
LA-UR-

Approved for public release; 
distribution is unlimited. 

Title: 

Author(s): 

Submitted to: 

Combining Multi-objective Optimization and Bayesian model 
Averaging to Calibrate Forecast Ensembles of Soil 
Hydraulic Models 

Thomas Wohling 
Jasper A. Vrugt 

Water Resources Research 

A 
~ LosAlamos 

NATIONAL LABORATORY 
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. 
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government 
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. 
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the 
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to 
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (8100) 



Combining Nlulti-Objective Optimization and Bayesian 


Niodel Averaging to Calibrate Forecast Ensembles of Soil 


Hydraulic Models 


Thomas vVohling*and Jasper A. Vrugtt 

'Corresponding author. Lincoln Environmental Research, Lincoln Ventures Ltd.. Ruakura Research Centre, 
Hamilton, Npw Zealand. Email: woehlingiQllvlham.lincoln.ac.nz 

tCenter for Nonlinear Studies (CNLS), Mail Stop B258, Los Alamos National Laboratory, Los Alamos, NM 
87545, USA 

1 

http:woehlingiQllvlham.lincoln.ac.nz


Abstract 

Mo::;t shldie::; in vado::;e zone hydrology u::;e a ::;ingle conceptual model for predictive in­

ference and analy::;is. Focusing on the outcome of a single model is prone to ::;tatistical 

bia::; and undere::;timation of uncertainty. In this ::;tudy, we combine multi-objective op­

timization and Bayesian Model Averaging (Bl\IA) to generate forecast ensembles of soil 

hydraulic models. To ilIu::;trate our method, we use observed tensiometric pressure head 

data at thrt'e different depths in a layered vado::;e zone of volcanic origin in New Zealand. 

A ;,;et of ;,;even different soil hydraulic models is calibrated using a multi-objective formu­

lation with three different objective functions that each measure the mi::;match between 

observed and predicted soil water pressure head at one specific depth. The Pareto solution 

space corresponding to these three objectives is estimated with A:\IALGA:\f, and used to 

generate four different model en::;emble;,;. These ensembles are post-processed with B:\IA 

and used for predictive analysis and uncertainty estimation. Our mo::;t important conclu­

sions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits 

similar predictive capabilities as the best individual performing soil hydraulic model, (2) 

the size of the BMA uncertainty ranges increase with increasing depth and dryness in the 

soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) 

solution of the three-objective Pareto surface, and (4) the combined multi-objective opti­

mization and BMA framework proposed in this paper is very m;eful to generate forecast 

en;,;embles of soil hydraulic models. 

Keywords: Baye::;ian model averagmg, vadose zonE' modeling, soil hydraulic models, inverse 

parameter estimation, multi-objective optimization 
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1 Introduction 

Faced with the complexity, spatial and temporal variability of processes occurring in natural 

systems, and the difficulty of performing controlled experiments, a variety of numerical sirn­

ulation modeb have been developed to predict the behavior of environmental systems. Even 

5 the most elaborate model, however, cannot reflect the true complexity and heterogeneity of the 

processes occurring in the field. To some degree it must always conceptualize and aggregate 

complex interactions driven by a number of spatially distributed and highly interrelated energy, 

mass transport, and biogeochemical processes by the use of only relatively simple mathematical 

equations. There is significant uncertainty associated with the correct formulation of these pro­

10 cesses underlying the system of interest (Beven and Binley, 1992; Gupta et al., 1998; Kuczera 

et al., 2006; Vrugt and Robinson, 2007a). Quantification of this uncertainty is necessary to 

better understand what is well and what is not very well understood about the processes and 

systems that are being studied. 

Single deterministic soil-hydraulic models are often used for studying flow and transport through 

15 the vadose zone (e.g.Mertens et al. 2005; Guber et al. 2006: Sansoulet et al. 2008, and others). 

