
[P/-o /;;<60LA-UR-
Approved for public release; 

distribution is unlimited. 

Title: I 	Software Archeology: A Case Study in Software Quality 
Assurance and Design 

Author(s): I 	John MacDonald, Jane Lloyd 

PMT-4 

Los Alamos National Laboratory 


Cameron J. Turner 

Colorado School of Mines 


Intended for: I 	 2009 ASME IDETC/CIE Conference 
San Diego, CA 
August 30-September 2, 2009 

-fly
Los Alamos 
NATIONAL LABORATORY 

--- EST . 1943 --­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish ; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Proceedings oflDETC'09: 
ASME 2009 International Design Engineering Technical Conferences and 

Computers and Information in Engineering Conference 
San Diego, California, August 30-September 2, 2009 

DETC2009-XXXXX 


SOFTWARE ARCHEOLOGY: 

A CASE STUDY IN SOFTWARE QUALITY ASSURANCE AND DESIGN 


Cameron J. Turner John M. MacDonald Jane A. Lloyd 
Colorado School of Mines Los Alamos National Laboratory Los Alamos National Laboratory 

1500 Illinois Street PO Box 1663, MS E530 PO Box 1663, MS E530 
Golden, Colorado 80401 Los Alamos, New Mexico 87544 Los Alamos, New Mexico 87544 

cturner@mines.edu jmac@lanl.gov jlloyd@lanl.gov 

Abstract 
Ideally, quality is designed into software, just as quality is 

designed into hardware. However, when dealing with legacy 
systems, demonstrating that the software meets required quality 
standards may be difficult to achieve. As the need to 
demonstrate the quality of existing software was recognized at 
Los Alamos National Laboratory (LANL), an effort was 
initiated to uncover and demonstrate that legacy software met 
the required quality standards. This effort led to the 
development of a reverse engineering approach referred to as 
software archaeology. This paper documents the software 
archaeology approaches used at LANL to document legacy 
software systems. A case study for the Robotic Integrated 
Packaging System (RIPS) software is included. 

1. INTRODUCTION 
In an ideal world, quality would be engineered into 

software during the design process just as it is engineered into 
hardware during design. While modem designs often apply this 
level of rigor to software as well as to hardware, this has not 
always been the case. Software was often created so that the 
system would work, with little thought given to its design or 
quality. As long as the system configuration (both hardware 
and software) remained constant and those responsible for the 
design remained available to deal with problems, the lack of 
detailed design documentation is not a significant problem. But 
when changes become necessary or the original people 
responsible for the software are lost to other programs, the 
quality of the software becomes important. 

Software Quality Assurance (SQA) uses design techniques 
to instill quality into the design of the software. SQA may also 
be just thought of as software quality. The goals of SQA 
include: 1) the instillation of quality into the software, 2) 
documenting the design of the software so that information can 
be transferred between qualified practitioners, 3) the facilitating 
of integrated system testing so that erroneous conditions can be 

avoided, 4) to enable evaluation of modifications upon the 
system and revalidation of the system as necessary, 5) provide 
reliable and quality data, and 6) to reduce the risk of software 
failure. The following sections further examine the necessity of 
SQA, its relationship to design methods, and review the 
implementation of a legacy SQA project for an automation 
system at LANL. 

2. NECESSITY OF SOFTWARE QUALITY ASSURANCE 
Many program managers have asked "Why is software 

quality assurance a necessary component in many engineering 
systems?" The best answer is that SQA can reduce project costs 
by preventing hardware/software conflicts, failures or errors, 
facilitating software changes and upgrades, ensuring that the 
customer expectations are met, provide assurance that the 
software implementation is complete and reduction of software 
associated risks. 

Ideally, SQA is implemented during the original design 
program. However, in many cases, it may be difficult to prove 
what was done in this regard, if the process was not well­
documented. This is often the case in legacy systems. In these 
situations, additional effort is necessary to recreate the original 
design documentation. These efforts are known as Software 
Archeology, a term attributed to Ralph Johnson of The 
University of Illinois at Urbana-Champaign [Johnson, 2005]. 

