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Abstract 

In this paper we compare the performance of different methods for recon­
structing interfaces in multi-material compressible flow simulations. The meth­
ods compared are a material-order-dependent Volume-of-Flujd (VOF) method, 
a material-order-independent VOF method based on power .diagram partition­
ing of cells and the Moment-of-Fluid method (MOF) . We demonstrate that 
the MOF method provides the most accurate tracking of interfaces, followed 
by the VOF method with the right reconstruction orqer. The material-order­
independent VOF method performs somewhat worse than the above two while 
the solutions with VOF using the wrong material order are considerably worse . 

1. Introduction 

Accurate simulation of multi-material and multi-phase flows, requires effec­
tive tracking and management of material interfaces. Due to their ability to 
strictly conserve the mass of different materials, volume-of-fluid (VOF) meth­
ods using interface reconstruction are widely used in such simulations [1 , 2, 3, 4]. 
Originally developed by Rirt and Nichols [5], VOF methods do not explicitly 
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track interfaces but rather track the volume of each material. The interface 
between materials is first reconstructed in cells based on the material volume 
fractions. Then the volume fluxes of each material between cells are estimated 
from the geometric reconstruction and finally, the fllL"Xes are used to compute 
new volume fractions in each cell, in preparation for the next time step. 

More recently, an interface tracking method has been devised based on track­
ing both the zeroth moment (volume) and first moment (centroid) of the ma­
terials in mesh cells. This new method, called the Moment-of-Fluid (MOF) 
method [6], reconstructs interfaces more acc,urately than VOF methods and is 
able to resolve interfacial features on the order of the local mesh size whereas 
VOF methods do poorly in resolving features smaller than 3-4 times the local 
mesh size. 

In this paper , we present a comparative study of different VOF methods and 
the MOF method for a complex compressible flow simulations involving more 
than two materials. 

2. VOF Methods w ith Nested Dissection (VOF-PLIC) 

Early VOF methods used a straight line aligned with a coordinate axis to 
partition the cell according to the material volume fractions. This is often re­
ferred to as the simple line interface calculation (SLIC) originally due to Noh 
and Woodward [7]. Youngs [8 , 9] extended the method to permit the material 
interface to have an arbitrary orientation within the cell (called PLIC or Piece­
wise Linear Interface Calculation by Rider and Kothe [3]). In Youngs' method , 
the outward normal of the interface separating a material from the rest of the 
cell is taken to be the negative gradient of the "volume fraction fWlction". The 
"volume fraction function" is treated as a smooth function whose cell-centered 
values are given by the cell-wise material volume fractions. The interface is then 
defined by locating a line with the prescribed normal that cuts off the correct 
volume of material from the computational cell. 

Gradient based methods are in general first order accurate although they 
may exhibit near second order accuracy on regular Cartesian grids . However , 
there are extensions that make the reconstruction second-order accurate for 
general grids. The LVIRA technique by Pilliod and Puckett [10] tries to find an 
extended straight line interface that cuts off the exact volume fraction in the 
cell of interest and minimizes the error in matching the volume fractions in the 
surrounding cells. LVIRA uses a minimization procedure with a gradient-based 
normal as the initial guess. An alternative is the interface smoothing procedure 
based on Swartz's quadratically convergent procedme [11] for finding a straight 
line that cuts off the right volume fractions from two arbitrary planar shapes!. 
Mosso et.al [14] and Garimella et .al. [15] have used this procedure in slightly 
different ways to devise interface smoothing procedures. For a given mixed cell, 
Garimella et.al. compute a straight line cutting off the right volume fractions 

IThis is commonly known as the "ham-sandwich" or Steinhaus problem[12, 13J 
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Figure 1: Nested dissect ion interface reconstruction for three materials in the order ACB : 
(a) the first (A) materia l is removed leaving a smaller available polygon, (b) the second (C) 
material is removed from the available polygon, (c) the remaining available polygon is assigned 
to material B, (d) the resulting partitioning of the computational cell. (e)-(g) show the same 
procedure but the materials are processed in a different (CAB) order leading to a different 
reconstruction (h). 

from the cell and each of its mixed cell neighbors by the Swartz method. The 
normals of these different straight lines are then averaged to give a smoothed 
interface normal for the cell. 

VOF-PLIC techniques have been successfully used to accurately simulate 
two-phase (or two-material) flows and free-surface flows in two and three di­
mensions . However, their application to flows involving three or more materi­
als that come closer than the mesh spacing and even form junctions has been 
mostly ad hoc. Examples of such phenomena are flows of immiscible fluids 
(e .g. oil-water-gas), inertial confinement fusion, armor-anti armor penetration 
and powder metallurgical simulation of multiple materials. 

