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Abstract

In this paper we compare the performance of different methods for recon-
structing interfaces in multi-material compressible flow simulations. The meth-
ods compared are a material-order-dependent Volume-of-Fluid (VOF) method,
a material-order-independent VOF method based on power diagram partition-
ing of cells and the Moment-of-Fluid method (MOF). We demonstrate that
the MOF method provides the most accurate tracking of interfaces, followed
by the VOF method with the right reconstruction order. The material-order-
independent VOF method performs somewhat worse than the above two while
the solutions with VOF using the wrong material order are considerably worse.

1. Introduction

Accurate simulation of multi-material and multi-phase flows, requires effec-
tive tracking and management of material interfaces. Due to their ability to
strictly conserve the mass of different materials, volume-of-fluid (VOF) meth-
ods using interface reconstruction are widely used in such simulations [1, 2, 3, 4].
Originally developed by Hirt and Nichols [5], VOF methods do not explicitly
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track interfaces but rather track the volume of each material. The interface
between materials is first reconstructed in cells based on the material volume
fractions. Then the volume fluxes of each material between cells are estimated
from the geometric reconstruction and finally, the fluxes are used to compute
new volume fractions in each cell, in preparation for the next time step.

More recently, an interface tracking method has been devised based on track-
ing both the zeroth moment (volume) and first moment (centroid) of the ma-
terials in mesh cells. This new method, called the Moment-of-Fluid (MOF)
method [6], reconstructs interfaces more accurately than VOF methods and is
able to resolve interfacial features on the order of the local mesh size whereas
VOF methods do poorly in resolving features smaller than 3-4 times the local
mesh size.

In this paper, we present a comparative study of different VOF methods and
the MOF method for a complex compressible flow simulations involving more
than two materials.

2. VOF Methods with Nested Dissection (VOF-PLIC)

Early VOF methods used a straight line aligned with a coordinate axis to
partition the cell according to the material volume fractions. This is often re-
ferred to as the simple line interface calculation (SLIC) originally due to Noh
and Woodward [7]. Youngs [8, 9] extended the method to permit the material
interface to have an arbitrary orientation within the cell (called PLIC or Piece-
wise Linear Interface Calculation by Rider and Kothe [3]). In Youngs’ method,
the outward normal of the interface separating a material from the rest of the
cell is taken to be the negative gradient of the “volume fraction function”. The
“volume fraction function” is treated as a smooth function whose cell-centered
values are given by the cell-wise material volume fractions. The interface is then
defined by locating a line with the prescribed normal that cuts off the correct
volume of material from the computational cell.

Gradient based methods are in general first order accurate although they
may exhibit near second order accuracy on regular Cartesian grids. However,
there are extensions that make the reconstruction second-order accurate for
general grids. The LVIRA technique by Pilliod and Puckett [10] tries to find an
extended straight line interface that cuts off the exact volume fraction in the
cell of interest and minimizes the error in matching the volume fractions in the
surrounding cells. LVIRA uses a minimization procedure with a gradient-based
normal as the initial guess. An alternative is the interface smoothing procedure
based on Swartz’s quadratically convergent procedure [11] for finding a straight
line that cuts off the right volume fractions from two arbitrary planar shapes!.
Mosso et.al [14] and Garimella et.al. [15] have used this procedure in slightly
different ways to devise interface smoothing procedures. For a given mixed cell,
Garimella et.al. compute a straight line cutting off the right volume fractions

1This is commonly known as the “ham-sandwich” or Steinhaus problem[12, 13]
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Figure 1: Nested dissection interface reconstruction for three materials in the order ACB:
(a) the first (A) material is removed leaving a smaller available polygon, (b) the second (C)
material is removed from the available polygon, (c) the remaining available polygon is assigned
to material B, (d) the resulting partitioning of the computational cell. (e)-(g) show the same
procedure but the materials are processed in a different (CAB) order leading to a different
reconstruction (h).

from the cell and each of its mixed cell neighbors by the Swartz method. The
normals of these different straight lines are then averaged to give a smoothed
interface normal for the cell.

