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I\. new scientific approach is presented for a broad class of chaotic problems involving a high 
degree of mixing over rapid time scales. Rayleigh-Taylor and Richtmyer-Meshkov unstable flows are 
typical of such problems. Microscopic mixing properties such as chemical reaction rates for turbulent 
mixtures can be obtained with feasible grid resolution. The essential dependence of (some) fluid 
mixing observables on transport phenomena is observed. This dependence includes numerical as 
well as physical transport and it includes laminar as well as turbulent transport. A new approach 
to the mathematical theory for the underlying equations is suggested. 

PACS numbers: 47.11. + j,47.27.- i 

Thrbulent mixing is an important but unfinished sub­
ject. Acceleration driven mixing has been the subject 
of intense investigation for 50 years [1, 2]. The rarity 
of simulation-experiment [3-5] or simulation-theory com­
parisons [6, 7] is a measure of the unsolved nature of the 
problem. 

In a controlled grid scaling study, over the range of 
grid resolution practical for today's computers, we ob­
served a fundamental obstacle to computation: For scale 
invariant physics, with no physical transport in the fluid 
equations, we observed an interface between two phases 
in a chaotic mixture which scales as ~X- I over the range 
of grids practical for 3D simulations today. Since, for any 
numerical code, an elementary error estimate (LI norm) 
is ~x x [Interface length or area], we conclude that the 
overall error is 0(1); in other words, the error is not con­
vergent [8] over this range of grid refinement. 

A nonconvergent error, or a solution that converges to 
a code dependent limit is a very major problem for the 
goal of predictive simulation. In fact, related studies did 
reveal such code dependencies in apparently converged 
solutions for an identical problem [8, 9]. A related dis­
crepancy between atomistic and continuum methods has 
been noted [10,11]. In [10, 11], the atomistic simulations 
are in agreement with experiment, while the comparison 
continuum ones are not. To complement and add to the 
discussion in [10, 11], we observe the that the continuum 
simulations [3, 4] and theory [6, 7], are in agreement with 
both experiment and the atomistic simulations. Thus we 
regard the atomistic simulations as confirmation of our 
earlier work [3, 4, 6, 7] . 

I Iere we report a resolution to this problem, and a new 
approach to Lhe science and mathematics of turbulent 
mixiIlg. 

Por iuterfa.ce dominated problems, with fluid state vari­
ahk'li discontinuous across the interface, the physics is ill 
posed. Regularization of the problem by nonzero trans­

port is required to achieve a well posed problem. In 
the absence of regularization in a simulation, or when 
the physical regularization is very weak, the numerical 
transport features of the simulation dominate, and dic­
tate the selection of a solution from among the possible 
nonunique solutions of the equations (when considered 
in a scale invariant, or transport-free). This situation is 
routinely encountered, as many problems have low levels 
of physical transport, and for practical grids, have more 
numerical transport than physical. 

Methods have been developed for the resolution of 
subgrid physics, which is fundamentally what is in play 
here, and dynamic procedures determine of all model pa­
rameters, so that the these methods are parameter free 
[12, 13]. While these methods solve, in principle, the 
problems mentioned above, they are normally applied to 
problems far less dynamic than those considered here, 
and which have smoother and more highly diffusive so­
lutions. 

From a numerical perspective, our approach is to apply 
the subgrid models well outside of their normal sphere of 
applicability, to problems with small levels of physical 
transport and solutions with steep gradients and near 
discontinuities. 

Why does the steepness of the gradient matter? It is 
easiest to answer this question in a comparison of phys­
ical and computational length scales. In turbulent mix­
ing, the length scale of the smallest vortex is called the 
Kolmogorov scale. Resolution of the Kolmogorov scale 
is required for a fully resolved simulation of turbulence, 
refereed to as direct numerical simulation. In the case 
of small levels of mass diffusivity (typical of liquids), the 
ratio of the viscosity to the mass diffusivity, known as the 
Schmidt number, is large, for example Sc '" 0(103 ). The 
length scale associated with the mass diffusivity is known 
as the Batchelor scale . To resolve this scale requires addi­
tional mesh refinement of a factor of jSc in each spatial 
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dimcnsion and time, with an increase of computational 
cost by a factor of Sc2 . 