2.1. PURPOSE OF SQA 
SQA programs attempt to ensure that the needs of the 

customer(s) are met by the software. These needs can be 
described as expected, targeted and unexpected as shown in 
Fig. 1. The expected requirements are often unstated by the 
customer - they are "expected" to be present in the software 
and their absence is a major source of customer dissatisfaction. 
The targeted needs are those that the customer intends to satisfy 
through the use of the software. These needs are also expected, 
or the customer will be dissatisfied with the software, but their 

2 Copyright © 2009 by ASME 



presence is not necessarily a source of customer satisfaction. 
Unexpected needs are software features that meet needs of 
which the customer is unaware. The presence of unexpected 
software features is a maior source of customer satisfaction. 

F.. xpa:tc=u. 
1"-I.:¢O 

Fully 
ImplementedUnimplemented 'III / V /" ~ 

Fea1ure 7 71 7 

UncXPCC11.:J 
N",d 

Feature 

Figure 1. Customer Needs and Satisfaction versus 
Implementation Quality. 

Fig. 1. is similar to a graph produced by the Kano model. 
The model developed by Professor Noriaki Kano for 
understanding customer needs and satisfaction [Pyzdek 2003]. 

The expected and targeted needs of the customer should be 
readily identifiable and are typically specified by the customer. 
These needs include the core purpose of the software (a 
targeted need) and the user interface (expected needs) of the 
software. However, identifying the unexpected needs, such as 
fault recovery, conflict handling, and system integration may 
not come from the end-customer initially. For instance, system 
integration is a need of the intermediate customer, the system 
integrator and is unlikely to be an initial concern of the end­
customer. Other needs, such as fault recovery and conflict 
handling may be of concern to the end-customer only once 
those states are identified. A systematic study of the system is 
often the best way to identify these expectations. 

An SQA program seeks to produce quality software that 
meets the needs of the customer in terms of functionality, 
usability, reliability, performance, and supportability. All of 
these components contribute to the development of quality 
software. A structured approach to SQA aids the software 
engineers in the task of identifying expected and unexpected 
needs that are often unarticulated by the customer. Without this 
structured approach, these needs would not be translated into 
requirements, incorporated into the software, or tested and 
maintained as the software is incorporated into the system 
leading to general customer dissatisfaction with the software. 

The software development process must translate customer 
needs into software requirements and specifications that can be 
transformed into actual software code. This process is a series 
of decisions and assumptions that impact the software design 
and implementation. An SQA program documents these 
decisions and assumptions for future use. A SQA program also 
encourages the development of an integrated testing strategy so 
that the software can be evaluated versus the customer needs 
during development and once development is complete. Thus 
an SQA program is crucial to establishing the ability of a 
software package to meet the needs of the customer(s). Since 

software is often an integrated component in a larger system, 
quality software is a crucial to achieving and maintaining the 
system's ability to produce quality results (i.e. data, product, 
etc). 

As software ages, an SQA program becomes increasingly 
important if system quality is to be maintained. Computer 
hardware often becomes obsolete within years of purchase and 
even relatively minor hardware or operating system changes 
can affect software performance, reliability and functionality, 
with potential negative impacts upon system quality. SQA 
programs provide a critical mechanism to provide change 
control and post change verification testing to ensure that 
customer needs remain satisfied. SQA provides the necessary 
documentation to design software upgrades, a structured 
methodology to document changes, and a consistent method for 
software testing with respect to the needs of the customer. 

Software Quality Assurance activities attempt to verify and 
validate software using well proven engineering methodology. 
The ends result of SQA activities provides software that is 
documented, reviewed, tested, maintainable, robust and 
reliable. SQA also provides an organized approach over the life 
cycle of the software. Additional benefits are realizable by the 
stability of the software and added saving of reduced reworks 
and reduced software failures. 

2.2. SQA AS GOOD ENGINEERING PRACTICE 
Ensuring software performs as expected on a hardware 

platform is a good engineering practice and is demonstrated 
through software testing. Testing validates that the software 
runs properly and meets requirements specified. Software 
engineers, like hardware engineers, often operate strictly within 
their own domain without considering necessary interfaces 
between software and hardware. System engineering 
approaches from a global perspective, and endeavors a system­
level approach, considering software and hardware to be parts 
of a system. Both parts of the system need to perform together 
for the system to meet engineering requirements. This can only 
be accomplished by collaboration between the engineers 
responsible for hardware development and those responsible 
for software development. In addition, not only is software and 
hardware considered from a system engineers perspective but 
also items such as safety, reliability, quality, producibility, 
environment, physical dimensions, maintainability, human 
factors, economics and technical factors. 

