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Abstract

This work presents a detailed implementation of a
double precision, Non-Preconditioned, Conjugate
Gradient algorithm on a Roadrunner heterogeneous
supercomputer node. These nodes utilize the Cell
Broadband Engine Architecture™ in conjunction with
x86 Opteron™ processors from AMD. We implement a
common Conjugate Gradient algorithm, on a variety of
systems, to compare and contrast performance.
Implementation results are presented for the
Roadrunner hybrid supercomputer, SRC Computers,
Inc. MAPStation SRC-6 FPGA enhanced hybrid
supercomputer, and AMD Opteron only. In all hybrid
implementations wall clock time is measured,
including all transfer overhead and compute timings.

1. Introduction

The Conjugate Gradient Method (CG) is a member
of a family of iterative solvers known as Krylov
subspace methods used primarily on large sparse linear
systems arising from the discretization of partial
differential equations (PDEs). CG is effective for
systems of the form:

AX =b,
where A is a square n X n sparse matrix [7].

CG uses successive approximations to obtain a
more accurate solution at each step. It is considered a
non-stationary method generating a sequence of
conjugate (or orthogonal) vectors. These vectors are
the gradients of a quadratic function, when minimized,
is equivalent to solving the linear system [2].

Each iteration of the CG involves one Sparse
Matrix-Vector Multiplication (SMVM), three vector
updates, and two inner products. The SMVM is the
time dominant computational kernel executed per
iteration of the CG [3] [6] [21].

For general purpose processors, the SMVM
performs poorly for three primary reasons [24]. First,
the lack of data locality causes large numbers of misses
within the caches of the memory hierarchy. Second,
the multiple load/store units on many processors have a
tendency to miss while trying to load the same cache
line. Finally, SMVM codes execute a large number of
loads compared to the number of floating point
operations they perform placing a heavy load on the
load/store units, and on integer ALUs that compute the
addresses. For most current generation processors,
these load/store units are often the bottleneck in
SMVM leaving the floating-point units underutilized.

In general the vector-vector (DOT, DAXPY) and
vector-matrix (SMVM) operations utilized during the
computation of the CG exhibit poor floating point
utilization. This is due to the high application
Bytes/Flop requirements when compared to the
processor supplied Bytes/Flop [6][25].

Sparse Linear Algebra (e.g. CG/SMVM) has been
identified as a key computational focus area or
"Dwarf" (algorithmic method that captures a pattern of
computation and communication), for evaluating
parallel programming models and architectures.
Asanovic et al. [1] recommend the use of a set of
identified "Dwarfs" instead of traditional benchmarks.

Implementation of CG using FPGAs has been
documented in recent papers. Morris and Prasanna [20]
have presented an FPGA-augmented implementation
of the CG on an SRC-6. Their implementation presents
a CPU/FPGA  accelerated hybrid approach.
Maslennikow et al. [18] present an FPGA
implementation of CG using fractional numbers which
is limited to small problem sizes with matrix rank up to
1024.

Williams et al. [26] evaluated the Cell Processors
for use in Scientific Computing. They introduce a
performance model for the Cell and apply it to several
key scientific computing kernels, including sparse
matrix multiply and stencil computations. Li et al. [16]
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present a implementation of the NAS CG benchmark
on the Cell Processor.

In this work we present a comparison of various
architectures on a common, non-preconditioned, CG
algorithm. We acknowledge that preconditioning is of
paramount importance for efficient implementations of
iterative methods such as the CG; however, our focus
is to compare the per-iteration performance of the CG
algorithm on these platforms, not the efficacy of the
preconditioner.

The platforms we investigate include two hybrid
supercomputers nodes: IBM/LANL Roadrunner
TriBlade [15], SRC-6 MAPStation [22], along with
traditional AMD Opteron nodes.

The TriBlade consists of an AMD Opteron blade
and two Cell QS22 blades[11]. The Opteron blade
contains two dual-core processors, while the Cell
blades each contain two Cell eDP (enhanced Double
Precision) processors. Each Opteron core is connected
to an individual Cell chip via a dedicated PCle
connection. For this work we utilize a single
Opteron/Cell eDP pair, or 1/4 of the available raw
compute performance supplied by a single TriBlade.

The MAPStation utilizes Intel Xeon Processors
along with a SRC MAP processor which contains two
user logic Xilinx FPGAs [22]. Carte [22][23], SRC’s
Programming Environment is used giving the
programmer access to the user programmable logic of
the MAP processor and the microprocessor through a
single C or Fortran program.

