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' Fingering patterns in Hele-Shaw flows are density shock wave solutions of
dispersionless KdV hierarchy

S-Y. Lee,! R.Teodorescu,? and P. Wiegmann®

!Center for Mathematical Research, Montreal, Canada
2Center for Nonlinear Studies and T-4, Los Alamos National Laboratory, Los Alamos, NM 87505, USA
The James Franck and Enrico Fermi Institutes,
University of Chicago, 5640 S. Ellis Ave, Chicago IL 60637, USA

We investigate the hydrodynamics of a Hele-Shaw flow as the free boundary evolves from smooth
initial conditions into a generic cusp singularity (of local geometry type z* ~ y?), and then into a
density shock wave. This novel solution preserves the integrability of the dynamics and, unlike all
the weak solutions proposed previously, is not underdetermined. The evolution of the shock is such
that the net vorticity remains zero, as before the critical time, and the shock can be interpreted as

a singular line distribution of fluid deficit.

1. Introduction Hele-Shaw flows, introduced over a
century ago [1], are known for leading to very complex
patterns (FIG. 1, [2]), despite of the simplicity of the
experimental set-up, FIG. 2: an almost inviscid fluid (e.g.
air, occupying the domain D) is pumped in at a constant
rate, displacing a very viscous fluid (e.g. oil, denoted by
b), without mixing. The fluids are confined to a two-
dimensional cell of height b — 0, created between two
horizontal glass plates. Alternative realizations [3, 4] use
a 2D monolayer obtained by wetting or using granular
media. As the fluids are immiscible, all the dynamics is
encoded in the motion of the boundary, v(t) = dD.

Neglecting the effects of surface tension, we obtain
the idealized model of Hele-Shaw flow, called Laplacian
growth [5-7]. Under this assumption, the equations of
motion, obtained by averaging the 3-D Navier-Stokes
equations over the height of the cell, give the law gov-
erning the evolution of the boundary:

pvn =—KVyup, (1)
where K = -11’2—21, is called hydraulic conductivity, v is the
kinematic viscosity, p is the density of the liquid and
P, Vn, V,p are the exterior pressure, and the normal com-
ponents of the boundary velocity and pressure gradient,
respectively. Pressure solves a Dirichlet problem:

Ap=0 on [), P, =0, p,_,~ —loglz|. (2)

The law (1) is named after H. Darcy, who discovered it
while studying the groundflow of water in porous soil [8].

It is important to note here that the problem (1), (2)
is far more fundamental than the original hydrodynamic
formulation suggests. Namely, growth occuring at a rate
(va) proportional to the gradient of a harmonic func-
tion (p) and with sources/sinks at infinity, is a very wide
class of processes, including electrodeposition, snowflake
growth, and diffusion-limited aggregation (DLA). The
common patterns observed in these phenomena are not
well understood theoretically. A key element in these pat-
terns is branching (or fingering, or tip-splitting), whose
parameters (local geometry, frequency of occurence, etc)
are essential for understanding the global properties of
the cluster.

FIG. 1: Experimental Hele-Shaw fingering patterns [2]

Formally, (2) is readily solved by using the conformal
map z — w of D onto the exterior of unit circle |lw| > 1,
with the solution (here @ is the constant rate of pumping
fluid, %Q = %t-tﬂ, to - normalized area of D and ¢ - time):

() =~z loghu(2)], pve = 2fu'(2)], z€ D. (3)

We note here that, due to its analytical properties, the
function ¢(z) = —ilogw(z) is (up to a trivial constant),
the complex potential for the flow (1), such that Re ¢ ~ ¢
(stream function), and Im ¢ ~ p (pressure), as in (3).

However, the simplicity of this solution is deceiving,
because for an overwhelmingly large class of initial con-
ditions, (2) turns out to be ill-defined.

2. Generic singularities of Hele-Shaw flows Since
any map w(z) will have singularities inside D, where
w'(z) — oo, it follows that if a singularity of this type
approaches the boundary +~, the local velocity will di-
verge. This is indeed what happens for most initial con-
ditions for D, and it reveals a fundamental instability
of Laplacian Growth, called finite-time singularities, be-
cause they occur for finite values of the area to, and there-
fore, of time. They were systematically studied and clas-
sified in a series of papers [9-12].

The type of singularity encountered most frequently is



Fi1G. 2: Hele-Shaw flow with suction mechanism. Darker re-
gion is oil, outside is air.

a boundary cusp at (zg,yo), of local geometry given by
two mutually prime numbers p, g:

(2 — 20)? ~ (y — 0)"- (4)

Among such points, the one considered generic [11] has
p=3,g=2 and is referred to as the (2,3) cusp, FIG. 3.

