AR 0F-0/FEY

Approved for public release;
distribution is unlimited.

Title: | Software Archeology: A Case Study in Software Qualit
Assurance and Design 4

Author(s): | John MacDonald, Jane Lloyd
PMT-4
Los Alamos National Laboratory

Cameron J. Turner
Colorado School of Mines

Intended for: | 2009 ASME IDETC/CIE Conference
San Diego, CA
August 30-September 2, 2009

(‘7
. Los Alamos

NATIONAL LABORATORY
€5T.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Proceedings of IDETC’09:

ASME 2009 International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

San Diego, California, August 30-September 2, 2009

DETC2009-XXXXX

SOFTWARE ARCHEOLOGY:
A CASE STUDY IN SOFTWARE QUALITY ASSURANCE AND DESIGN

Cameron J. Turner
Colorado School of Mines
1500 lllinois Street
Golden, Colorado 80401
cturner@mines.edu

Abstract

Ideally, quality is designed into software, just as quality is
designed into hardware. However, when dealing with legacy
systems, demonstrating that the software meets required quality
standards may be difficult to achieve. As the need to
demonstrate the quality of existing software was recognized at
Los Alamos National Laboratory (LANL), an effort was
initiated to uncover and demonstrate that legacy software met
the required quality standards. This effort led to the
development of a reverse engineering approach referred to as
software archaeology. This paper documents the software
archaeology approaches used at LANL to document legacy
software systems. A case study for the Robotic Integrated
Packaging System (RIPS) software is included.

1. INTRODUCTION

In an ideal world, quality would be engineered into
software during the design process just as it is engineered into
hardware during design. While modern designs often apply this
level of rigor to software as well as to hardware, this has not
always been the case. Software was often created so that the
system would work, with little thought given to its design or
quality. As long as the system configuration (both hardware
and software) remained constant and those responsible for the
design remained available to deal with problems, the lack of
detailed design documentation is not a significant problem. But
when changes become necessary or the original people
responsible for the software are lost to other programs, the
quality of the software becomes important.

Software Quality Assurance (SQA) uses design techniques
to instill quality into the design of the software. SQA may also
be just thought of as software quality. The goals of SQA
include: 1) the instillation of quality into the software, 2)
documenting the design of the software so that information can
be transferred between qualified practitioners, 3) the facilitating
of integrated system testing so that erroneous conditions can be

John M. MacDonald
Los Alamos National Laboratory
PO Box 1663, MS E530
Los Alamos, New Mexico 87544

jmac@lanl.gov jlloyd@lanl.gov

Jane A. Lloyd
Los Alamos National Laboratory
PO Box 1663, MS E530
Los Alamos, New Mexico 87544

avoided, 4) to enable evaluation of modifications upon the
system and revalidation of the system as necessary, 5) provide
reliable and quality data, and 6) to reduce the risk of software
failure. The following sections further examine the necessity of
SQA, its relationship to design methods, and review the
implementation of a legacy SQA project for an automation
system at LANL.

2. NECESSITY OF SOFTWARE QUALITY ASSURANCE

Many program managers have asked “Why is software
quality assurance a necessary component in many engineering
systems?” The best answer is that SQA can reduce project costs
by preventing hardware/software conflicts, failures or errors,
facilitating software changes and upgrades, ensuring that the
customer expectations are met, provide assurance that the
software implementation is complete and reduction of software
associated risks.

Ideally, SQA is implemented during the original design
program. However, in many cases, it may be difficult to prove
what was done in this regard, if the process was not well-
documented. This is often the case in legacy systems. In these
situations, additional effort is necessary to recreate the original
design documentation. These efforts are known as Software
Archeology, a term attributed to Ralph Johnson of The
University of Illinois at Urbana-Champaign [Johnson, 2005].

2.1. PURPOSE OF SQA

SQA programs attempt to ensure that the needs of the
customer(s) are met by the software. These needs can be
described as expected, targeted and unexpected as shown in
Fig. 1. The expected requirements are often unstated by the
customer — they are “expected” to be present in the software
and their absence is a major source of customer dissatisfaction.
The targeted needs are those that the customer intends to satisfy
through the use of the software. These needs are also expected,
or the customer will be dissatisfied with the software, but their

Copyright © 2009 by ASME

presence is not necessarily a source of customer satisfaction.
Unexpected needs are software features that meet needs of
which the customer is unaware. The presence of unexpected
software features is a major source of customer satisfaction.