VOF-PLIC techniques have been successfully used to accurately simulate
two-phase (or two-material) flows and free-surface flows in two and three di-
mensions. However, their application to flows involving three or more materi-
als that come closer than the mesh spacing and even form junctions has been
mostly ad hoc. Examples of such phenomena are flows of immiscible fluids
(e.g. oil-water-gas), inertial confinement fusion, armor-antiarmor penetration
and powder metallurgical simulation of multiple materials.

The most common extensions of PLIC to cells with more than two materials
(multi-material cells)?, is to process materials one by one leading to a recon-
struction that is strongly dependent on the order in which the materials are
processed. Of the different ways to sequentially partition a cell, one of the most
general and accurate ways is called the “nested dissection” method [6], where
each material is separated from the others in a specified order. In the method,

2In a strict sense, any cell with more than one material is a multi-material cell. However,
we choose to distinguish two material cells from cells with more than two materials by calling
the latter multi-material cells. The reason for this distinction is that interface reconstruction
for one material is (in the case of VOF methods) complementary to the second in a cell with
two-materials while it is not for more than two materials




a pure polygon (or polyhedron) representing the first material is marked out
from the cell, leaving a mixed polygon for the remaining materials. Then, a
polygon representing the second material is marked out from the mixed poly-
gon and the process continues until the last material is processed. This method
is illustrated in Figure 1 and described in detail in [6, 16, 17]. Clearly, such
an order dependent method can easily place materials in wrong locations in the
cells if the chosen order of processing is incorrect. Even if the order of the ma-
terials is right, the computation of the interface normals in multi-material cells
is ambiguous. In computing the normal as the negative gradient of the volume
fraction function of a material, it is unclear whether one should use the volume
fractions with respect to original cells or the part of the cells remaining after the
earlier materials have been removed. It is also not clear where these function
values should be centered — at the center of the original cell or the center of the
unprocessed part of the cell.

The most significant adverse effect of these incorrect reconstructions, how-
ever, is in material advection in flow simulations. An improper material ordering
may result in materials being advected prematurely (or belatedly) into neighbor-
ing cells. This can further lead to small pieces of the material getting separated
and drifting away from the bulk of the material (sometimes known as “flotsam
and jetsam”). The effect of material ordering is illustrated clearly in [18] in
which a four-material disk (with each material occupying one quadrant of the
disk) is advected diagonally for 100 time steps. The results show dramatically
different results with different material orderings and a complete loss of the
cross-shaped interface.

The most common and trivial way to deal with the material order depen-
dency is to select the “correct” global ordering for a problem. However, this is
obviously problematic if the same materials must be processed differently in dif-
ferent parts of the mesh or if the material configurations change as the problem
advances in time. Also, some interface configurations may not be reproducible
by any particular order, such as the four material example referred to above.
While there has been some work on automatically deriving material order, most
of these attempts assume a layered structure for the interface [14, 19] and cannot
handle multiple materials coming together at a point very well.

3. VOF Methods with Power Diagram Reconstruction (VOF-PD)

Recently, Schofield et. al. [18] developed a new VOF-based reconstruction
method that is completely material order independent. This method, called the
Power Diagram method for Interface Reconstruction, does not sequentially carve
off materials from a cell using straight lines. Rather it first locates materials
approximately in multi-material cells and then partitions the cell simultane-
ously into multiple material regions using a weighted Voronoi decomposition
thereby avoiding the order dependence problem. We describe this procedure
below referring to it as the VOF-PD method.

In the first step of the VOF-PD method, approximate locations or “cen-
troids” of the materials in a cell are determined using the volume fractions of
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the materials in the cell and its neighbors. This is accomplished by treating the
volume fractions of each material in the cell and its neighbors as pointwise values
of a pseudo-density function. The pointwise values of this pseudo-density func-
tion are then used to obtain a linear reconstruction of the function along with
application of a limiter restricting the minimum and maximum values to 0 and
1 respectively. Then the linear approximation of this pseudo-density function is
used to derive an approximate centroid for the material in the cell. While this
method does not locate the material centroids very accurately in an absolute
sense, it does locate the materials quite well relative to each other.

In the second step of the procedure, the approximate centroids of the materi-
als are used as generators for a weighted Voronoi or Power Diagram subdivision[20,
21] of the cell. The weights of the different generators are chosen iteratively such
that the volume fractions of the different Voronoi polygons truncated by the cell
boundary match the specified material volume fractions exactly.