The most common extensions of PLIC to cells with more than two materials 
(multi-material cells) 2 , is to process materials one by one leading to a recon­
struction that is strongly dependent on the order in which the materials are 
processed. Of the different ways to sequentially partition a cell, one of the most 
general and accurate ways is called the "nested dissection" method [6], where 
each material is separated from the others in a specified order. In the method , 

2 In a strict sense, any cell with more than one material is a multi-material cell. However , 
we choose to distinguish two material cells from cells with more than two materials by calling 
the latter multi-material cells. The reason for this distinction is that interface reconstruction 
for one material is (in the case of VOF methods) complementary to the second in a cell with 
two-materials while it is not for more than two materials 
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a pure polygon (or polyhedron) representing the first material is marked out 
from the cell, leaving a mixed polygon for the remaining materials. Then, a 
polygon representing the second material is marked out from the mixed poly­
gon and the process continues until the last material is processed . This method 
is illustrated in Figure 1 and described in detail in [6, 16, 17] . Clearly, such 
an order dependent method can easily place materials in wrong locations in the 
cells if the chosen order of processing is incorrect. Even if the order of the ma­
terials is right , the computation of the interface normals in multi-material cells 
is ambiguous. In computing the normal as the negative gradient of the volume 
fract ion funct ion of a material , it is unclear whether one should use the volume 
fractions with respect to original cells or the part of the cells remaining after the 
earlier materials have been removed. It is also not clear where these function 
values should be centered - at the center of the original cell or the center of the 
unprocessed part of the cell. 

The most significant adverse effect of these incorrect reconstructions, how­
ever, is in material advection in flow simulations. An improper material ordering 
may result in materials being advected prematurely (or belatedly) into neighbor­
ing cells . This can further lead to small pieces of the material getting separated 
and drifting away from the bulk of the material (sometimes known as "flotsam 
and jetsam"). The effect of material ordering is illustrated clearly in [18] in 
which a four-material disk (with each material occupying one quadrant of the 
disk) is advected diagonally for 100 time steps. The results show dramatically 
different results with different material orderings and a complete loss of the 
cross-shaped interface. 

The most common and trivial way to deal with the material order depen­
dency is to select the "correct" global ordering for a problem. However, this is 
obviously problematic if the same materials must be processed differently in dif­
ferent parts of the mesh or if the material configurations change as the problem 
advances in t ime. Also, some interface configurations may not be reproducible 
by any particular order, such as the fou r material example referred to above. 
While there has been some work on automatica lly deriving material order, most 
of these attempts assume a layered structure for the interface [14, 19] and cannot 
handle multiple materials coming together at a point very well. 

3. VOF M ethods with Power Diagram Reconstruction (VOF-PD) 

Recently, Schofield et . al. [18] developed a new VOF-based reconstruction 
method that is completely material order independent . This method , called the 
Power Diagram method for Interface Reconstruction, does not sequentially carve 
off materials from a cell using straight lines . Rather it first locates materials 
approximately in multi-material cells and then partitions the cell simultane­
ously into multiple material regions using a weighted Voronoi decomposition 
thereby avoiding the order dependence problem. We describe this procedure 
below referring to it as the VOF-PD method. 

In the first step of the VOF-PD method, approximate locations or "cen­
troids" of the materials in a cell are determined using the volume fractions of 
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the materials in the cell and its neighbors. This is accomplished by treating the 
volume fractions of each material in the cell and its neighbors as pointwise values 
of a pseudo-density function. The pointwise values of this pseudo-density func­
tion are then used to obtain a linear reconstruction of the fWlction along with 
application of a limiter restricting the minimum and maximum values to °and 
1 respectively. Then the linear approximation of this pseudo-density function is 
used to derive an approximate centroid for the material in the cell. While this 
method does not locate the material centroids very accurately in an absolute 
sense, it does locate the materials quite well relative to each other. 

In the second step of the procedure, the approximate centroids of the materi­
als are used as generators for a weighted Voronoi or Power Diagram subdivision[20, 
21] of the cell. The weights of the different generators are chosen iteratively such 
that the volume fractions of the different Voronoi polygons truncated by the cell 
boundary match the specified material volume fractions exactly. 

The authors have shown that this procedure is in general first-order accurate 
and for two materials, exactly reproduces a gradient-based subdivision of the 
cell. They have also presented a smoothing procedure for the power diagram­
based subdivision which results in a second-order accurate reconstruction but 
slows the procedure down considerably unless applied only to cells with more 
than two materials . 