In particular, the Mualem-van Genuchten (van Genuchten, 1980) (MVG) model has become the 

standard choice for analyzing unsaturated porous media. This model is relatively simple to use, 

and many contributions to the hydrologic literature have shown that it works well for a range 

of problems and soil types. Moreover, direct {laboratory procedures) and indirect approaches 

20 (pedotransfer functions) are widely available to obtain estimates of the l\IVG parameters for 

the specific site under consideration. Notwithstanding this progret>s made, the use of a single 

model for predictive inference and analysis is prone to statistical bias (Hoeting et al., 1999; 

Neuman, 2003: Raftery et al., 2003, 2005) as it implicitly rejects alternative and other plausible 

soil hydraulic models for the vadose zone under consideration. Arguably, there it> significant 

25 advantage to using multiple different models simultaneously for predictive analysis and inference 

as their individual ability to fit the experimental data will infer important information about 

the key hydrological processes affecting flow (and transport) through the unsaturated zone of 

interest. 

Ensemble Bayesian model averaging has recently been proposed as a methodology to explicitly 
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30 handle conceptual model uncert.ainty in the interpretation and of environmental sys­

tems. Thi::; method combine::; the predictive capabilities of multiple different models and jointly 

a::;::;esse::; their uncertainty. The probability den::;ity function (pdf) of t he quantity of interest 

predicted by Bayesian model averaging is essentially a weighted average of individual pdf::; 

predicted by a set of different models that are centered around their (Raftery et a1., 

35 2005; Vrugt et al., 2006a). The weights assigned to each of the models their contribution 

to the foreca::;t ::;kill over the training period. Typically, the en::;emble mean outperforms all or 

mo::;t of the individual members of the en::;emble (Raftery et al., 2005). Bayesian model aver­

aging has been successfully applied to forecasting of surface temperature (Raftery et a1.. 2005), 

surface temperature and sea level pressure (Vrugt et al., 2006a), streamflow (e.g. et al. 

40 2006: Vrugt and Robinson 2007b: Ajami et ai. 2007). and permeability structure::; in ground­

water hydrology (Neuman, 2003: Ye et a1., 2004). Guber et al. (2006) have used ensembles of 

pedotransfer function::; to simulate water content time ::;eries. Recently, Ye et al. (2008) have 

provided a comprehensive test of model selection criteria in multi-model analysis. 

In this study, we combine the strengths of multi-objective optimization and model 

45 averaging (BMA) to better quantify predictive uncertainty of models of flow through unsatu­

rated porous media. In our analysis, \ve consider seven different soil hydraulic models including 

water retention and unsaturated hydraulic conductivity function formulations based on uniform 

flow. hysteresis and dual-porosity. In the first step, each of these models is calibrated by posing 

the parameter e::;timation problem into a multi-objective framework. The resulting optimiza­

'>0 tion problem is solved by meallS of the AMALGAM evolutionary search algorithm (Vrllgt and 

Robinson, 2007a). Then, the Pareto trade-off surface of each of models i::; and 

combined to generate different forecast en::;embles. In the second step, these different ensembles 

are post-processed with 81\IA to analyze and quantify predictive uncertainty. \Ve illustrate our 

approach using observations of tensiometric pressure head at three different depths in a layered 

55 vadose zone at a field site in New Zealand. 
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2 Materials and Methods 

2.1 Bayesian Model Averaging 

In a previous study (W6hling et al., 2008) we analyzed the ability of the MVG soil hydraulic 

model (1980) to reproduce field data of tensiometric pressure with parameter sets estimated 

60 by multiobjective optimization. The use of a single model for predictive inference and analysis 

implicitly rejects other possible plausible conceptual models of the system under study, and 

therefore may underestimate uncertainty (Raftery et al., 2003). Bayesian model averaging 

(BMA, Leamer, 1978; Kass and Raftery, 1995; Hoeting et al., 1999) provides a way to combine 

inferences and predictions of several different conceptual models and to jointly assess their 

65 	 predictive uncertainty. If an ensemble of k different statistical models 111 = {Ah, 1112 , ... , 1I1d is 

considered and the quantity of interest is ~, then its posterior distribution given the observation 

data y is (Hoeting et al., 1999): 

k 

P (~ I y) = L P (~ I 1I1i' y) P (1I1i I y) 	 (1) 
'i=l 

where P (~ I 1I1i' y) is the forecast pdf based on the model 1I1i alone, and p (1I1i I y) is the 

posterior probability of model Ali under the assumption that it is correct for the training data 

70 and reflects how well model 111, fits the data (Raftery et al., 2003). All probabilities are implicitly 

conditional on the set of models under consideration AI. The posterior model probabilities are 

positive and add up to one and can thus be viewed as weights, reflecting the models relative 

contributions to predictive skill over the training period. Thus, Eq. (1) is a weighted average 

of the posterior distributions under each of the k models, weighted by their posterior model 

75 probabilities. 

