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Abstract 

This work presents a detailed implementation of a 
double precision, Non-Preconditioned, Conjugate 
Gradient algorithm on a Roadrunner heterogeneous 
supercomputer node. These nodes utilize the Cell 
Broadband Engine Architecture™ in conjunction with 
x86 Opteron™ processors from AMD. We implement a 
common Conjugate Gradient algorithm, on a variety of 
systems, to compare and contrast performance. 
Implementation results are presented for the 
Roadrunner hybrid supercomputer, SRC Computers, 
Inc. MAPStation SRC-6 FPGA enhanced hybrid 
supercomputer, and AMD Opteron only. In all hybrid 
implementations wall clock time is measured, 
including all transfer overhead and compute timings. 

1. Introduction 

The Conjugate Gradient Method (CG) is a member 
of a family of iterative solvers known as Krylov 
subspace methods used primarily on large sparse linear 
systems arising from the discretization of partial 
differential equations (PDEs). CG is effective for 
systems of the form: 

AX=b, 
where A is a square n x n sparse matrix [7]. 

CG uses successive approximations to obtain a 
more accurate solution at each step. It is considered a 
non-stationary method generating a sequence of 
conjugate (or orthogonal) vectors. These vectors are 
the gradients of a quadratic function, when minimized, 
is equivalent to solving the linear system [2]. 

Each iteration of the CG involves one Sparse 
Matrix-Vector Multiplication (SMVM), three vector 
updates, and two inner products. The SMVM is the 
time dominant computational kernel executed per 
iteration of the CG [3] [6] [21]. 

For general purpose processors, the SMVM 
performs poorly for three primary reasons [24]. First, 
the lack of data locality causes large numbers of misses 
within the caches of the memory hierarchy. Second, 
the multiple load/store units on many processors have a 
tendency to miss while trying to load the same cache 
line. Finally, SMVM codes execute a large number of 
loads compared to the number of floating point 
operations they perform placing a heavy load on the 
load/store units, and on integer ALUs that compute the 
addresses. For most current generation processors, 
these load/store units are often the bottleneck in 
SMVM leaving the floating-point units underutilized. 

In general the vector-vector (DOT, DAXPY) and 
vector-matrix (SMVM) operations utilized during the 
computation of the CG exhibit poor floating point 
utilization. This is due to the high application 
Bytes/Flop requirements when compared to the 
processor supplied ByteslFlop [6][25]. 

Sparse Linear Algebra (e.g. CG/SMVM) has been 
identified as a key computational focus area or 
"Dwarf' (algorithmic method that captures a pattern of 
computation and communication), for evaluating 
parallel programming models and architectures. 
Asanovic et al. [1] recommend the use of a set of 
identified "Dwarfs" instead of traditional benchmarks. 

Implementation of CG using FPGAs has been 
documented in recent papers. Morris and Prasanna [20] 
have presented an FPGA-augmented implementation 
of the CG on an SRC-6. Their implementation presents 
a CPUIFPGA accelerated hybrid approach. 
Maslennikow et al. [18] present an FPGA 
implementation of CG using fractional numbers which 
is limited to small problem sizes with matrix rank up to 
1024. 

Williams et al. [26] evaluated the Cell Processors 
for use in Scientific Computing. They introduce a 
performance model for the Cell and apply it to several 
key scientific computing kernels, including sparse 
matrix multiply and stencil computations. Li et al. [16] 
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present a implementation of the NAS CG benchmark 
on the Cell Processor. 

In this work we present a comparison of various 
architectures on a common, non-preconditioned, CG 
algorithm. We acknowledge that preconditioning is of 
paramount importance for efficient implementations of 
iterative methods such as the CG; however, our focus 
is to compare the per-iteration performance of the CG 
algorithm on these platforms, not the efficacy of the 
preconditioner. 

The platforms we investigate include two hybrid 
supercomputers nodes: IBMlLANL Roadrunner 
TriBlade [15], SRC-6 MAPStation [22], along with 
traditional AMD Opteron nodes. 

