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ABSTRACT

Detection of radioactive materials in an urban environment usually requires large, portal-monitor-style radiation
detectors. However, this may not be a practical solution in many transport scenarios. Alternatively, a distributed sensor
network (DSN) could complement portal-style detection of radiological materials through the implementation of arrays
of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive materials in a moving
vehicle over a specific region. In this paper, we report on the use of a heterogeneous, wireless, distributed sensor
network for traffic monitoring in a field demonstration. Through wireless communications, the energy spectra from
different radiation detectors are combined to improve the detection confidence. In addition, the DSN exploits other
sensor technologies and algorithms to provide additional information about the vehicle, such as its speed, location, class
(e.g. car, truck), and license plate number. The sensors are in-situ and data is processed in real-time at each node.
Relevant information from each node is sent to a base station computer which is used to assess the movement of
radioactive materials.

Keywords: distributed sensor networks, radiation detection, heterogeneous sensors

1. INTRODUCTION

Many vehicle surveillance radiation detection applications utilize portal monitor-style radiation detectors. These
detectors are extremely accurate, but are large and costly. Additionally portal monitors require the use of traffic choke
points to ensure vehicles pass through the portals at slow speeds and in a single-file configuration. This approach is
viable in applications where a limited number of traffic routes are to be monitored in high value areas where significant
sensor cost is tolerable. In such applications personnel are readily available to investigate potential alarms immediately,
thus ensuring false alarms are quickly mitigated.

In contrast there are a host of applications in remote areas where choke points do not exist and personnel are not readily
available. In these instances small, dispersed, autonomous and cost effective sensor systems are needed to provide a
warning of potential threats, particularly for rapid deployment. These systems, though, need to maintain extremely small
false alarm rates, a task that is extremely difficult given the requirement for small, low power, radiation detection
technology.

Research is ongoing at LANL developing networks of heterogeneous, low cost sensors. This approach ensures data
from several types of sensors are combined to provide highly confident decisions as to the presence and type of vehicles
in remote, monitored regions and the presence of radiological material. Such networks process raw data at the sensor
and propagate the multi-modal information over the network, allowing timely decisions to be made remotely by
monitoring personnel. Instead of relying solely on a single large radiation detector, decisions are made based on a
combination of corroborating evidence from multiple sensors. In our field experiments the monitoring network
employed seismic sensors to detect the presence of a vehicle, acoustic sensors to determine the type of vehicle, photo
sensors to collect license plate information about the monitored vehicle, wide-area video surveillance to provide tracking



information and radiation detectors to determine the presence of radioactive materials. Such a system has been
successfully demonstrated in remote canyons within the LANL complex and has the ability to significantly alter the
methods currently utilized to provide wide area persistent surveillance.

The remainder of this paper is organized as follows: Section 2 describes our approach for detection of radiological
materials in moving vehicles and how it compares to that of the research community. Section 3 discusses the
heterogeneous sensors nodes; the algorithms, deployed system implementation. Section 4 explains our field experiment;
the communication system, base station graphical user interface (GUI), and field test setup. Finally, in Section 5 we
show our system test results for the DSN and share some of our field experiences.

2. RELATED WORK

Simulation test beds are an important first step in any sensor network system. However, moving from the simulation test
bed to hardware implementation is costly and time consuming for any deployed system whether the system is a satellite;
a mobile robot or a sensor network. Most sensor network research for radiation detection is in simulation only, such as in
Parunak’s [2] simulation for radiation detection and situational management, a large dynamic spatio-temporal
configuration of sensors are used. Others discuss the challenges and possible solutions of transportation security,
including intra-modal transport venues, using knowledge discovery tools [1].

In our own previous work, the Distributed Sensor Network project at LANL looked at the feasibility of a small network
of sensor nodes using PDA-sized platforms for processing raw gamma counts [3]. In [4] and [5] the feasibility of a
network of detectors for measuring radioactive materials along a known trajectory and the ramifications thereof are
examined. In [6] the effectiveness of scaling large numbers of nodes (greater than 10) and changing source trajectory
parameters versus the computational demands required for such a task are explored.