Raftery et al. (2005) recently extended BMA to ensembles of dynamical models and demon­

strated how it can be used to postprocess forecast ensembles from dynamic weather models. To 

explicate the BMA method developed by Raftery et al. (2005), each ensemble member forecast 

Ji is associated with a conditional pdf, g (~ I J;), which can be interpreted as the pdf of ~ given 
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80 1;. 	From Eq. (1). the BMA predictive model can be expressed as 

k 

P (~ I Ii, ... , Ik) = L 11'i gi (~ I I;) 	 (2) 
i=l 

where Wi denotes the posterior probability of forecast i being the best one. 

The original ensemble B~IA method described in Raftery et al. (2005) assumes that the con­

ditional pdf's gi (~ I Ii) of the different ensemble members can be approximated by a normal 

distribution centered at a linear function of the original forecast, with mean ai + bdi and 

85 standard variation O"i: 

(3) 

The values for at and bi are bias-correction terms that are derived by simple linear regression 

of ~ on Ii for each of the individual ensemble members. 

BMA Predictive Mean and Variance 

The B~IA predictive mean is the conditional expectation of ~ given the forecasts: 

k 

E (~ I Ii, ... , Ik) = L wda; + bd;) 	 (4) 
i=l 

90 	 and the associated variance can be computed as (Raftery et al., 2005; Vrugt and Robinson. 

2007b) 

where list denotes the i-th forecast in the ensemble for location 8 and time t. We assume a 

normal predictive distribution in our proposed B~lA approach. Although a normal distribution 

seems to be inappropriate for any quantity primarily driven by precipitation. Vrugt and Robin­

95 	 son (2007a) showed that this assumption works well for streamflow simulation and forecasting. 

Using different statistical distributions to describe gi (~ I Ii) for the individual models of the 

ensemble resulted in very similar conclusions as those presented here for the normal conditional 

pdfs. We therefore do not discuss these results here. 
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Posterior Forecast Probability 

100 The estimation of the posterior probability of the individual forecasts or weights, Wi, are required 

for the implementation of B1IA. Raftery et al. (2005) estimated Wi, i = 1, ... , k; a 2 by a 

maximum likelihood approach. Assuming independence of forecast errors in space and time, 

the log-likelihood function corresponding to the predictive model Eq. (2) can be written as 

(6) 

where the summation is over sand t to include all observations in the training set. Eq. (6) 

105 must be maximized to obtain the BMA weights and variances. In this study we follow the 

approach of Vrugt and Robinson (2007a), who used the Shuffled Complex Evolution Metropolis 

algorithm (SCEM-UA) algorithm for the maximization of Eq. (6). The SCEM-UA algorithm 

is a general purpose optimization algorithm that uses adaptive Markov Chain 1Ionte Carlo 

(MCMC) sampling (Vrugt et al., 2003b) to estimate the traditional best parameter combination 

110 and its underlying posterior probability density function within a single optimization run. The 

method uses a predefined number of different Markov Chains to independently explore the 

search space. These chains communicate with each other through an external population of 

points, which are used to continuously update the size and shape of the proposal distribution 

in each chain. The MCMC evolution is repeated until the R-statistic of Gelman and Rubin 

115 (1992) indicates convergence to a stationary posterior distribution. More information about 

the SCEM-UA algorithm can be found in Vrugt et al. (2003b) and so will not be repeated here. 

2.2 Bayesian Model Averaging of Soil Hydraulic Models 

Field Data 

We used field data from the Spydia experimental site in the northern Lake Taupo catchment, 

120 	 New Zealand. The vadose zone materials at Spydia encompass a young volcanic soil (0 - 1.6 

m depth), unwelded Taupo Ignimbrite (TI, 1.6 - 4.4 m), and two older buried soils (Palaeosols, 

4.4 to 5.8 m depth). Tensiometric pressure head was measured in the vadose zone at 15 min 

intervals using Tensiometer probes (type UMS T4e, Germany, accuracy ±0.5 kPa) installed at 
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five different depths (0.4. 1.0, 2.6, 4.2. and 5.1 Ill) and three locations per depth. The pressure 

125 head measurements at each depth were averaged before they were used in our calculations. 