The TriBlade consists of an AMD Opteron blade 
and two Cell QS22 blades[ll]. The Opteron blade 
contains two dual-core processors, while the Cell 
blades each contain two Cell eDP (enhanced Double 
Precision) processors. Each Opteron core is connected 
to an individual Cell chip via a dedicated PCIe 
connection. For this work we utilize a single 
OpteroniCell eDP pair, or 114 of the available raw 
compute performance supplied by a single TriBlade. 

The MAPStation utilizes Intel Xeon Processors 
along with a SRC MAP processor which contains two 
user logic Xilinx FPGAs [22]. Carte [22][23], SRC's 
Programming Environment is used giving the 
programmer access to the user programmable logic of 
the MAP processor and the microprocessor through a 
single C or Fortran program. 

The Opteron only implementation utilized a Hewlett 
Packard HP xw9400 workstation [8]. The system 
utilized Microsoft Vista as the base Operating System 
along with Microsoft Visual C++ 2008 for 
development. 

All implementations utilize a banded sparse matrix 
with up to 7, double precision, elements per row. If any 
row contains fewer than 7 nonzero elements it must be 
padded with zeros to the full 7 elements in length. Due 
to alignment restrictions with the Cell processor an 
extra element of zero padding is required. 

Due to the small, fixed number of elements per row 
the sparse matrix ELLPACK-ITPACK [19] format was 
chosen. This format is efficient for the matrix-vector 
multiply operation and performs well on vector style 
architectures. 

Each of the implementations presented in this paper 
make use of loop unrolling, and loop fusion whenever 
possible. This helps with cache reuse in the processor 
only case and allows for more efficient data layout, 
management, and vectorization in the other cases. 

Our FPGA based implementation makes heavy use 
of architectural features provided by both the SRC-6 
hardware architecture and the Carte Software 
development environment [22][23]. Concepts 

presented here can carry over to other FPGA based 
systems but the actual implementation presented here 
is specific to the SRC-6 MAPStation. Our previous 
work on SMVM and CG for the SRC-6 MAPStation 
provides details of the FPGA implementation and 
results [4] [5] [6]. 

2. Background 

2.1. CG and ELLPACK·ITPACK 

Sparse matrices, derived from PDEs, occur in many 
scientific application areas, especially Physics and 
Mechanical Engineering where a physical phenomenon 
needs to be mathematically described. PDEs are used 
to describe phenomena such as fluid flow, the growth 
of crystals, gravitation, diffusion, and the behavior of 
electromagnetic fields. 

The solution to a nonsingular linear system: 

Ai=b 
lies in a Krylov space whose dimension is the degree 
of the minimal polynomial of A. If this minimal 
polynomial of A has a low degree, a Krylov method 
has the opportunity to converge rapidly [14]. Also, 
iterative methods such as CG scale well to very large 
problem sizes, parallelize easily, and have a shorter 
time to solution compared to direct methods (e.g., 
Gaussian elimination). These are the dominant reasons 
why Krylov methods are selected for these types of 
problems and are particularly well suited for use on 
large-scale scientific simulation codes that in turn are 
defmed by sparse linear systems. 
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Figure 1. ELLPACK-ITPACK Format 

In Figure I we illustrate how a simple 4x4 matrix is 
represented in ELLPACK-ITPACK format. The non­
zero elements of A_matrix are packed starting from 
left to right to generate the coefficient array A. The 
original column indices are then stored in the column 
index array ja. With ELLPACK-ITPACK, the row or 
rows with the maximum number of non-zero elements 
determines how many elements must be stored per row 
in the compressed format. In this example all rows 
with fewer than 3 non-zero entries are zero-filled to the 
full 3 elements per row. 



2.2. IBMlLANL Roadrunner Hardware 

On June 10, 2008 Roadrunner became the first 
general purpose system to reach the PetaFlop (PF) 
milestone becoming the world's fastest supercomputer 
[15]. This petascale computer is unique in that it 
leverages high-performance commodity processors 
(Cell) to achieve extremely high levels of performance 
and excellent power efficiency [17]. 