The difference between one and five mesh blocks to 
dcscribe a rapid transition (approximate interface) as 
a blf'ncied bounciary between two fluids is a factor of 
5.1 ,= 625 in computational cost. The difference be­
tween resolving the Batchelor scale or not is a factor of 
S'c"}. .':; mlO\06 in computational cost. The first is ba­
sically the difference between a teraflop computer and a 
petn.flop computer. It is the difference between a $10,000 
computer and a $6,000,000 computer, between achieving 
an answer, and getting the answer five years later. The 
second is the difference between getting the answer or 
not (ever) . The resolution required and the length scales 
to be resolved are not simply arbitrary constants. They 
are fundamental measures of feasibility for the science of 
lllixing. 

To test and develop these ideas, we examined a pre­
viously considered [14] 2D circular Richtmyer-Meshkov 
instability problem. We added terms describing physi­
cal transport and subgrid modeling terms describing tur­
bulent transport to the equations. Not only does the 
solution depend on the values of the physical transport 
selected, but for a fixed selection of turbulent transport 
values (typical of fluid-fluid transport), we found conver­
gence of both macroscopic and microscopic fluid observ­
abies. We include a chemical reaction rate with strongly 
nonlinear dependence on temperature as an example of a 
microscopic variable that shows convergence. For some of 
the cases considered (variation of Reynolds number and 
of transport parameters), we observed convergence of the 
reaction rate. In other cases, when the turbulent fluctu­
ations in the chemical reaction rate were not removed by 
the spatial average employed, we observed small variation 
in mesh dependence about the finest grid value, but lack 
of convergence. A further ensemble average confirmed 
this picture. 

We employ a range of meshes, for a variety of Reynolds 
numbers. The most refined of these resolve the Kol­
mogorov scale (DNS simulations). The others do not, 
and are thus known as Large Eddy Simulations (LES). 
No attempt was made to resolve the Batchelor scale for 
liquid mixing. We classify observables as macroscopic or 
microscopic. The former pertain to the large scale fea­
tures of the flow. For the problem under study, it turns 
out that the macroscopic observables are essentially all 
convergent, and their limits are essentially independent 
of the specifics of transport, numerical or physical, lam­
inar or turbulent. The microscopic observables, such as 
the temperature and the species concentrations are sensi­
tive, however. Thus we study these variables. Even after 
a spatial average (over the mixing zone), we found some 
statistical fluctuations in the joint probability distribu­
tions for these variables. To regularize the observables 
under study, while retaining a vital scientific focus, we ex­
amined the chemical reaction rate for a temperature de­

pendent reaction, with an activation temperature in the 
middle of the range of observed temperatures. Thus we 
had a meaningful, but difficult and nonlinear observable. 
We still found statistical fluctuations, but low enough to 
conclude that the chemical rate was mesh convergent, 
and for Reynolds numbers low enough to allow DNS on. 
the fine grids, we found that the LES (coarse grid simu­
lation) was verified, in the sense that it agreed with the 
DNS result. In this sense the strategy has been vindi­
cated. 

We examine the probability distribution functions for 
temperature. We form an ensemble of fixed-temperature 
cells, and compute the second moment of the concen­
trations in this ensemble. This second moment of the 
concentration f (or the expectation (J(I- f))r taken at 
fixed temperature T) enters in the chemical reaction rate 
wand its expected value a t fixed T, 

(w)r = (J(I- f)exp(T/TACT)}T, (1) 

where TACT is the activation temperature and w = 0 for 
T :::; TACT. Finally, 

(w) = J(w}TdT (2) 

where no closure models are used in the evaluation of 
(w). 

The dynamic subgrid models are parameter free. We 
further note some degree of skepticism regarding turbu­
lent gradient diffusion models. For this reason, and in 
keeping with conventional scientific standards, we note 
that theories need validation (agreement with physical 
experiment) as well as verification (the mesh convergence 
study summarized here). For the low Reynolds number 
flows, the subgrid terms do not contribute, and the choice 
of turbulent coefficients has no role. For the moderate 
Reynolds number flows, the influence of these coefficients 
is not strong. But for the high Reynolds number flows, 
these coefficients have a large role . We have used 2D 
simulations throughout, as the plan of this study calls 
for examining a range of mesh and physical parameter 
values, and fine grid simulations in 3D were not practical 
in this context. 

