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1. Introduction 

Regression is a fundamental data analysis tool for relating a univariate response variable Y to 
a multivariate predictor X E IRd from the observations (Xi, Y;),i = 1, ... ,n. Traditional non­
parametric regression use the assumption that the regression function varies smoothly in the 
independent variable x to locally estima~e the conditional expectation m(x) = E[Y/X = xl. 
The resulting vector of predicted values Y; at the observed covariates Xi is called a regression 
smoother, or simply a smoother, because the predicted values 9; are less variable than the 
original observations ri· 
Linear smoothers are linear in the response variable Y and are operationally written as 

m= SAY' 

where SA is a n xn smoothing matrix. The smoothing matrix SA typically depends on a tuning 
parameter which we denote by A, and that governs the tradeoff between the smoothness of 
the estimate and the goodness-of-fit of the smoother to the data by controlling the effective 
size of the local neighbourhood over which the responses are averaged. We parameterise 
the smoothing matrix such that large values of A are associated to smoothers that averages 
over larger neighbourhood and produce very smooth curves, while small >. are associated to 
smoothers that average over smaller neighbourhood to produce a more wiggly curve that wants 
to interpolate the data. The parameter A is the bandwidth for kernel smoother, the span size 
for running-mean smoother, bin smoother, and the penalty factor>. for spline smoother. 

http://www.jstatsojt��01Y
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Ideally, we want to choose the smoothing parameter A to minimise the expected squared 
prediction error, but here, we take a different approach. Instead of optimally selecting the 
tuning parameter A, we fix it to some reasonably large value that ensures that the resulting 
smoothers over-smooths the data so tha t the resulting smoother will have a relatively small 
variance but a substantial bias, and focus on correcting that bias. Our approach to bias 
correction rests on the observation that the conditional expectation of minus the residuals 
- (V - Y), given X, is the bias of the smoother. This provides us with the opportunity 
to estimate the bias by smoothing the residuals R. The bias of the original smoother can 
be partially corrected by subtracting from it the estimated bias. This bias correction can 
be iteratively applied, producing a sequence of iterative bias corrected smoothers that are 
formally defined in Section 2. 

It is well known in multivariate data analysis that the distance between typical covariates 
increases with increasing dimensions d of the covariates X. The resulting sparseness of the 
covariates, often called the curse of dimensionality, forces one to use larger smoothing pa­
rameters in higher dimensions, which in term leads to more biased smoothers. Optimally 
selecting the smoothing parameter does not alleviate this problem, and therefore, the com­
mon wisdom is to avoid general non-parametric smoothing in higher dimension and focus 
instead on fitting structurally constrained regression models, such as additive models Hastie 
and Tibshirani (1995); Linton and Nielsen (1995). Iterative Bias Reduction Smoothers depart 
from the classical multivariate structural regression models, and focus instead on estimating 
very smooth fully non-parametric regression functions. 

2. Iterative bias reduction smoothers 

2.1. Method 

Suppose that the pairs (X;, V;) E ]Rd X lR are related t hrough the non-parametric regression 
model 

Y; m(X ; ) + E;, i = 1, . .. ,n, (l ) 

where mO is an unknown smooth function , a nd t he disturbances E; a re independent mean 
zero and va riance a 2 random variables that are independent of all the covariates. It is helpful 
to rewri te Equation (1) in vector form by setting Y = (Y" . . . , yn)t , m = (m (Xd , . .. ,m( X n))t 
a nd E = (E" . . . ,£n)t , to get 

y m+E. (2) 

Linear smoot hers can be written as 
m, = S>.Y, (3) 

where S>. is an n x n smoothing matrix with smoothing pa rameter Aand iii = 9 = (91 , .. . , Yn)t , 
denotes the vector of fitted values. Typical smoothing matrices are bin smoothers, regression 
splines , smoothing splines, thin plate splines, Nadaraya Watson kernels or local polynomials. 
The linear smoother (3) has bias 

B(md = E[m dX ] - m = (S>. - l)m 
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a nd variance 

V(mdX) = SIS;(12, 

respectively. To estimate the bias, observe that the residuals RI = Y - ml = (I - S,x)Y have 
expected value E[RIIX] = m - E[mdX] = (/ - S,x)m = - B(md· This suggests estimat ing 
the bias by smoothing the negative residuals 

hi := -S,xRI = - S,x(I --.: S,x)Y. 

As the same smoother is assumed, the resulting estimate for the bias is zero whenever the 
smoothing matrix S,x is a projection, as is the case for linear regression , bin smoothers and 
regression splines. 