The authors have shown that this procedure is in general first-order accurate
and for two materials, exactly reproduces a gradient-based subdivision of the
cell. They have also presented a smoothing procedure for the power diagram-
based subdivision which results in a second-order accurate reconstruction but
slows the procedure down considerably unless applied only to cells with more
than two materials.

4. Moment-of-Fluid (MOF) Method

While VOF methods track only volume fractions of the individual materials
in mesh cells, the recently developed Moment-of-Fluid (MOF) method [6] tracks
both the zeroth moment (volume) and first moment (centroid) of the materials
in the cells. By tracking both moments the Moment-of-fluid method recon-
structs the material interface with higher accuracy than VOF methods and is
able to resolve interfacial details on the order of the local mesh size. In contrast,
VOF methods can only resolve details on the order of 3-4 times the local mesh
size. Also, since a line can be determined by only two parameters (an intercept
and a slope), the linear interface in a cell is actually over-determined by spec-
ifying the volume fraction and centroid. This implies that MOF can perform
an exact reconstruction of a linear interface and a second-order reconstruction
of a smoothly curved interface in a cell without the need for information from
neighboring cells.

Given the volume fraction and centroid of a material in a cell, the MOF re-
construction method computes a linear interface such that the volume fraction
of the material is exactly matched and the discrepancy between the specified
centroid and the centroid of the polygon or polyhedron behind interface is min-
imized. This is done by an optimization process with the slope of the linear
interface (or its angle with respect to the x-direction) as the primary variable.
For any given slope, the intercept of the line is determined uniquely by matching
the specified material volume fraction.

The MOF reconstruction is also typically implemented as a nested dissection
method where materials are carved off from a cell sequentially thereby making



it an order-dependent problem. However, it is possible to combinatorially deter-
mine the correct sequence of material reconstructions in MOF by reconstructing
with all possible sequences and choosing the sequence which leads to the least
discrepancy between the reconstruction and specified centroids. More complex
configurations such as 4 materials coming together at a point can be recon-
structed by recursively reconstructing the interface between groups of materials
first and then resolving the interfaces between materials in each group. Since
the number of materials in a cell is typically small, this does not impose a sig-
nificant computational penalty. Such a technique has proved very effective in
accurately reconstructing multi-material interfaces.

Further details of the MOF technique of interface reconstruction are given
in [6, 17].

5. Compressible flow simulation with VOF and MOF reconstructions

Here we briefly describe an arbitrary-Eulerian-Lagrangian (ALE) compress-
ible flow simulation algorithm used to compare the effects of the VOF and MOF
reconstruction techniques. Since the purpose of this paper is to compare the
different interface reconstruction methods, we deliberately do not provide many
details of the ALE code to avoid overwhelming the discussion. We believe the
general conclusions of this comparative study will hold regardless of the ALE
code used.

Our 2D research multi-material ALE code (RMALE) has a standard struc-
ture shown in Figure 2. It consists of three main components — multi-material
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— update mesh — remap all cell quantities
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Figure 2: Flowchart of our research multi-material code. Material reconstruction is hidden in
the update of material centroids at the end of the Lagrangian step.

Lagrangian solver, mesh untangling and smoothing method, and a flux-based



multi-material remapper. The Lagrangian step is repeated, until the mesh
smoothing condition is fulfilled (for example, poor mesh quality, or rezoning
counter reaches given number of hydro steps). When mesh smoothing is applied
to improving the mesh quality it is followed by a remapping step conservatively
interpolating all quantities on the new mesh. Then, a new Lagrangian cycle
can begin. The entire code employs a staggered Mimetic Finite Difference dis-
cretization [22], where scalar fluid quantities (density, mass, pressure, internal
energy) are located inside mesh cells, and vector quantities (positions, veloc-
ities) on mesh nodes. The multi-material ALE framework allows more than
one material inside one computational cell, where the amount of each material
is defined by its volume and mass fractions, and if we use MOF, the relative
location of each material is defined by the material centroid. In each multi-
material cell, scalar quantities are defined separately for every material, but the
variables in the primary equations are the average cell quantities. Contrary to
a single-material approach, our multi-material Lagrangian step and remapper
must update not only all fluid quantities, but also material volume and mass
fractions, and material centroids.