High Customer Satisfaction

A

Targeted
Need

Feature
Unexpected
Need

| J

Low Customer Satisfaction

Figure 1. Customer Needs and Satisfaction versus
Implementation Quality.

Fig. 1. is similar to a graph produced by the Kano model.
The model developed by Professor Noriaki Kano for
understanding customer needs and satisfaction [Pyzdek 2003].

The expected and targeted needs of the customer should be
readily identifiable and are typically specified by the customer.
These needs include the core purpose of the software (a
targeted need) and the user interface (expected needs) of the
software. However, identifying the unexpected needs, such as
fault recovery, conflict handling, and system integration may
not come from the end-customer initially. For instance, system
integration is a need of the intermediate customer, the system
integrator and is unlikely to be an initial concern of the end-
customer. Other needs, such as fault recovery and conflict
handling may be of concern to the end-customer only once
those states are identified. A systematic study of the system is
often the best way to identify these expectations.

An SQA program seeks to produce quality software that
meets the needs of the customer in terms of functionality,
usability, reliability, performance, and supportability. All of
these components contribute to the development of quality
software. A structured approach to SQA aids the software
engineers in the task of identifying expected and unexpected
needs that are often unarticulated by the customer. Without this
structured approach, these needs would not be translated into
requirements, incorporated into the software, or tested and
maintained as the software is incorporated into the system
leading to general customer dissatisfaction with the software.

The software development process must translate customer
needs into software requirements and specifications that can be
transformed into actual software code. This process is a series
of decisions and assumptions that impact the software design
and implementation. An SQA program documents these
decisions and assumptions for future use. A SQA program also
encourages the development of an integrated testing strategy so
that the software can be evaluated versus the customer needs
during development and once development is complete. Thus
an SQA program is crucial to establishing the ability of a
software package to meet the needs of the customer(s). Since

software is often an integrated component in a larger system,
quality software is a crucial to achieving and maintaining the
system’s ability to produce quality results (i.e. data, product,
etc).

As software ages, an SQA program becomes increasingly
important if system quality is to be maintained. Computer
hardware often becomes obsolete within years of purchase and
even relatively minor hardware or operating system changes
can affect software performance, reliability and functionality,
with potential negative impacts upon system quality. SQA
programs provide a critical mechanism to provide change
control and post change verification testing to ensure that
customer needs remain satisfied. SQA provides the necessary
documentation to design software upgrades, a structured
methodology to document changes, and a consistent method for
software testing with respect to the needs of the customer.

Software Quality Assurance activities attempt to verify and
validate software using well proven engineering methodology.
The ends result of SQA activities provides software that is
documented, reviewed, tested, maintainable, robust and
reliable. SQA also provides an organized approach over the life
cycle of the software. Additional benefits are realizable by the
stability of the software and added saving of reduced reworks
and reduced software failures.

2.2. SQA AS GOOD ENGINEERING PRACTICE

Ensuring software performs as expected on a hardware
platform is a good engineering practice and is demonstrated
through software testing. Testing validates that the software
runs properly and meets requirements specified. Software
engineers, like hardware engineers, often operate strictly within
their own domain without considering necessary interfaces
between software and hardware. System engineering
approaches from a global perspective, and endeavors a system-
level approach, considering software and hardware to be parts
of a system. Both parts of the system need to perform together
for the system to meet engineering requirements. This can only
be accomplished by collaboration between the engineers
responsible for hardware development and those responsible
for software development. In addition, not only is software and
hardware considered from a system engineers perspective but
also items such as safety, reliability, quality, producibility,
environment, physical dimensions, maintainability, human
factors, economics and technical factors.

For example, a hardware memory failure can impact the
ability of the software algorithm to run correctly on a given
system. On the other hand, one can have the greatest software
algorithm ever conceived of on paper but unless it is properly
implemented on a suitable hardware platform it may not prove
to be of any value. Both hardware and software are needed to
form a system. Software cannot be tested without hardware and
hardware cannot be fully tested without software.