The (2,5) cusp was also studied in detail [12, 13] and
it was shown that its evolution may be smoothly con-
tinued beyond the critical time ¢, (the moment when a
cusp is formed). However, for the (2,3) cusp, a naive con-
tinuation of the classical solution is not possible. In the
remainder of the paper, we will show that such a con-
tinuation can be achieved in a weak sense, and that its
physical realization is a shock wave.

It is important to note here that there have been many
attempts to find the proper way to regularize these sin-
gularities [9, 11, 14]. However, due to the singular-
perturbation nature of the problem, every method pro-
posed led to a very different physical prediction, none
could explain the actual patterns observed experimen-
tally [2, 4], and — most importantly — they were all under-
determined and required extraneous information to fix
a solution. Consequently, the problem stayed open for
decades, despite its venerable age.

The point missed in these studies is the fact that the
dynamics described by (2) has an important feature: it is
integrable. This fact was established long ago [5-7], and
was recently explored to the fullest extent [13, 15-19]. In
this paper, we show that this important feature provides
a well-defined weak solution.

3. Alternative hydrodynamic formulation In the fol-
lowing, we recall an alternative description of the prob-
lem, using the height function y, introduced in [17].
There, we showed that the dynamics of Hele-Shaw flows
can be restated using the local geometry of the bound-
ary: expanding the conformal map z(w,t) around the
location of the cusp z., as a function of time (relative
to the critical time, ¢.), and angle ( choosing z. real),
w = €%, we have the approximation (up to an overall
scale) z(w) — z. = x(¢$) + iy(¢), where

o(p) ~ S[e(t) — ¢%, y(8) =~

[ )

and e(t) is a critical point of the map, z'(e) = 0:
2 t\'/?
ty=—-1|1-— . 6
=3 (1- 1) ©)

Rescaling the local coordinates as X = %“’, Y = 4diy, we

have the local approximation in elliptic form:
Y2 = 4(X —e)(X +¢/2)% (7)

The choice of rescaling is such that Y is real for X €
[e, —e/2] - the region of interest.

05 ©o 03 a

FIG. 3: Symmetric hypertrochoid evolving under Darcy law
reaches the (2,3)-cusp singularities when all three critical
points (red dots) hit the boundary at the same time. The
shaded contour lines are the equi-pressure lines. The dashed
lines are the stream lines. The red dashed lines are branch
cuts -a skeleton.

At the critical point ¢t = t,,e = 0 the curves degen-
erates further into a (2,3) cusp: Y2 ~ X3. As shown
in [17], the KdV-type integrable hierarchy describing the
evolution of this curve is given through a set of equa-
tions; the first of them (correspoding to the standard
KdV equation for e(t)) is

Y = —id.é. (8)

Since ¢ is the complex potential of the flow, we conclude
that the complex velocity field v = v, — ivy, (related to
V¢ by Darcy law) is encoded in ¥ = 8,Y:

Re(Ydz) =dp, Im(YVdz)= —dy, (9)
everywhere Y, p, 1 are differentiable.

This fact is very important for formulating the phys-
ical weak solution, and cannot be stressed enough. In
the form (1), (2) the problem is ill-defined and typically
leads to a (2,3) cusp. However, it may turn out to be
tractable, once we express it through the evolution of

the height function. This is the approach that we use
here: characterize the Hele-Shaw flow through Y (z,t).



4. Hydrodynamics from the height function Starting
from the complex velocity field v, we derive the identity
20v = V-v+iVxv, where V x v = Oyvz — O30y is the
vorticity field, and V - v = 8;v, + 9yvy is the divergence
of velocity field. Using (8), and integrating over a closed
loop 8B bounding the domain B, we obtain:

Re]{ Ydz = // prvdxdyz%dp (10)
oB B

Im Ydz = // V-pvdzdy = —}(dw. (11)
oB /B

We also note (7) that the critical points of the conformal
map e(t) are critical points of Y (2). More precisely, they
are branch points for Y(z), and must be connected by
branch cuts along which the function Y (2) will have a
finite discontinuity (jump). They are depicted in FIG. 3.

Therefore, since the leftmost contour integrals in (11,
10) reduce to line integrals along the branch cuts of Y (z),
we obtain the following equivalent representation of the
flow v: the sources of the field can be identified with
the support of the jump of Y, and its strength becomes
the magnitude of the jump itself, o|dz| = disc(iYdz) for
any infinitesimal arc dz. Equivalently, we may say that
the droplet of uniform density in D can be replaced by
a non-uniform, singular line density o, supported on the
cuts T'. In particular, the Newtonian potentials created
by these two distributions outside D are identical.

Before the boundary singularity forms, this alternative
formulation does not lead to any new physical conclu-
sions. After the critical time t., however, the situation is
very different, especially because at t = t., the endpoint
of the cut T" touches the boundary, and evolves outside
D for higher times.

We propose to identify the evolution of the droplet D
after a critical time ¢, with the evolution of the branch
cuts I'(t) outside of D, together with the evolution of the
rest of the droplet. The branch cuts found outside of D
have the physical interpretation of density shock waves.