The Lagrangian solver solves the following set of hydrodynamic equations

w

%%=—V-w, p(fl—t=—V-p, p%=—pv-w (1)
representing conservation of mass, momenta in both directions, and total en-
ergy, completed by the ideal gas equation of state p = (y — 1) pe. Here, p is the
fluid density, w is the vector of velocities, p is the fluid pressure, ¢ is the specific
internal energy, and -y is the ratio of specific heats. The solver is based on eval-
uation of several types of forces affecting each mesh node [22] — zonal pressure
force representing forces due to the pressure in all neighboring zones, artificial
viscosity force (edge viscosity [23] is used in the examples), and anti-hourglass
stabilization force introduced in [24], suppressing some unphysical modes in the
mesh motion. For volume fraction update and common pressure construction, a
multi-material model is applied [25], which adjusts the material volume fractions
such that material pressures equilibrate to a common pressure value. The last
part of the Lagrangian step is a method for updating the material centroids. In
the first step, we advect them by keeping their parametric coordinates constant.
Appendix A shows that this method reproduces the Lagrangian motion of the
centroid for compressible flows with second-order accuracy. These centroids are
then used (together with updated volume fractions) as reference centroids for
the next material reconstruction step. The final material centroids are then set
to the centroids of the reconstructed polygons.

Our code incorporates several mesh-untangling and mesh-smoothing meth-
ods. All ALE examples in this paper use classical Winslow mesh smoothing
algorithm [26].

The last essential part of the ALE code is a remapping technique interpolat-
ing all fluid and material quantities between Lagrangian and smoothed compu-
tational meshes. Our flux-based remapper uses the multi-material extension of



the technique described in [27] — it constructs inward and outward fluxes of inte-
grals of 1, z, y, and some higher order polynomials using overlays (intersections)
of Lagrangian cells (or pure material polygons in the case of mixed cells) with
their neighbors in the smoothed mesh, and vice versa. Note that these integrals
of polynomials over polygons can be computed analytically. These integrals are
then used for construction of fluxes for all cell- and material-centered quantities.
They are also used for advancing material volumes (and consequently volume
fractions) and centroids in a flux form. For remapping nodal mass, we need
to construct inter-nodal mass fluxes, which we interpolate from inter-cell mass
fluxes as described in [28], extended by split side fluxes for adjacent cells and
corner fluxes. All nodal quantities are then remapped by attaching them to
these inter-nodal mass fluxes (for example, the momentum fluxes are obtained
by multiplication of the mass fluxes by an interpolated flux velocity). This ap-
proach allows us to construct two kinetic energies at each node — conservative
kinetic energy obtained by its remap, and non-conservative kinetic energy ob-
tained from remapped velocities. This kinetic energy discrepancy is resolved by
a standard energy fix [1], it is redistributed into the remapped internal energy
of adjacent materials, and thus global energy conservation is guaranteed.

6. Problem description

We demonstrate the properties of the described material reconstruction
methods in the context of multi-material ALE hydrocode for a triple point
problem suggested by Maire [29]. The initial data for this problem is shown in
Figure 3.

3
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0 1 - 7

Figure 3: Initial conditions for static triple point problem. Materials are shown in different
colors, and values of ratio of specific heats v, density p, pressure p, and velocity u are listed.

The computational domain has a rectangular shape with 7 x 3 edge ratio.
In all simulations, we use an equidistant orthogonal initial computational mesh
with 140 x 60 cells. It includes three materials at rest, initially forming a T-
junction. The high-pressure material (in light red or white) creates a shock
wave moving to to the right, through the low pressure blue (or darkest gray)



and green (medium gray) materials. Due to different material properties, it
moves faster in the blue or dark gray (lower density) material, and therefore
a vortex evolves around the triple point. In the later stages of the simulation
(final time 7" = 5), we can observe thin filaments of materials rotating around
the vortex. In our comparison, we focus especially on the material topology
(relative position of the materials) and on how well the thin tip of green or light
gray material filament is resolved.

It is to be noted that no mixed cells are present at the beginning of the
simulations, however, they appear during the first remap.

