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A new scientific approach is presented for a broad class of chaotic problems involving a high
degree of mixing over rapid time scales. Rayleigh-Taylor and Richtmyer-Meshkov unstable flows are
typical of such problems. Microscopic mixing properties such as chemical reaction rates for turbulent
mixtures can be obtained with feasible grid resolution. The essential dependence of (some) fluid
mixing observables on transport phenomena is observed. This dependence includes numerical as
well as physical transport and it includes laminar as well as turbulent transport. A new approach
to the mathematical theory for the underlying equations is suggested.

PACS numbers: 47.11.+4,47.27.-i

Turbulent mixing is an important but unfinished sub-
ject. Acceleration driven mixing has been the subject
of intense investigation for 50 years 1, 2]. The rarity
of simulation-experiment [3-5] or simulation-theory com-
parisons [6, 7] is a measure of the unsolved nature of the
problem.

In a controlled grid scaling study, over the range of
grid resolution practical for today’s computers, we ob-
served a fundamental obstacle to computation: For scale
invariant physics, with no physical transport in the fluid
equations, we observed an interface between two phases
in a chaotic mixture which scales as Az~! over the range
of grids practical for 3D simulations today. Since, for any
numerical code, an elementary error estimate (L; norm)
is Az x [Interface length or area, we conclude that the
overall error is O(1); in other words, the error is not con-
vergent [8] over this range of grid refinement.

A nonconvergent error, or a solution that converges to
a code dependent limit is a very major problem for the
goal of predictive simulation. In fact, related studies did
reveal such code dependencies in apparently converged
solutions for an identical problem [8, 9]. A related dis-
crepancy between atomistic and continuum methods has
been noted [10, 11]. In [10, 11], the atomistic simulations
are in agreement with experiment, while the comparison
continuum ones are not. To complement and add to the
discussion in [10, 11], we observe the that the continuum
simulations [3, 4] and theory [6, 7], are in agreement with
both experiment and the atomistic simulations. Thus we
regard the atomistic simulations as confirmation of our
earlier work [3, 4, 6, 7.

llere we report a resolution to this problem, and a new
approach to the science and mathematics of turbulent
mixing.

Ior interface dominated problems, with fluid state vari-
ables discontinuous across the interface, the physics is ill
posed. Regularization of the problem by nonzero trans-

port is required to achieve a well posed problem. In
the absence of regularization in a simulation, or when
the physical regularization is very weak, the numerical
transport features of the simulation dominate, and dic-
tate the selection of a solution from among the possible
nonunique solutions of the equations (when considered
in a scale invariant, or transport-free). This situation is
routinely encountered, as many problems have low levels
of physical transport, and for practical grids, have more
numerical transport than physical.

Methods have been developed for the resolution of
subgrid physics, which is fundamentally what is in play
here, and dynamic procedures determine of all model pa-
rameters, so that the these methods are parameter free
[12, 13]. While these methods solve, in principle, the
problems mentioned above, they are normally applied to
problems far less dynamic than those considered here,
and which have smoother and more highly diffusive so-
lutions.

From a numerical perspective, our approach is to apply
the subgrid models well outside of their normal sphere of
applicability, to problems with small levels of physical
transport and solutions with steep gradients and near
discontinuities.

Why does the steepness of the gradient matter? It is
easiest to answer this question in a comparison of phys-
ical and computational length scales. In turbulent mix-
ing, the length scale of the smallest vortex is called the
Kolmogorov scale. Resolution of the Kolmogorov scale
is required for a fully resolved simulation of turbulence,
refereed to as direct numerical simulation. In the case
of small levels of mass diffusivity (typical of liquids), the
ratio of the viscosity to the mass diffusivity, known as the
Schmidt number, is large, for example Sc ~ O(103). The
length scale associated with the mass diffusivity is known
as the Batchelor scale. To resolve this scale requires addi-
tional mesh refinement of a factor of v/Sc in each spatial
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dimension and time, with an increase of computational
cost by a factor of Sc?.

The difference between one and five mesh blocks to
describe a rapid transition (approximate interface) as
a blended boundary between two fluids is a factor of
5% = 625 in computational cost. The difference be-
tween resolving the Batchelor scale or not is a factor of
Sc? — calO10® in computational cost. The first is ba-
sically the difference between a teraflop computer and a
petaflop computer. It is the difference between a $10,000
computer and a $6,000,000 computer, between achieving
an answer, and getting the answer five years later. The
second is the difference between getting the answer or
not (ever). The resolution required and the length scales
to be resolved are not simply arbitrary constants. They
are fundamental measures of feasibility for the science of
mixing.