The Opteron only implementation utilized a Hewlett
Packard HP xw9400 workstation [8]. The system
utilized Microsoft Vista as the base Operating System
along with Microsoft Visual C++ 2008 for
development.

All implementations utilize a banded sparse matrix
with up to 7, double precision, elements per row. If any
row contains fewer than 7 nonzero elements it must be
padded with zeros to the full 7 elements in length. Due
to alignment restrictions with the Cell processor an
extra element of zero padding is required.

Due to the small, fixed number of elements per row
the sparse matrix ELLPACK-ITPACK [19] format was
chosen. This format is efficient for the matrix-vector
multiply operation and performs well on vector style
architectures.

Each of the implementations presented in this paper
make use of loop unrolling, and loop fusion whenever
possible. This helps with cache reuse in the processor
only case and allows for more efficient data layout,
management, and vectorization in the other cases.

Our FPGA based implementation makes heavy use
of architectural features provided by both the SRC-6
hardware architecture and the Carte Software
development  environment  [22][23].  Concepts

presented here can carry over to other FPGA based
systems but the actual implementation presented here
is specific to the SRC-6 MAPStation. Our previous
work on SMVM and CG for the SRC-6 MAPStation
provides details of the FPGA implementation and
results [4] [5] [6].

2. Background

2.1. CG and ELLPACK-ITPACK

Sparse matrices, derived from PDEs, occur in many
scientific application areas, especially Physics and
Mechanical Engineering where a physical phenomenon
needs to be mathematically described. PDEs are used
to describe phenomena such as fluid flow, the growth
of crystals, gravitation, diffusion, and the behavior of
electromagnetic fields.

The solution to a nonsingular linear system:

Ax=b
lies in a Krylov space whose dimension is the degree
of the minimal polynomial of A. If this minimal
polynomial of A has a low degree, a Krylov method
has the opportunity to converge rapidly [14]. Also,
iterative methods such as CG scale well to very large
problem sizes, parallelize easily, and have a shorter
time to solution compared to direct methods (e.g.,
Gaussian elimination). These are the dominant reasons
why Krylov methods are selected for these types of
problems and are particularly well suited for use on
large-scale scientific simulation codes that in turn are
defined by sparse linear systems.

1 0 2 0 1 2 0 1 3 0

340 5 3 4 5 1 2 4
A_matrix = A= ja=

6 7 0 0 6 7 0 1 2 0

8 0 0 O 8 0 0 1 0 0

Figure 1. ELLPACK-ITPACK Format

In Figure 1 we illustrate how a simple 4x4 matrix is
represented in ELLPACK-ITPACK format. The non-
zero elements of A_matrix are packed starting from
left to right to generate the coefficient array A. The
original column indices are then stored in the column
index array ja. With ELLPACK-ITPACK, the row or
rows with the maximum number of non-zero elements
determines how many elements must be stored per row
in the compressed format. In this example all rows
with fewer than 3 non-zero entries are zero-filled to the
full 3 elements per row.



2.2. IBM/LANL Roadrunner Hardware

On June 10, 2008 Roadrunner became the first
general purpose system to reach the PetaFlop (PF)
milestone becoming the world’s fastest supercomputer
[15]. This petascale computer is unique in that it
leverages high-performance commodity processors
(Cell) to achieve extremely high levels of performance
and excellent power efficiency [17].

Roadrunner is a heterogeneous cluster of clusters,
each of which is Cell accelerated. Each compute node
is composed of node-attached Cells, rather than a
simple cluster of Cells. The fundamental building
block is a Connected Unit (CU). Each CU is composed
of 180 compute nodes and 12 I/O nodes all connected
via a high speed switch fabric. The full Roadrunner
system is composed of 18 CUs.

The TriBlade is the fundamental building block for
each CU. Each TriBlade consists of an AMD Opteron
blade along with two Cell QS22 blades.

In all, the Roadrunner system is made up of 6,500
AMD dual core Opteron processors, 12,240 Cell
processors with a total peak (theoretical) performance
in excess of 1.3 PFs. A total of 98 TeraBytes of
memory is equally distributed between the Opteron and
Cell nodes of the system.