In this paper we report our attempt to implement a deployed multi-modal sensor network for the detection of moving
radioactive materials along a roadway. The goal of this work reported herein is to implement the system using low
power, Commercial Off-The-Shelf (COTS) hardware and thereby evaluate its effectiveness. Our approach is to use low
power, wireless sensor nodes. For detection of radioactive material, multiple radiation detectors sum spectra using
coherent addition to obtain an increase in signal-to-noise compared to a single detector, thus, by increasing the number
of detectors, the collected spectrum is significantly improved. We determined through experimentation that
approximately 40 radiation detectors (Nal scintillators per Section Error! Reference source not found.) could give
adequate coverage over a given region to detect with good fidelity. Details are provided in Sections 3.3 - Error!
Reference source not found..

3. HETEROGENEOUS SENSOR NODES

This section describes the system configuration, algorithms, and implementation for the three types of sensor nodes in
our DSN system: vehicle class identification, vehicle license plate detection, and radiation detection.

3.1 Vehicle Class Identification

The goal of this vehicle classifier node is to classify vehicles as they approach the region into one of three categories: a
small compact car, a moderately heavy vehicle and a very heavy vehicle. For our training and testing we chose a 1994
Honda Accord LX, manual drive compact car, a 2006 Diesel Chevy C4500 4x4 truck, and a 1994 HumV H-1 with a 6.5
L Detroit Diesel Engine as representative vehicles of each category. We assume that vehicles do not enter the monitoring
area concurrently. Particular challenges and assumptions for this classifier node are: (1) Vehicles travel between 10 to 40
mph and stay within the influence region of the sensors for a very short time of 1 to 2 seconds only; (2) The audio
spectral signature of the vehicle can change over time; (3) The algorithms cannot be computationally intensive.



Vehicle classifier implementation

The vehicle classifier node developed uses seismic and acoustic sensors connected to a Crossbow Mica2 mote and a
Stargate respectively (see Figure 1). The seismic sensor is a GeoSpace geophone placed 50 feet from the road to
eliminate acoustic feedback in the sensor. The geophone is connected to the Mica2 via a custom signal conditioning
interface board and a 16-bit A/D board. The acoustic sensor is a Samson C01U USB Studio Condenser Microphone,
placed 10-12 feet from the road and mounted 1 foot off the ground. The microphone is connected directly via a USB port
to the Stargate (400 MHz, Intel PXA255 Processor, Linux based). The microphone has directional response and is
mounted facing toward the roadway. Windshields on the microphones help filter wind noise.
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Figure 2 Frequency characteristics of seismic detection

This implementation uses the Mica2 mote to trigger an event based on seismic information. The event is transmitted to
the Stargate processor over the 900 MHz radio link. The Stargate then samples the microphone and processes acoustic
information and sends a classification to a base station computer (via an 802.11 network). We use this method of seismic
detection triggered acoustic sampling and processing because it is an energy efficient way of fusing the multi-sensor
information to yield a single classification, i.e. the seismic detection runs continuously at approximately 60 milliWatts
compared to the Stargate/acoustic processing which takes about 2.4 Watts. Moreover, the frequency characteristics for
seismic detection show very similar peak frequencies (see Figure 2) so more frequency analysis would have to be done



in order to develop an accurate classification using seismic data and the Mica2 does not have sufficient computing
capabilities to do this. For these reasons, we choose to combine both seismic and acoustic sensors to achieve a more
reliable, energy-efficient classification.

Vehicle classifier algorithms

The geophone is sampled at 100 Hz. The Mica2 mote computes the Haar Wavelet on a moving window of 128 samples
every 10ms using 10 new samples each round and 118 samples from the previous round. The Haar wavelet is computed
up to level 2 which computes the energy estimate of the 12-24 Hz band via the average of the coefficients of this band.
The variance of the energy estimate is computed on a moving window of size 20 (see Figure 3). A variance threshold is
used for vehicle event detection. A trigger is sent to the Stargate over the radio link when a vehicle event occurs. The
Haar Wavelet is chosen for it's low-level of computational complexity which was required due to the 8-bit computing
capability of the ATMEL processor on the Mica2 [7] and also because of the narrow peak frequency observed for all the
vehicle categories.
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Figure 3 Moving window variance characteristics of 12- 25 Hz band for a 'truck’ class

Upon receiving a trigger, the microphone is sampled at 4 kHz. There are four sources of sound collected by the acoustic
sensor, i.e. road/tire, engine, mechanical and air current noise. For the classifier, a 512-point integer FFT is implemented
on the Stargate. The 512-point FFT is computed every 125 ms to obtain the spectral characteristics of the data, yielding
an 8 Hz resolution. Frequencies lower than 64 Hz are not used due to variations in the microphone response and
temporal variations (wind) at these lower frequencies.