For example, a hardware memory failure can impact the 
ability of the software algorithm to run correctly on a given 
system. On the other hand, one can have the greatest software 
algorithm ever conceived of on paper but unless it is properly 
implemented on a suitable hardware platform it may not prove 
to be of any value. Both hardware and software are needed to 
form a system. Software cannot be tested without hardware and 
hardware cannot be fully tested without software. 

What can cause software failures? Software syntax errors 
such as typing in a "," instead of ";" depending upon the 
programming language can cause immediate code errors. 
Another example is if a partial or total hardware failure such as 
memory or hard drive failure resulting in a partial loss or 
corruption of data or even a total loss of data due to an 
unintentional overwriting of data. Timing and latency in a 

3 Copyright © 2009 by ASME 



system can cause a loss of response in real-time systems. For 
example, software running on a network can become so 
saturated with activity that it is impossible for software to 
response. 

An electrical power loss will may cause the hardware to 
cease to function, even if the software is not at fault. However, 
without power, the software will not function. Electromagnetic 
energy fields fluxes can cause havoc on compute systems on 
both the hardware and on the software executing within the 
processor. Binary bit-flipping or large scale blocks of data 
erasure can occur due to electromagnetic fluxes. An improperly 
grounded and protected system can be affected by power surges 
and lightening strikes affecting hardware and software alike. 
This type of failure can result in unpredictable results and affect 
system-wide reliability. 

Even when code is written precisely to a standard (for 
portability) when one move to another hardware platform 
difficulty in the way the compiler or interpreter implements the 
standard may be found in execution. Patches and repairs code 
for software is noticeably common. New features and additions 
are also prevalent in software patches, software versions and 
just new software. Alpha, alpha Beta code testing is very 
common on large software projects. However, this level of 
testing is not always practiced on small-scale and in particular 
research and development (R&D) engineering projects. 

2.3. IMPACT OF A LACK OF SQA 
For new software, the lack of SQA puts the entire software 

project at risk. The Software QNTest Resource Center website 
[Hower, 2009] maintains a listing of some of the more 
significant software failures attributable to a lack of SQA. A 
few of the more interesting highlights include: 

In January 2009, regulators banned a health 
insurance company from selling policies due to 
computer bugs that resulted in erroneous denials 
of coverage or outright cancelations in coverage 
to certain patients. These errors threatened the 
health and safety of beneficiaries. 
A January 2009 news report indicated that a major 
IT consulting company has spent four years 
correcting problems caused by an inadequately 
tested software upgrade. 
In August 2008, more than 600 airline flights 
were delayed due to a software glitch in the FAA 
air traffic control system. 
A lack of software testing was blamed for 
problems that led to privacy breaches into the 
records of several hundred thousand customers of 
a large health insurance company in August 2008. 
In December 2007, inadequate software testing of 
a new payroll system was blamed for $53 million 
of erroneous payments to employees of a school 
district. 
An April 2007 subway rail car fire was caused by 
the failure of a software system to perform as 
expected in detecting and preventing excessive 
power usage in the new passenger cars. The 
subway system had to be evacuated and shut 
down for repairs. 

A March 2007 recall of medical devices was 
blamed on a software bug that failed to detect low 
power levels in the devices. 
A September 2006 news report indicated that 
insufficient software testing led to voter check-in 
delays during the primary elections in that state. 

There are many additional examples of a lack of control 
over the development of software that led to unintended 
failures. Clearly the need exists for producing better quality 
software. Software development failures also have been 
documented within the US Department of Energy (DOE) 
Laboratory Complex and at LANL. A series of 2006 events led 
to the implementation of new SQA requirements at LANL. 
These new requirements applied not only to new software 
projects, but to legacy systems and led to the need to develop 
methods to apply SQA techniques to legacy systems. 

2.4. A RELATIONSHIP BETWEEN SQA AND DESIGN 
Figure 2 describes a typical product lifecycle from the 

early problem identification process through design, production 
and the eventual retirement. 

Nil"E"d Jdrntiftc-.lItt.on 
("on«phW DffitD

and Req~mrn.s ~ ConCfpruai n..ten 
S.I"".ion ~ G.thtrtng 

l Final o..\J!la and 1-----+ 1'1-0<0".... - Production aDd 
Pro.o.ypln~ E,·aJuat::ion OptrDdon 

I 

l I\hintenancf' ~ Rf'tinment 

Figure 2. A typical product development process. 