What can cause software failures? Software syntax errors
such as typing in a “” instead of “;” depending upon the
programming language can cause immediate code errors.
Another example is if a partial or total hardware failure such as
memory or hard drive failure resulting in a partial loss or
corruption of data or even a total loss of data due to an
unintentional overwriting of data. Timing and latency in a

Copyright © 2009 by ASME

system can cause a loss of response in real-time systems. For
example, software running on a network can become so
saturated with activity that it is impossible for software to
response.

An electrical power loss will may cause the hardware to
cease to function, even if the software is not at fault. However,
without power, the software will not function. Electromagnetic
energy fields fluxes can cause havoc on compute systems on
both the hardware and on the software executing within the
processor. Binary bit-flipping or large scale blocks of data
erasure can occur due to electromagnetic fluxes. An improperly
grounded and protected system can be affected by power surges
and lightening strikes affecting hardware and software alike.
This type of failure can result in unpredictable results and affect
system-wide reliability.

Even when code is written precisely to a standard (for
portability) when one move to another hardware platform
difficulty in the way the compiler or interpreter implements the
standard may be found in execution. Patches and repairs code
for software is noticeably common. New features and additions
are also prevalent in software patches, software versions and
just new software. Alpha, alpha Beta code testing is very
common on large software projects. However, this level of
testing is not always practiced on small-scale and in particular
research and development (R&D) engineering projects.

2.3. IMPACT OF A LACK OF SQA

For new software, the lack of SQA puts the entire software
project at risk. The Software QA/Test Resource Center website
[Hower, 2009] maintains a listing of some of the more
significant software failures attributable to a lack of SQA. A
few of the more interesting highlights include:

- In January 2009, regulators banned a health
insurance company from selling policies due to
computer bugs that resulted in erroneous denials
of coverage or outright cancelations in coverage
to certain patients. These errors threatened the
health and safety of beneficiaries.

- A January 2009 news report indicated that a major
IT consulting company has spent four years
correcting problems caused by an inadequately
tested software upgrade.

- In August 2008, more than 600 airline flights
were delayed due to a software glitch in the FAA
air traffic control system.

- A lack of software testing was blamed for
problems that led to privacy breaches into the
records of several hundred thousand customers of
a large health insurance company in August 2008.

- In December 2007, inadequate software testing of
a new payroll system was blamed for $53 million
of erroneous payments to employees of a school
district.

- An April 2007 subway rail car fire was caused by
the failure of a software system to perform as
expected in detecting and preventing excessive
power usage in the new passenger cars. The
subway system had to be evacuated and shut
down for repairs.

- A March 2007 recall of medical devices was
blamed on a software bug that failed to detect low
power levels in the devices.

- A September 2006 news report indicated that
insufficient software testing led to voter check-in
delays during the primary elections in that state.

There are many additional examples of a lack of control
over the development of software that led to unintended
failures. Clearly the need exists for producing better quality
software. Software development failures also have been
documented within the US Department of Energy (DOE)
Laboratory Complex and at LANL. A series of 2006 events led
to the implementation of new SQA requirements at LANL.
These new requirements applied not only to new software
projects, but to legacy systems and led to the need to develop
methods to apply SQA techniques to legacy systems.

2.4. A RELATIONSHIP BETWEEN SQA AND DESIGN

Figure 2 describes a typical product lifecycle from the
early problem identification process through design, production
and the eventual retirement.

Need Identification .
and Requirements | Conceptual Design ¢ onc::;::nilolll‘) .
Guthering ’ —’
L Final Design and o Prototype Production and
Prototyping Evaluation Operntlon

L Mai > Retirement

Figure 2. A typical product development process.

SQA naturally fits within a product development process
such as that described in Fig. 2. Note the similarities to the
ASME Standard NQA-1 process for software development as

shown in Fig. 3. NQA-1 is further discussed in Section 3.

Software software D Software Design
Requirements > MM’(‘;;” > Verification
H01) (402.1) —‘
Software Software Seftware
=1 Impl Lt 1 Accef ¢ Testng - Operation
(H03) (404) (405)
Software Software
‘1 Mai - Retirement
(H406) (407)

Figure 3. The ASME NQA-1 software development process.
[ASME, 1997]. The appropriate sections of the standard are
also indicated.