Roadrunner is a heterogeneous cluster of clusters, 
each of which is Cell accelerated. Each compute node 
is composed of node-attached Cells, rather than a 
simple cluster of Cells. The fundamental building 
block is a Connected Unit (CU). Each CU is composed 
of 180 compute nodes and 12 110 nodes all connected 
via a· high speed switch fabric. The full Roadrunner 
system is composed of 18 CUs. 

The TriBlade is the fundamental building block for 
each CU. Each TriBlade consists of an AMD Opteron 
blade along with two Cell QS22 blades. 

In all, the Roadrunner system is made up of 6,500 
AMD dual core Opteron processors, 12,240 Cell 
processors with a total peak (theoretical) performance 
in excess of 1.3 PFs. A total of 98 TeraBytes of 
memory is equally distributed between the Opteron and 
Cell nodes of the system. 

2.2.1. TriBlade 

A TriBlade is composed of an IBM LS21 Opteron 
Blade, two IBM QS22 Cell Blades, and a forth blade 
which provides the communications fabric for the 
computer node. The forth blade connects each QS22 
blade through four PCI Express x8 links to the Opteron 
blade and provides the node with an Infmiband 4x 
DDR cluster interconnect. 

2.2.2. mM BladeCenter QS22 

The IBM BladeCenter QS22 utilizes the IBM 
PowerCell™ 8i processor. The following summarizes 
the capacities ofthe QS22: 
• 	 Two 3.2 GHz IBM PowerXCell 8i processors 
• 	 Up to 32 GigaBytes (GB) of PC2-6400 800 MHz 

DDR2Memory 
• 	 460 (peak) single-precision gigaflops per blade 
• 	 217 (peak) double-precision gigaflops per blade 
• 	 IBM Enhanced 110 Bridge chip 

2.2.3. Cell 	 Broadband Engine Architecture 
(PowerXCell 8i) 

The Cell Broadband Engine Architecture (CBEA) is 
a single-chip multiprocessor [20]. Nine processing 

elements operate on a shared, coherent memory as 
shown in Figure 2. Unlike current homogeneous multi­
core solutions, the CBEA utilizes a heterogeneous 
configuration consisting of two types of computing 
elements: the PowerPC Processing Elements (PPE) and 
the Synergistic Processor Element (SPE, Figure 3). A 
single CBEA processor contains one PPE and eight 
SPEs. 

DUAL Ch8nnel DDR 
25.6 GB/s 

Figure 2. Cell Broadband Engine Architecture 

The PPE is a 64-bit PowerPC architecture core and 
can run both 32-bit and 64-bit Operations Systems 
(OS) and applications. SPEs are optimized for running 
SIMD applications, and operate as independent 
processor elements, each running an individual 
application program or threads. In this configuration, 
the PPE provides OS support and top-level thread 
control for an application while the SPEs provide the 
accelerated application performance. 
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Figure 3. Synergistic Processor Element (SPE) 

The SPEs access memory via Direct Memory 
Access (DMA) commands moving data and 
instructions between main storage and a private local 
memory called Local Storage (LS). All SPE instruction 
and data load/store requests access this private LS 
rather than shared main storage. This memory 
hierarchy of storage (register file, LS, main storage), 
coupled with asynchronous DMA transfers between LS 



and main storage, explicitly parallelizes computation 
with the transfers of data and instructions. 

2.2.4. mM BladeCenter LS21 

The IBM BladeCenter LS21 supplies up to two 
dual-core 2200 series AMD Opteron processors in a 
single width card [10]. For the Roadrunner system the 
AMD Opteron HE processors run at 1.8 GHz and are 
standard low-power Opteron processors (68 W max). 
Each LS21 contains 16 GB of ECC, DDR-2 memory 
and no hard disk. 

2.3. IBMlLANL Roadrunner Software 

The compute portion of a TriBlade consists of two 
QS22 boards and a single LS21 board. Each runs its 
own operating system image and "shares" a common 
user application. 

Applications written and executed on the 
Roadrunner system are designed and written in a 
different manner than previous parallel processing 
applications. 