To test and develop these ideas, we examined a pre-
viously considered [14] 2D circular Richtmyer-Meshkov
instability problem. We added terms describing physi-
cal transport and subgrid modeling terms describing tur-
bulent transport to the equations. Not only does the
solution depend on the values of the physical transport
selected, but for a fixed selection of turbulent transport
values (typical of fluid-fluid transport), we found conver-
gence of both macroscopic and microscopic fluid observ-
ables. We include a chemical reaction rate with strongly
nonlinear dependence on temperature as an example of a
microscopic variable that shows convergence. For some of
the cases considered (variation of Reynolds number and
of transport parameters), we observed convergence of the
reaction rate. In other cases, when the turbulent fluctu-

ations in the chemical reaction rate were not removed by

the spatial average employed, we observed small variation
in mesh dependence about the finest grid value, but lack
of convergence. A further ensemble average confirmed
this picture. )

We employ a range of meshes, for a variety of Reynolds
numbers. The most refined of these resolve the Kol-
mogorov scale (DNS simulations). The others do not,
and are thus known as Large Eddy Simulations (LES).
No attempt was made to resolve the Batchelor scale for
liquid mixing. We classify observables as macroscopic or
microscopic. The former pertain to the large scale fea-
tures of the flow. For the problem under study, it turns
out that the macroscopic observables are essentially all
convergent, and their limits are essentially independent
of the specifics of transport, numerical or physical, lam-
inar or turbulent. The microscopic observables, such as
the temperature and the species concentrations are sensi-
tive, however. Thus we study these variables. Even after
a spatial average (over the mixing zone), we found some
statistical fluctuations in the joint probability distribu-
tions for these variables. To regularize the observables
under study, while retaining a vital scientific focus, we ex-
amined the chemical reaction rate for a temperature de-

pendent reaction, with an activation temperature in the
middle of the range of observed temperatures. Thus we
had a meaningful, but difficult and nonlinear observable.
We still found statistical fluctuations, but low enough to
conclude that the chemical rate was mesh convergent,
and for Reynolds numbers low enough to allow DNS on,
the fine grids, we found that the LES (coarse grid simu-
lation) was verified, in the sense that it agreed with the
DNS result. In this sense the strategy has been vindi-
cated.

We examine the probability distribution functions for
temperature. We form an ensemble of fixed-temperature
cells, and compute the second moment of the concen-
trations in this ensemble. This second moment of the
concentration f (or the expectation (f(1 — f))r taken at
fixed temperature T') enters in the chemical reaction rate
w and its expected value at fixed T,

(w)r = (f(1 - f)exp(T/TacT))T (1)

where TacT is the activation temperature and w = 0 for
T < Tacr. Finally,

(w) = [ (wirar (2)

where no closure models are used in the evaluation of
(w).

The dynamic subgrid models are parameter free. We
further note some degree of skepticism regarding turbu-
lent gradient diffusion models. For this reason, and in
keeping with conventional scientific standards, we note
that theories need validation (agreement with physical
experiment) as well as verification (the mesh convergence
study summarized here). For the low Reynolds number
flows, the subgrid terms do not contribute, and the choice
of turbulent coefficients has no role. For the moderate
Reynolds number flows, the influence of these coefficients
is not strong. But for the high Reynolds number flows,
these coefficients have a large role. We have used 2D
simulations throughout, as the plan of this study calls
for examining a range of mesh and physical parameter
values, and fine grid simulations in 3D were not practical
in this context.

In Fig. 1, we show a density plot at late time of the cir-
cular Richtmyer-Meshkov instability studied here. The
high degree of interface complexity is evident in this plot.
In Figs 2 - 4, we show for three values of the Reynolds
number (300; 6000; 600,000) a plot of the second moment
of the concentration

oT) = {f(A = Nr/(Nr((1=Nr, (3)

evaluated at a constant temperature, and the pdf for
the temperature. From these two plots, we compute the
mean chemical reaction rate (w), assuming an activation
temperature in the middle of the observed temperatures.
Convergence properties of (w) are given in Table . In



this table, we note that the entries for Re = 300 and
fte 600,000 are convergent in the conventional sense.
In the case of Re - 6000, we see that the error for both
coarse and medium grids is smaller than the ensemble
variation. We interpret this as saying that both coarse
and medium grids have converged, and remaining differ-
ences are due to statistical fluctuations, not completely
removed by the spatial average used to compute (w). Vi-
sual inspection of Fig. 3 supports this conclusion.