SQA naturally fits within a product development process 
such as that described in Fig. 2. Note the similarities to the 
ASME Standard NQA-l process for software development as 
shown in Fig. 3. NQA-l is further discussed in Section 3. 

Softw.... SO"""...,,~ So"""o,,, Dhien IIRrquiJ~mfn.s - (~O2) r-­ \ "tl'i6CY.don 

(~J) (~.J) 

l So""..... SoftWAl't Sorh~ltl"t 

ImplemtntadoD - Accfptancl'Todnl Opt",don 
(~J) (~~) (~~) 

I 

Soflwu< SonwllI"!' 

• MIIin.f"DIUlC< r-­ R"tiJ'f'ment 
(-106) (~O7) 

Figure 3. The ASME NQA-l software development process. 
[ASME, 1997]. The appropriate sections of the standard are 
also indicated. 

The architectural similarities between a generic 
development process and an SQA compatible software 

Copyright © 2009 by ASME 4 



development process are very similar. This should not be 
surprising, but should be expected. SQA is not an additional 
complexity to be added to the design process, but rather, SQA 
is a documentation of a structured design process. Properly 
done, SQA adds very little effort to a design effort, but instead 
documents the decisions made during that process. 

However, when that documentation is lacking, as may be 
the case with legacy software, SQA may become a more 
resource intensive process. One option is to simply redesign 
new software to replace the legacy software, but to fully 
implement an SQA program during the design cycle. Unless 
other factors require it, such as a need to replace the existing 
system, this approach would seem to be extremely costly in 
terms of both time and effort. 

The alternative approach is to use reverse engineering 
techniques to evaluate the quality of the legacy software, and to 
redevelop the supporting documentation. Here again, a reverse 
engineering design process can be applied to software, much as 
it is applied to hardware. The tasks include: 

Redeveloping the original customer needs that led 
to the original software development; 
Translating those needs into requirements and 
specifications; 
Mapping the requirements and specifications into 
the functional form of the design; 
Developing appropriate testing procedures to 
confirm that the requirements and specifications 
are met in the software as implemented; and 
Producing appropriate maintenance, upgrade and 
retirement plans and procedures. 

The similarities in activities between quality assurance and 
design procedures are striking. Specific techniques utilized at 
LANL to reverse engineer legacy software will be noted in the 
case study in Section 4. The common fear of most engineers 
when faced with a new quality assurance program that there 
will be additional effort and the design process will suffer is 
probably unfounded. What is required is a simple 
documentation of the activities that have already occurred. 

3. SOURCES OF SQA STANDARDS 
Several professional organizations have arrived at 

standards for SQA programs. Among them are the American 
Society of Mechanical Engineers (ASME), Nuclear Quality 
Assurance Level I, referred to as NQA-I [ASME, 1997]1. 
NQA-I forms the basis for most of the relevant DOE and 
LANL standards and requirements for SQA. In addition to 
NQA-I, relevant IEEE computer engineering standards such as 
IEEE 1228-1994 [IEEE, 1994], Department of Defense 
standards such as MIL-STD-882D [DOD, 2003] and standards 
from the American Society for Quality (ASQ) were used to 
further refine the meanings of the ASME standards. 

3.1. REGULATORY DRIVERS 

Note that there are more recent versions ofNQA-I, however, 
the DOE Orders specifically reference NQA-I-1997, and so 
therefore the SQA program is based on this version. 

DOE SQA programs are driven by regulations in 10 CFR 
830.122. This code specifies a Quality Assurance Plan (QAP) 
and indicates that the QAP must address management, 
performance, and assessment criteria. Additional requirements 
are imposed for software if its location or use may affect the 
safety and/or security of a facility. Professional standards 
including ASME-NQA-I have been codified into this code. 

10 CFR 830.122 [CFR, 2002] resulted in DOE Order 
414.1 C [DOE, 2005], which is specific to quality assurance, 
safety software, and software defmed as computer programs, 
procedures, and associated documentation and data pertaining 
to the operation of a computer system within DOE nuclear 
facilities. LANL translated this order into a LANL LIR 308-00­
05.1 entitled "Software Quality Management" revised on 
December 29, 2006. This document has been further 
superseded by additional procedures and requirements. 