7. Results

Here, we compare a traditional gradient-based VOF method with different
orderings, the MOF method, and a VOF method based on power diagrams
(VOF-PD). We perform the comparison for two types of simulations: Eulerian
and full ALE. In the Eulerian approach, the solution is remapped back to the
orthogonal initial mesh after each Lagrangian step, while in the ALE approach,
Winslow mesh smoothing and consecutive remapping is performed after every
20 Lagrangian steps.

In Figure 4, we can see the first snapshot of the Eulerian simulation, cor-
responding to time 7" = 0.1. In this early moment, the white-blue interface is
shifted more to the right than the white-green one. As we can see, smooth inter-
faces are preserved when using VOF starting with white material, which is the
correct local material ordering for this particular problem, and when using the
MOF method. The VOF with Power diagrams still provide acceptable results,
while VOF methods using wrong orderings created very distorted interfaces
leading to problems in later stages of the simulation.

A snapshot in the middle of the simulation (7" = 2.5) is shown in Figure 5.
A thin filament of green material is starting to develop, which is reasonably
resolved using MOF and VOF with the correct ordering. VOF with power dia-
grams keeps the correct topology of materials, but starts to have problems with
resolving the thin filament. VOF with the wrong material orderings provides
the worst results — the filament starts to separate from the heavy blue material,
and there are small pieces of white material between green and blue that are
not easily visible at this scale.

In Figure 6, we can see the final snapshot of the Eulerian simulation corre-
sponding to time 7' = 5. Again, MOF and VOF in the correct ordering resolve
the thin part of the green filament reasonably well. VOF with the wrong ma-
terial orderings give us unacceptable results — filament transforms into a drip
separating from the blue material, and there are many tiny droplets of white
material between the blue and green materials VOF with power diagrams also
do not succeed in resolving the thin part of the filament, but the result is quali-
tatively better: the material topology is correct, no droplets appear, and green
material stays attached to the blue one.



In the next set of figures, the results of the same problem obtained by ALE
approach are presented. Generally, the results are worse than for the Eulerian
simulations due to the distorted computational mesh.

In Figure 7, the early stages of an ALE simulation at time 7" = 0.1 are
presented for the same example. As we can see, the MOF results are best of all
methods being compared, the multi-material interface smoothly transitions from
the white-blue to the white-green interface and no major jumps appear. The
results of VOF in correct ordering are comparable to the results of VOF with
power diagrams at this early stage. We can observe minor material jumps and
smoothness of the interface is violated. The worst results are clearly obtained
by VOF methods using the wrong material orderings. The T-shape of the
interface is completely violated and an unphysical wedge of white material starts
to separate blue and green materials, leading to more severe problems in later
stages of the simulations.

Figure 8 presents results in the middle of the simulation (7' = 2.5). In this
time moment, the (initially orthogonal) computational mesh is already relatively
distorted. As we can see, VOF in correct ordering resolves the longest green
~ filament. Filament resolved by MOF is shorter, compact, with a relatively
smooth interface. Power diagrams and VOF with wrong material orderings do
not resolve the filament very well, but power diagrams surpass VOF in material
topology — no fragment of white and blue material appear on the other side of
the green filament.

In Figure 9, we can see the last moment (7' = 5) of the ALE simulation.
MOF provides best result again — the filament is compact, relatively smooth,
no separated tiny droplets are present. We can observe such small pieces for
all VOF methods, even for correct ordering, where a tiny thin fiber of green
material separates white-blue interface upto the picture boundary. As for power
diagrams, no droplets appear, but we can see that the green filament has broken
into two parts.

8. Conclusions

We have presented a comparison of a material-order-dependent VOF method,
a material-order-independent VOF method and a material-order-independent
MOF method for a complex compressible flow involving more than two mate-
rials. The VOF methods track volumes of fluids and the MOF method tracks
both volumes and centroids of fluids. The first VOF method uses a nested
dissection or sequential removal of materials from the cell to reconstruct the
multi-material interface, making its results dependent on the material order-
ing. The second VOF method partitions the cells simultaneously into multiple
material regions using a power diagram and is therefore, independent of any
material order specification. The MOF method performs sequential subdivision
of the cell but considers all possible material orders and chooses the one that
minimizes the discrepancy between the specified and reconstructed moments.