In short, we will replace the (uniform) density of oil by

p(x,t) = po — 8(x; T)a(x, ¢) (12)

where the line density o(x, ¢t > t), represents the density
of —iY (X)) on the cut I" (here (x; I') is the delta-function
on the cut).

Once this choice for the weak solution is made, all that
remains is to specify how to choose the branch cuts be-
yond the critical time. As we show in the next section,
this choice is uniquely determined by the physical inter-
pretation of the integrability condition: zero-vorticity.

5. The physical prescription for weak solutions Inte-
grability of the Laplacian growth can be (and has been)
formulated in many ways; for our purposes, the most rel-
evant here is the statement that the density of the height
function remains (after the critical time) real and posi-
tive, as it was before t.. We refer the reader to [20] for a
comprehensive discussion on these conditions.

Here, we note only that these requirements guarantee
the zero-vorticity condition for the flow after ¢.. From the
first equation in (10), we see that this condition yields
%Redez = 0 for all closed cycles in the fluid. The
condition that the line densities are real

o(z) =real, z€T, (13)
satisfies this requirement, and furthermore leads to a
stronger condition

Re}{Y(z)dz =0, all fluid cycles. (14)

The physical interpretation of the positivity condition
is that shocks represent fluid deficit. As a result, the
shock moves toward the direction of higher pressure. Let
us now use this prescription to find the velocity of the
shock. For that purpose, we denote by n,# the normal
and tangent unit vectors at a point on the shock. Now
consider the integral §,, Y (z)dz over a loop which in-
tersects the shock at two points 23 2. This integral stays
purely imaginary at all times:

%Re}{Y(z)dz =0. (15)

Letting the contour now shrink to an infinitesimal loop,
z1,2 — z, we obtain the differential form of (15) as:

d

T Re[disc Y dz|r = 0. (16)
We denote the velocity of the shock front (normal to the
instantaneous curve I'), by V|, directed along the vector
n. Then the total time derivative (16) becomes

Re[discY dz + Vj(disc S - V1 )|dz[]r = 0, (17)

where V| represents the derivative along the direction
tangent to the front.

For the first term, we use a kinematic identity
Re[disc Y dz] = —disc v|dz|, valid on both sides of the
shock. From the reality of o, it follows that the second
term in (17) is purely real, and equals =V (cV 1) |dz|.

Together, it yields to the condition

VHJJ_+ diSCj“ =0, J.=0Vy, j” = pov|- (18)
The first term in this equation represents the transport
of mass due to motion of the shock (normal to the shock
itself), while the second is the vorticity of the surrounding
fluid flow. Thus, condition that o is real means zero-
vorticity condition for the fuid.

Using Darcy law we replace the fluid velocity in (18)
by —Vp, and integrate (18) along the cut. We obtain

the condition
oV, = (discp) n (19)

(the constant of integration is fixed from the assumption
that both the line density and discontinuity of pressure
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FIG. 4: In this figure, we show the normal velocity of the
shock by the thick arrows and the flow of fluid around the
shock by dashed arrows.

vanish at endpoints of the cut). The fact that ¢ > 0 is
positive means that a shock moves toward the direction
of larger pressure.

Furthermore, calculating the discontinuities on both
sides of the Darcy law, we obtain

o = —disc V¢ . (20)

This formula has the following interpretation. Let us as-
sume the shock filled with some material (say, an inviscid
fluid in the Hele-Shaw cell), of line density o. Then the
continuity condition ¢+ V(¢ V) = 0, tells that this ma-
terial is moving along the shock with velocity V. Com-
bining this with (20) and integrating along the shock, we
obtain a counterpart of (18): divergency of the sliding
current along a shock is the discontinuity of current of
fluid normal to the shock (see Figure 4):

V”J” — disc j_]_ = O, J” = O'V”, jJ_ = poVL- (21)

Integrating this formula along a shock gives:

oV = (disc) €. (22)

Equations (19), (22) completely specify the motion of the
shock.

6. Conclusions In this Letter, we have proposed a
weak solution for the finite-time singularities of Laplacian
growth, and at the same time, a new method for dealing
with such critical events in this class of processes. The
prescription we gave allows to continue the dynamics be-
yond the critical time, for the price of introducing desnity
wave shocks. The dynamis of the shocks is integrable,
and related to the KdV hierarchy. In future publications,
we will explore the detailed geometric properties of the
shock dynamics and indicate how they relate to known
patterns observed in processes like diffusion-limited ag-
gregation.

We note that very simple requirements for the dynam-
ics of the shocks (reality and positivity of the density)
led to a prescription of the shock dynamics which is rem-
iniscent of the known Rankine-Hugoniot conditions for
shocks in compressible Eurler flows [21]. This is not sur-
prising, since the nature of our weak solution is that of
compressibility shocks (12).
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