At each level, the details of SQA implementations become 
increasingly specific. The SQA program developed for the 
Advanced Recovery and Integrated Extraction System (ARlES) 
project, and used as the basis for the legacy work on RlPS, has 
successfully pass audits several times and found to be in accord 
with all of the relevant DOE and LANL procedures. 

3.2. THE ARIES APPROACH TO LEGACY SOFTWARE 
The Advanced Recovery and Integrated Extraction System 

is a program active at LANL since the mid-1990s. The program 
runs a series of gloveboxes, many of which contain integrated 
automation and processing systems [Turner, 2008, 2009] for 
which extensive customized software was created. The ARIES 
glovebox lines convert nuclear materials from retired nuclear 
weapons into forms suitable for pack.aging for long-term 
storage, international inspection and for reuse as mixed-oxide 
(MOX) reactor fuel [McKee, 2008]. Because of the potential to 
reuse ARIES material in nuclear reactors, the need for an SQA 
program was recognized by the ARIES project long before 
other programs at LANL realized the need. 

However, ARIES still had hundreds of thousands of lines 
of code for which the necessary documentation of the software 
quality was incomplete. To correct this deficiency, the ARlES 
program embarked on an aggressive software reverse 
engineering program to establish a defensible SQA pedigree for 
its legacy software systems. This program quickly became 
known as a software archaeology effort and is the basis for the 
case study in the following section. 

This project used the ASME NQA-I standard as a baseline 
for what information needed to be identified, documented and 
retained for both legacy and new software systems. These 
requirements are shown in Fig. 4. Some elements are only 
required of new software. Others are optional, and their need is 
determined during the development of the initial software 
project plan through a risk analysis. 

The ARIES SQA plan has been through several internal 
and external audits and has earned glowing reviews each time. 
Fwthermore, the program did review issues which had not been 
previously identified during system integration, acceptance 
testing or system operation. Most importantly, the project has 
increased confidence in our end-users that our product is 
produced to meet the required specifications. 

5 Copyright © 2009 by ASME 

I 



4. SOFTWARE ARCHEOLOGY: RIPS CASE STUDY 
The Robotics Integrated Packaging System (RlPS) is one 

of six major processes that make up the ARlES glovebox line. 
RlPS occupies one of the gloveboxes in the line and is 
responsible for packaging nuclear materials produced by the 
other systems into stainless steel cans that meet the DOE 3013 
packaging standard I[DOE, 2004]. The cans are automatically 
packaged with two robotic systems and 'Uses five independent 
subsystems to complete the process. These systems are 
controlled by no less than six separate computer systems and 
interface with six additional "intelligent" instrumentation 
subsystems. [Turner, 2008, 2009] 

Softwo,. project 
PIon Sofhn... R.equ' ... mem. Softwlll'll Dealgn

(SPP) Spod_on Do_pilon-....., (SRS) (SOD) 

-CIU'I 

Program 

1
"In.gement Requirements DHign 

Softw.... SOUrcl' 
Software T... Plln Soft....... T • • 1~c_ 

(ssc1 
(STP) (STP) -.-- Revlow R.yiewc-I 

.. knp"mentlltion TestJng T05ting/Basellne 

-... SofIwo ... 
Key 

Malntenanc. Pl,n 
(SlIP) Retirement Plan 

Required D 
Optional 0 

O~rltlo"all 
Retirement lif_ Cycle D

Maintenance 

Figure 4. The required elements of the ARIES SQA 
program. 

The RIPS glovebox, Fig. 5, is divided into three chambers 
called the hot side (which is radioactively contaminated), the 
cold side and the fluid processing side. Materials to be 
packaged in RlPS arrive in the hot side in a crimped 
convenience can. One robot then loads the convenience can 
into a 3013 stainless steel can which is then welded shut in a 
helium atmosphere. The welded can is inspected, leak checked 
and placed in an electrolytic decontamination chamber to be 
radioactively decontaminated (see Fig. 6 and 7). 

Fluid 1>1d. 

Cold Sid. 

Figure 5. Schematic of the ARlES RIPS Module. 

Within the electrolytic decontamination chamber, the 
surface of the can is electropolished which removes 
contamination from the surface of the can. The chemicals used 
to electropolish the can are recycled in the fluid processing 
chamber of the glovebox and the removed contamination is 
collected and removed from the system. Once the process is 
complete, the can is transferred to the cold side of the glove box 
for final processing. 

Figure 6. Handling the convenience can on the hot side. 