The majority of a user application runs on the AMD 
Opteron processors of the LS21. Message Passing 
Interface (MPI) is used to communicate with other 
processors in a typical Single Program, Multiple Data 
(SPMD) fashion. Computationally-complex logic is 
offloaded to a "subordinate" Cell processor when 
needed. 

Key to obtaining performance on the Roadrunner 
system is determining which processes get off loaded 
to the Cell processors. IBM provides two techniques 
for performing asynchronous offloads. These 
techniques are the Data Communication and 
Synchronization (DaCS) library [13] and the 
Application Library Format (ALF) [9]. The CG 
implementation presented in this work uses DaCS 
exclusively. 

3. 	 Implementation Detail 

All implementations utilize the CG implementation 
outlined in the pseudo-code of Figure 4. The following 
vectors and matrices are used: 
• 	 r - residual vector 
• 	 b- known vector 
• 	 d -search direction vector 
• 	 x - initial guess/current step/result vector 
• 	 q - temporary vector 
• 	 A - known, sparse, symmetric, positive-definite 

matrix 
• 	 ja- column index array (not explicitly shown in 

Figure 4) 

The value £ is an error tolerance, where £ <1 and 
should be set so that the algorithm terminates 

whenllr(1)11 ~ £llr(o>ll· 

,. ¢= A.\: (1 ) 

F ¢= b-F 
d¢=F 
t5new ¢= FTF (2) 
150 ¢= t5new 
i¢=O 

While i < i max and t5l1ew > £2150 

q¢= Ad (3) 
a_accum¢=dTq (4) 
a¢=~ 

a_Qccun!.., 

x¢=x+ad (5) 
F ¢= F-aq (6) 
t50ld ¢= t5new 
p ¢= Snew 

Sold 

t5new ¢= FTF (7) 

J ¢= F+ pJ (8) 
i¢=i+l 

end while 

Figure 4. CG Pseudo-Code 

A synthetic sparse system indicative of a 3D regular 
mesh using a 7 point stencil was used for testing. This 
test system contains a reasonable amount of spatial and 
temporal locality so that it doesn't unfairly bias the 
Cell, FPGA, or Opteron implementation. 

The sparse matrix has a fixed structure and all 
implementations take advantage of loop unrolling 
when computing the SMVM. The C-code in Figure 5 
illustrates the unrolling. 

for (n=O; n<nrows; n++) { 
*q= 	 A[O]*d[ja[O]] + A[l]*d[ja[l]] + 

A[2]*d[ja[2]] + A[3]*d[ja[3]] + 
A[4]*d[ja[ 4]] + A[S]*d[ja[S]] + 
A[6]*d[ja[6]]; 

A+=8; ja+=8; II For Cell 
A+=7; ja+=7; II Others 
y++; 

} 

Figure 5. SMVM C-code fragment illustrating 
loop unrolling and the associated memory 

access burden 

All implementations take advantage of fused loops 
whenever possible. The first sets of fused loops are the 
computation of the SMVM (3) and the dot product 



calculation (4). We acknowledge that in the general 
case this optimization would not normally be possible, 
but for the known structure used in this problem we 
chose to exploit it and did so across all 
implementations reported and compared herein. The 
second sets of fused loops are the calculation of the dot 
product for the onew value (7) and the update of the 
direction vector (8). 

For the FPGA implementation substantial logic 
resources are required to implement the SMVM. As 
such, it was decided to compute the initial SMVM 
operation (1) on the Xeon processor of the 
MAPStation. For this reason, all implementations 
report the wall clock runtime after this operation. 

For testing purposes the error tolerance value (e) 
was set so that the problem would not converge to a 
solution allowing us to run for the full number of 
iterations requested. All implementations take the 
value of the system rank and i max as input parameters 
allowing control over the synthetic system size and the 
number of iterations to execute. 

To compute the performance of the CG for an input 
n x n matrix size we utilized Table I. In this table, we 
break down the number of Double Precision Floating 
Point Operations required per vector/matrix operation 
listed in Figure 4. 

