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We investigate the hydrodynamics of a Hele-Shaw fl ow as the free boundary evolves from smooth 
3initial conditions into a generic cusp singularity (of local geometry type x ~ y2), and then into a 

density shock wave. This novel solution preserves the integrability of the dynamics and, unlike all 
the weak solutions proposed previously, is not underdetermined. The evolution of the shock is such 
that the net vorticity remains zero, as before the critical time, and the shock can be interpreted as 
a singular line distribution of fluid deficit. 

1. Introduction Hele-Shaw flows, introduced over a 
century ago [1], are known for leading to very complex 
patterns (FIG. 1, [2]), despite of the simplicity of the 
experimental set-up, FIG. 2: an almost inviscid fluid (e .g. 
air , occupying the domain D) is pumped in at a constant 
rate, displacing a very viscous fluid (e.g. oil , denoted by 
iJ), without mixing. The fluids are confined to a two­
dimensional cell of height b -> 0, created between two 
horizontal glass plates. Alternative realizations [3, 4] use 
a 2D monolayer obtained by wetting or using gTanular 
media. As the fluids are immiscible, all the dynamics is 
encoded in the motion of the boundary, ,(t) = aD. 

Neglecting the effects of surface tension , we obtain 
the idealized model of Hele-Shaw flow , called Laplacian 
growth [5-7] . Under this assumption , the equations of 
motion, obtained by averaging the 3-D Navier-Stokes 
equations over the height of the cell, give the law gov­
erning the evolution of the boundary: 

(1) 

02 

where K = 1211 is called hydraulic conductivity , !I is the 
kinematic viscosity, p is the density of the liquid and 
P, V n , V' nP are the exterior pressure, and the normal com­
ponents of the boundary velocity and pressure gradient, 
respectively. Pressure solves a Dirichlet problem: 

6..p = 0 on iJ, Ph = 0, PI.- oo ~ -log 14 (2) 

The law (1) is named after H. Darcy, who discovered it 
while studying the groundflow of water in porous soil [8]. 

It is important to note here that the problem (1), (2) 
is far more fundamental than the original hydrodynamic 
formulation suggests. Namely, growth occuring at a rate 
(vn ) proportional to the gradient of a harmonic func­
tion (p) and with sources/sinks at infinity, is a very wide 
class of processes, including electrodeposition , snowflake 
growth, and diffusion-limited aggregation (DLA). The 
common patterns observed in these phenomena are not 
well understood theoretically. A key element in these pat­
terns is branching (or fingering, or tip-splitting), whose 
parameters (local geometry, frequency of occurence, etc) 
are essential for understanding the global properties of 
the cluster. 

FIG. 1: Experimental Hele-Shaw fingering pa tterns [2J 

Formally, (2) is readily solved by using the conformal 
map z -> w of iJ onto the exterior of unit circle Iwl > 1, 
with the solution (here Q is the constant rate of pumping 
fluid , Pf!- = 2jf , to - normalized area of D and t - time): 

p(z) = - 2;K log Iw(z)l , PVn = ~ Iw'(z)l, zED. (3) 

We note here that, due to its analytical properties, the 
function I/>(z) = - ilogw(z) is (up to a trivial constant), 
the complex potential for the flow (1), such that Re I/> ~ 1j; 
(stream function), and 1m I/> ~ P (pressure), as in (3). 

However, the simplicity of this solution is deceiving, 
because for an overwhelmingly large class of initial con­
ditions, (2) turns out to be ill-defined. 

2. Generic singularities of Hele-Shaw flows Since 
any map w(z) will have singularities inside D, where 
w'( z ) -> 00, it follows that if a singularity of this type 
approaches the boundary " the local velocity will di­
verge. This is indeed what happens for most initial con­
ditions for D , and it reveals a fundamental instability 
of Laplacian Growth , called finite-time singularities, be­
cause they occur for finite values of the area to , and there­
fore , of time. They were systematically studied and clas­
sified in a series of papers [9-12]. 

The type of singularity encountered most frequently is 
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FIG. 2: Hele-Shaw flow with suction mechanism. Darker re­
gion is oil, outside is air. 

a boundary cusp at (xo, Yo), of local geometry given by 
two mutually prime numbers p, q: 

(4) 

Among such points, the one considered generic [11] has 
p = 3, q = 2 and is referred to as the (2,3) cusp, FIG. 3. 

The (2,5) cusp was also studied in detail [12, 13] and 
it was shown that its evolution may be smoothly con­
tinued beyond the critical time te (the moment when a 
cusp is formed). However, for the (2,3) cusp, a naive con­
tinuation of the classical solution is not possible. In the 
remainder of the paper, we will show that such a con­
tinuation can be achieved in a weak sense, and that its 
physical realization is a shock wave. 