FIG. 1: Late time density plot for circular Richtmyer-
Meshkov instability. A circular shock, initially at the out
region of the domain, has moved inward through a perturbed
circular interface. Upon reaching the interface, it reflects as
an outgoing circular shock wave. Upon recrossing the now
strongly perturbed interface, the interface becomes extremely
chaotic in its appearance.

Details with additional parameter values will be pub-
lished separately.

The scale invariant equations of fluid flow fall into the
domain mathematically known as nonlinear conservation
laws. Existence theories for equations are known in one
spatial dimension, and even then require further restric-
tions. These theories come in two major branches, the
first of which is based on a kind of perturbative theory of
interaction strengths, and is applicable only to solutions
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FIG. 2: Reynolds number 300. Left: 8(T) vs. T. Right: Plot
of pdf for T
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FIG. 3: Reynolds number 6000. Left: 0(T) vs. T. Right:
Plot of pdf for T'.

near a constant state [15]. Here we refer to the other
main branch, which proceeds in two main steps [16, 17].
The first is to establish solutions in a very weak sense as
measure valued distributions, and the second is to show
that such solutions are in fact classical weak solutions.
The scaling properties we have observed numerically sug-
gest the following possible picture: The Euler equations
(without transport) have solutions only as measure value
distributions. These solutions in general do not reduce to
classical weak solutions. Moreover, they are nonunique,
and depend on details of some limiting process used in
their derivation. Unique solutions and classical solutions
require regularized equations, i.e. inclusion of transport
terms.

To indicate the importance of this proposed change
in point of view and of perspectives on the strategy for
mathematical solutions of the higher dimensional Euler
equations of compressible fluid dynamics, we can observe
that an existence theory for measure valued solutions,
while presently unknown, and possibly difficult, is surely
orders of magnitude easier that a proof of existence of

Probabiity Density (1 000K)

FIG. 4: Reynolds number 600,000. Left: 8(T) vs. T. Right:
Plot of pdf for T.



Re |20/ (w)|cto fjmto f
~ 300 | 0.62 |3.33| 1.25
~ 6000 042 |0.11 | 0.30
~ 600K| 0.17 | 0.29 | 0.12

TABLE I: Relative coarse grid ensemble fluctuations (+20)
divided by ensemble mean, and relative mesh errors for the
mean chemical production term (w) for an activation tem-
perature Tac = 15,000° K. Comparison is coarse mesh (c) to
fine (f) and medium (m) to fine.

classical weak solutions. This later goal appears to be
very unpromising. Not only does it appear to be techni-
cally extremely difficult, but conceivably it is false.

We summarize the principal points established in this
paper. The problem of simulation of turbulent mixing
is of wide importance; the specific example considered
is suggestive of inertial confinement studies. Difficulties
have been reported with convergence of simulations in the
chaotic regime, especially when variables sensitive to mi-
croscopic or molecular level mixing are in question. The
chemical reaction rate is a typical such variable. This
variable, even when averaged over the mixing zone, dis-
plays a certain level of stochastic variability, shown in
column 2 of Table I. When the course to fine grid error
is larger than the variability (Re =~ 300, 600K), we ob-
serve convergence. When the coarse to fine grid error is
smaller than the variabiity (Re = 6000), we regard coarse
(and also the medium) grid to be converged, and without
an extensive foray into stochastic modeling, with a con-
vergence study of ensemble means and variances, there
is no further convergence (at the level of a single realiza-
tion) possible. In this sense, we achieve the main goal of
this paper, which is to verify through a mesh convergence
study a strategy for LES simulations of meaningful mi-
croscopic observables in a mixing or stirring dominated
(as opposed to a diffusion dominated) flow, i.e. for a
turbulent mixing flow having rapid dynamics.

The point of view developed here has implications for
the mathematical theory of conservation laws, a sec-
ondary goal of this paper.
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