4 . Moment-of-Fluid (MOF) M et hod 

While VOF methods track only volume fractions of the individual materials 
in mesh cells, the recently developed Moment-of-Fluid (MOF) method [6] tracks 
both the zeroth moment (volume) and first moment (centroid) of the materials 
in the cells . By tracking both moments the Moment-of-fluid method recon­
structs the material interface with higher accuracy than VOF methods and is 
able to resolve interfacial details on the order of the local mesh size. In contrast, 
VOF methods can only resolve details on the order of 3-4 times the local mesh 
size. Also, si~ce a line can be determined by only two parameters (an intercept 
and a slope) , the linear interface in a cell is actually over-determined by spec­
ifying the volume fraction and centroid. This implies that MOF can perform 
an exact reconstruction of a linear interface and a second-order reconstruction 
of a smoothly curved interface in a cell without the need for information from 
neighboring cells . 

Given the volume fraction and centroid of a material in a cell, the MOF re­
construction method computes a linear interface such that the volume fraction 
of the material is exactly matched and the discrepancy between the specified 
centroid and the centroid of the polygon or polyhedron behind interface is min­
imized. This is done by an optimization process with the slope of the linear 
interface (or its angle with respect to the x-direction) as the primary variable. 
For any given slope, the intercept of the line is determined uniquely by matching 
the specified material volume fraction. 

The MOF reconstruction is also typically implemented as a nested dissection 
method where materials are carved off from a cell sequentially thereby making 
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it an order-dependent problem. However, it is possible to combinatorially deter­
mine the correct sequence of material reconstructions in MOF by reconstructing 
with all possible sequences and choosing the sequence which leads to the least 
discrepancy between the reconstruction and specified centroids. More complex 
configurations such as 4 materials coming together at a point can be recon­
structed by recursively reconstructing the interface between groups of materials 
first and then resolving the interfaces between materials in each group. Since 
the number of materials in a cell is typically small, this does not impose a sig­
nificant computational penalty. Such a technique has proved very effective in 
accurately reconstructing multi-material interfaces. 

Further details of the MOF technique of interface reconstruction are given 
in [6 , 17]. 

5. Compressible flow simulation with VOF and MOF reconstructions 

Here we briefly describe an arbitrary-Eulerian-Lagrangian (ALE) compress­
ible flow simulation algorithm used to compare the effects of the VOF and MOF 
reconstruction techniques . Since the purpose of this paper is to compare the 
different interface reconstruction methods, we deliberately do not provide many 
details of the ALE code to avoid overwhelming the discussion. We believe the 
general conclusions of this comparative study will hold regardless of the ALE 
code used. 

Our 2D research multi-material ALE code (RMALE) has a standard struc­
ture shown in Figure 2. It consists of three main components - multi-material 

- update quantities 
- update mesh - remap all cell quantilies 

- remap nodal momenta- vol. fractions. centroids 
- correct energy 
- vol. fractions. centroids 

- closure model 

- closure model 

Figure 2: Flowchart of our research multi-material code. Material reconstruction is hidden in 
the update of material centroids at the end of the Lagrangian step. 

Lagrangian solver, mesh untangling and smoothing method, and a flux-based 
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multi-material remapper. The Lagrangian step is repeated, until the mesh 
smoothing condition is fulfilled (for example, poor mesh quality, or rezoning 
counter reaches given number of hydro steps) . When mesh smoothing is applied 
to improving the mesh quality it is followed by a remapping step conservatively 
interpolating all quantities on the new mesh. Then, a new Lagrangian cycle 
can begin. The enti re code employs a staggered Mimetic Finite Difference dis­
cretization [22], where scalar fluid quantities (density, mass, pressure, internal 
energy) are located inside mesh cells, and vector quantities (positions, veloc­
ities) on mesh nodes. The multi-material ALE framework allows more than 
one material inside one computational cell, where the amount of each material 
is defined by its volume and mass fractions, and if we use MOF, the relative 
location of each material is defined by the material centroid . In each multi­
material cell, scalar quantities are defined separately for every material, but the 
variables in the primary equations are the average cell quantities . Contrary to 
a single-material approach, our multi-material Lagrangian step and remapper 
must update not only all fluid quantities, but also material volume and mass 
fractions, and material centroids. 