Daily values of potential evaporation were calculated by the Penman-Monteith equation (Allen 

et al., 1998) using data from the nearby Waihora meteorological station (500 m distance). 

Precipitation was recorded on site using a 0.2 mm bucket gauge and upscaled to hourly values 

for use in our calculations. A detailed description of the Spydia experimental data can he found 

130 in Wohling et al. (2008). 

A period of 546 days (April 11, 2006 to October 9, 2007) was used for all our calculations. Since 

the available data comprises two wet (winter) seasons and only one dry (summer) season. the 

model was calibrated for the first winter/spring season (April 11, 2006 to January. 18, 2007) 

and evaluated with a representative 96 days time period of the second wet season (July 5, 2007 

135 to October 9. 2007). 

Models in the Study 

We used the HYDRUS-ID model (Simunek et al.. 2005) to simulate water flow in the Spydia 

vadose zone. HYDRUS-ID utilizes the Galerkin finite element method based on the mass con­

servative iterative scheme proposed by Celia et al. (1990). The model solves the one-dimensional 

140 Richards' equation: 

8e = S (7)!!- K ( 8h + 1) _
at 8z 8z 

where () is the volumetric water content [C5L-:5], t represents time [T], z is the vertical coor­

dinate (positive upward) [L], h denotes the pressure head [L]. K is the unsaturated hydraulic 

conductivity function [LT- 1
], and S is a sink term representing processes such as plant water 

145 Soil hydraulic functions need to be specified to solve Eq. (7). The seven soil hydraulic models 

employed in our B~IA approach encompass not only different formulations of the same physical 

relationships hut also different conceptual models. The first four models listed below are based 

on the concept of uniform flow. This concept assumes the porous medium as a system of 

impermeahle particles separated by pores through which water flow takes place. Hysteresis 

150 of the functional relationships might be considered to account for wetting-drying cycles. In 
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contrast, non-equilibrium flow models assume the particles to have their own micro-porosity. 

The fifth model in the list below assumes that water can move into and out of the micro-pore 

domain whereas time-constant (immobile) water content is assumed in the micro-pore domain 

by the sixth model. The different model concepts are expected to have a different ability to 

155 reproduce a given set of field data. Non-equilibrium models are more flexible than uniform flow 


models and typically perform better when macro-pores or preferential flow paths are present in 


the porous media under investigation. 


The individual models used in our approach are: 


1. 	 The modified Mualem-van Genuchten model (non-hysteretic) (MVG, Vogel et al. 2001): 

(8) 

160 

(9) 

where Se is the effective water content, ()r and ()s denote the residual and saturated water 

content, respectively [L3L -:~], 0: [L -1] and n [-] are parameters that define the shape of 

the water retention function, Ks represents the saturated hydraulic conductivity [LT-1
], l 

is the pore-connectivity parameter by Mualem (1976), and hs = -0.02 m is the assumed 

165 	 air entry value. In this study, we further assume that m = 1 - lin and n > 1. 

2. 	 The modified Mualem-van Genuchten model utilizing hysteresis in the water retention 

function (MVG-HR) (Simunek et al., 2005). This model uses a separate drying and 

wetting curve of the retention function with the mathematical formulation provided by 

Eq. (8) using two sets of parameter values, (()~, ()~, where the subscripts d and w indicated 

170 	 wetting and drying, respectively. Following Simtmek et al. (2005), we assume that ()~ = ()': 

and nd = nW. The HYDRUS-1D implementation of the hysteretic MVG model also 

requires an estimate of the empirical parameter ()m (Simunek et aI., 2005). We estimate 

this value following Vogel et al. (2001) as 

(10) 
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Thus, the hysteretic model MVG-HR model requires thrpe more 

175 	 than the original }.[VG formulation. 