From the simulations that we have run, we conclude that:
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e MOF performs the most accurate reconstructions, generally capturing fil-
aments accurately and getting the material topology correct. Since MOF
is quite recent it generally does not exist in many codes. Therefore, this
method is the best choice when developing new flow codes or when re-
vamping the interface tracking machinery. It is not advisable to introduce
MOF reconstruction into a flow code without ensuring that the advection
(or remapping) of centroids is done accurately through overlays.

e VOF with the correct material order performs remarkably well although
the resolution of filaments and other small features is poorer than MOF.
Since VOF commonly exists in flow codes that perform this type of in-
terface tracking, it is a natural choice when the flow is simple and the
material order can be predicted quite easily. It is also a good choice when
the flow has only two materials and no filamentary or other structures
smaller than 3-4 times the grid resolution are expected.

e VOF with power diagrams performs more poorly than MOF or VOF with
the right material order but usually gets the interface topology right. This
method is a good choice when the advection machinery cannot be re-
vamped to perform overlays but the interface reconstruction can be rewrit-
ten simply to partition cells using the power diagram.

e VOF with the wrong order performs poorly even for simple flows and is
not advised. If the ordering cannot be predicted or enforced strictly, it is
better to use VOF with the power diagram reconstruction.

A. Appendix

A.1. Lagrangian update of material centroids
The Lagrangian step may be viewed as the implicit creation of a family of
maps, ¢"(x) : R? — R%, such that x**! = ¢**+!(x*). Any material region,
Qf C R4, evolves over a time step as
Qn+l == ¢n+1(Qn) (2)
The map ¢"*! is illustrated in Figure 10.
If the map is an affine transformation, that is
" (x) = Ax+b (3)

where A € R%*? is invertible and b € R?, then if x.(Q") is the centroid of
the region and Q"+! = ¢"+1(Q"), then x.(Q"!) = Ax.(Q") + b. That is, the
transformed centroid is the centroid of the transformed region.

To demonstrate this,

||Qn+1”xc(Qn+l) =z / x dzr
Qn+l

= / (Ay + b) det A dy
s n
(det A)[|Q2"[| Axc(2™) + b(det A)[|Q"||

11



Noting that
Ja+Y| =/ dz:/ det A dz = || Q" det A
Qn+l Qn

we obtain,
Xo(Q"H) = A% (Q7) + b

The actual Lagrangian evolution of the region is given by the pointwise

equation
dx

E =
assuming the velocity field is known. The transformation, ¢"*!, is then the
solution to Equation 4 over the time interval [t",¢"1].

With sufficient regularity, the velocity field can be expanded as

u(x,t) ¥x € Qf (4)

Ouj(xo,t")
ot

au] (X(), tTL)

S +O(A)+O(AL)+O(AzA).

(5)

uj(x,t) = uj(xo,t")+({—t") +(zi—a))

Substituting this into Equation 4 and integrating, we find that
" T(x) = x + u(zy, t*) At + O(At?) + O(AtAx). (6)

Assuming At = Az, then the transformation defining the Lagrangian evo-
lution over a time step may be approximated as an affine transformation with
second order accuracy.

A.2. Constant parametric coordinate method

A method for updating material centroids during a Lagrangian step can
exploit this implicit evolution operator described above. The method described
[2, 19] is based on the existence of a mapping of the computational cell to and
from a logical space. It is assumed that the centroid of the material region has
the same logical coordinates, before and after the Lagrangian motion of the cell.
To obtain the centroid after the Lagrangian motion, the logical coordinates of
the centroid at the previous step are given to the logical to physical mapping
corresponding to the cell after the motion. This process is illustrated in Figure
10. It is important to note that the logical to physical space mapping is different
for each time step and the cells evolve in time.

The accuracy of the method relies on the properties of the logical to physical
coordinate transformations used.

Assume each cell has local coordinates, r € S, with an invertible map into
physical coordinates, )™ : S — Q™.