The Lagrangian solver solves the following set of hydrodynamic equations 

1 dp dw dE
--=-\l·w p-=-\l . p p-=-p\l·w (1) 
p dt ' dt ' dt 

representing conservation of mass, momenta in both directions, and total en­
ergy, completed by the ideal gas equation of state p = h - 1) pE. Here, p is the 
fluid density, w is the vector of velocities, p is the fluid pressure, E is the specific 
internal energy, and 'Y is the ratio of specific heats. The solver is based on eval­
uation of several types of forces affecting each mesh node [22] - zonal pressure 
force representing forces due to the pressure in all neighboring zones, artificial 
viscosity force (edge viscosity [23] is used in the examples), and anti-hourglass 
stabilization force introduced in [24], suppressing some unphysical modes in the 
mesh motion. For volume fraction update and common pressure construction, a 
multi-material model is applied [25], which adjusts the material volume fractions 
such that material pressures equilibrate to a common pressure value. The last 
part of the Lagrangian step is a method for updating the material centroids. In 
the first step, we advect them by keeping their parametric coordinates constant. 
Appendix A shows that this method reproduces the Lagrangian motion of the 
centroid for compressible flows with second-order accuracy. These centroids are 
then used (together with updated volwne fractions) as reference centroids for 
the next material reconstruction step. The final material centroids are then set 
to the centroids of the reconstructed polygons. 

Our code incorporates several mesh-untangling and mesh-smoothing meth­
ods. All ALE examples in this paper use classical Winslow mesh smoothing 
algorithm [26] . 

The last essential part of the ALE code is a remapping technique interpolat­
ing all fluid and material quantities between Lagrangian and smoothed compu­
tational meshes. Our flux-based remapper uses the multi-material extension of 
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the technique described in [27] - it constructs inward and outward fluxes of inte­
grals of 1, x, y, and some higher order polynomials using overlays (intersections) 
of Lagrangian cells (or pure material polygons in the case of mixed cells) with 
their neighbors in the smoothed mesh, and vice versa. Note that these integrals 
of polynomials over polygons can be computed analytically. These integrals are 
then used for construction of fluxes for all cell- and material-centered quantities. 
They are also used for advancing material volumes (and consequently volume 
fractions) and 'centroids in a flux form. For remapping nodal mass, we need 
to construct inter-nodal mass fluxes , which we interpolate from inter-cell mass 
fluxes as described in [28], extended by split side fluxes for adjacent cells and 
corner fluxes. All nodal quantit ies are then remapped by attaching them to 
these inter-nodal mass fluxes (for example, the momentum flLLxes are obtained 
by multiplication of the mass fluxes by an interpolated flux velocity). This ap­
proach allows us to construct two kinetic energies at each node - conservative 
kinetic energy obtained by its remap, and non-conservative kinetic energy ob­
tained from remapped velocities. This kinetic energy discrepancy is resolved by 
a standard energy fix [1], it is redistributed into the remapped internal energy 
of adjacent materials, and thus global energy conservation is guaranteed . 

6. Problem d escription 

We demonstrate the properties of the described material reconstruction 
methods in the context of multi-material ALE hydrocode for a triple point 
problem suggested by Maire [29] . The initial data for this problem is shown in 
Figure 3. 

3",--­

1.5 

y=1 .5 
p=1 
p=1 
u=o 

o 7 

Figure 3: Initial conditions for static trip1e point problem. Materials are shown in different 
colors , and values of ratio of specific heats "Y, density p, pressure p, and velocity u are listed. 

The computational domain has a rectangular shape with 7 x 3 edge ratio. 
In all simulations, we use an equidistant orthogonal initial computational mesh 
with 140 x 60 cells. It includes three materials at rest, initially forming a T­
junction. The high-pressure material (in light red or white) creates a shock 
wave moving to to the right, through the low pressure blue (or darkest gray) 
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and green (medium gray) materials. Due to different material properties, it 
moves faster in the blue or dark gray (lower density) material, and therefore 
a vortex evolves around the triple point. In the later stages of the simulation 
(final time T = 5), we can observe thin filaments of materials rotating around 
the vortex. In our comparison, we focus especially on the material topology 
(relative position of the materials) and on how well the thin tip of green or light 
gray material filament is resolved. 

It is to be noted that no mixed celJs are present at the beginning of the 
simulations, however, they appear during the first remap. 

7. R esults 

Here, we compare a traditional gradient-based VOF method with different 
orderings, the MOF method, and a VOF method based on power diagrams 
(VOF-PD). We perform the comparison for two types of simulations: Eulerian 
and full ALE. In the Eulerian approach, the solution is remapped back to the 
orthogonal initial mesh after each Lagrangian step, while in the ALE approach, 
Winslow mesh smoothing and consecutive remapping is performed after every 
20 Lagrangian steps. 

In Figure 4, we can see the first snapshot of the Eulerian simulation, cor­
responding to time T = 0.1. In this early moment, the white-blue interface is 
shifted more to the right than the white-green one. As we can see, smooth inter­
faces are preserved when using VOF starting with white material, which is the 
correct local material ordering for this particular problem, and when using the 
MOF method. The VOF with Power diagrams still provide acceptable results, 
while VOF methods using wrong orderings created very distorted interfaces 
leading to problems in later stages of the simulation. 