;j. Brooks and Corey (1966) model (BC): 

h< 
(11 ) 

h ~ 1/0 

(12) 

4. t.wo-parameter log normal distribution model of Kotiugi (1996) (Kr-vI)' 

11<0 
(13) 

h<O 
(14) 

h~O 

180 	 where Oc and n are substituteti of the original (1996) notation (Simunek et al., 

2005). 

5. dual-porosity model of Durner (1994) (r-vIVG-DP) which divideti the porous medium 

into two overlapping regions using Mualem - van Genuchten type functions for each of 

thp two regions: 

(15) 

185 

8".1 + W28e,d {WI Ocl [1 - (1 	 W20'Z [1 (1 _ 8~:;n2) Tn2]} 2 
K (8f') 	 K~------~--"--"-----'----="'----=---'-----'-~'--"--­

(Wjnl 
(16) 

Wi are the weighting factors for the two sub-regions ofthe porous medium (WI +W2 = 

1) and Qi, ni, Tn, (= 1 - l/ni). and I are empirical parameters of the corresponding 

functions (i 1: 2). 

6. two-region, dual porosity model by SimllIlek et al. (2003) which partitions the liquid 

190 into a mohile (inter-aggregate) and immobile (intra-aggregate) region. \Vater flow 
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in the mobile region Bema/ Bt is described by the Richards' Eq. (7) with an additional 

term on the right hand side of the equation, - r II!, representing the transfer rate of water 

from the inter- to the intra-aggregate pores. The moisture dynamics in the matrix is 

described by a simple mass balance equation (Simunek et al., 2005) 

Beirna = S· r (17)Bt ,rna -w 

195 where Sirno is the sink term for the immobile region. In this study, we assumed that 

flow of water between the mobile and immobile region can be described with a simple 

linear exchange equation (Simlmek et al., 2005), with rw = W Se,imo]' where 

and Se,irna denote the effective fluid saturations of the rnobile and immobile regions, 

respectively. The residual er./rno and saturated Bs•irna water content of the irnrnobile region 

200 are two additional parameters in this model formulation that need to be estimated against 

observations. 

Table 1 summarizes the calibration parameters in each of the six soil hydraulic models. The 

initial and boundary conditions used to solve Eq. (7) are: 

h(z,t) hi(z) at t = 0, (18) 

h(z, t) hL(t) at z = L, ( 19) 

and205 

-K (~~ + 1) qo(t) - ~' at z = 0, for hA ::; h < h", 

h(O,t) h,t for h < hA (20) 

h(O,t) h" for h > h8 

where h,(z) is the initial pretisure head derived from linear interpolation of observed tensiometric 

pressure at the 0.4, 1.0, 2.6, and 4.2 m depths, hL(t) is the prescribed (observed) pressure head at 

the bottom boundary L - 4.2 m (depth of the model is 4.2 m), qo (t) is the net infiltration rate 

(Le. precipitation minus evaporation) and hA and hs are the minirnum and maximum pressure 

210 head allowed at the soil surface. (20) describes the atmospheric boundary condition at the 

soil-air interface (Simunek et al., 1996) which switches between a prescribed flux condition and 
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a prescribed head condition. depending on the pn~vailing transient pressure head conditions 

Ilear the surface. The plant water uptake, S in Eq. (7). is simulated by the Feddes model 

(1978) using HYDRUS-1D default parameters for grass and a rooting depth of 0.35 m. Because 

215 our study considers a relatively marse textured soil with infiltration capacity, we neglect 

infiltration-excess overland flow and use the limits of hA -200 m and h" = -0.02 m. The 

initial pressure heads measured at April 11. 2006 were -0.41. -1.38. -1.18 and -0.85 m at the 

0.4, 1.0. 2.6, and 4.2 m depths, respectively. 

The HYDRUS-ID model was set up for three horizom-l. The first being the rnore recent materials 

220 (0 - 0.69 m depths), and the other two simulation layers being the disturbed Taupo Ignimbrite 

(0.69 - 1.6 m) and the in-situ Taupo Ignimbrite (1.6 4.2 m), respectively. Additional to the 

six soil hydraulic models with three layers. we also included the MVG model with four horizons 

(MVG-4). This was to investigate t he effect of lumping different layers of stratification 

into larger numerical horizons, and was accomplished by dividing the upper layer (0.69 - 1.6 m) 

225 into two individual the first being the Ap and Bs horizons (0 0.38 m) and the second 

the Be and C1 horizons (0.38 0.69 m). 