Thus in the ibr package, we will focus only on multivariate smoother of two types: thin 
plate splines and Nadamya Watson (product) kernel smoother. The parameter>' is either the 
smoothing parameter or the bandwidths. 

Repeating t he bias reduction step k times produces to the linear smoother 

mk 	 S,xY + S,x(/ - S,x)Y + ... + S,x(I - S,x)k- Iy 

(/ - (I - S,x)k)y' 

It is useful to extend regression smoot hers to enable predictions at arbi t rary locations x E 
IRd of the covariates. Such an extension allows us to assess and compare the quality of 
va rious smoothers by how well the smoother predicts new observations. To t his end, wri te 
the prediction of the li near smoother S at a n arbi t rary location x as 

m(x) S(4Y, 

where Sex) is a vector of size n whose ent ries are the weights for pred icting m(x). The vector 
Sex) is readily computed for many of the smoothers used in practice. 

Next , write the iterative bias corrected smoot her mk as 

mk = 	 i7i.o + hi + .. . + hk 
S[ I + (I - S) + (I _·S)2 + ... + (I - S)k- I jY 

sh , 

to concl ude that 

mkCx) = 	s(x )th (4) 

pred icts m(x ). 

2.2. Kerne l smoothers 

We have two types of smoother implemented in package ibr: Nadaraya kernel smoothers a nd 
t hi n plate splines smoothers. The smoothing matrix S of Nadaraya kernel type estimators 
has ent ries 

D%=IK ( (X; k-Xjk)2) 
S i j = hk 

L: D%=IK ( (X;k .;':jk)2 )
j 
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where K(.) is to be chosen as Gaussian, Epanechnikov, quadratic or uniform kernels. 

We strongly advise the use of a Gaussian kernel because the corresponding spectrum of I - S 
is less than 1. All kernels do not share that property (see Cornilloll , Hengartner, and Matzner­
L0ber 2009). 

The bandwidth in each component of the covariate depends on its scale. It is common to first 
re-scale the data before selecting the bandwidth, but here we found it preferable to leave the 
scales unchanged, and to select the bandwidth based on the effective degree of freedom (trace 
of the smoothing matrix) of the univariate smoother in each of the components, with typical 
values for the degree of freedom ranging from 1.05 to 1.2. A fur ther advantage of the latter 
choice is that there is no explicit reference to sample size. 

2.3. Thin plate splines smoothers 

The smoother matrix SA of thin plate splines of order va is readily calculated using a classical 
method (see Gu 2002) and functions of package fields (Reinhard Furrer and Sain 2009) . The 
smoother depends only on the chosen order va and the smoothing parameter A. Recall that 
the thin-plate smoother of degree va minimises 

min L
n 

(Y; - f(X;)) 2 + Ar(voL (5) 
f i = 1 

where 

r / fi l + "' +id /2 
r(1/O ) L J.~d aXil ' " ax f( x ) dx .

' vo i l . · .. id = 0 
11 + . .. + Id :5 vo 

As the procedure is adaptive (see Cornilloll et at. 2009), the smallest va is the best choice. 
Recall tha t the order va must be strictly greater than d/2 and the minimum degree of freedom 
is greater than Mo = ('~!~~l) (see Utreras 1988). Thus, for small to moderate nand d > 3, 
usually the smoother SA is not smooth enough for the procedure to work . In that case 
Gaussia n kernel smoother have to be used. 

2.4. Stopping rules: choice of number of iterations k 

The fi t ted values obtained by iterated bias reduction smoother depends on the number of 
iteration k . The first iteration gives by construction a very biased estimate (too much bias). 
When k grows to infinity, if the base smoother is well chosen (ie Gaussian kernel or thin plate 
splines), mk tends to Y (too much variance). In order to have useful fitted value, we have 
to stop the iteration whenever a good balance between bias and variance is achieved. This 
is simply a choice of model and the package ibr offers the following stopping rules methods: 
GCV (on log scale) , AlC, corrected AlC, BIC and gMDL (see Gu 2002 ; ?) . The selected 
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iteration is thus: 

argmin {a2 + 2trace(Sk)}kAlC n ' kEK. 

kccv argmin {IOga2 - 2 log (1 _ trace(Sk))} 
kEK. n' 

argmin {log a2 + 1 + 2(trace(Sk) + 1) }kA1CC 
kEK. n - trace(Sk) - 2 . 

