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1. Introduction

Regression is a fundamental data analysis tool for relating a univariate response variable Y to
a multivariate predictor X € R? from the observations (X;,Y;),2=1,...,n. Traditional non-
parametric regression use the assumption that the regression function varies smoothly in the
independent variable = to locally estimate the conditional expectation m(z) = E[Y|X = z].
The resulting vector of predicted values Y; at the observed covariates X; is called a regression
smoother, or simply a smoother, because the predicted values )7, are less variable than the
original observations Y;.

Linear smoothers are linear in the response variable Y and are operationally written as

m = S,Y,

where S is a n xn smoothing matrix. The smoothing matrix Sy typically depends on a tuning
parameter which we denote by A, and that governs the tradeoff between the smoothness of
the estimate and the goodness-of-fit of the smoother to the data by controlling the effective
size of the local neighbourhood over which the responses are averaged. We parameterise
the smoothing matrix such that large values of A are associated to smoothers that averages
over larger neighbourhood and produce very smooth curves, while small A are associated to
smoothers that average over smaller neighbourhood to produce a more wiggly curve that wants
to interpolate the data. The parameter A is the bandwidth for kernel smoother, the span size
for running-mean smoother, bin smoother, and the penalty factor A for spline smoother.
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2 Iterative Bias Reduction

Ideally, we want to choose the smoothing parameter A to minimise the expected squared
prediction error, but here, we take a different approach. Instead of optimally selecting the
tuning parameter A, we fix it to some reasonably large value that ensures that the resulting
smoothers over-smooths the data so that the resulting smoother will have a relatively small
variance but a substantial bias, and focus on correcting that bias. Our approach to bias
correction rests on the observation that the conditional expectation of minus the residuals
(Y - }7), given X, is the bias of the smoother. This provides us with the opportunity
to estimate the bias by smoothing the residuals R. The bias of the original smoother can
be partially corrected by subtracting from it the estimated bias. This bias correction can
be iteratively applied, producing a sequence of iterative bias corrected smoothers that are
formally defined in Section 2.

It is well known in multivariate data analysis that the distance between typical covariates
increases with increasing dimensions d of the covariates X. The resulting sparseness of the
covariates, often called the curse of dimensionality, forces one to use larger smoothing pa-
rameters in higher dimensions, which in term leads to more biased smoothers. Optimally
selecting the smoothing parameter does not alleviate this problem, and therefore, the com-
mon wisdom is to avoid general non-parametric smoothing in higher dimension and focus
instead on fitting structurally constrained regression models, such as additive models Hastie
and Tibshirani (1995); Linton and Nielsen (1995). Iterative Bias Reduction Smoothers depart
from the classical multivariate structural regression models, and focus instead on estimating

very smooth fully non-parametric regression functions.

2. Iterative bias reduction smoothers

2.1. Method
Suppose that the pairs (X;,Y;) € R? x R are related through the non-parametric regression

model
Y, = m(X,-)+€i, 1=1,...,n, (1)

where m(-) is an unknown smooth function, and the disturbances €; are independent mean
zero and variance ¢ random variables that are independent of all the covariates. It is helpful

to rewrite Equation (1) in vector form by setting Y = (Y7,...,Y,)t, m = (m(X)), ..., m(Xy,))!
and € = (g1,...,€,)", to get
Y = m+te (2)
Linear smoothers can be written as
my = S,Y, (3)
where Sy is an nxn smoothing matrix with smoothing parameter A and m = Y = ()71 g }7,1)‘,

denotes the vector of fitted values. Typical smoothing matrices are bin smoothers, regression
splines, smoothing splines, thin plate splines, Nadaraya Watson kernels or local polynomials.