In summary, the ensemble used in our B\IA approach consists of the predictions of seven 

different soil hydraulic models. hereafter also referred to as ensemble members. For both the 

3- and 4-layer stratifications, we used a computationally efficient uniform discretization scheme 

230 with ~;£ = 0.02 III in the vertical domain. This results in a total of 211 nodes in the HYDRUS­

1D model. 

l\Iulti-objective Calibration of Soil Hydraulic lVlodels 

The hydraulic models used in this study require the estimation of different parameters to 

quantify the soil water retention and unsaturated soil hydraulic conductivity functions for the 

235 various layers throughout the soil profile. For each model, these parameters are estimated using 

inverse modeling by minimizing the difference between observed and modeled tensiometric 

pressure head at three different observation depths. Similar to our previous work (\Vohling 
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et al., 2008), we use a multi-objective formulation with three different criteria: 

Fl(U.) 

min F(u.) (21)F2(U) 

F:,(u) 

where Fe F:3 are defined as the root-mean square error (Rl\ISE, e.g. Hall 2001) of the fit 

240 	 between the simulated and observed pressure heads at the 0.4, 1.0, and 2.6 m depths in the 

vadose zone profile, and u is a vector of np model parameters to be optimized (Table 1). 

inverse problem expressed in Eq. (21) is solved with the AMALGAM evolutionary search al­

gorithm (Vrugt and Robinson, 2007a). Among several different state-of-the-art multi-objective 

optimization algorithms, this method was shown to be the most efficient for the problem consid­

245 herein (W6hling et al., 2008). The AMALGAM algorithm combines simultaneous multi-

method search and self-adaptive offspring creation to ensure a reliable and computationally 

efficient solution to multiobjective optimization problems. The only algorithmic parameter to 

be defined by the user is the population s. In all the calculations reported here, we used a 

value of s 100. To create the initial sample to be iteratively improved with AMALGAM, we 

250 	 used uniform sampling within the parameter bounds specified as follows: ()",()w,()".mo,(}".imo 

0.3 0.7 [m 3 m- 3
]; Q. ltl! lt2 = 1 20 ['m ; 71, 711, 712 1.1 - 9.0 [-j; K s , I(S11J 10-7 10-3 

[m ; I 0.1 - 1.0; W, W2 = 0- 1 [-]. To reduce the number of parameters to be optimized, 

()r and ()r.imo in the MVG and DPIM model, respectively, were set to zero. This assumption is 

not going to influence the analysis, as there is very little sensitivity to these two parameters 

255 	 within the range of pressure heads spanned by the calibration data used in this study. The 

individual optimization runs were set up for the 282 days calibration period reported above and 

a 10 days initialization period was considered for the calculation of the performance measures. 

The runs were terminated after 50,000 HYDRUS-ID model evaluations. A detailed description 

of AMALGAM has been presented in Vrugt and Robinson (2007a) and is therefore not repeated 

260 here. 

Our multi-objective formulation will result in a set of Pareto optimal solutions that represent 

trade-offs among the three different objectives. These solutions have the property that moving 

from one to another along the trade-off surface results in the improvement of one objective 
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while cau:,;ing deterioration in at least, one other objective (Gupta et al.. 1998: Deb, 2001; 

265 	 et al.. 2003a). Consistent with our earlier approach (W6hling et al.. 2008). we isolate four 

different parameter combinations from the Pareto that \ve believe are most informative 

and useful for postprocessing with the B~IA method. The first three Pareto points, PI 

are the best solutions with respect to each of the individual objectives (subsequently referred 

to as Pareto £lyj-r£llrn . The fourth solution. P4 • is the balanced solution, i.e. where the overall 

270 	 RMSE of all three objectives is at its minimum. This point is hereafter also referred to as 

compromise solution. 