The architectural similarities between a generic
development process and an SQA compatible software

Copyright © 2009 by ASME

development process are very similar. This should not be
surprising, but should be expected. SQA is not an additional
complexity to be added to the design process, but rather, SQA
is a documentation of a structured design process. Properly
done, SQA adds very little effort to a design effort, but instead
documents the decisions made during that process.

However, when that documentation is lacking, as may be
the case with legacy software, SQA may become a more
resource intensive process. One option is to simply redesign
new software to replace the legacy software, but to fully
implement an SQA program during the design cycle. Unless
other factors require it, such as a need to replace the existing
system, this approach would seem to be extremely costly in
terms of both time and effort.

The alternative approach is to use reverse engineering
techniques to evaluate the quality of the legacy software, and to
redevelop the supporting documentation. Here again, a reverse
engineering design process can be applied to software, much as
it is applied to hardware. The tasks include:

- Redeveloping the original customer needs that led
to the original software development;

- Translating those needs into requirements and
specifications;

- Mapping the requirements and specifications into
the functional form of the design;

- Developing appropriate testing procedures to
confirm that the requirements and specifications
are met in the software as implemented; and

- Producing appropriate maintenance, upgrade and
retirement plans and procedures.

The similarities in activities between quality assurance and
design procedures are striking. Specific techniques utilized at
LANL to reverse engineer legacy software will be noted in the
case study in Section 4. The common fear of most engineers
when faced with a new quality assurance program that there
will be additional effort and the design process will suffer is
probably unfounded. What is required is a simple
documentation of the activities that have already occurred.

3. SOURCES OF SQA STANDARDS

Several professional organizations have arrived at
standards for SQA programs. Among them are the American
Society of Mechanical Engineers (ASME), Nuclear Quality
Assurance Level 1, referred to as NQA-1 [ASME, 1997]".
NQA-1 forms the basis for most of the relevant DOE and
LANL standards and requirements for SQA. In addition to
NQA-1, relevant IEEE computer engineering standards such as
IEEE 1228-1994 [IEEE, 1994], Department of Defense
standards such as MIL-STD-882D [DOD, 2003] and standards
from the American Society for Quality (ASQ) were used to
further refine the meanings of the ASME standards.

3.1. REGULATORY DRIVERS

! Note that there are more recent versions of NQA-1, however,
the DOE Orders specifically reference NQA-1-1997, and so
therefore the SQA program is based on this version.

DOE SQA programs are driven by regulations in 10 CFR
830.122. This code specifies a Quality Assurance Plan (QAP)
and indicates that the QAP must address management,
performance, and assessment criteria. Additional requirements
are imposed for software if its location or use may affect the
safety and/or security of a facility. Professional standards
including ASME-NQA-1 have been codified into this code.

10 CFR 830.122 [CFR, 2002] resulted in DOE Order
414.1C [DOE, 2005], which is specific to quality assurance,
safety software, and software defined as computer programs,
procedures, and associated documentation and data pertaining
to the operation of a computer system within DOE nuclear
facilities. LANL translated this order into a LANL LIR 308-00-
05.1 entitled “Software Quality Management” revised on
December 29, 2006. This document has been further
superseded by additional procedures and requirements.

At each level, the details of SQA implementations become
increasingly specific. The SQA program developed for the
Advanced Recovery and Integrated Extraction System (ARIES)
project, and used as the basis for the legacy work on RIPS, has
successfully pass audits several times and found to be in accord
with all of the relevant DOE and LANL procedures.

3.2. THE ARIES APPROACH TO LEGACY SOFTWARE

The Advanced Recovery and Integrated Extraction System
is a program active at LANL since the mid-1990s. The program
runs a series of gloveboxes, many of which contain integrated
automation and processing systems [Turner, 2008, 2009] for
which extensive customized software was created. The ARIES -
glovebox lines convert nuclear materials from retired nuclear
weapons into forms suitable for packaging for long-term
storage, international inspection and for reuse as mixed-oxide
(MOX) reactor fuel [McKee, 2008]. Because of the potential to
reuse ARIES material in nuclear reactors, the need for an SQA
program was recognized by the ARIES project long before
other programs at LANL realized the need.