2.2.1. TriBlade

A TriBlade is composed of an IBM LS21 Opteron
Blade, two IBM QS22 Cell Blades, and a forth blade
which provides the communications fabric for the
computer node. The forth blade connects each QS22
blade through four PCI Express x8 links to the Opteron
blade and provides the node with an Infiniband 4x
DDR cluster interconnect.

2.2.2. IBM BladeCenter QS22

The IBM BladeCenter QS22 utilizes the IBM
PowerCell™ 8i processor. The following summarizes
the capacities of the QS22:

e Two 3.2 GHz IBM PowerXCell 8i processors

e Up to 32 GigaBytes (GB) of PC2-6400 800 MHz
DDR2 Memory
460 (peak) single-precision gigaflops per blade
217 (peak) double-precision gigaflops per blade

IBM Enhanced I/O Bridge chip
2.23.Cell Broadband Engine Architecture
(PowerXCell 8i)

The Cell Broadband Engine Architecture (CBEA) is
a single-chip multiprocessor [20]. Nine processing

elements operate on a shared, coherent memory as
shown in Figure 2. Unlike current homogeneous multi-
core solutions, the CBEA utilizes a heterogeneous
configuration consisting of two types of computing
elements: the PowerPC Processing Elements (PPE) and
the Synergistic Processor Element (SPE, Figure 3). A
single CBEA processor contains one PPE and eight
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s
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Figure 2. Cell Broadband Engine Architecture

The PPE is a 64-bit PowerPC architecture core and
can run both 32-bit and 64-bit Operations Systems
(OS) and applications. SPEs are optimized for running
SIMD applications, and operate as independent
processor elements, each running an individual
application program or threads. In this configuration,
the PPE provides OS support and top-level thread
control for an application while the SPEs provide the
accelerated application performance.

Synergistic Processor
Element (SPE)

istic Processor
Unit (SPU)

Local Store (LS)
256K

Memory Flow
Controller (MFC)

Data Transfer/
Synchronization

Figure 3. Synergistic Processor Element (SPE)

The SPEs access memory via Direct Memory
Access (DMA) commands moving data and
instructions between main storage and a private local
memory called Local Storage (LS). All SPE instruction
and data load/store requests access this private LS
rather than shared main storage. This memory
hierarchy of storage (register file, LS, main storage),
coupled with asynchronous DMA transfers between LS



and main storage, explicitly parallelizes computation
with the transfers of data and instructions.

2.2.4. IBM BladeCenter LS21

The IBM BladeCenter LS21 supplies up to two
dual-core 2200 series AMD Opteron processors in a
single width card [10]. For the Roadrunner system the
AMD Opteron HE processors run at 1.8 GHz and are
standard low-power Opteron processors (68 W max).
Each LS21 contains 16 GB of ECC, DDR-2 memory
and no hard disk.

2.3. IBM/LANL Roadrunner Software

The compute portion of a TriBlade consists of two
QS22 boards and a single LS21 board. Each runs its
own operating system image and “shares” a common
user application.

Applications written and executed on the
Roadrunner system are designed and written in a
different manner than previous parallel processing
applications.

The majority of a user application runs on the AMD
Opteron processors of the LS21. Message Passing
Interface (MPI) is used to communicate with other
processors in a typical Single Program, Multiple Data
(SPMD) fashion. Computationally-complex logic is
offloaded to a “subordinate” Cell processor when
needed.

Key to obtaining performance on the Roadrunner
system is determining which processes get off loaded
to the Cell processors. IBM provides two techniques
for performing asynchronous offloads. These
techniques are the Data Communication and
Synchronization (DaCS) library [13] and the
Application Library Format (ALF) [9]. The CG
implementation presented in this work uses DaCS
exclusively.

3. Implementation Detail

All implementations utilize the CG implementation
outlined in the pseudo-code of Figure 4. The following
vectors and matrices are used:

r — residual vector

b- known vector

d —search direction vector

X — initial guess/current step/result vector
q — temporary vector

The value £ is an error tolerance, where € <1 and
should be set so that the algorithm terminates

when "r(l)" < 8""(0)" .
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end while

Figure 4. CG Pseudo-Code

A synthetic sparse system indicative of a 3D regular
mesh using a 7 point stencil was used for testing. This
test system contains a reasonable amount of spatial and
temporal locality so that it doesn’t unfairly bias the
Cell, FPGA, or Opteron implementation.