Two additional criteria are used to measure the fit between observed and simulated tensiometric 

data of the Pareto solutions: the coefficient of determination H2, and the coefficient 

of efficiency. ,by Nash-Sutcliffe (ASCE, 1993). Ct' is a widely used fitting criterion and may 

275 assume a negative value if the mean square error of the best prediction exceeds the variance of 

the observations (Hall. 2001). Model predictions are considered satisfactorily if the values of 

are close to ullit)'. vVe further used the coefficient of correlation rc to calculate the 

correlation between t he forecasts of the individual models. 

Model Ensembles used in the BMA Approach 

280 Pressure were foreca.sted at the three different depths during the evaluation period us­

ing each individual soil hydraulic model. To simplify the analysis, these pressure heads were 

interpolated to hourly values. \Ve use four different model ensembles in our BMA approach. 

Each ensernble consists of seven members. namely the MVG. MVG-Hll, BC, K~I. MVG-DP. 

DPI~1. and MVG-4 soil hydraulic models. The hydraulic head predictions in these four ensem­

285 bles are different because different Pareto solutions were used to create the forecasts. Ensemble 

1 contaiu:,> the predictions of the seven models the best solution to objective FI of the 

Pareto surface, PIUdVG). Pd MVG-HR), P1(BC), PI (K\I), P1(11VG-DP). P1(DPIM), and 

Pt(MVG-4). Similarly, ensemble 2 and 3 were generated using the Pareto extremes P2 and P;~ 

for each individual modeL whereas ensemble 4 contains the predictions of the individual soil 

290 hydraulic for the compromise Pareto solutions, 

\Ve follow five different steps in our analysis. A flowchart summarizing our approach and 

analysis is presented in Figure 1 \vith the individual steps numbered in circles. 
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First (number 1 in Fig. 1), we investigate the performance of the BMA approach for the four 

different rnodel ensembles using combined performance measures for all t.hree depths, i.e. t.he 

295 Rr-.fSE, R2, and Ce fitting criteria are calculated for the 0.4, 1.0. and 2.6 m depths. The;,;e 

criteria are hereafter referred to as Rl\lSEc (subscript c stands for combined), . and 

This invest.igation is used to explore how the performance of the BrvIA model depends on the 

parametrization of t.he individual models. In the second step (2 in Fig. I), we the 

BMA performance at the individual depths. The best attainable pressure head forecasts at 

300 the 0.4, 1.0, and 2.6 m depths are post-proces;,;ed with B1VfA using the parametrization of the 

corresponding Pareto extremes. In the remainder of this paper, these forecasts are subsequently 

referred to as single depth forecasts. Then we compare the results of the single depth and the 

combined depth forecasts. In the third step (3 in Fig. 1), we analyze the sensitivity of the 

Bl\lA results to the use of a single or multiple different variances of the conditional pdf's of the 

3()5 	 individual <::711'"<O""'JJ'<:> members. In the fourth step (4 in Fig. 1), we explore the importance of 

the individual soil hydraulic models in the ensemble by comparing the BMA results of ensemble 

1,2 and 3 with of a reduced ensemble size created by only selecting a sub-set of models. 

For instance, in ensemble la, 2a and 3a, we exclude the model that receives the highest BMA 

weight amongst all the models. Similarly, ensemble lb, 2b and 3b are formed by excluding the 

310 two best performing soil hydraulic models. Hence, ensemble la, 2a and 3a contain six individual 

time series of model predictions, whereas ensemble I b, 2b and 3b consist of only five memb,ers 

Finally, in the last step (5 in Fig. 1) we discuss how the choice of the calibration period affects 

the BMA results. 

3 Results and Discussion 

315 3.1 Optimized Parameter Sets 

The MVG, MVG-HR, Be. KM, MVG-DP, DPIl\L and l\IVG-4 soil hydraulic models were cal­

ibrated with AMALGAM using the observed tensiometric pressure heads at the 0.4, 1.0, and 

2.6 m depths in the Spydia vadose zone during the calibration period. One of the drawbacks 

of inverse modeling for vadose zone problems it) the computational requirements. For instance, 