However, ARIES still had hundreds of thousands of lines
of code for which the necessary documentation of the software
quality was incomplete. To correct this deficiency, the ARIES
program embarked on an aggressive software reverse
engineering program to establish a defensible SQA pedigree for
its legacy software systems. This program quickly became
known as a software archaeology effort and is the basis for the
case study in the following section.

This project used the ASME NQA-1 standard as a baseline
for what information needed to be identified, documented and
retained for both legacy and new software systems. These
requirements are shown in Fig. 4. Some elements are only
required of new software. Others are optional, and their need is
determined during the development of the initial software
project plan through a risk analysis.

The ARIES SQA plan has been through several internal
and external audits and has earned glowing reviews each time.
Furthermore, the program did review issues which had not been
previously identified during system integration, acceptance
testing or system operation. Most importantly, the project has
increased confidence in our end-users that our product is
produced to meet the required specifications.

Copyright © 2009 by ASME

4. SOFTWARE ARCHEOLOGY: RIPS CASE STUDY

The Robotics Integrated Packaging System (RIPS) is one
of six major processes that make up the ARIES glovebox line.
RIPS occupies one of the gloveboxes in the line and is
responsible for packaging nuclear materials produced by the
other systems into stainless steel cans that meet the DOE 3013
packaging standard [DOE, 2004]. The cans are automatically
packaged with two robotic systems and uses five independent
subsystems to complete the process. These systems are
controlled by no less than six separate computer systems and
interface with six additional “intelligent” instrumentation
subsystems. [Turner, 2008, 2009]

Software Project

(;',‘;‘ Software Roguirements Software Design
—) . Specification Description
ftware (SRS) (SDD)
Program | L =
mn::em-m e Dealipi
I —

Soltkars Sotrow Software Test Plan Software Test Report
o TP) (5TP)
(8sC)
M Review Review

-} Testing — Testing/Basel P

Software v—-—Kw e
Maintenance Plan ana ’
) HHEset ‘ Required E
|
Optional (27|
0| P
> M;Intennm:e Life Cycle :’

Figure 4. The required elements of the ARIES SQA
program.

The RIPS glovebox, Fig. 5, is divided into three chambers
called the hot side (which is radioactively contaminated), the
cold side and the fluid processing side. Materials to be
packaged in RIPS amrive in the hot side in a crimped
convenience can. One robot then loads the convenience can
into a 3013 stainless steel can which is then welded shut in a
helium atmosphere. The welded can is inspected, leak checked
and placed in an electrolytic decontamination chamber to be
radioactively decontaminated (see Fig. 6 and 7).

Fluid Side

Cold Side

Figure 5. Schematic of the ARIES RIPS Module.

Within the electrolytic decontamination chamber, the
surface of the can is electropolished which removes
contamination from the surface of the can. The chemicals used
to electropolish the can are recycled in the fluid processing
chamber of the glovebox and the removed contamination is
collected and removed from the system. Once the process is
complete, the can is transferred to the cold side of the glovebox
for final processing.

o _—

gure 7. Handling the welded 3013 can.

On the cold side, Fig. 8, a second robot conducts a
radiation survey on the surface of the can, and conducts a
second leak check to confirm that the can remains sealed. Once
these checks are completed, the can is released from the RIPS
module and taken to the next process in the ARIES process.

Copyright © 2009 by ASME

Figure 8. RIPS Cold Side Activities,

The operation of the RIPS system is controlled by a master
PC, which can delegate control of the system to either robot,
the welding subsystem, the electrolytic decontamination
system, or the two leak check systems. The master computer
and each of these subsystems include software which needed to
be evaluated. In addition, the radiation checks use three
additional “intelligent” instruments to survey the surface of the
can. These instruments also included software that needed to be
addressed.

4.1. SOFTWARE PROJECT PLAN

The Software Project Plan (SPP) is the initial step in the
reverse engineering process used by ARIES. The purpose of the
SPP is to document the original customer expectations for the
software and to establish a plan to complete the SQA process.
With RIPS, an early consideration was how to deal with the
“intelligent” instruments.