The linear smoother (3) has bias

B(’ﬁll) = E{ﬁz;]X}—m = (S,\ - [)m
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and variance
V(mu|X) = 8,802,
respectively. To estimate the bias, observe that the residuals Ry =Y —m; = (I — S))Y have

expected value E[R;|X] = m — E[m|X] = (I — Sx\)m = —B(my). This suggests estimating
the bias by smoothing the negative residuals

b = —=S\R1 = —S\(I = Sy)Y-
As the same smoother is assumed, the resulting estimate for the bias is zero whenever the
smoothing matrix Sy is a projection, as is the case for linear regression, bin smoothers and
regression splines.
Thus in the ibr package, we will focus only on multivariate smoother of two types: thin
plate splines and Nadaraya Watson (product) kernel smoother. The parameter X is either the
smoothing parameter or the bandwidths.
Repeating the bias reduction step k times produces to the linear smoother

e = S\Y+S5-SY +--+ S - Sy
(I- (=51
It is useful to extend regression smoothers to enable predictions at arbitrary locations z €
R? of the covariates. Such an extension allows us to assess and compare the quality of

various smoothers by how well the smoother predicts new observations. To this end, write
the prediction of the linear smoother S at an arbitrary location z as

m(r) = S(z),

where S(z) is a vector of size n whose entries are the weights for predicting m(z). The vector
S(z) is readily computed for many of the smoothers used in practice.

Next, write the iterative bias corrected smoother my as

my = ﬁ0+gl+"'+gk
= SHT+(I-S)+ (I8P 4+ -8y
=SBk,
to conclude that
fﬁk(z) = S(SC)tEk (4)

predicts m(z).

2.2. Kernel smoothers

We have two types of smoother implemented in package ibr: Nadaraya kernel smoothers and
thin plate splines smoothers. The smoothing matrix S of Nadaraya kernel type estimators

has entries

[, & [

M K (Fe el

Sij
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where K(.) is to be chosen as Gaussian, Epanechnikov, quadratic or uniform kernels.

We strongly advise the use of a Gaussian kernel because the corresponding spectrum of 7 — S
is less than 1. All kernels do not share that property (see Cornillon, Hengartner, and Matzner-
Lgber 2009).

The bandwidth in each component of the covariate depends on its scale. It is common to first
re-scale the data before selecting the bandwidth, but here we found it preferable to leave the
scales unchanged, and to select the bandwidth based on the effective degree of freedom (trace
of the smoothing matrix) of the univariate smoother in each of the components, with typical
values for the degree of freedom ranging from 1.05 to 1.2. A further advantage of the latter
choice is that there is no explicit reference to sample size.

2.3. Thin plate splines smoothers

The smoother matrix Sy of thin plate splines of order vy is readily calculated using a classical
method (see Gu 2002) and functions of package fields (Reinhard Furrer and Sain 2009). The
smoother depends only on the chosen order v and the smoothing parameter A. Recall that
the thin-plate smoother of degree vy minimises

min }n: (Y — f(X))P  + Alw), (5)
f
i=1

where

Gt -t

f(x)| dzx.

M) = 3 /R )

8.’1,‘,'1 s oa 61:iu(,

As the procedure is adaptive (see Cornillon et al. 2009), the smallest vq is the best choice.
Recall that the order vy must be strictly greater than d/2 and the minimum degree of freedom
is greater than My = ("‘L‘;ﬁl) (see Utreras 1988). Thus, for small to moderate n and d > 3,
usually the smoother Sy is not smooth enough for the procedure to work. In that case

Gaussian kernel smoother have to be used.

2.4. Stopping rules: choice of number of iterations &

The fitted values obtained by iterated bias reduction smoother depends on the number of
iteration k. The first iteration gives by construction a very biased estimate (too much bias).
When k grows to infinity, if the base smoother is well chosen (ie Gaussian kernel or thin plate
splines), my. tends to Y (too much variance). In order to have useful fitted value, we have
to stop the iteration whenever a good balance between bias and variance is achieved. This
is simply a choice of model and the package ibr offers the following stopping rules methods:
GCV (on log scale), AIC, corrected AIC, BIC and gMDL (see Gu 2002; ?). The selected
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iteration is thus:

ifAIC = argmin { 5% 4+ 2trace(Sk)} 5
kek
kccy = argmin {loga —2log < tl%L(S'k))} .
kex n
A 2(trace(Sk) + 1)
k = 1 1 :
AICc arkger?cm { oga *+ + — trace(Sy) —
. trace(S'k) log(F) n&2 r, Y2 —né?
— V V = = 2= 2
kompL B g n — trace(Sk)’ ¥ trace(Sk)V

3. Simulated example in R?

Define Wendelberger’s test function Wendelberger (1982)