We define a family of local parameterizations, {¢"} to be linearity pre-
serving, if points from the parametric space, S, are mapped such that if

x™l = Ax™ 4 b, (7

12



then if x™ = ¢ (r),
x" =yt (r) = AY"(r) + b= Ax" +b (8)
Equivalently,
¢ = AY" +b (9)
The bilinear parameterization of quads satisfies this property: the two or-
thogonal coordinates, (7, s) € [0, 1] linearly interpolate the vertices (see Figure
10 for node numbering)
Yr(r,s) = (1 —7)[(1 — s)xi + sx3] +r[(1 — s)xT + sx3] (10)

Clearly, ¢"+! = AY™ + b as x;"*! = Ax;" + b for j =0,...,3.

The barycentric coordinates of polygon with vertices {v;} also satisfies the
linearity preserving property. To demonstrate this, barycentric coordinates sat-
isfy the properties [30],

X = Z/\ivi =y"(A), (11)
i

3% = 1, (12)

i
Ao > 0. (13)

If x has barycentric coordinates A, then if x™ = ¢"(A),
Ax = ) NAv; (14)
i

AP" N +b = D NAvi+b Y (15)
AY"(A) +b = > N(Av; +b) =yt (16)

1

where }~, \; = 1 was utilized in the second step.

If the family of transformations satisfy the linearity preserving property, then
we may analyze the accuracy of the constant parametric coordinate method. If
the parameterization family, {¢/"}, is linearity preserving, then updating the
location of a material centroid by assuming its parametric coordinates are un-
changed is exact for linear motions, since for an arbitrary subdomain mapped
with an affine transformation,

X(Q") = A% (Q") + b (17)
If the transformation is linearity preserving, then
X (") = p"Hl(r) = Ap™(r) + b = Ax.(Q") + b (18)

In general, the Lagrangian motion will not be linear. However, as was shown
in the previous section, for sufficient regularity in time an affine approximation
to the Lagrangian motion is second order accurate.
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Figure 4: Materials of triple point problem simulation, time 7' = 0.1. Eulerian runs (as
Lagrangian step and remap to the initial orthogonal mesh) using different methods for material
reconstruction are shown: global view on the entire computational domain for MOF method,
and zooms to the three material junction for Young’s VOF method (with different material
orderings), MOF, and Power Diagram based methods are shown.
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(with different material orderings), MOF, and Power Diagram based methods are shown.
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step and remap to the Winslow smoothed mesh after every 20 Lagrangian steps) using different
methods for material reconstruction are shown: global view on the entire computational
domain for MOF method, and zooms to the three material junction for Young’s VOF method
(with different material orderings), MOF, and Power Diagram based methods are shown.
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Figure 10: Steps in the constant parametric coordinate method. (1) The logical coordinates
of the centroid at time t" are calculated. (2) It is assumed the centroid has the same logical
coordinates at time ¢"*!. (3) The logical coordinates are mapped to physical coordinates to
give the location. This gives a second order accurate approximation to the centroid of the
evolved region Q"1 = ¢n+1(QnM).

21



References

[1]

2]

Bl

(8]

[9]

(10]

[12]

(13]

[14]

Benson DJ. Computational methods in Lagrangian and Eulerian hy-
drocodes. Computer Methods in Applied Mechanics and Engineering 1992;
99: 235-394.

Benson DJ. Volume of fluid interface reconstruction methods for multi-
material problems. Applied Mechanics Review 2002; 55(2): 151-165.

Rider WJ, Kothe DB. Reconstructing volume tracking. Journal of Com-
putational Physics 1998; 141: 112-152.

Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and
interfacial flow. Annual Review of Fluid Mechanics 1999; 31: 567-603.

Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of
free boundaries. Journal of Computational Physics 1981; 39: 201-225.

Dyadechko V, Shashkov MJ. Reconstruction of multi-material interfaces
from moment data. Journal of Computational Physics, 2008; 11: 5361-
5384.

Noh WF, Woodward P. SLIC (simple line interface calculation). In van der
Vooren Al and Zandbergen PJ, editors, 5th International Conference on
Numerical Methods in Fluid Dynamics, pages 330-340. Springer-Verlag,
1976.

Youngs DL. Time dependent multi-material flow with large fluid distortion.
In K. W. Morton and M. J. Baines, editors, Numerical Methods for Fluid
Dynamics, pages 273-285. Academic Press, 1982.