In Fig. 1, we show a density plot at late time of the cir­
cular Richtmyer-Meshkov instability studied here. The 
high degree of interface complexity is evident in this plot. 
In Figs 2 - 4, we show for three values of the Reynolds 
number (300; 6000; 600,000) a plot of the second moment 
of the concentration 

O(T) = (J(1 - f))r/(J)r((1 - J))r , (3) 

evaluated at a constant temperature, and the pdf for 
the temperature. From these two plots, we compute the 
mean chemical reaction rate (w), assuming an activation 
temperature in the middle of the observed temperatures. 
Convergence properties of (w) are given in Table 1. In 
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·. t.his t.able, we lIote that the entries for Re = 300 and 
Nt' ()oO,OO() are cOllvergent in the conventional sense. 
III th(! ("as(' of Ht, . GOOD, we see that the error for both 
("oHrse alld IIII'd ill III grids is sillaller than the ensemble 
variation. WI' illl.l'rpret this a..<; saying that both coarse 
alld IIwdilllll !!;rids have cOllverged, and remaining differ-
1!1I("t!S an! due t.o statistical fluctuations, not completely 
n~lllovl~d by the spatial average usee:! to compute (w). Vi­
sual illspection of Fig. 3 sllpports this conclusion. 

FIG. 1: Late time density plot for circular Richtmyer­
Meshkov instability. A circular shock, initially at the out 
region of the domain, has moved inward through a perturbed 
circular interface. Upon reaching the interface, it reflects as 
an outgoing circular shock wave. Upon recrossing the now 
strongly perturbed interface, the interface becomes extremely 
chaotic in its appearance. 

Details with additional parameter values will be pub­
lish(~d separately. 

The scale invariant equations of fluid flow fall into the 
domain mathematically known as nonlinear conservation 
laws. Existence theories for equations are known in one 
spatial dimension, and even then require further restric­
tions. These theories come in two major branches, the 
first of which is based on a kind of perturbative theory of 
interaction strengths , and is applicable only to solutions 
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FIG. 2: Reynolds number 300. Left: O(T) Ys. T . Right: Plot 
of pdf for T. 
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FIG. 3: Reynolds number 6000. Left: O(T) Ys. T. Right: 
P lot of pdf for T. 

near a constant state [15]. Here we refer to the other 
main branch, which proceeds in two main steps [16, 17] . 
The first is to establish solutions in a very weak sense as 
measure valued distributions, and the second is to show 
that such solutions are in fact classical weak solutions. 
The scaling properties we have observed numerically sug­
gest the following possible picture: The Euler equations 
(without transport) have solutions only as measure value 
distributions. These solutions in general do not reduce to 
classical weak solutions. Moreover, they are nonunique, 
and depend on details of some limiting process used in 
their derivation. Unique solutions and classical solutions 
require regularized equations, i.e. inclusion of transport 
terms. 

To indicate the importance of this proposed change 
in point of view and of perspectives on the strategy for 
mathematical solutions of the higher dimensional Euler 
equations of compressible fluid dynamics, we can observe 
that an existence theory for measure valued solutions, 
while presently unknown , and possibly difficult, is surely 
orders of magnitude easier that a proof of existence of 
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FIG. 4: Reynolds number 600,000. Left: O(T) Ys. T. Right: 
Plot of pdf for T. 
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Re 2u/(w) c to f m to f 

:::::;300 0.62 3.33 1.25 

:::::; 6000 0.42 0.11 0.30 

:::::; 600K 0.17 0.29 0.12 

TABLE I: Relative coarse grid ensemble fluctuations (±2u) 
divided by ensemble mean, and relative mesh errors for the 
mean chemical production term (w) for an activation tem­
perature TA G = 15,000° K . Comparison is coarse mesh (c) to 
fine (f) and medium (m) to fine. 

classical weak solutions. This later goal appears to be 
very unpromising. Not only does it appear to be techni­
cally extremely difficult, but conceivably it is false. 

We summarize the principal points established in this 
paper. The problem of simulation of turbulent mixing 
is of wide importance; the specific example considered 
is suggestive of inertial confinement studies. Difficulties 
have been reported with convergence of simulations in the 
chaotic regime, especially when variables sensitive to mi­
croscopic or molecular level mixing are in question. The 
chemical reaction rate is a typical such variable. This 
variable, even when averaged over the mixing zone, dis­
plays a certain level of stochastic variability, shown in 
column 2 of Table I. When the course to fine grid error 
is larger than the variability (Re ~ 300, 600K) , we ob­
serve convergence. When the coarse to fine grid error is 
smaller than the variabiity (Re ~ 6000), we regard coarse 
(and also the medium) grid to be converged, and without 
an extensive foray into stochastic modeling, with a con­
vergence study of ensemble means and variances, there 
is no further convergence (at the level of a single realiza­
tion) possible. In this sense, we achieve the main goal of 
this paper, which is to verify through a mesh convergence 
study a strategy for LES simulations of meaningful mi­
croscopic observables in a mixing or stirring dominated 
(as opposed to a diffusion dominated) How, i.e. for a 
turbulent mixing How having rapid dynamics. 