R> f <- function(x, y) { .75*«exp(-((9%x-2)"2 + (9*y-2)"2)/4) +

+ .75%exp (- ((9%x+1) ~2/49 + (9%y+1)°2/10)) +
+ .50%exp (- ((9*x-7) "2 + (9%y-3)"2)/4) -
+ .20%exp(-((9*x-4)"2 + (9*y-7)"2)) }

and 50x50 grid of evaluation equally spaced between 0 and 1 (0 and 1 excluded)
R> ngrid <- 50; xf <- seq(0,1, length=ngrid+2)(-c(1,ngrid+2)]

R> yf <- xf ; zf <- outer(xf, yf, f)

R> grid <- cbind(rep(xf, ngrid), rep(xf, rep(ngrid, ngrid)))

We can plot this test function on the grid using

R> persp(xf, yf, zf, theta=130, phi=20, expand=0.45,main="True Function")

Figure 1: True regression function m(z1,z2) (Wendelberger’s test function) on the square
[0,1] x [0, 1].

Simulate some observation at 100 locations on the regular grid {0.05,0.15,...,0.85,0.95}2
with Gaussian disturbances which have zero mean and standard deviation producing a signal
to noise ratio of five.
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R> noise <- .2 ; N <- 13
R> xr <- seq(1/26, 25/26, length=N); yr <- xr ; zr <- outer(xr,yr,f);

R> set.seed (2857)
R> std <- sqrt(0.2+var(as.vector(zr))) ; noise <- rnorm(length(zr),O0,std)

R> Z <- zr + matrix(noise,N,N)
Transpose the data to a matrix of 2 explanatory variables (of length 100):

R> xc <- rep(xr, N) ; yc <- rep(yr, rep(N,N))
R> X <- cbind(xc, yc) ; Zc <- as.vector(Z)

With the data X and Zc we can use the iterated bias reduction smoother with thin plate
splines as base smoother S). As the procedure is adaptive, the best choice is to choose for
1o the minimum order which is 2, which is the default. As we do not have any idea of the
value of A we can choose a low degree of freedom, for instance 1.2 times the minimum degree

of freedom My = ("‘::‘_i;l) (which is 3 here):
R> res.ibr <- ibr(X,Zc,df=1.2,smoother="tps")

The number of iterations is chosen by GCV (the default) and the summary can be obtained

using summary function:
R> summary(res.ibr)
The following summary is obtained

Residuals:

Min 1Q Median 3Q Max
-0.252993 -0.061420 0.007702 0.065658 0.211733
Residual standard error: 0.1204 on 67.1 degrees of freedom

Initial df: 3.6 ; Final df: 32.89
gev
-3.437

Number of iterations: 335 chosen by gcv
Base smoother: Thin plate spline of order 2 (with 3.6 df)

giving the residuals standard error, the degree initial freedom (3.6) the final degree of freedom
(32.89) and the value of (log) GCV is equal to -3.437 at the chosen number of iterations

kccv = 335.
We can evaluate the fitted value

R> predict(res.ibr)
and the Mean Absolute Error on the grid

R> mean (abs (predict(res.ibr,grid)-as.vector(zf)))
[1] 0.04908602
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Obviously we can plot the fitted value on the grid as follows

R> persp(xf, yf, zf, theta=130, phi=20, expand=0.45)

Figure 2: Fitted regression function 7iu(z1,2) on the square [0,1] x [0,1], the number of
iteration is chosen by GCV: kgeov = 335.

It can be seen (Figure 2) that the fitted function is not smooth enough compared to the true
curve (Figure 1). A smoother function can be obtained by selecting directly “by hand” the
number of iterations, which improve the MAE:

R> res.ibr2 <- ibr(X,Zc,df=1.2,smoother="tps",iter=250)
R> mean(abs (predict(res.ibr2,grid)-as.vector(zf)))
[1] 0.04714154

We can make a comparison to the usual thin plate splines with A chosen by GCV provided
by the function Tps of package fields:

R> res.tps <- Tps(X, Zc, scale.type="unscaled")
and calculates the resulting MAE:

R> mean(abs (predict(res.tps,grid)-as.vector(zf)))
[1] 0.05255563

On this toy example, the simple use of ibr outperform the usual thin plate splines smoother.
Other stopping rules are available and if we use another stopping rules, such as AICc, we
simply issue the following command

R> res.ibr <- ibr(X,Zc,df=1.2,smoother="tps",criterion="aicc")

and we improve our MAE to 0.04530328 with a lower number of iterations (I;:AICC = 160).
This improvement is consistent with the visual examination of the previous fit of figure 2.
This toy example shows the ability of iterated bias reduction smoothing in a small dataset.
Let us evaluate the procedure on a real dataset in the next section.