Table I 

Function DPFLOPs 
(3) SMVM 13n 
(4) DDOT 2n 
(5)DAXPY 2n 
(6) DAXPY 2n I 

(7) DDOT 2n 
(8) DAXPY 2n 

L-Total 23n 

3.1. Cell Implementation 

The Cell implementation focused on moving as 
much of the vector-vector and vector-matrix 
processing down to the SPE as possible. The SPEs 
operate as function accelerators for the PPE. All 
functions, SMVM, DOT, NORM, and DAXPY are 
fully implemented by the SPEs. The problem is evenly 
divided among the requested number of SPE's with 
each SPE processing a contiguous block, where the 
block size is the system rank divided by the number of 
SPEs. The PPE handles the execution flow and 
sequencing. 

The SPE's, once started, enter an event loop waiting 
for function requests from the PPE. These requests, 
along with the required parameters, are all passed via 
the mailbox communication mechanism. To reduce 

the function call overhead the SPE vector functions are 
executed inline. The SPEs return results via the 
mailbox communication mechanism. 

Careful attention was paid to the general SPE 
programming tips IBM has published [9]. The CG 
implementation specifically utilized the following 
recommendations: 
• 	 Local Store: Design for the local store (LS) size. 

The LS holds up to 256 KB for program, stack, 
local data structures, and DMA buffers. 

• 	 DMA Transfers: 
o 	 Use SPE-initiated DMA transfers. 
o 	 Overlap DMA with computation by 

double buffering. 
o 	 Use double buffering to hide memory 

latency. 
• 	 Loops: Unroll loops to reduce dependencies and 

increase dual-issue rates. This exploits the large 
SPU register file. 

• 	 SIMD Strategy 
• 	 Load/Store: 

o 	 Scalar loads and stores are slow, with 
long latency. 

o 	 SPUs only support quadword loads and 
store. 

o 	 Load or store scalar arrays as quadwords, 
and perform your own extraction and 
insertion to eliminate load and store 
instructions. 

• 	 Branches: Eliminate nonpredicted branches. 
• 	 Multiplies: Keep array elements sized to a power­

of-2 to avoid multiplies when indexing. 
• 	 Dual-Issue: 

o 	 Choose intrinsic carefully to maximize 
dual-issue rates or reduce latencies. 

o 	 Use software pipeline loops to improve 
dual-issue rates. 

A primary concern with implementing the CG on 
the CBEA is how to effectively compute the SMVM. 
The limited size of each SPE Local Store (LS) makes it 
impossible to store the source vector locally. Since we 
impose no limitation on the structure of the sparse 
matrix, the indirect addressing of the source vector 
must be dealt with if reasonable performance is to be 
achieved. 

Several approaches were tried with limited success. 
The first was a direct implementation of a gather on the 
elements of the source vector using the Memory Flow 
Controller (MFC) DMA lists. While this 
implementation has the benefit of being direct and 
easily realized, the performance was poor. The 
overhead of setting up DMAs for individual double 
precision elements is extremely high. This method also 



suffers from not allowing for reuse of previously 
gathered items. 

The preferred implementation utilized a software­
managed cache. Two different cache implementations 
were tested. The first was our purpose-designed 
software cache with the second being an 
implementation supplied by IBM in the Cell 
Broadband Engine SDK Libraries starting with 
Version 2.1. 

Both software-managed cache solutions were useful 
in boosting performance of the SMVM operation. A 
software-managed cache allows the user to control 
various aspects of the cache design. Parameters such as 
set associativity, number of lines, and line size allow 
the user to tune the performance of the cache for a 
given problem. 

While a software-managed cache has many benefits, 
it does come with certain costs. Of particular 
importance is the space utilized by the cache. Since the 
SPE Local Store holds both the code and data, one 
must be careful to balance the impacts of a large 
software-managed cache. Another difficulty with the 
software-managed cache is the computational overhead 
(additional branches) required by more complex cache 
implementations. 

In order to maximize performance of the SMVM, a 
large software-managed cache was employed. This 
cache allows the SMVM to make use of locality 
(spatial/temporal) exhibited by the structure of the 
coefficient matrix A. A direct map cache 
implementation was selected for this problem because 
it requires minimal overhead for detecting if an 
element is resident and updating is simple. 