A snapshot in the middle of the simulation (T = 2.5) is shown in Figure 5. 
A thin filament of green material is starting to develop, which is reasonably 
resolved using MOF and VOF with the correct ordering. VOF with power dia­
grams keeps the correct topology of materials, but starts to have problems with 
resolving the thin filament. VOF with the wrong material orderings provides 
the worst results - the filament starts to separate from the heavy blue material, 
and there are small pieces of white material between green and blue that are 
not easily visible at this scale. 

In Figure 6, we can see the final snapshot of the Eulerian simulation corre­
sponding to time T = 5. Again, MOF and VOF in the correct ordering resolve 
the thin part of the green filament reasonably well. VOF with the wrong ma­
terial orderings give us unacceptable results - filament transforms into a drip 
separating from the blue material, and there are many tiny droplets of white 
material between the blue and green materials VOF with power diagrams also 
do not succeed in resolving the thin part of the filament, but the result is quali­
tatively better: the material topology is correct, no droplets appear, and green 
material stays attached to the blue one. 
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In the next set of figures, the results of the same problem obtained by ALE 
approach are presented. Generally, the results are worse than for the Eulerian 
simulations due to the distorted computational mesh. 

In Figure 7, the early stages of an ALE simulation at time T = 0.1 are 
presented for the same example. As we can see, the MOF results are best of all 
methods being compared, the multi-material interface smoothly transitions from 
the white-blue to the white-green interface and no major jumps appear. The 
results of VOF in correct ordering are comparable to the results of VOF with 
power diagrams at this early stage. We can observe minor material jumps and 
smoothness of the interface is violated. The worst results are clearly obtained 
by VOF methods using the wrong material orderings . The T-shape of the 
interface is completely violated and an unphysical wedge of white material starts 
to separate blue and green materials, leading to more severe problems in later 
stages of the simulations. 

Figure 8 presents results in the middle of the simulation (T = 2.5) . In this 
time moment, the (initially orthogonal) computational mesh is already relatively 
distorted. As we can see, VOF in correct ordering resolves the longest green 
filament. Filament resolved by MOF is shorter, compact, with a relatively 
smooth interface. Power diagrams and VOF with wrong material orderings do 
not resolve the filament very well, but power diagrams surpass VOF in material 
topology - no fragment of white and blue material appear on the other side of 
the green filament. 

In Figure 9, we can see the last moment (T = 5) of the ALE simulation. 
MOF provides best result again - the fi lament is compact, relatively smooth, 
no separated t iny droplets are present. We can observe such small pieces for 
all VOF methods , even for correct ordering, where a tiny thin fiber of green 
material separates white-blue interface upto the picture boundary. As for power 
diagrams, no droplets appear, but we can see that the green filament has broken 
into two parts . 

8 . Conclus ions 

We have presented a comparison of a material-order-dependent VOF method , 
a material-order-independent VOF method and a material-order-independent 
MOF method for a complex compressible flow involving more than two mate­
rials . The VOF methods track volumes of fluids and the MOF method tracks 
both volumes and centroids of fluids. The first VOF method uses a nested 
dissection or sequential removal of materials from the cell to reconstruct the 
multi-material interface, making its results dependent on the material order­
ing. The second VOF method partitions the cells simultaneously into multiple 
material regions using a power diagram and is therefore , independent of any 
material order specification. The MOF method performs sequential subdivision 
of the cell but considers all possible material orders and chooses the one that 
minimizes the discrepancy between the specified and reconstructed moments. 

From the simulations that we have run , we conclude that: 

10 



• MOF performs the most accurate reconstructions , generally capturing fil­
aments accurately and getting the material topology correct. Since MOF 
is quite recent it generally does not exist in many codes. Therefore, this 
method is the best choice when developing new flow codes or when re­
vamping the interface tracking machinery. It is not advisable to introduce 
MOF reconstruction into a flow code without ensuring that the advection 
(or remapping) of centroids is done accmately through overlays. 

• 	VOF with the correct material order performs remarkably well although 
the resolution of filaments and other small features is poorer than MOF. 
Since VOF commonly exists in flow codes that perform this type of in­
terface tracking, it is a natural choice when the flow is simple and the 
material order can be predicted quite easily. It is also a good choice when 
the flow has only two materials and no filamentary or other structures 
smaller than 3-4 times the grid resolution are expected. 

• VOF with power diagrams performs more poorly than MOF or VOF with 
the right material order but usually gets the interface topology right. This 
method is a' good choice when the advection machinery cannot be re­
vamped to perform overlays but the interface reconstruction can be rewrit­
ten simply to partition cells using the power diagram. 