These instruments contain internal software, often in the
form of firmware, which processes the sensor data and provides
a result to a local user interface and to the main system through
a network connection. On one hand, the firmware is software
which needed to be validated. On the other hand, this software
can only be modified by the vendor, and since the systems are
located in a secure facility, the firmware configuration is
controlled. Furthermore, the instruments were subject to a
calibration plan, which also served to verify that the firmware
and the sensor are functioning correctly. Consequently, it was
determined early in the reverse engineering process that these
intelligent instruments already were quality controlled and did
not need to be reverse engineered.

Also, the safety significance of the software had to be
analyzed. The safety analysis was conducted with a formalized
questionnaire completed by the responsible system engineers
that resulted in a determination of the level of safety
significance of the software. RIPS was determined not to be
safety significant software and therefore did not require a
Software Safety Plan (SSP). It was also determined that a
separate maintenance plan was not necessary since the system
maintenance plan was also being developed at the time and thus
both documents could be integrated together. Finally, the
development of a retirement plan was deferred since there are
no immediate plans to retire this new system.

The SPP identified the major customer expectations for the
system, including:

- The automated welding of the 3013 containers;

- The automated verification that the weld sealed
the container;

- The automated decontamination of the outer
surface of the container; and

- The automated verification of satisfactory
decontamination and that the container remains
intact.

In addition, the SPP began to develop the structure of the
software system and the major hardware and software
components resulting in the diagram in Fig. 9.

The development of the SPP used design techniques that
included interviews of the operators and engineers responsible
for the system (customer interviews), high level functional
analysis diagrams, system configuration diagrams, and
literature reviews (of available system documents).

4.2, REQUIREMENTS & SPECIFICATIONS

The next phase of the SQA process for RIPS involved the
development of the very general customer expectations given
above into a detailed set of engineering requirements and
specifications. These included both requirements for system
functionality during normal and abnormal operations as well as
requirements for data interfaces and network connections
between the various hardware systems. All of this information
was documented in a Software Requirements and
Specifications (SRS) document.

| v

Centaur il Model E:ln';.&m:! e'“ Data Collection
1507 . Microsoft Windows = Complter
Welding System. o A -l Microsoft Windows e
Proprietary Wekd P,owmoc" M“"‘ - Computer running
Control Software: G proprietary software
EDT Tontrl
Microsoft Access :::.r‘ﬁn?mln: Computer Assoclated
Dutebese Prcpriiant bl Microsoft Windows: “Intelligent™
Defines Program prietary Compules running Instrumentation
Parameters Canguage Nations!
Labvew
|
|
C:Ir:gz‘:::' Hot Robot Programs mﬂ;:;“b:::'“
Robat P Robot Program Defining Labyi
rogram Seq ining Labview
Sequences e Program Parameters

Key

Green Box - Mother

Biue Box - Daughter
Red Bax - KM Interfaces

Figure 9. Software Architecture uncovered with the SPP.

This analysis led to the development of a Requirements
Traceability Matrix (RTM), organized hierarchically into 33
major categories and encompassing more than 500 individual
requirements. Each requirement was also associated with a
particular component for Fig. 9. This matrix was used in
subsequent documentation.

In constructing the RTM, a detailed diagram of the
operation of the top level software system (called CanOut) was
generated. This flow chart was instrumental in the development
and organization of the RTM and in the development of testing
procedures. This diagram is shown in Fig. 10.

The methods used to generate these descriptions included
task decomposition, and diagramming methods that are akin to

Copyright © 2009 by ASME

http:S\lMY"..ns

a function structure. A grammar of movements and actions was
developed to enable a complete description of the individual
actions required by the subsystems.

4.3. SOFTWARE DESIGN DOCUMENT

The Software Design Document (SDD) associated each
requirement and specification with particular software and
hardware components. It is at this phase of the project where
specific hardware was called out for the system, network
connections were identified and data exchange protocols were
specified. This phase is not that dissimilar from how an SDD
might be created for new software with one exception. In this
case, no software was written. Instead, the code was reviewed
to determine which module was responsible for each
requirement. This information was added to the RTM.