Figure 7. Handling the welded 3013 can. 

On the cold side, Fig. 8, a second robot conducts a 
radiation survey on the surface of the can, and conducts a 
second leak check to confirm that the can remains sealed. Once 
these checks are completed, the can is released from the RIPS 
module and taken to the next process in the ARlES process. 

6 Copyright © 2009 by ASME 



Figure 8. RIPS Cold Side Activities. 

The operation of the RIPS system is controlled by a master 
PC, which can delegate control of the system to either robot, 
the welding subsystem, the electrolytic decontamination 
system, or the two leak check systems. The master computer 
and each of these subsystems include software which needed to 
be evaluated. In addition, the radiation checks use three 
additional "inteUigent" instruments to survey the surface of the 
can. These instruments also included software that needed to be 
addressed. 

4.1. SOFTWARE PROJECT PLAN 
The Software Project Plan (SPP) is the initial step in the 

reverse engineering process used by ARIES. The purpose of the 
SPP is to document the original customer expectations for the 
software and to establish a plan to complete the SQA process. 
With RIPS, an early consideration was how to deal with the 
"intelligent" instruments. 

These instruments contain internal software, often in the 
form of fIrmware, which processes the sensor data and provides 
a result to a local user interface and to the main system through 
a network connection. On one hand, the fIrmware is software 
which needed to be validated. On the other hand, this software 
can only be modifIed by the vendor, and since the systems are 
located in a secure facility, the fIrmware confIguration is 
controlled. Furthermore, the instruments were subject to a 
calibration plan, which also served to verify that the fIrmware 
and the sensor are functioning correctly. Consequently, it was 
determined early in the reverse engineering process that these 
intelligent instruments already were quality controlled and did 
not need to be reverse engineered. 

Also, the safety signifIcance of the software had to be 
analyzed. The safety analysis was conducted with a formalized 
questionnaire completed by the responsible system engineers 
that resullted in a determination of the level of safety 
signifIcance of the software. RIPS was determined not to be 
safety significant software and therefore did not require a 
Software Safety Plan (SSP). It was also determined that a 
separate maintenance plan was not necessary since the system 
maintenance plan was also being developed at the time and thus 
both docwnents could be integrated together. Finally, the 
deve'lopment of a retirement plan was deferred since there are 
no immediate plans to retire this new system. 

The SPP identifIed the major customer expectations for the 
system, including: 

The automated welding of the 3013 containers; 
The automated verification that the weld sealed 
the container; 
The automated decontamination of the outer 
surface of the container; and 
The automated verifIcation of satisfactory 
decontamination and that the container remains 
intact. 

In addition, the SPP began to develop the structure of the 
software system and the major hardware and software 
components resulting in the diagram in Fig. 9. 

The development of the SPP used design techniques that 
included interviews of the operators and engineers responsible 
for the system (customer interviews), high level functional 
analysis diagrams, system confIguration diagrams, and 
literature reviews (of available system documents). 

4.2. REQUIREMENTS & SPECIFICATIONS 
The next phase of the SQA process for RIPS involved the 

development of the very general customer expectations given 
above into a detailed set of engineering requirements and 
specifIcations. These included both requirements for system 
functionality during normal and abnormal operations as well as 
requirements for data interfaces and network connections 
between the various hardware systems. All of this information 
was documented in a Software Requirements and 
SpecifIcations (SRS) document. 

r ~ 
~emt.ur'" Model 

'''''TW M~Wi!lOOwa"IIIl'Idng $ys(em I ~~~v~. IPropr~ Wf!llj 

C'adtoI~.e C.. 

T 

f +f 
FANUC controrlltr~~OIikfOS(lftAccH' 
Cpo""",, lIydom M.,_ W"""'" nProprletlry RoboC 

Compultfr~
L",,_ 

N.Won&~ In~n.menl$ 

l-.,ew 

-,f t 

t 
Associlttd 
"Inlillivtnr 

Delines,Prcqtllm In'ltnlrnentttton """"'" 
Par!lll1t1~s S\lMY"..ns. 

T 

-Cold Robot 
Programs 

Robol Program 
Stq~~ 

Hot Robot Progrlms 
RoboC Program

s.o...".. 

MIcrosoft Ace ..... ....Oeftfltag Labview 
PrOQram P&ra~m 

Key 

Green EIoJ: - Mother 

Blue Box - Daughter 

Red Box - HMI Inleff90e'9 

c.c. CollKUon 

Com..... 