The sparse matrix has a fixed structure and all
implementations take advantage of loop unrolling
when computing the SMVM. The C-code in Figure 5
illustrates the unrolling.

for (n=0; n<nrows; n++) {

*q= A[0]*d[ja[0]] + A[1]*d[ja[1]] +
A[2]*d[ja[2]] + A[3]*d[ja[3]] +
A[4]*d[ja[4]] + A[5]*d[ja[5]] +
A[6]*d[ja[6]];

A+=8; ja+=8; // For Cell
A+=7; ja+=7; // Others
Y++;

Figure 5. SMVM C-code fragment illustrating
loop unrolling and the associated memory
access burden

A — known, sparse, symmetric, positive-definite
matrix

e ja- column index array (not explicitly shown in
Figure 4)

All implementations take advantage of fused loops
whenever possible. The first sets of fused loops are the
computation of the SMVM (3) and the dot product



calculation (4). We acknowledge that in the general
case this optimization would not normally be possible,
but for the known structure used in this problem we
chose to exploit it and did so across all
implementations reported and compared herein. The
second sets of fused loops are the calculation of the dot
product for the &8, value (7) and the update of the
direction vector (8).

For the FPGA implementation substantial logic
resources are required to implement the SMVM. As
such, it was decided to compute the initial SMVM
operation (1) on the Xeon processor of the
MAPStation. For this reason, all implementations
report the wall clock runtime after this operation.

For testing purposes the error tolerance value (£)
was set so that the problem would not converge to a
solution allowing us to run for the full number of
iterations requested. All implementations take the
value of the system rank and i ,,, as input parameters
allowing control over the synthetic system size and the
number of iterations to execute.

To compute the performance of the CG for an input
n X n matrix size we utilized Table I. In this table, we
break down the number of Double Precision Floating
Point Operations required per vector/matrix operation
listed in Figure 4.

Table |
Function DP FLOPs
(3) SMVM 13n
(4) DDOT 2n
(5) DAXPY 2n
(6) DAXPY 2n
7) DDOT 2n
(8) DAXPY 2n
Total 23n

3.1. Cell Implementation

The Cell implementation focused on moving as
much of the vector-vector and vector-matrix
processing down to the SPE as possible. The SPEs
operate as function accelerators for the PPE. All
functions, SMVM, DOT, NORM, and DAXPY are
fully implemented by the SPEs. The problem is evenly
divided among the requested number of SPE’s with
each SPE processing a contiguous block, where the
block size is the system rank divided by the number of
SPEs. The PPE handles the execution flow and
sequencing.

The SPE’s, once started, enter an event loop waiting
for function requests from the PPE. These requests,
along with the required parameters, are all passed via
the mailbox communication mechanism. To reduce

the function call overhead the SPE vector functions are

executed inline. The SPEs return results via the

mailbox communication mechanism.

Careful attention was paid to the general SPE
programming tips IBM has published [9]. The CG
implementation specifically utilized the following
recommendations:

e Local Store: Design for the local store (LS) size.
The LS holds up to 256 KB for program, stack,
local data structures, and DMA buffers.

e  DMA Transfers:

o Use SPE-initiated DMA transfers.

o Overlap DMA with computation by
double buffering.

o Use double buffering to hide memory
latency.

e  Loops: Unroll loops to reduce dependencies and
increase dual-issue rates. This exploits the large
SPU register file.

SIMD Strategy
Load/Store:

o Scalar loads and stores are slow, with
long latency.

o SPUs only support quadword loads and
store.

o Load or store scalar arrays as quadwords,
and perform your own extraction and
insertion to eliminate load and store
instructions.

Branches: Eliminate nonpredicted branches.
Multiplies: Keep array elements sized to a power-
of-2 to avoid multiplies when indexing.

e  Dual-Issue:

o Choose intrinsic carefully to maximize
dual-issue rates or reduce latencies.

o Use software pipeline loops to improve
dual-issue rates.

A primary concern with implementing the CG on
the CBEA is how to effectively compute the SMVM.
The limited size of each SPE Local Store (LS) makes it
impossible to store the source vector locally. Since we
impose no limitation on the structure of the sparse
matrix, the indirect addressing of the source vector
must be dealt with if reasonable performance is to be
achieved.

Several approaches were tried with limited success.
The first was a direct implementation of a gather on the
elements of the source vector using the Memory Flow
Controller (MFC) DMA lists. While this
implementation has the benefit of being direct and
easily realized, the performance was poor. The
overhead of setting up DMAs for individual double
precision elements is extremely high. This method also



suffers from not allowing for reuse of previously
gathered items.