It is important to note here that there have been many 
attempts to find the proper way to regularize these sin­
gularities [9, 11, 14]. However, due to the singular­
perturbation nature of the problem, every method pro­
posed led to a very different physical prediction, none 
could explain the actual patterns observed experimen­
tally [2, 4], and - most importantly - they were all under­
determined and required extraneous information to fix 
a solution. Consequently, the problem stayed open for 
decades, despite its venerable age. 

The point missed in these studies is the fact that the 
dynamics described by (2) has an important feature: it is 
integrable. This fact was established long ago [5-7] , and 
was recently explored to the fullest extent [13, 15- 19]. In 
this paper, we show that this important feature provides 
a well-defined weak solution. 

3. Alternative hydrodynamic formulation In the fol­
lowing, we recall an alternative description of the prob­
lem, using the height function y, introduced in [17] . 
There, we showed that the dynamics of Hele-Shaw flows 
can be restated using the local geometry of the bound­
ary: expanding the conformal map z(w ,t) around the 
location of the cusp Ze, as a function of time (relative 
to the critical time, tc), and angle ( choosing Zc real), 
w = ei 4>, we have the approximation (up to an overall 
scale) z(w) - Zc = x(¢) + iy(¢), where 

(5) 

and e(t) is a critical point of the map, z'(e) = 0: 

2 ( t ) 1/2
e(t)=-- 1-- (6)

3 tc 

xRescaling the local coordinates as X = 23 , Y = 4iy, we 
have the local approximation in elliptic form: 

y2 = 4(X - e)(X + e/2)2. (7) 

The choice of rescaling is such that Y is real for X E 
[e, -e/2] - the region of interest. 

'.' 

FIG. 3: Symmetric hypertrocboid evolving under Darcy law 
reaches the (2,3)-cusp singularities when all three critical 
points (red dots) hit the boundary at the same time. The 
shaded contour lines are the equi-pressure lines. The dashed 
lines are the stream lines. The red dashed lines are branch 
cuts -a skeleton. 

At the critical point t = te , e = 0 the curves degen­
erates further into a (2 ,3) cusp: y2 '" X3. As shown 
in [17], the KdV -type integrable hierarchy describing the 
evolution of this curve is given through a set of equa­
tions; the first of them (correspoding to the standard 
KdV equation for e(t)) is 

(8) 

Since ¢ is the complex potential of the flow, we conclude 
that the complex velocity field v = Vx - ivy (related to 
V¢ by Darcy law) is encoded in Y = OtY: 

Re (Ydz) = dp, 1m (Ydz) = -d1j;, (9) 

everywhere Y, p, 1j; are differentiable. 
This fact is very important for formulating the phys­

ical weak solution, and cannot be stressed enough. In 
the form (1), (2) the problem is ill-defined and typically 
leads to a (2,3) cusp. However, it may turn out to be 
tractable, once we express it through the evolution of 
the height function. This is the approach that we use 
here: characterize the Hele-Shaw flow through Y(z, t). 
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4. Hydrodynamics from the height function Starting 
from the complex velocity field v, we derive the identity 
28v = 'V·v + i'V x v, where 'V x v = OyVX - Dxvy is the 
vorticity field, and 'V . v = oxvx + OyVy is the divergence 
of velocity field. Using (8), and integrating over a closed 
loop oE bounding the domain B, we obtain : 

Re foB Ydz = fl 'Vxpvdxdy = f dp (10) 

1m foB Ydz = Jis 'V·pvdxdy = - f d1/!. (ll) 

We also note (7) that the critical points of the conformal 
map e(t) are critical points of Y( z ). More precisely, they 
are branch points for Y( z ), and must be connected by 
branch cuts along which the function Y(z) will have a 
finite discontinuity (jump). They are depicted in FIG. 3. 

Therefore, since the leftmost contour integrals in (ll, 
10) reduce to line integrals along the branch cuts of Y(z), 
we obtain the following equivalent representat ion of the 
flow v: the sources of the field can be identified with 
the support of the jump of Y, and its strength becomes 
the magnitude of the jump itself, aldz l = disc(iYdz) for 
any infinitesimal arc dz. Equivalently, we may say that 
the droplet of uniform density in D can be replaced by 
a non-uniform, singular line density a , supported on the 
cuts r. In particular, the Newtonian potentials created 
by these two distributions outside D are identical. 

Before the boundary singularity forms , this alternative 
formulation does not lead to any new physical conclu­
sions. Afte'r the critical time t e , however, the situation is 
very different, especially because at t = te , the endpoint 
of the cut r touches the boundary, and evolves outside 
D for higher times. 

We propose to identify the evolution of the droplet D 
after a critical time te with the evolution of t he branch 
cuts r(t) outside of D, together with the evolution of the 
rest of the droplet . The branch cuts found outside of D 
have the physical interpretation of density shock waves. 