...1ct¢sdlW~ !+­
Compul.l"f fUMIng 

pt-CClf\Mlfy sdIWa~ 

Figure 9. Software Architecture uncovered with the SPP. 

This analysis led to the development of a Requirements 
Traceability Matrix (RTM) , organized hierarchically into 33 
major categories and encompassing more than 500 individual 
requirements. Each requirement was also associated with a 
particular component for Fig. 9. This matrix was used in 
subsequent documentation. 

In constructing the R TM, a detailed diagram of the 
operation of the top level software system (called CanOut) was 
generated. This flow chart was instrumental in the development 
and organization of the RTM and in the development of testing 
procedures. This diagram is shown in Fig. 10. 

The methods used to generate these descriptions included 
task decomposition, and diagramming methods that are akin to 

7 Copyright © 2009 by ASME 

http:S\lMY"..ns


a function structure. A grammar of movements and actions was 
developed to enable a complete description of the individual 
actions required by the subsystems. 

4.3. SOFTWARE DESIGN DOCUMENT 
The Software Design Document (SDD) associated each 

requirement and specification with particular software and 
hardware components. It is at this phase of the project where 
specific hardware was called out for the system, network 
connections were identified and data exchange protocols were 
specified. This phase is not that dissimilar from how an SDD 
might be created for new software with one exception. In this 
case, no software was written. Instead, the code was reviewed 
to determine which module was responsible for each 
requirement. This information was added to the RTM. 

8 Copyright © 2009 by ASME 



Figure 10. Process Flow Chart for the CanOut Software Module of RIPS. This represents approximately 100,000 \,ines of code. 

4.4. SOFTWARE TESTING 
Perhaps the most important documents resulting from the 

SQA effort are the Software Test Plan (STP) and the Software 
Test Report (STR). The STP allows the integrated system to be 
tested to validate that the system performs as expected. While 
many of the tests for this system were recognized and tested 
during acceptance testing, about 10-15% of the software 
requirements escaped testing during the acceptance testing 
process. Most of the requirements that were missed were 
relatively minor requirements. 

Again, the RTM is the basis for developing the STP 
although full advantage of the previous testing system 
acceptance testing was made. Each possible test was evaluated 
against the tests previously performed. Most of the 
functionality of the software had been implicitly tested during 
the integrated system acceptance tests. However, many of the 
software functions, such as the access control requirements had 
never been explicitly tested. The access control requirements 
had been tested accidently, but never deliberately, nor 
documented. 

Surprisingly, lessons were learned during the software 
testing. Some tests produced unexpected results. One example 
was a failure message that was reported when a fault was 
deliberately caused, but the message reported was not what was 
expected by the test. All of the test results, whether indicating 

success or failure, were reported in the STR. Erroneous 
conditions required explanation and an accept-as-is or correct­
with-change-order decision. 

In the case of the failure message, investigation revealed 
that the software was reporting a correct error response. 
Because of limited communication channels, two different fault 
conditions generated a common error message to the main 
software system. This hardware decision meant that the 
software could not distinguish between the two different failure 
causes. Hence the message that indicated a failure had 
occurred, but did not indicate that there were two sources. This 
new information was not only documented in the STR, but also 
was used to update the Software User Manual (SUM). In this 
case, the test result was accepted-as-is. 

The development of an STP also plays an important role in 
the configuration management of the software. Once it was 
established that the existing software was functional; the 
software was baselined and the configuration frozen. A formal 
change process is now in place to prevent software and 
hardware changes without an associated software impact 
review and a subsequent testing after the change is 
implemented. This testing uses the tests developed in the STP 
as the basis for evaluating system modifications. Subsequent 
testing will generate additional STRs. 

9 Copyright © 2009 by ASME 



Again the methods used to develop the STP and STR are 
the same regardless of whether the software is existing or new. 
However, the use of the RTM as the basis for establishing the 
necessary tests provides a systematic means of demonstrating 
that the project requirements have been met. The result is a 
software package backed by demonstrable performance metrics 
and capable of exceeding customer expectations. 

Both the STP and the STR are subjected to a review 
process that includes system experts, software experts, and the 
responsible management for the operations and engineering of 
the system. These reviews provide a valuable check on the rigor 
of the STP and the conclusions drawn in the STR. The review 
committees must also approve of any accept-as-is or correct 
decisions proposed by the responsible system engineers. This 
rigorous process forces the engineering underlying the system 
to be completely documented and produces an auditable 
document record of critical design decisions. This is one of the 
main goals for SQA. 