The sparse matrix column mapping array (ja) 
defines the actual column mapping of the non-zero 
sparse elements within the original matrix. These 
indices are used to indirectly access elements from the 
source vector during the SMVM operation. The 
software cache maps these indices to a series of lines 
of data. Each line contains a linear sequence of double 
precision elements from the source array. 

The cache is structured as 8 lines of 16Kbyte 
elements (or 2K doubles). This large line size provided 
the best performance on the test cases we used. It is 
possible that for highly unstructured data, this large 
cache line size could provide less than optimal 
performance. In these cases, the various parameters of 
the cache can be easily modified to suit the problem. In 
other cases, a completely different implementation of 
the software cache can be employed. If thrashing 
becomes an issue an n-way set associative cache could 
be useful. The cache tag management makes use of 
vector intrinsic and vector storage to improve 
performance. 

The cache is split up into two related arrays; the tag 
(tagO) and data arrays (X_cacheO). By defining the tag 
array as an array of vector elements, we can speed up 
operations on this array using SPE vector intrinsic 
operations. This implementation offered approximately 
a 20-30% improvement in overall performance versus 
a scalar array implementation. 

A structural diagram of the software cache is 
presented in Figure 6 below. The diagram shows the 
mapping of the index values to the various components 
of the cache. 

IBM supplies alternative versions of SPE software­
managed caches. These were evaluated, and it was 
found that these versions did not provide the same 
level of performance as our purpose-designed, direct 
map version. Another drawback of the IBM cache 
design for this problem is that the memory required for 
the cache is not directly accessible to the user code. 
Since large amounts of memory must be dedicated to 
the cache, this becomes a problem when memory space 
is at a premium as is the case with the SPE LS. Since 
our direct map cache memory is global to the SPE, it 
can be reused and we make use of this to reduce our 
data storage memory footprint, thus enabling more 
code space. 
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Figure 6. Structural Mapping of the SMVM to 
the Software Cache in the CG on Cell 

Implementation. 

All operations required for computing the SMVM 
utilize vector intrinsic to enhance performance. It was 
found that better performance was gained by 
restructuring the way data was accessed from local 
store. By accessing the 14 operands required to 
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compute two consecutive SMVM results and then 
shuffling the data to fully utilize the dual issue 
capability, performance improved by approximately 
30%. Computation and communications are fully 
double buffered and overlapped. 

Similarly to the SMVM, all other vector-vector 
operations utilize vector intrinsic to enhance 
performance. They all utilize double buffering and 
fully overlap computation and communication. 

3.2. FPGA Implementation 

Full details of the FPGA implementation of both the 
SMVM and CG can be found in our previous work [4] 
[5][6] . Both User Logic Devices of a single MAP 
processor were used to implement the CG on the 
MAPStation. 

Through careful placement of array data in the On­
Board Memory (OBM) of the MAP processor, near­
optimal use of the aggregated memory bandwidth is 
achieved. True functional parallelism was exploited 
(via replicated logic) to fully overlap independent 
computations and gain substantial speed-ups. 

3.3. Opteron Implementation 

The Opteron implementation makes use of the loop 
fusion and unrolling optimizations discussed earlier. 
The choice of the HP wx9400 was due to the improved 
AMD Opteron performance over the Opterons used on 
the Roadrunner TriBlade. 

The HP xw9400 system is a dual-socket, dual-core 
AMD 2.2 GHz Opteron (2214) based system. The 
system utilizes 8 GB of DDR2-667 memory running 
Windows Vista x64. 

Best performance was obtained by mapping the CG 
code to both cores of a single socket for this 
implementation. The code did not explicitly utilize 
threading. 

4. Results 

In Figure 7 we present the results of our CG 
implemented on the hybrid Cell and FGP A platforms 
along with an Opteron only system. We have also 
included a "projected" result for the SRC-7, the latest 
machine from SRC. The SRC-7 projected results were 
calculated using only the 50% system clock rate 
increase over the SRC-6 (i.e., 150 MHz vs. 100 MHz) 
and with the assumption that the current FPGA circuit 
configuration would place and route at this new 
frequency in the new Altera Stratix II devices used on 
the SRC-7. 