Copyright © 2009 by ASME

Bystem User Recovery
Startup of Exceptional
Precheck Flow I
T
Exit Manua Mansal User Recovery Notify User of
Operations {4—{ Operarion N of Excep
Mode % Mode Flow i1 Flow 1
User Recovery N:w User of Rotioms
Mode o Vi T pe O’
User Recavery Uiser Recovery Hot Cold User Recovery Notify User of Frisk ;{:::r-h.l ol
of Exceprional of Exceptionat or Cotd of Exopeional Exceptional s M_SM""'
FlowB Flow A Ops? Flaw Fiow H2 Check
Notify User of Notify User of User Conducts User Conducts User Recovery Notify User of Material Cai Ma Can User Recovery
Eaceptional Hot & Cold Cold of Exceptional Exceptional Frisk Check T l'rhk- Side Frisk af Exceprional
Flow B FlowA Preckecks Prechecks Flow F Aew G Ok? i Flawd
User Did Notify User of Material Can Netify User of
e I Wad S o Toegsianal i O Brea vk Ly o Xxyionil
Weld? mapacty Fail? Eple plas Flow F e Swipe 2 Flow
Preliminary Preliminary
Prepare for Notify User of User Recovery
Hot Leak Weld Can AR Frepayd g B Seripe agdirio Exceptional of Exceptional
Cheek for Welding Radiation Ok Radiation Ok?, Flew K Flow K
Cheek Check
User Recavery Hot Leak D D Notify User of User Operator Can Prepare for
Cheek Do Timeout? wccenstul i Tagacios Pperalor Ca
FlowC p Flow M Can?, Inspection
Notity User of Pass Notify User of Notity User of P Prepare for
Exceptional Hot Leak D‘ suia of Reworey Cobd Laak cmu
Flow € heck?, Flowk Flow D) Flew M Chaek
() ’
User Recavery Urer Recavery User Recovery Notify Uner of Pass Transfer Automatic
? af Exceptional of Exceptional of Exceptional Exceptional Cold Leak Matrrlal Caa Processing
() () [FlowE FlowD Flewl. Flowl. heek?, t Exft Complete
-

Figure 10. Process Flow Chart for the CanOut Software Module of RIPS. This represents approximately 100,000 lines of code.

4.4. SOFTWARE TESTING

Perhaps the most important documents resulting from the
SQA effort are the Software Test Plan (STP) and the Software
Test Report (STR). The STP allows the integrated system to be
tested to validate that the system performs as expected. While
many of the tests for this system were recognized and tested
during acceptance testing, about 10-15% of the software
requirements escaped testing during the acceptance testing
process. Most of the requirements that were missed were
relatively minor requirements.

Again, the RTM is the basis for developing the STP
although full advantage of the previous testing system
acceptance testing was made. Each possible test was evaluated
against the tests previously performed. Most of the
functionality of the software had been implicitly tested during
the integrated system acceptance tests. However, many of the
software functions, such as the access control requirements had
never been explicitly tested. The access control requirements
had been tested accidently, but never deliberately, nor
documented.

Surprisingly, lessons were learned during the software
testing. Some tests produced unexpected results. One example
was a failure message that was reported when a fault was
deliberately caused, but the message reported was not what was
expected by the test. All of the test results, whether indicating

success or failure, were reported in the STR. Erroneous
conditions required explanation and an accept-as-is or correct-
with-change-order decision.

In the case of the failure message, investigation revealed
that the software was reporting a correct error response.
Because of limited communication channels, two different fault
conditions generated a common error message to the main
software system. This hardware decision meant that the
software could not distinguish between the two different failure
causes. Hence the message that indicated a failure had
occurred, but did not indicate that there were two sources. This
new information was not only documented in the STR, but also
was used to update the Software User Manual (SUM). In this
case, the test result was accepted-as-is.

The development of an STP also plays an important role in
the configuration management of the software. Once it was
established that the existing software was functional; the
software was baselined and the configuration frozen. A formal
change process is now in place to prevent software and
hardware changes without an associated software impact
review and a subsequent testing after the change is
implemented. This testing uses the tests developed in the STP
as the basis for evaluating system modifications. Subsequent
testing will generate additional STRs.

Copyright © 2009 by ASME

Again the methods used to develop the STP and STR are
the same regardless of whether the software is existing or new.
However, the use of the RTM as the basis for establishing the
necessary tests provides a systematic means of demonstrating
that the project requirements have been met. The result is a
software package backed by demonstrable performance metrics
and capable of exceeding customer expectations.