The point of view developed here has implications for 
the mathematical theory of conservation laws, a sec­
ondary goal of this paper. 

It is a pleasure to thank the many collaborators who 
have contributed to our simulation and modeling capabil­
ities . Specifically we thank Baolian Cheng, John Grove 
and Xaiolin Li for helpful discussions. 

• 	This work was supported in part by the U.S. Depart­
ment of Energy, including grants DE-FC02-06-ER25779 
and DE-FG52-06NA26205. This material is based upon 

" work supported by the Department of Energy [National 
Nuclear Security Administration] under Award Num­
ber NA2861 4. The simulations reported here were per­
formed in part on the Galaxy linux cluster in the De­
partment of Applied Mathematics and Statistics, Stony 
Brook University, and in part on New York Blue, the 
BG I L computer operated jointly by Stony Brook Uni­
versity and BN L. This manuscript has been co-authored 
by Brookhaven Science Associates, LLC, under Contract 
No. DE-AC02-98CHl-886 with the U.S. Department of 
energy. The United States Government reta ins, and the 
publisher, by accepting this article for publication, ac­
knowledges, a world-wide license to publish or reproduce 
the published form of this manuscript, or allow others to 
do so, for the United States Government purposes. Los 
Alamos National Laboratory Preprint LA-UR xx-xxxxx. 

t 	 Electronic address: hyulimCCams . sunysb . edu 

Electronic address: yan2000CCams. sunysb. edu 

Electronic address: gl imm(i)ams . sunysb. edu 


1 	 Computational Science Center, Brookhaven National 

Laboratory, Upton, NY 11973-5000 

Electronic address: dcsoCClanl.gov 


[I ] S. Chandrasekhar, Hydrodynamic and Hydromagnetic 

Stability (Oxford University Press, Oxford, 1961) . 


[2] D. H. Sharp, Physica D 12, 3 (1984) . 
[3] X. F. Liu, E. George, W . Bo, and J . Glimm, Phys. Rev. 


E 73, 1 (2006). 

[4] 	 E. George, J. Glimm, X. L. Li, Y. H. Li, and X. F . Liu, 


Phys. Rev. E 13, 1 (2006). 

[5 ] N. Mueschke, Ph.d. thesis, Texas A and M University 


(2008) . 

[6] B. Cheng, J. Glimm, and D. H. Sharp, Phys. Lett . A 


268, 366 (2000). 

[7] B. Cheng, J. Glimm, and D. H. Sharp, Chaos 12, 267 


(2002) . 

[8] H. Lim, Y. Yu, J. Glimm, X.-L. Li , and D. H. Sharp, 


Acta Mathematicae Applicatae Sinica 24, 355 (2008), 

stony Brook University Preprint SUNYSB-AMS-07-09 

Los Alamos National Laboratory preprint number LA­

UR-08-0068. 


[9] T. O. Masser, Ph.d. thesis, State University of New York 

at Stony Brook (2007) . 


[10] K. Kadau, C . Rosenblatt , J. L. Barber, T. C . Germann, 
Z. Huang, P. Carles, and B. J. Alder, Proc. Nat!. Acad. 
Sci U.S.A. 104,7741 (2007). 

[11] K. Kadau, J . Barber, T . Germain , and B. Alder, Phys. 
Rev . E 18, 045301 (2008). 

[12] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, 
Phys Fluids A 3 , 1760 (1991 ). 

[13] P. Moin, K. Squires, W . Cabot, and S. Lee, Phys. Fluids 
A3, 2746 (1991). 

[14] Y. Yu, M. Zhao, T . Lee, N. Pestieau, W . Bo, J. Glimm, 
and J . W . Grove, J. Comput. Phys. 211, 200 (2006), 
stony Brook Preprint number SB-AMS-05-16 and LANL 
preprint number LA-UR-05-6212. 

[15] J. Glimm, Comm . Pure App!. Math. 18,697 (1965) . 
[16] R. D. Perna, Arch. Rational Mech. Anal. 82, 27 (1983) . 
[17] 	X. Ding, G.-Q. Chen, and P. Luo, Acta Mathematica 

Scientia 5,4 15 (1985). 

http:dcsoCClanl.gov