The preferred implementation utilized a software-
managed cache. Two different cache implementations
were tested. The first was our purpose-designed
software cache with the second being an
implementation supplied by IBM in the Cell
Broadband Engine SDK Libraries starting with
Version 2.1.

Both software-managed cache solutions were useful
in boosting performance of the SMVM operation. A
software-managed cache allows the user to control
various aspects of the cache design. Parameters such as
set associativity, number of lines, and line size allow
the user to tune the performance of the cache for a
given problem.

While a software-managed cache has many benefits,
it does come with certain costs. Of particular
importance is the space utilized by the cache. Since the
SPE Local Store holds both the code and data, one
must be careful to balance the impacts of a large
software-managed cache. Another difficulty with the
software-managed cache is the computational overhead
(additional branches) required by more complex cache
implementations.

In order to maximize performance of the SMVM, a
large software-managed cache was employed. This
cache allows the SMVM to make use of locality
(spatial/temporal) exhibited by the structure of the
coefficient matrix A. A direct map cache
implementation was selected for this problem because
it requires minimal overhead for detecting if an
element is resident and updating is simple.

The sparse matrix column mapping array (ja)
defines the actual column mapping of the non-zero
sparse elements within the original matrix. These
indices are used to indirectly access elements from the
source vector during the SMVM operation. The
software cache maps these indices to a series of lines
of data. Each line contains a linear sequence of double
precision elements from the source array.

The cache is structured as 8 lines of 16Kbyte
elements (or 2K doubles). This large line size provided
the best performance on the test cases we used. It is
possible that for highly unstructured data, this large
cache line size could provide less than optimal
performance. In these cases, the various parameters of
the cache can be easily modified to suit the problem. In
other cases, a completely different implementation of
the software cache can be employed. If thrashing
becomes an issue an n-way set associative cache could
be useful. The cache tag management makes use of
vector intrinsic and vector storage to improve
performance.

The cache is split up into two related arrays; the tag
(tag0) and data arrays (X_cache0). By defining the tag
array as an array of vector elements, we can speed up
operations on this array using SPE vector intrinsic
operations. This implementation offered approximately
a 20-30% improvement in overall performance versus
a scalar array implementation.

A structural diagram of the software cache is
presented in Figure 6 below. The diagram shows the
mapping of the index values to the various components
of the cache.

IBM supplies alternative versions of SPE software-
managed caches. These were evaluated, and it was
found that these versions did not provide the same
level of performance as our purpose-designed, direct
map version. Another drawback of the IBM cache
design for this problem is that the memory required for
the cache is not directly accessible to the user code.
Since large amounts of memory must be dedicated to
the cache, this becomes a problem when memory space
is at a premium as is the case with the SPE LS. Since
our direct map cache memory is global to the SPE, it
can be reused and we make use of this to reduce our
data storage memory footprint, thus enabling more
code space.

Software Cache Structure

jaln] index value

3 1B 27 1 1 0
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DATA Cache -

che0

X_ca

Figure 6. Structural Mapping of the SMVM to
the Software Cache in the CG on Cell
Implementation.

All operations required for computing the SMVM
utilize vector intrinsic to enhance performance. It was
found that better performance was gained by
restructuring the way data was accessed from local
store. By accessing the 14 operands required to



compute two consecutive SMVM results and then
shuffling the data to fully utilize the dual issue
capability, performance improved by approximately
30%. Computation and communications are fully
double buffered and overlapped.

Similarly to the SMVM, all other vector-vector
operations utilize vector intrinsic to enhance
performance. They all utilize double buffering and
fully overlap computation and communication.

3.2. FPGA Implementation

Full details of the FPGA implementation of both the
SMVM and CG can be found in our previous work [4]
[5]1[6]. Both User Logic Devices of a single MAP
processor were used to implement the CG on the
MAPStation.

Through careful placement of array data in the On-
Board Memory (OBM) of the MAP processor, near-
optimal use of the aggregated memory bandwidth is
achieved. True functional parallelism was exploited
(via replicated logic) to fully overlap independent
computations and gain substantial speed-ups.

3.3. Opteron Implementation

The Opteron implementation makes use of the loop
fusion and unrolling optimizations discussed earlier.
The choice of the HP wx9400 was due to the improved
AMD Opteron performance over the Opterons used on
the Roadrunner TriBlade.