Both the STP and the STR are subjected to a review
process that includes system experts, software experts, and the
responsible management for the operations and engineering of
the system. These reviews provide a valuable check on the rigor
of the STP and the conclusions drawn in the STR. The review
committees must also approve of any accept-as-is or correct
decisions proposed by the responsible system engineers. This
rigorous process forces the engineering underlying the system
to be completely documented and produces an auditable
document record of critical design decisions. This is one of the
main goals for SQA.

5. CONCLUSIONS AND LESSONS LEARNED

Even in a tightly controlled and regulated environment
such as a DOE nuclear facility, there remains room for
improvement. The implementation of a SQA program within
the ARIES project required some creative problem solving
approaches. Since adequate documentation was not produced
during the initial software design and implementation,
additional resources were required to reverse engineer the
design. These reverse engineering efforts, colloquially called
"software archaeology," revealed previously lost design
decisions and features that had been lost.

These discoveries have enhanced our present
understanding of systems such as RIPS. However, perhaps
most importantly, the results of the SQA project have provided
a foundation for the evolution of the software within ARIES
that did not previously exist. Hardware and software upgrades
can now be pursued with a much better understanding of their
potential impacts upon the system, which should lead to a more
predictable design and integration process. Furthermore, with
an established set of software testing procedures in place, any
upgrades or modifications to the software can be systematically
evaluated before the system is returned to operation.

The relationship between a quality assurance program and
design should be a strong one. Many of the features and
requirements are similar. Strong formal design methods, when
well documented are the backbone of quality assurance
documentation. And if that documentation is lacking, reverse
engineering methods are the central to the recovery, recreation
and rediscovery of what has been lost. Good engineering design
practices make quality assurance programs easy to implement
and quality assurance programs can nurture good engineering
practice.

ACKNOWLEDGEMENTS

This paper is approved for release by Los Alamos National
Laboratory under LA-UR-09-XXXX. The assistance and
support of Los Alamos National Laboratory and the Division of
Engineering at the Colorado School of Mines is greatly
appreciated. In particular, the authors would like to recognize
Joe Lewis, Sonya Lee, Stan Zygmunt, Mark Swoboda, Max

Evans, Bill Everett, and Paul Graham for their contributions to
this project and extend their appreciation for their contributions
and feedback on this paper. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the author and do not necessarily reflect the views
of Los Alamos National Laboratory.

REFERENCES

ASME. (1997). Quality Assurance Requirements for Nuclear
Facility Applications, ANSI/ASME NQA-1-1997 Standard,
American Society of Mechanical Engineers, New York, New
York.

CFR. (2002). Quality Assurance Criteria, 10 CFR 830.122, US
Government, Washington, DC.

DOE, (2004). Stabilization, Packaging and Storage of
Plutonium-Bearing Materials, DOE-STD-3013-2004, U.S.
Department of Energy, Washington, DC.

DOE, (2005). Quality Assurance, DOE Order 414.1C, US
Department of Energy, Washington, DC.

Hower, R. (2009). The Software QA/Test Resource Center,
http://www.softwareqatest.com/qatfaq|.html, last accessed
February 22, 2009.

IEEE. (1994). IEEE Standard for Software Safety Plans, IEEE
1228-1994, IEEE Computer Society, New York, New York.

Johnson, R. (2005). “Reverse Engineering and Software
Archaeology,” Software Tech News, 8:3, pp.7-13.

DOD, (2003). DOD Standard Practice for System Safety, MIL-
STD-882D, US Department of Defense, Washington, DC.

McKee, S. (2008). “ARIES at 10," Actinide Research
Quarterly, pp. 1-6, LALP-08-004.

Pyzdek, T. (2003). Quality Engineering Handbook, CRC Press,
6000 Broken Sound Parkway, NW, (Suite 300)

Boca Raton, FL 33487, USA

Turner, C. and Lloyd, J. (2008). “Automating ARIES," Actinide
Research Quarterly, pp. 32-5, LALP-08-004.

Turner, C., Harden, T., and Lloyd, J. (2009). “Robotics for
Nuclear Material Handling at LANL: Capabilities and
Needs,” Proceedings of the 2009 IDETC/CIE Conferences,
San Diego, CA, August 30-September 2, 2009, submitted for
review.

Copyright © 2009 by ASME