2 ",n y2 -2
10g(V) + trace(Sk) 10g(F) _ nu F = L-i= I i -nO"kgMDL , V ---­

n n - trace(Sk)' trace(Sk)V 

3. Simulated example in ]R.2 

Define Wendel berger's test function Wendel berger (1982) 

R> f <- function(x, y) { . 75*exp(-((9*x-2)-2 + (9*y-2)-2)/4) + 

+ .75*exp(-((9*x+l)-2/49 + (9*y+l)-2/10)) + 
+ .50*exp(-((9*x-7)-2 + (9*y-3)-2)/4) ­
+ .20*exp(-((9*x-4)-2 + (9*y- 7)-2)) } 

and 50x 50 grid of eval uation equally spaced between °and 1 (0 and 1 excluded) 

R> ngrid <- 50; xf <- seq(O,l, length=ngrid+2)[-c(l,ngrid+2)] 

R> yf <- xf ; zf <- outer(xf, yf, f) 

R> grid <- cbind(rep(xf , ngrid) , rep (xf, rep (ngrid , ngrid))) 


We can plot this test function on t he grid using 

R> persp(xf, yf, zf, theta=130, phi=20, expand=O .45,lI!ain="True Function") 

Figure 1: True regression function m(xl, X2) (Wendel berger's test function) on the square 
[0, 1J x [0, IJ. 

Simulate some observation at 100 locations on the regular grid {0.05,0.15, ... , 0.85, 0.95}2 
with Gaussian disturbances which have zero mean and standard deviation producing a signa l 
to noise ratio of five . 

http:0.05,0.15
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R> noise <- .2 ; N <- 13 

R> xr <- seq (1/26, 25/26, length=N); yr <- xr ; zr <- outer(xr,yr,f); 

R> set.seed(2857) 

R> std <- sqrt(0.2*var(as.vector(zr))) ; noise <- rnorm(length(zr),O,std) 

R> Z <- zr + matrix(noise,N,N) 


Transpose the data to a matrix of 2 explanatory variables (of length 100): 

R> xc <- rep (xr, N) ; yc <- rep(yr, rep(N,N)) 

R> X <- cbind(xc, ye) ; Zc <- as.vector(Z) 


With the data X and Zc we can use the iterated bias reduction smoother with thin plate 
splines as base smoother S), . As the procedure is adaptive, the best choice is to choose for 
Va the minimum order which is 2, which is the default. As we do not have any idea of the 
value of >- we can choose a low degree of freedom, for instance l.2 times the minimum degree 
of freedom Ma = (~!~~l) (which is 3 here): 

R> res.ibr <- ibr(X,Zc,df=1.2,smoother="tps") 

The number of iterations is chosen by GCV (the default) and the summary can be obtained 
using summary function: 

R> summary(res . ibr) 

The following summary is obta ined 

Residuals: 
Min 10 Median 3Q Max 

-0.252993 -0.061420 0.007702 0 . 065658 0 . 211733 

Residual standard error: 0.1204 on 67.1 degrees of freedom 

Initial df: 3.6 Final df: 32.89 

gcv 
-3.437 

Number of iterations: 335 chosen by gcv 

Base smoother: Thin plate spline of order 2 (with 3.6 df) 


giving the residuals standard error, the degree initial freedom (3.6) the final degree of freedom 

(32.89) and the value of (log) GCY is equal to -3.437 at the chosen number of itera tions 

kc c v = 335. 


We can evaluate the fitted value 


R> prediet(res.ibr) 

and the Mean Absolute Error on the grid 

R> mean (abs (predict (res. ibr,grid)-as . vector (zf))) 
[1J 0.04908602 
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Obviously we can plot the fitted value on the griP. as follows 

R> persp(xf, yf, zf, theta=130, phi=20, expand=0 . 45) 

Figure 2: Fitted regression function mk(xl,x2) on the square [O,IJ x [0,1]' the number of 
iteration is chosen by GCV: kccv = 335. 