The HP xw9400 system is a dual-socket, dual-core
AMD 2.2 GHz Opteron (2214) based system. The
system utilizes 8 GB of DDR2-667 memory running
Windows Vista x64.

Best performance was obtained by mapping the CG
code to both cores of a single socket for this
implementation. The code did not explicitly utilize
threading.

4. Results

In Figure 7 we present the results of our CG
implemented on the hybrid Cell and FGPA platforms
along with an Opteron only system. We have also
included a "projected" result for the SRC-7, the latest
machine from SRC. The SRC-7 projected results were
calculated using only the 50% system clock rate
increase over the SRC-6 (i.e., 150 MHz vs. 100 MHz)
and with the assumption that the current FPGA circuit
configuration would place and route at this new
frequency in the new Altera Stratix II devices used on
the SRC-7.

For the hybrid nodes, the effects of data transfers
to/from the accelerator (FPGA/Cell) subsystem are
apparent for small system sizes. Both Cell and FPGA
based systems must transfer much of the system down
to the accelerator (x,A,ja,b) and return the solution
vector once completed (x). For the Cell we utilized
Opteron initiated DaCS RDMA transfers with pinned
buffers on the PPE since this mode of operation has the
best sustained performance for large data transfers.

While both accelerators transfer data at roughly the
same raw data rate (1.2 GB/s) from the host processor,
the Cell based system must deal with endian issues.
The Opteron uses a little-endian representation while
the Cell uses big-endian. For this implementation we
chose to utilize the PPE for doing the endian
conversion. In this problem where we transfer a large
chunk of data and then process for long periods the
performance gain is negligible compared to the
increased complexity of implementing on the SPE.
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Figure 7. CG Performance Comparison (Cell
vs. SRC-6 vs. Opteron), including projected
SRC-7 results

The Cell processor obtains a significant
performance advantage (up to 3X) over all the other
processors (except the SRC-7 “projected” results) for
larger problem sizes with matrix ranks of 110,592 or
greater. This performance advantage comes from
Cell’s superior sustained memory bandwidth that we
have determined separate from this work to be ~18
GB/s for large matrix ranks. This sustained memory
bandwidth was exploited via the use of double buffered
DMAs to overlap data movement and computation,
and via the software data cache that was tailored to the
data requirements of the CG. The performance increase
of Cell over the Opteron only system demonstrates the
advantages of programmer controlled explicit data
movement vs. the fixed caching hierarchies of
commodity processors for this type of problem.



The SRC-7 projected results show what we consider
to be the minimum performance of the CG on this new
FPGA platform. It is possible that the SRC-7 could
obtain 2X or more of the performance of the SRC-6
results because of its increased system bandwidths.
These results are speculative at the moment, but do
show that FPGA based systems have the potential to
provide better performance compared to current
commodity processors.

5. Discussion

Both of the accelerator based systems (FPGA and
Cell) require that the linear system be transferred from
the host and results returned for the CG. This extra
transfer penalty has a real impact on the performance
of this class of problems (i.e., memory bandwidth
bound problems).

Real iterative solvers attempt to converge with as
few iterations as possible with the help of effective
preconditioners. The effect on accelerator based
implementations is to expose this transfer time. A well
conditioned system may converge fast enough that any
benefit gained by running the problem on the
accelerator is negated by the transfer penalty.

The simplest and most effective solution to this
problem would be to do away with these transfers by
merging the accelerator functionality within the host
CPU. For the Cell implementation, a more powerful
PPE implementation could obviate the need for the
Opteron processors of the TriBlade, and manufacturers
are likely considering these options in future hybrid
architecture designs.

For the Opteron and Cell implementations we rely
on caching to gain performance though exploitation of
data locality. Our banded test case offers both
processors good spatial locality. For more irregular test
systems the effectiveness of the caching, in both cases
will decrease and lead to poorer performance of the
CG. The Cell software cache implementation should
degrade in a more gradual fashion due to its much
large line size. It also has the benefit that it can be
reconfigured in various ways to exploit any available
data locality.

6. Conclusion

In this paper we have presented an implementation
of a non-preconditioned Conjugate Gradient algorithm
on a hybrid Cell processor system. We have shown that
the Cell processor is capable of significant sustained
memory bandwidth which we exploited to obtain up to
3X the performance compared to a commodity Opteron
processor and an older FPGA-based system. The Cell

processor requires the programmer to handle all data
movements and placements explicitly which adds
programming complexity but directly allowed for this
performance increase.
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