We first obtain training data sets using multiple runs through each vehicle at different speeds. We use the samples
collected during the 2 seconds when the vehicle is closest to the microphone for the training. We then identify the ideal
feature vector set to do the classification between each pair of vehicles. For example to classify between a car and a
truck, we use a 10 coefficient vector, formed by the average energy of 10 equally spaced bands in the 224 Hz to 368 Hz
range because the spectral characteristics of the truck shows a distinctive spike in response at those frequencies. We use
Fisher Linear Discriminant Vector analysis to identify the best projection vector given the training data. We obtain a
similar projection vector to distinguish whether the vehicle is a Humv or a car/truck. These projection vectors are
computed offline in matlab and then copied into the classifier program running on the Stargate.

In every round, the Stargate simply computes the dot product of this vector with the feature vector obtained in that round
to perform the classification. The Stargate first classifies whether the vehicle is a Humv or either of car or truck. Then it
classifies whether the vehicles is a car or a truck. We find that this is the classification order that maximizes the distance
between classes.



Once triggered the classifier operates for 3-4 seconds as the vehicle passes the sensor (until the seismic sensor sends a
signal to stop classification). The acoustic classifier is operating in real-time and generates a classification output once
every 125 ms. The characteristics of an approaching vehicle differ from when the vehicle is at the closest distance to the
sensor. The central base station computer integrates the individual classification outputs to generate the final classifier
output.

Vehicle classifier accuracy

We achieved no false negatives from the seismic sensor during 10 field trials. A person walking as close as 2 feet away
from the sensor does not trigger an event. A person jumping less than 10 feet away from the sensor triggers a seismic
detection; however this case can be isolated using temporal characteristics.

The initial work on the acoustic classifier also showed zero misclassification's in 10 test runs of each vehicle class. Note
that, we maintain our testing environment to be similar to the training environment. We also ensure that vehicles enter
the field one at a time. Training the classifier in a dynamic manner to different environments is a much more difficult
problem and is a subject of future work.

3.2 License Plate Detection

The vehicle license plate detection node aims to capture the image of a vehicle traveling on the roadway, reduce the
image to license plate pixels only using a learning algorithm and resize this reduced image for efficient transfer over the
network to the base station. The image processing algorithm reduces the original image by 60 to 90%, and allowing the
image to be converted to text via an Optical Character Recognition (OCR) application on the base station.

License plate node implementation

The video sensor node consists of a webcam (with a 12 mm telephoto lens) and a Honeywell magnetometer (HMR2300-
232) connected directly to the Stargate via the USB port and the serial port respectively. The magnetometer is used as a
trigger for image capture. A learning algorithm converts the original image to license plate pixels only. This processed
image information is sent over the 2 GHz wireless link to the network. The sensors and Stargate are mounted on a tripod
located approximately 10 feet away from the road and 3 to 4 feet off the ground. To eliminate glare, the assembly is
slanted at about a 45 degree angle to the road.

The system requirements are as follows: to capture a 640x480 pixel image of the aft end of a vehicle at anticipated
vehicle speeds of 10 to 60 mph, to extract the license plate pixels only from the original image, thereby reducing the
original image by approximately 60-90%.

Figure 4 shows a vehicle image captured from the webcam. We chose to use the webcam due to its ease of integration,
low power, low cost and compact size. In addition, the image resolution with our telephoto lens was sufficient for the
learning algorithm. The best range for image capture is within 8 to 15 feet from the camera. The magnetometer triggers
on the front end of the vehicle and we capture images for 5 seconds at approximately 10 frames/sec. From this set of
frames, on original image is chosen to be processed.

Figure 4 License plate image capture



License plate detection algorithms

The processing on the license plate detection node works by applying a classifier to every pixel in an image to create a
rough segmentation of the license place, if it exists. From this, the bounding box of the license plate is found, and that
section of the image is then resampled to a fixed size. The resampled image is then PNG compressed and sent over the
network. These steps are a trade off between the amount of network bandwidth used, the latency of the operation and the
amount of computing power used locally.

The classifier is trained using data collected during typical field operation. This consists of various vehicles viewed at
distances of between 8 and 75 feet from the camera, as well as some "background' images containing no license plates. A
eight bpp greyscale image is used for the algorithm development.