• VOF with the wrong order performs poorly even for simple flows and is 
not advised. If the ordering cannot be predicted or enforced strictly, it is 
better to use VOF with the power diagram reconstruction. 

A. Append ix 

A ,1. Lagrangian update 0/ material centroids 
The Lagrangian step may be viewed as the implicit creation of a family of 

maps, rjJn(x) : Ed >-> Ed, such that xn+l = ¢n+l(xn). Any material region, 
n t c Ed, evolves over a time step as 

nn+l = rjJn+l(nn) 	 (2) 

The map rjJn+l is illustrated in Figme 10. 
If the map is an affine transformation, that is 

rjJn+l( X) = Ax + b 	 (3) 

where A E Edxd is invertible and b E Ed, then if xc(nn) is the centroid of 
the region and nn+l = rjJn+l (nn), then xc(nn+1) = Axc(nn) + b. That is, the 
transformed centroid is the centroid of the transformed region. 

To demonstrate this, 

Ilnn+1 I1xc(nn+l ) r x dx 
Jnn+l 

l	 ,,(AY+b)detAdY 

(detA)llnnIlAxc(nn) + b(detA)llnnll 
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Noting that 

Ilon +111=1 dx= r detAdx=IIOnlldetA 
12'1+ 1 Jrp' 

we obtain, 
xc(on+l) = AXc(on) + b 

The actual Lagrangian evolution of the region is given by the pointwise 
equation 

dx 
dt = u (x ,t) \;Ix E ot (4) 

assuming the velocity field is known. The transformation, cpn+l, is then the 
solution to Equation 4 over the time interval [tn, tn +1]. 

With sufficient regularity, the velocity field can be expanded as 

au (Xo tn) au (Xo tn)
Uj(x, t) = Uj(xo, tn)+(t_tn) j <l' +(Xi-X ?) ja' +0(6.x2)+0(6.t2)+0(6.x6.t). 

t Xi 
(5) 

Substituting this into Equation 4 and integrating, we find that 

cpn+l(X) = X + u (XO, tn).6.t + 0(6.t2) + O(6.t6.X). (6) 

Assuming 6.t ~ 6.x , then the transformation defining the Lagrangian evo­
lution over a time step may be approximated as an affine transformation with 
second order accuracy. 

A.2. Constant parametric coordinate method 

A method for updating material centroids during a Lagrangian step can 
exploit this implicit evolution operator described above. The method described 
[2, 19] is based on the existence of a mapping of the computational cell to and 
from a logical space. It is assumed that the centroid of the material region has 
the same logical coordinates, before and after the Lagrangian motion of the cell. 
To obtain the centroid after the Lagrangian motion , the logical coordinates of 
the centroid at the previous step are given to the logical to physical mapping 
corresponding to the cell after the motion. This process is illustrated in Figure 
10. It is important to note that the logical to physical space mapping is different 
for each time step and the cells evolve in time. 

The accuracy of the method relies on the properties of the logical to physical 
coordinate transformations used. 

Assume each cell has local coordinates, r ES, with an invertible map into 
physical coordinates, 'lj;n : S f--> on . 

We define a: family of local parameterizations, {'Ij;n} to be linearity pre­
serving, if points from the parametric space, S, are mapped such that if 

n +1x = Axn + b, (7) 

12 



then if x n = '1j;n(r ), 

Xn+l = '1j;n+l( r ) = A'1j;n(r ) + b = Axn + b (8) 

Equivalently, 
'1j;n+l = A'1j;n + b (9) 

The bilinear parameterization of quads satisfies this property: the two or­
thogonal coordinates, (r, s) E [0,1]2 linearly interpolate the vertices (see Figure 
10 for node numbering) 

'1j;n(r, s) = (1 - r) [(1 - s)x~ + sx3'] + r [(1 - s)x~ + sx~] (10) 

Clearly, '1j;n+l = A'1j;n + b as Xj n+l = Axjn + b for j = 0, ... ,3. 
The barycentric coordinates of polygon with vertices {Vi} also satisfies the 

linearity preserving property. To demonstrate this, barycentric coordinates sat­
isfy the properties [30] , 

x L AiVi = '1j;n(A), (11) 

LAi 1, (12) 

Ai ~ o. (13) 

If x has barycentric coordinates A, then if x n = '1j;n(A) , 

Ax LAiAv i (14) 

A'1j;n(A) + b LAiAvi + b LAi (15) 

A'1j;n(A) + b LAi(Av i + b) = '1j;n+l(A) (16) 

where 2:i Ai = 1 was utilized in the second step. 
If the family of transformations satisfy the linearity preserving property, then 

we may analyze the accuracy of the constant parametric coordinate method. If 
the parameterization family, {'1j;n} , is linearity preserving, then updating the 
location of a material centroid by assuming its parametric coordinates are un­
changed is exact for linear motions, since for an arbitrary subdomain mapped 
with an affine transformation, 

x c(Qn+1 
) = Axc(Qn) +b (17) 