4. Real example: Los Angeles Ozone Data

We consider the classical data set of ozone concentration in the Los Angeles basin which has
been previously considered by many authors Breiman (1996); Bithlmann and Yu (2003, 2006).
The sample size of the data is n = 330 and the number of explanatory variables d = 8.
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If we want to use thin plate splines here, the order vy have to be greater than d/2, that is
vo = 5. Thus the minimum degree of freedom of Sy is My = 495 which is greater than n. The
thin plate splines smoother is impossible to use here. Recall that the method needs a really
smooth base smoother Sy, with a low degree of freedom compared to n. Thus even if n was
500, the thin plate splines will be unsatisfactory base smoother (recall that in the preceding
section, for d = 2 we started at 3.3 df with 100 observations). )

Let us use the (default) Gaussian kernel smoother. As we do not have any idea of choosing
bandwidth for each of the 8 explanatory variables, we fix the degree of freedom of each
univariate kernel smoothing matrix at 1.1. Every covariate is implicitly thought as having the
same influence and smoothness. The grid of number of bias correction iterations & considered
by the model selection procedure for selecting the optimal number of iterations is chosen to
be the integer sequence from 1 to 500:

R> data(ozone)
R> res.ibr <- ibr(ozone[,-1],o0zone[,1],df=1.1,K=1:500)
R> summary(res.ibr)

The following summary is obtained

Residuals:
Min 1Q Median 3Q Max
-13.5581 -2.0566 -0.3481 1.9816 12.6049
Residual standard error: 3.946 on 309.6 degrees of freedom

Initial df: 2.06 ; Final df: 20.42
gev
2.873

Number of iterations: 64 chosen by gcv
Base smoother: gaussian kernel (with 2.06 df)

The number of iterations is kgoy = 64 which can be thought as quite low (recall that in
the previous example it was around 150-300). That suggests that we could choose an initial
df per variable less than 1.1 (for instance 1.05). In that case, the number of iterations will
increase obviously. A little gain of performance is usually expected.

A plot method is also available and gives the index plot of residuals and the evolution of
model selection criterion used for choosing £ (if sensible).

o ‘ e
o
20 4 ° l' e o .
g "' :.;; '1,4":&:- .,J ‘ -
Do o0 .- o S
e ] .-on‘ “ .° . 4
[ o] .o -- A .. LA 2
[ 1 ©
T T T ™ T T o T T T T T T
5 10 15 20 25 30 0 100 200 300 400 500
Fit Index

Figure 3: Index plot of residuals and evolution of GCV with k. The vertical dotted line is at
the selected kgcy = 64.
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If we want to evaluate the prediction on 50 random splits of 33 observations in test set and
297 in training (see Bithlmann and Yu 2003) use the following commands

R> XX <- ozonel[,-1]

R> Y <- ozonel,1]

R> erreurl.5 <- rep(0,33%50)

R> aa <- ¢(1,945095059,162152953)

R> for(i in 1:50){

set.seed(aa+i)

ind <- sample(1:330,33)

XXA <- XX[-ind,]

YA <- Y[-ind]

XXT <- XX[ind,]

YT <- Y[ind]

res.ibr <- ibr(XXA,YA,df=1.1,K=1:500)
erreurl.5[(33*(i-1)+1): (33*i)] <- YT-predict(res.ibr,XXT)

+ o+ + + 4+ o+ o+ o+ o+

F

R> print(mean(erreur1.5°2))

getting an error less than 14.9, which compare favourably with MARS (mda), projection
pursuit (ppr) or boosting (package mboost, (?)) which are around 17 (see Cornillon et al.

2009).

5. Conclusion

This new method of smoothing multivariate dataset seems to be promising especially on real
dataset. But one limitation of this smoothing method is the use of matrix n x n, where n is
the number of observations. Moreover, the longest operation is an eigen decomposition of an
n x n matrix which limits the size of dataset to be used.
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