In short, we will replace the (uniform) density of oil by 

p(x, t) = Po - b(x; r)a(x, t) (12) 

where the line density a(x, t > t)c represents the density 
of -iY(X) on the cut r (here b(x ; r) is the delta-function 
on the cut). 

Once this choice for the weak solution is made, all that 
remains is to specify how to choose the branch cuts be­
yond the critical time. As we show in the next section, 
this choice is uniquely determined by the physical inter­
pretation of the integrability condition: zero-;)ort'icity. 

5. The physical prescription for weak solutions Inte­
grability of the Laplacian growth can be (and has been) 
formulated in many ways; for our purposes, the most rel­
evant here is the statement that the density of the height 
function remains (after the critical time) T'eal and posi­
tive, as it was before te. We refer the reader to [20] for a 
comprehensive discussion on these conditions. 

Here, we Hote only that these requirements guarantee 
the zero-vorticity condition for the flow after te . From the 
first equation in (10) , we see that this condition yields 
~Re f Y dz = 0 for all closed cycles in the fluid . The 
condition that the line densities are real 

a(z) = real, z E r, (13) 

satisfies this requirement , and furthermore leads to a 
stronger condition 

Re f Y(z)dz = 0, all fluid cycles. (14) 

The physical interpretation of the positivity condition 
is that shocks represent flwd deficit. As a result, the 
shock moves toward the direction of higher pressure. Let 
us now use this prescription to find the velocity of the 
shock. For that purpose, we denote by n, e the normal 
and tangent unit vectors at a point on the shock. Now 
consider the integral foB Y(z)d z over a loop which in­
tersects the shock at two points Zl,2' This integral stays 
purely imaginary at all times: 

~tRef Y( z)dz = O. (15) 

Letting the contour now shrink to an infinitesimal loop, 
Zl,2 --> Z , we obtain the differential form of (15) as: 

d . 
- Re [dISC Y dz]r = O. (16)
dt 

We denote the velocity of the shock front (normal to the 
instantaneous curve r), by V.l , directed along the vector 
n. Then the total time derivative (16) becomes 

Re [disc Y dz + 'VII (disc S . V.l)ldz l]r = 0, (17) 

where 'VII represents the derivative along the direction 
tangent to the front. 

For the first term, we use a kinematic identity 
Re [disc Y dz] = -disc vllldzl, valid on both sides of the 
shock. From the reality of a, it follows that the second 
term in (17) is purely real , and equals -'VII (oV.l) Idzl. 

Together, it yields to the condition 

The first term in this equation represents the transport 
of mass due to motion of the shock (normal to the shock 
itself), while the second is the vorticity of the surrounding 
fluid flow. Thus, condition that a is real means zero­
vorticity condition for the fluid . 

Using Darcy law we replace the fluid velocity in (18) 
by - 'V"p, and integrate (18) along the cut. We obtain 
the condition 

aV.l = (disc p) n (19) 

(the constant of integration is fixed from the assumption 
that both the line density and discontinuity of pressure 
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FIG. 4: In this figure, we show the normal velocity of the 
shock by the thick arrows and the flow of fluid around the 
shock by dashed arrows. 

vanish at endpoints of the cut). The fact that u > 0 is 
positive means that a shock moves toward the direction 
of larger pressure. 

Furthermore, calculating the discontinuities on both 
sides of the Darcy law, we obtain 

0- = -disc 'VII'!/> . (20) 

This formula has the following interpretation . Let us as­
sume the shock filled with some material (say, 3-n inviscid 
fluid in the Hele-Shaw cell) , of line density u. Then the 
continuity condition 0-+ 'VII (aV 11 ) = 0, tells that this ma­
terial is moving along the shock with velocity VII' Com­
bining this with (20) and integrating along the shock, we 
obtain a counterpart of (18): divergency of the sliding 
current along a shock is the discontinuity of current of 
fluid normal to the shock (see Figure 4) : 

Integrating this formula along a shock gives: 

= (disc ,!/» f.. (22)uVIl 

Equations (19), (22) completely specify the motion of the 
shock. 

6. Conclusions In this Letter, we have proposed a 
weak solution for the finite-time singula.rities of Laplacian 
growth, and at the same time, a new method for dealing 
with such critical events in this class of processes. The 
prescription we gave allows to continue the dynamics be­
yond the critical time, for the price of introducing desnity 
wave shocks. The dynamis of the shocks is integrable, 
and related to the KdV hierarchy. In future publications, 
we will explore the detailed geometric properties of the 
shock dynamics and indicate how they relate to known 
patterns observed in processes like diffusion-limited ag­
gregation. 

We note that very simple requirements for the dynam­
ics of the shocks (reality and positivity of the density) 
led to a prescription of the shock dynamics which is rem­
iniscent of the known Rankine-Hugoniot conditions for 
shocks in compressible Eurler flows [21]. This is not sur­
prising, since the nature of our weak solution is that of 
compressibility shocks (12). 
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