5. CONCLUSIONS AND LESSONS LEARNED 
Even in a tightly controlled and regulated environment 

such as a DOE nuclear facility, there remains room for 
improvement. The implementation of a SQA program within 
the ARIES project required some creative problem solving 
approaches . Since adequate documentation was not produced 
during the initial software design and implementation, 
additional resources were required to reverse engineer the 
design. These reverse engineering efforts, colloquially called 
"software archaeology," revealed previously lost design 
decisions and features that had been lost. 

These discoveries have enhanced our present 
understanding of systems such as RIPS. However, perhaps 
most importantly, the results of the SQA project have provided 
a foundation for the evolution of the software within ARIES 
that did not previously exist. Hardware and software upgrades 
can now be pursued with a much better understanding of their 
potential impacts upon the system, which should lead to a more 
predictable design and integration process. Furthermore, with 
an established set of software testing procedures in place, any 
upgrades or modifications to the software can be systematically 
evaluated before the system is returned to operation. 

The relationship between a quality assurance program and 
design should be a strong one. Many of the features and 
requirements are similar. Strong formal design methods, when 
well documented are the backbone of quality assurance 
documentation. And if that documentation is lacking, reverse 
engineering methods are the central to the recovery, recreation 
and rediscovery of what has been lost. Good engineering design 
practices make quality assurance programs easy to implement 
and quality assurance programs can nurture good engineering 
practice. 

ACKNOWLEDGEMENTS 
This paper is approved for release by Los Alamos National 

Laboratory under LA-UR-09-XXXX. The assistance and 
support of Los Alamos National Laboratory and the Division of 
Engineering at the Colorado School of Mines is greatly 
appreciated. In particular, the authors would like to recognize 
Joe Lewis, Sonya Lee, Stan Zygmunt, Mark Swoboda, Max 

Evans, Bill Everett, and Paul Graham for their contributions to 
this project and extend their appreciation for their contributions 
and feedback on this paper. Any opinions, fmdings, and 
conclusions or recommendations expressed in this publication 
are those of the author and do not necessarily reflect the views 
of Los Alamos National Laboratory. 

REFERENCES 
ASME. (1997). Quality Assurance Requirements for Nuclear 

Facility Applications, ANSI!ASME NQA-I-1997 Standard, 
American Society of Mechanical Engineers, New York, New 
York. 

CFR. (2002). Quality Assurance Criteria, 10 CFR 830.122, US 
Government, Washington, DC. 

DOE, (2004). Stabilization, Packaging and Storage of 
Plutonium-Bearing Materials , DOE-STD-3013-2004, U.S. 
Department of Energy, Washington, DC. 

DOE, (2005). Quality Assurance, DOE Order 414.1 C, US 
Department of Energy, Washington, DC. 

Hower, R. (2009). The Software QAlTest Resource Center, 
hnp:llwww.softwareqatest.com/qatfaql .html. last accessed 
February 22, 2009. 

IEEE. (1994). IEEE Standardfor Software Safety Plans, IEEE 
1228-1994, IEEE Computer Society, New York, New York. 

Johnson, R. (2005). "Reverse Engineering and Software 
Archaeology," Software Tech News, 8:3, pp.7-13. 

DOD, (2003). DOD Standard Practice for System Safety, MIL­
STD-882D, us Department of Defense, Washington, DC. 

McKee, S. (2008). "ARIES at 10," Actinide Research 
Quarterly , pp. 1-6, LALP-08-004 . 

Pyzdek, T. (2003). Quality Engineering Handbook, CRC Press, 
6000 Broken Sound Parkway, NW, (Suite 300) 
Boca Raton, FL 33487, USA 

Turner, C. and Lloyd, J. (2008). "Automating ARIES," Actinide 
Research Quarterly, pp. 32-5, LALP-08-004. 

Turner, C., Harden, T., and Lloyd, J. (2009). "Robotics for 
Nuclear Material Handling at LANL: Capabilities and 
Needs," Proceedings ofthe 20091DETC/C1E Conferences, 
San Diego, CA, August 30-September 2, 2009, submitted for 
review. 

10 Copyright © 2009 by ASME 