Youngs DL. An interface tracking method for a 3D Eulerian hydrodynamics
code. Technical Report AWE/44/92/35, AWRE Design and Math Division,
1984.

Pilliod JE Jr., Puckett EG. Second-order accurate volume-of-fluid algo-
rithms for tracking material interfaces. Journal of Computational Physics
2004; 199: 465-502.

Swartz BK. The second-order sharpening of blurred smooth borders. Math-
ematics of Computation 1989; 52(186): 675-714.

Steinhaus H. A note on the ham sandwich theorem Mathesis Polska, 1938;
9: 26-28.

Stone AH, Tukey JW. Generalized “sandwich” theorems Duke Mathemat-
ical Journal, 1942; 9: 356-359.

Mosso S, Clancy S. A geometrically derived priority system for Young’s
interface reconstruction. Technical Report LA-CP-95-0081, Los Alamos
National Laboratory, Los Alamos, NM, 1995.

22



(15]

[16]

(17]

(18]

(19]

20]
(21]

[22]

(23]

(24]

(25]

(26]

27)

Garimella RV, Dyadechko V, Swartz BK, Shaskov MJ. Interface recon-
struction in multi-fluid, multi-phase flow simulations. In Proceedings of
the 14th International Meshing Roundtable, pages 19-32, San Diego, CA,
September 2005. Springer.

Schofield SP, Garimella RV, Francois MM, Loubere R. Material order-
independent interface reconstruction using power diagrams International
Journal for Numerical Methods in Fluids, 2007; 56(6): 643-659.

Ahn HT, Shashkov M. Multi-material interface reconstruction on gener-
alized polyhedral meshes. Journal of Computational Physics 2007; 226:
2096-2132.

Schofield SP, Garimella RV, Francois MM, Loubere R. A second-order
accurate material-order-independent interface reconstruction technique for

multi-material flow simulations Journal of Computational Physics, 2009;
228(3): 731-745.

Benson DJ. Eulerian finite element methods for the micromechanics of het-
erogeneous materials: Dynamic prioritization of material interfaces. Com-
puter Methods in Applied Mechanics and Engineering, 1998, 151: 343-360.

Aurenhammer F. Power diagrams: properties, algorithms and applications.
SIAM J. Computing 1987; 16(1): 78-96.

Imai H, Iri M, Murota K. Voronoi diagram in the Laguerre geometry and
its applications. SIAM J. Computing 1985; 14(1): 93-105.

Caramana EJ, Burton DE, Shashkov MJ, Whalen PP. The construction
of compatible hydrodynamics algorithms utilizing conservation of total en-
ergy. Journal of Computational Physics 1998; 146: 227-262.

Caramana EJ, Shashkov MJ, Whalen PP. Formulations of artificial viscos-
ity for muti-dimensional shock wave computations. Journal of Computa-
tional Physics 1998; 144: 70-97.

Scovazzi G, Love E, Shashkov M. Multi-scale Lagrangian shock hydro-
dynamics on Q1/PO finite elements: Theoretical framework and two-
dimensional computations. Comput. Methods Appl. Mech. Engrg. 2008;
197: 1056-1079.

Shashkov M. Closure models for multidimensional cells in arbitrary
Lagrangian-Eulerian hydrocodes. Int. J. Numer. Meth. Fluids 2008; 56:
1497-1504.

Winslow AM. Equipotential zoning of two-dimensional meshes. Technical
Report UCRL-7312, Lawrence Livermore National Laboratory, 1963.

Margolin LG, Shashkov M. Second-order sign-preserving conservative inter-
polation (remapping) on general grids. Journal of Computational Physics
2003; 184: 266-298.

23



(28]

[29]

30]

Pember RB, Anderson RW. A comparison of staggered-mesh Lagrange
plus remap and cell-centered direct Eulerian Godunov schemes for Eule-
rian shock hydrodynamics. Technical Report UCRL-JC-139820, Lawrence
Livermore National Laboratory, 2000.

Maire P-H. Personal Communication. Los Alamos National Laboratory,
2007.

J. Warren, S. Schaefer, A. N. Hirani, and M. Desbrun. Barycentric coor-
dinates for convex sets. Advances in Computational Mathematics, 2007,
27(3): 319-338.

24