The license plate detection software has to be able to process full video images on the Stargate processor, so a very
efficient algorithm is required. The license plate detection is performed using a machine learning algorithm, trained on
labeled data. To achieve very high speed video processing we use an algorithm which takes elements from two
algorithms known to produce very efficient classifiers, namely the Viola-Jones [8] object detection algorithm and the
ID3 [9] decision tree classifier. The algorithm details for license plate segmentation, bounding and resampling are found
in [10]. Figure 5 shows a sample output from the license plate detection node.

Accuracy measurements for the license plate detection node were taken with two vehicles: a compact car, and a 2008
Diesel 4x4 pickup truck. We estimate license plate identification accuracy to be about 90% based on field trials with the
set of two training vehicles. The OCR application results from license plate image are a topic of further research.
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Figure 5 License plate detection output image

3.3 Radiation Detection

Whereas our other sensing nodes could operate in a rather loosely-coupled fashion to arrive at conclusions, our radiation
detection nodes were much more tightly coupled. Our hypothesis — that multiple small detectors working in concert can
be substituted for one large detector — in fact %}i;eyﬁﬁs\strong cooperation. We equipped two Stargate nodes with
Amptek GAMMA-RAD 76 x 76 mm (3") Nal scinfillators, and a third with an Amptek GAMMA_RAD 10 x 10 x 40 cm
(4" x 4" x 16") Nal detector. These three nodes collected background and triggered-signal data and transmitted that data
wirelessly to a fourth node which combined all this data into a single spectrum for examination. For background
calibration purposes a small bag of potassium-chloride was placed next to the detectors.

Radiation detection implementation

To distinguish when a vehicle occupies the space in front of the radiation detector, we use a Honeywell magnetometer to
trigger the node. Each node is setup to take data in form of a ring buffer filled with radiation spectra. Each spectrum
displays the gamma-ray energies present for a certain amount of time t. I this case this time was three seconds. Thereby,
by generating a ring buffer with n spectra, it is possible to access the radiation response for a time t*n in the past after the
trigger occurred. Upon a trigger, the node collects a predetermined number of spectra as radiation signal. In the demo 3
spectra were taken. Also, a background, extracted from the circular buffer at a previous time (21 seconds), is computed
by summing a certain amount of background spectra. To keep subtraction errors low, the background sum was composed
of 50 spectra and then scaled to the radiation spectra time. The two resulting spectra, radiation signal and background,
where sent to a collection hub. The signal spectra were deleted from the ring buffer and thereby the detector is ready for
a new trigger.



At the collection hub the data was received and the difference between the radiation event spectrum and the background
spectrum was calculated. The background spectra from each Stargate were separately analyzed for the peak position of
the potassium-chloride peak at 1461 keV. The resulting data calibration point was used for energy calibration each time
a trigger occurred. This algorithm is necessary to prevent energy calibration drift in sodium-iodide detectors (see
Figure 6) [11]. Our target radioisotope was Cesium-137 ( ¥7Cs) with an activity of 300 microcuries, mounted on the near
side of the bed of the Chevy 4x4 mentioned above.
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Figure 6 Nai Temperature dependant light output for Nal(TI) chrystals [11].

Once the data calibration was done to each of the three spectra, each spectrum was filled into a new spectrum with a
lkeV bin width. The filling process was done by an algorithm that calculated the overlap of the old spectrum bin with
the new spectrum bin. The old bin value was multiplied by overlap to bin-width ratio and filled into the new bin. Once
this process was done, the spectra from the different Nal(Tl) detectors could be added into a sum-spectrum. This sum-
spectrum now displays the radiationm coming from the suspect vehicle added over 3 detectors.

4. FIELD EXPERIMENT

In this section, we describe the overall DSN system layout for our field experiment including the sensor and base station
nodes, the network communication, and our test scenarios.

4.1 Network communication

We use direct 802.11 connections from each node to the base station computer. Initially, our first attempt used several
hoping nodes between the sensor nodes and the base station. However, due to the hot outdoor temperatures our 802.11
cards failed intermittently. As well, issues arose with our custom message passing software and we decided on a direct
connection communicate between the sensor nodes and the base station.

4.2 Base Station GUI
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Figure 7 DSN field experiment GUI

The DSN Gui was developed in Java to provide a visual representation of the status of the sensor nodes within the DSN
network. The GUI operates in one of two modes: playback and real-time. In real-time mode, the gui receives data
packets from the radiation sensor nodes, vehicle classifier nodes, and video node.