For the hybrid nodes, the effects of data transfers 
tolfrom the accelerator (FPGNCell) subsystem are 
apparent for small system sizes. Both Cell and FPGA 
based systems must transfer much of the system down 
to the accelerator (x,A,ja,b) and return the solution 
vector once completed (x). For the Cell we utilized 
Opteron initiated DaCS RDMA transfers with pinned 
buffers on the PPE since this mode of operation has the 
best sustained performance for large data transfers. 

While both accelerators transfer data at roughly the 
same raw data rate (1.2 GB/s) from the host processor, 
the Cell based system must deal with endian issues. 
The Opteron uses a little-endian representation while 
the Cell uses big-endian. For this implementation we 
chose to utilize the PPE for doing the endian 
conversion. In this problem where we transfer a large 
chunk of data and then process for long periods the 
performance gain is negligible compared to the 
increased complexity of implementing on the SPE. 

CG Performance 
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Figure 7. CG Performance Comparison (Cell 
vs. SRC-6 vs. Opteron), including projected 

SRC-7 results 

The Cell processor obtains a significant 
performance advantage (up to 3X) over all the other 
processors (except the SRC-7 "projected" results) for 
larger problem sizes with matrix ranks of 110,592 or 
greater. This performance advantage comes from 
Cell's superior sustained memory bandwidth that we 
have determined separate from this work to be -18 
GB/s for large matrix ranks. This sustained memory 
bandwidth was exploited via the use of double buffered 
DMAs to overlap data movement and computation, 
and via the software data cache that was tailored to the 
data requirements of the CG. The performance increase 
of Cell over the Opteron only system demonstrates the 
advantages of programmer controlled explicit data 
movement vs. the fixed caching hierarchies of 
commodity processors for this type ofproblem. 



The SRC-7 projected results show what we consider 
to be the minimum performance of the CG on this new 
FPGA platform. It is possible that the SRC-7 could 
obtain 2X or more of the performance of the SRC-6 
results because of its increased system bandwidths. 
These results are speculative at the moment, but do 
show that FPGA based systems have the potential to 
provide better performance compared to current 
commodity processors. 

5. 	 Discussion 

Both of the accelerator based systems (FPGA and 
Cell) require that the linear system be transferred from 
the host and results returned for the CG. This extra 
transfer penalty has a real impact on the performance 
of this class of problems (i.e., memory bandwidth 
bound problems). 

Real iterative solvers attempt to converge with as 
few iterations as possible with the help of effective 
preconditioners. The effect on accelerator based 
implementations is to expose this transfer time. A well 
conditioned system may converge fast enough that any 
benefit gained by running the problem on the 
accelerator is negated by the transfer penalty. 

The simplest and most effective solution to this 
problem would be to do away with these transfers by 
merging the accelerator functionality within the host 
CPU. For the Cell implementation, a more powerful 
PPE implementation could obviate the need for the 
Opteron processors of the TriBlade, and manufacturers 
are likely considering these options in future hybrid 
architecture designs. 

For the Opteron and Cell implementations we rely 
on caching to gain performance though exploitation of 
data locality. Our banded test case offers both 
processors good spatial locality. For more irregular test 
systems the effectiveness of the caching, in both cases 
will decrease and lead to poorer performance of the 
CG. The Cell software cache implementation should 
degrade in a more gradual fashion due to its much 
large line size. It also has the benefit that it can be 
reconfigured in various ways to exploit any available 
data locality. 

6. 	 Conclusion 

In this paper we have presented an implementation 
of a non-preconditioned Conjugate Gradient algorithm 
on a hybrid Cell processor system. We have shown that 
the Cell processor is capable of significant sustained 
memory bandwidth which we exploited to obtain up to 
3X the performance compared to a commodity Opteron 
processor and an older FPGA-based system. The Cell 

processor requires the programmer to handle all data 
movements and placements explicitly which adds 
programming complexity but directly allowed for this 
performance increase. 
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