If the transformation is linearity preserving, then 

Xc(Qn+1 ) = cpn+l(r ) = Acpn(r ) + b = Axc(Qn) + b (18) 

In general, the Lagrangian motion will not be linear. However, as was shown 
in the previous section, for sufficient regularity in time an affine approximation 
to the Lagrangian motion is second order accurate. 
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Figure 4: Materials of triple point problem s imulation, time T = 0.1. Eulerian runs (as 
Lagrangian step and remap to the initial orthogonal mesh) using different methods for material 
reconstruction are shown: global view on the entire computational domain for MOF method , 
and zooms to the three material junction for Young's VOF method (with different material 
orderings), MOF, and Power Diagram based methods are shown. 
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Figure 5: Materials of triple point problem simulat ion, time T = 2.5. Eulerian runs (as 
Lagrangian step and remap to the initial orthogonal mesh) using different methods for material 
reconstruction are shown: globa l view on the entire computat ional domain for MOF method , 
and zooms to the t hree material junct ion for Young's VOF method (with different material 
orderings) , MOF , and Power Diagram based methods a re shown. 
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Figure 6: Materials of triple point problem s imulat ion, time T = 5.0. Eulerian runs (as 
Lagrangian step and remap to the initia l orthogonal mesh) using different methods for material 
reconstruction are shown: global view on the entire computational domain for MOF method , 
and zooms to the three material junction ' for Young's VOF method (with different material 
orderings) , MOF, and Power Diagram based methods are shown. 
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Figure 7: Materials of triple point problem simulation, time T = 0.1. ALE runs (as Lagrangian 
step and remap to the Winslow smoothed mesh after every 20 Lagrangian steps) using different 
methods for material reconstruction are shown: global view on the entire computational 
domain for MOF method, and zooms to the three material junction for Young's VOF method 
(with different material orderings), MOF, and Power Diagram based methods are shown. 
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Figure 8: Materials of triple point problem simulation, time T =2.5. ALE runs (as Lagrangian 
step and remap to the Winslow smoothed mesh after every 20 Lagrangian steps) using different 
methods for material reconstruction are shown: global view on the entire computational 
domain for MOF method, and zooms to the three material junction for Young's VOF method 
(with different material orderings), MOF, and Power Diagram based methods are shown. 
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Figure 9: Materials of triple point problem simulation, t ime T = 5.0. ALE runs (as Lagrangian 
step a nd remap to t he Winslow smoothed mesh after every 20 Lagrangian steps) us ing different 
methods for materia l reconstruct ion a re shown: global view on the ent ire computationa l 
doma in for MOF method , a nd zooms to the three materia l junction for Young's YOF method 
(wit h different materia l orderings), MOF, and Power Diagram based methods are shown. 
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Figure 10: Steps in the constant parametric coordinate method . (1) The logical coordinates 
of the centroid at time tn are calculated. (2) It is assumed the centroid has the same logical 
coordinates at time tn+l . (3) The logical coord inates are mapped to physical coordinates to 
give the locat ion. This gives a second order accurate approximation to the centroid of the 
evolved region nn+ l = ¢ n+l(nn) . 

21 



R efe r e nces 

[1] 	 Benson DJ. Computational methods in Lagrangian and Eulerian hy­
drocodes. Computer Methods in Applied Mechanics and Engineering 1992; 
99: 	235-394. 

[2] 	 Benson DJ. Volume of fluid interface reconstruction methods for multi­
material problems. Applied Mechanics Review 2002; 55 (2): 151-165. 

[3] 	 Rider WJ , Kothe DB. Reconstructing volume tracking. Journal of Com­
putational Physics 1998; 141: 112-152. 

[4] 	 Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and 
interfacial flow . Annual Review of Fluid Mechanics 1999; 31: 567-603. 

[5] 	 Rirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of 
free boundaries. Journal of Computational Physics 1981; 39: 201-225 . 

[6] 	 Dyadechko V, Shashkov MJ. Reconstruction of multi-material interfaces 
from moment data. Journal of Computational Physics, 2008; 11: 5361­
5384. 

[7] 	 Noh WF, Woodward P. SLIC (simple line interface calculation) . In van der 
Vooren AI and Zandbergen PJ , editors, 5th International Conference on 
Numerical Methods in Fluid Dynamics, pages 330-340. Springer-Verlag, 
1976. 

[8] 	 Youngs DL. Time dependent multi-material flow with large fluid distortion . 
In I<. W . Morton and M. J. Baines, ed itors, Numerical Methods for Fluid 
Dynamics, pages 273-285. Academic Press, 1982. 

