vector h be larger than the minimum distance between three con-
secutive points, and denote by dp{X;, X,) the distance between two vectors
related to the vector chosen by the user. For example, if the usual Euclidean
distance is used, we have

Xy - Xg\2
GXL X)) = 3 (,J_ J)

=1 Iy

The multivariate kernel evaluated at X,, X; can be written as K (d;(X;, X;))
where K is univariate. We are interested in the sign of the quadratic form
u'Ku (see proof of Theorem 4.1). Recall that if K is semidefinite then all its
principal minor [see 24, p.398] are nonnegative. In particular, we can show
that A is non-positive definite by producing a 3 x 3 principal minor with
negative determinant. To this end, take the principal minor K[3] obtained
by taking the rows and columns (41,2, i3). The determinant of K[3] is

det(K[3]) = K (dn(0)) [K(dn(0))* = K (dn(X,,. Xi))?]
— K (dp( Xy, Xi,)) ¥
[ (e (0)) & (i (X Ny )) = (e (K X)) K (diy (X X))
HIC(dp( Xy, X5,)) %
(K (dn( Xy, X VK (dp (X, X0,)) = K (dp (0) K (din(X,,. X,,))]
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Let us evaluate this quantity for the Uniform and Epanechunikov kernels.

Uniform kernel. Choose 3 points in {X,}]'_| with index 1,.79, i3 such that
dp( X5, . Xi,) <1, dn(Xi,, X.,) <1, and cih'(X,:INXrH) > 1.
With this choice, we readily calculate
det(K[3]) = 0 K(0) [Ka(0)* —0] =0 <0.

Since a principal minor of K is negative. we conclude that K and 4 are not
semidefinite positive.

Epanechnikov kernel. Choose 3 points {X;}, with index 4,12, i3, such
that dp(X;,, Xiy) > min{dp( X, X, )i dn(Xi,, Xiy)) and set dp( X, Xip) =
r<1and dp( Xy, Xiy) =y < 1.

Using triangular inequality, we have

det(K[3]) < 0.75(0.75% — K(y)?) — K (2)(0.75K (z) — K () K (min(z, y)))
— K (min(x, y)) K (2)K (y) — 0.75K (2 + y)*
The right hand side of this equation is a bivariate function of x and y. Nu-

merical evaluations of that function show that small  and y leads to negative
value of this function, that is the determinant of K[3] can be negative.

Fic 5. Coniour of an upper bound of det{K[3]) as a function of (z,y).

Thus a principal minor of K is negative. and as a result, IK and A4 are not
seniidefinite positive,
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