It can be seen (Figure 2) that the fitted function is not smooth enough compared to the true 
curve (Figure 1). A smoother function can be obtained by selecting directly "by hand" the 
number of iterations, which improve the MAE: 

R> res.ibr2 <- ibr(X,Zc,df=1.2,smoother="tps",iter=250) 
R> mean(abs(predict(res.ibr2,grid)-as.vector(zf))) 
[1] 0.04714154 

We can make a comparison to the usual thin plate splines with A chosen by GCV provided 
by the function Tps of package fields: 

R> res.tps <- Tps(X, Zc, scale.type="unscaled") 

a nd calculates the resulting MAE: 

R> mean(abs(predict(res.tps,grid)-as . vector(zf))) 
[1] 0.05255563 

On this toy example, t he simple use of ibr outperform the usual thin plate splines smoother. 
Other stopping rules are available and if we use another stopping rules, such as Alec, we 
simply issue the following command 

R> res.ibr <- ibr(X,Zc,df=1.2,smoother="tps",criterion="aicc") 

and we improve our MAE to 0.04530328 with a lower number of iterations (kAlCc = 160). 
This improvement is consistent with the visual examination of the previous fit of figure 2. 
This toy example shows the ability of iterated bias reduction smoothing in a small dataset. 
Let us evaluate the procedure on a real dataset in the next section. 

4 . Real example: Los Angeles Ozone Data 

We consider the classical data set of ozone concentration in the Los Angeles basin which has 
been previously considered by many authors Sreiman (1996); Siihlmann and Yu (2003, 2006). 
The sample size of the data is n = 330 and the number of explanatory variables d = 8. 

http:expand=0.45


8 Iterative Bias Reduction 

If we want to use thin plate splines here, the order Vo have to be greater than d/2, that is 
Vo = 5. Thus the minimum degree of freedom of SA is Mo = 495 which is greater than n. The 
thin plate splines smoother is impossible to use here. Recall that the method needs a really 
smooth base smoother SA' with a low degree of freedom compared to n . Thus even if n was 
500, the thin plate splines will be unsatisfactory base smoother (recall that in the preceding 
section, for d = 2 we started at 3.3 df with 100 observations). 

Let us use the (default) Gaussian kernel smoother. As we do not have any idea of choosing 
bandwidth for each of the 8 explanatory variables, we fix the degree of freedom of each 
univariate kernel smoothing matrix at 1.1. Every covariate is implicitly thought as having the 
same influence and smoothness. The grid of number of bias correction iterations k considered 
by the model selection procedure for selecting the optimal number of iterations is chosen to 
be the integer sequence from 1 to 500: 

R> data(ozone) 
R> res.ibr <- ibr(ozone[,-1],ozone[,1],df=1.1,K=1:500) 
R> summary(res .ibr) 

The following summary is obtained 

Residuals: 
Min 10 Median 3Q Max 

-13.5581 -2.0566 -0.3481 1. 9816 12 . 6049 

Residual standard error : 3.946 on 309.6 degrees of freedom 

Initial df: 2 . 06 Final df: 20.42 

gcv 
2 . 873 

Number of iterations: 64 chosen by gcv 
Base smoother: gaussian kernel (with 2.06 df) 

The number of iterations is kccv = 64 which can be thought as quite low (recall that in 
the previous example it was around 150-300). That suggests that we could choose an initial 
df per variable less than 1.1 (for instance 1.05). In that case, the number of iterations will 
increase obviously. A little gain of performance is usually expected. 

A plot method is also available and gives the index plot of residuals and the evolution of 
model selection criterion used for choosing k (if sensible) . 
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Figure 3: Index plot of residuals and evolution of GCV with k. The vertical dotted line is at 
the selected kccv = 64. 
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If we want to evaluate the prediction on 50 random splits of 33 observations in test set and 
297 in training (see Biihlmann and Yu 2003) use the following commands 

R> XX <- ozone[,-l] 
R> Y <- ozone[,l] 
R> erreurl.5 <- rep(O,33*50) 
R> aa <- c(1,945095059,162152953) 
R> for(i in 1:50){ 
+ set. seed (aa+i) 
+ ind <- sample(1:330,33) 
+ XXA <- XX[-ind,] 
+ YA <- Y[-ind] 
+ XXT <- XX[ind,] 
+ YT <- Y[ind] 
+ res.ibr <- ibr(XXA,YA,df=1.1,K=1:500) 
+ erreurl.5[(33*(i-l)+1):(33*i)] <- YT-predict(res.ibr,XXT) 
+ } 

R> print(mean(erreurl.5~2)) 

getting an error less than 14.9, which compare favourably with MARS (mda) , projection 
pursuit (ppr) or boosting (package mhoost, (?» which are around 17 (see Cornillon et al. 
2009). 

5. Conclusion 

This new method of smoothing multivariate dataset seems to be promising especially on real 
dataset . But one limitation of this smoothing method is the use of matrix n x n, where n is 
the number of observations. Moreover, the longest operation is an eigen decomposition of an 
n x n matrix which limits the size of dataset to be used . 
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