[9] 	 Youngs DL. An interface tracking method for a 3D Eulerian hydrodynamics 
code. Technical Report AWE/ 44/92/35, AWRE Design and Math Division, 
1984. 

[10] 	 Pilliod JE J r. , Puckett EG. Second-order accurate volume-of-fluid algo­
rithms for tracking material inter faces. Journal of Computational Physics 
2004; 199: 465-502. 

[11] 	 Swartz BI<. The second-order sharpening of blurred smooth borders . Math­
ematics of Computation 1989; 52 (186) : 675-714. 

[12] 	 Steinhaus H. A note on the ham sandwich theorem Mathesis Polska, 1938; 
9: 	26-28. 

[13] 	 Stone AH, Tukey JW. Generalized "sandwich" theorems Duke Mathemat­
ical Journal, 1942; 9 : 356-359. 

[14] 	 Mosso S, Clancy S. A geometrically derived priority system for Young's 
interface reconstruction. Technical Report LA-CP-95-0081 , Los Alamos 
National Laboratory, Los Alamos, NM, 1995. 

22 



• 


[15] 	 Garimella RV, Dyadechko V, Swartz BK, Shaskov MJ. Interface recon­
struction in multi-fluid, multi-phase flow simulations. In Proceedings of 
the 14th International Meshing Roundtable, pages 19-32, San Diego, CA, 
September 2005 . Springer. 

[16] 	 Schofield SP, Garimella RV, Francois MIVI, Loubere R. Material order­
independent interface reconstruction using power diagrams International 
Journal for Numerical Methods in Fluids, 2007; 56(6): 643-659. 

[17] 	 Ahn HT, Shashkov M. Multi-material interface reconstruction on gener­
alized polyhedral meshes. Journal of Computational Physics 2007; 226: 
2096-2132. 

[18] 	 Schofield SP, Garimella RV, Francois MM, Loubere R. A second-order 
accurate material-order-independent interface reconstruction technique for 
multi-material flow simulations Journal of Computational Physics, 2009; 
228(3) : 731-745. 

[19] 	 Benson DJ. Eulerian finite element methods for the micromechanics of het­
erogeneous materials: Dynamic prioritization of material interfaces. Com­
puter Methods in Applied Mechanics and Engineering, 1998, 151: 343-360. 

[20] 	 Aurenhammer F . Power diagrams: properties, algorithms and applications. 
SIAM J. Computing 1987; 16(1): 78-96. 

[21] 	 Imai H, Iri M, Murota K. Voronoi diagram in the Laguerre geometry and 
its applications. SIAM J. Computing 1985; 14(1 ): 93-105. 

[22] 	 Caramana EJ, Burton DE, Shashkov MJ, Whalen PP. The construction 
of compatible hydrodynamics algorithms utilizing conservation of total en­
ergy. Journal of Computational Physics 1998; 146: 227-262. 

[23] 	 Caramana EJ, Shashkov MJ, Whalen PP. Formulations of artificial viscos­
ity for muti-dimensional shock wave computations. Journal of Computa­
tional Physics 1998; 144: 70-97. 

[24] 	 Scovazzi G, Love E, Shashkov M. Multi-scale Lagrangian shock hydro­
dynamics on Ql / PO finite elements: Theoretical framework and two­
dimensional computations. Comput. Methods Appl. Mech. Engrg. 2008; 
197: 1056-1079. 

[25] 	 Shashkov M. Closure models for multidimensional cells in arbitrary 
Lagrangian-Eulerian hydrocodes. Int. J. Numer. Meth. Fluids 2008; 56 : 
1497-1504. 

[26] Winslow AM. Equipotential zoning of two-dimensional meshes. Technical 
Report UCRL-7312, Lawrence Livermore National Laboratory, 1963. 

[27] 	 Margolin LG , Shashkov M. Second-order sign-preserving conservative inter­
polation (remapping) on general grids. Journal of Computational Physics 
2003; 184: 266-298. 

23 



[28] 	 Pember RB, Anderson RW. A comparison of staggered-mesh Lagrange 
plus remap and cell-centered direct Eulerian Godunov schemes for Eule­
rian shock hydrodynamics. Technical Report UCRL-JC-139820, Lawrence 
Livermore National Laboratory, 2000. 

[29] 	 Maire P-H. Personal Communication. Los Alamos National Laboratory, 
2007. 

[30] 	 J. Warren, S. Schaefer, A. N. Hirani, and M. Desbrun. Barycentric coor­
dinates for convex sets. Advances in Computational Mathematics, 2007; 
27(3): 319-338. 

24 