The GUI receives real-time data from each sensor node. For the radiation nodes, the background spectra, the detected
source spectra and sigma level are received as the sum of the three detector nodes—all processing is done on the nodes.
The spectral data display shows the spectrum for the (signal minus background) in counts (see Figure 7). The vehicle
classifier node sends a stream of classifications as the vehicle approaches and passes the seismic/acoustic sensors. An
algorithm for vehicle classification processes this stream of data and determines a vehicle type for each node. Then a
confidence level out of the possible number of nodes is displayed. The video node sends one png image for display of
license plate pixels only. The OCR application converts the image to text. This final step, automatic conversion to text, is
forthcoming, but the intension is to be able to check a data-base of allowable license plate numbers and the time to day
to verify traffic activity. Finally, the GPS location of each node and the system clock is used to derive vehicle speed.

The base station GUI is essential for situational management as it allows monitoring personnel to get an immediate
analysis of the spectral data in comparison with the background data to help determine the presence of a radioactive
material. In addition, it also provided a real-time display of sensor nodes to determine vehicle class, license plate, and
vehicle speed (not displayed in Figure 7) to aid in verifying normal and suspicious traffic movement.

4.3 Test System Configuration

Figure 8 shows the DSN system layout for our field experiment. Our field demonstration included seven sensor nodes;
three vehicle classification nodes, three radiation detection nodes, and one license plate detection node. Sensor nodes are
placed approximately 125 feet apart. Each node communicates directly via an 802.11 wireless link to the base station
computer. The total distance covered on the roadway for this experiment is approximately 650 feet from end to end.

The test scenario consisted of multiple test trials per vehicle (car, truck, and HumV) traveling east bound on the roadway
with varying speed of 5, 10, 25, and 40 mph. A five minute res? interval between trials existed so we could check system



readiness. Only one of the vehicles, containing the radioactive materials, was tested at speeds of 5 to 10 mph with
multiple trials.
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Figure 8 DSN test demonstration configuration

5. RESULTS

For the field demonstration the classifier performed nominally for the compact car and HumV trials at speed of 10, 25,
40 mph, each classified 100%. The vehicle containing the radioactive materials drove at speeds of 5 and 10 mph and
classified as a car with a confidence of 100 % since this vehicle has similar frequency characteristics to the compact car
at these slow speeds.

During the field demonstration, the HumV and the car did not classify correctly on three trials. The HumV was not part
of the training data for the learning algorithm and the license plate is located on the bottom left of the vehicle. The
algorithm (in Section 3.7) is searching for the license plate pixels in the center of the frame between the 25th and 70th
percentile horizontally and vertically. For the car, the detection was not accurate over three trails due to glare from the
sun because the direction of travel was East bound in mid morning. This problem can be easily mitigated with a
protective covering for the camera. The truck, however, was detected at 100 % as shown in Figure XXX???2?227?.

5.1 Radiation detection

Figures 9 and 10 are the combined background spectrum overlapping the combined signal spectrum and the difference
between the two, respectively, for a non-isotope pass. Note the drastic change in the Y-axis values between these two
figures. Figures 11 and 12 correspond to the Cesium pass. The photopeaks for “°K and **’Cs are marked. The Y-axes
for Figures 9 and 11 and for Figures 10 and 12 are identical for clarity of comparison. Vehicles passing without a
radioactive source have no peak at 662 keV corresponding to *’Cs as is just visible in Figure 11 but more obvious in
Figure 12. Also note the increased counts overall for the radioisotope pass. Our calibration was somewhat imperfect in
scaling, hence the peak in Figure 12 at 1461 KeV (*°K ), but the Cesium peak is very distinct.
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6. SUMMARY

A distributed sensor network may complement portal-style detection of radiological materials through the
implementation of arrays of low cost, small heterogeneous sensors with the ability to detect the presence of radioactive
materials in a moving vehicle over a specific region. In this paper, we report on the use of a heterogeneous wireless
sensor network for traffic monitoring in a field demonstration setting. Through wireless communications, the energy
spectra from different radiation detectors are combined to improve the detection confidence. In addition, the DSN
exploits other sensor technologies and algorithms to provide information about the vehicle, such as its speed, location,
class (e.g. car, truck), and license plate number. Multi-modal DSNs are a potential radiation detection capability,
enabling deployment over a broader region without the loss of detection accuracy.
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