320 a single optimization run using 50,000 HYDRUS-ID model evaluations required several days 
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using the Matlab@ R2007a (64 bit) - I\Iicrosoft vVindows™ XP Professional (64 bit) modeling 

environment on a Dell™ Precision 390 workstation with a Quad-Core Intel@ CoreT :-12 Ex­

treme processor QX6700 (2.67 GHz) and 2GB of RAf<.I. Note. however that Af<.IALGAI\I often 

converged to the Pareto solution set within less than the maximum total of 50,000 HYDRUS­

325 ID model evaluations. Between 16,000 and 27,000 model evaluations were required for the 

MVG-HR, KtvI, BC, and MVG-DP models to approximate the three-objective Pareto solution 

set. whereas about 44,000 HYDRUS-ID model evaluations were needed with AtvIALGAtvr to 

converge for MVG-4. Use of multiple different computational nodes within a distributed com­

puting environment would significantly reduce the time needed for calibration (Vrugt et al. , 

330 2006b). 

To illustrate the outcome of a typical AI"IALGAM optimization run, consider 2 that 

presents the Fl - F2 , Fr - Fll and F2 - Fl bi-criterion trade-off fronts of the full three-dimensional 

Pareto surface for the MVG-model. In each paneL the rank 1 solutions are indicated with gray 

circles. Note, that AMALGAI\I has sampled the Pareto surface quite and uniformly 

335 with emphasis on sampling the front of objectives Fl and F2 . This front considerable 

trade-off demonstrating an inability of the I\IVG model to simultaneously provide good fits to 

the pressure head observations at the 0.4 and 1.0 m depths. tvlore discussion on this can be 

found in Wohling et a1. (2008). In contrast, the Fl - F:, and exhibit a more 

rectangular trade-off pattern (Figures 2b, 2c), illustrating that it is possible to minimize both 

340 	 of these objectives simultaneously using only a single combination of of the hydraulic 

parameters in the I\IVG model. As described above, the Pareto solutions that are separately 

indicated in each panel with Pl, P2, P3 and P4 are used for further with R~IA. 

The Pareto optimal parameter solutions derived with AMALGAf<.,[ for the MVG-HR, BC, KM, 

I\IVG-DP, DPIM, and I\IVG-4 models were analyzed in the same way as described here for the 

345 MVG model. Because of space limitations, however. these results are not reported here. This 

information can be obtained from the corresponding author upon request. 

Tables 2 and 3 summarize the performance of the seven hydraulic models with the various 

Pareto solutions derived with Af<.,IALG A~L Table 2 lists the R.MSE , R2, and performance 

criteria for the simulations with the Pareto extremes (P1 P;I), Le. with the parametrization 

350 yielding the best attainable fit to each of the three objectives Fl Fl. Note that we only report 
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the fit for the optimized (single) objective solutions. The R1ISE of the fit between observed 

and simulated pressure heads at the three depth varies between 0.052 and 0.117 m. This 

average error can be considered quite small with magnitude similar to the average standard 

deviation of the pressure head measurements of the three different tensiomet.ers at each depth. 

355 This shows the ability of AMALGAM to find good calibrated parameter values for each of 

the seven soil hydraulic models. However, even these relatively small RMSE values are based 

on simulations that. include parts with significant deviations between observed and modeled 

tensiometric pressure heads. This will be shown and discussed later. Our results further show 

(not in the Table) that a good fit of a particular model at one depth is typically accompanied 

360 with a significantly worse fit at the other two measurement depths. 

At the 0.4 m depth, the MVG-DP model has the best predictive capability with summary 

statistics of RMSE = 0.069 m, R2 = 0.95 and Cp = 0.95, respectively. Seemingly, the ten­

siometers in the top part of the soil are affected by the presence of preferential flow paths that 

quickly move water to deeper layers in the profile. A dual-porosity model such as the MVG-DP 

365 model is expected to better account for this rapid movement of water than a single porosity 

(MVG) model. The best fit at the 1.0 m depth (measured with objective F2 ) was obtained by 

the MVG-4 model with the lowest RMSE value in the analysis (RMSE = 0.052 m, d. Table 2). 

This shows that a 4-layer numerical stratification better represents the actual soil profile at the 

Spydia field site. This is in agreement with soil textural information, as highlighted before. It 

370 should be noted, however, that all soil hydraulic models, but the Be model attained a very 

good fit to the observations at the 1.0 m depth (Table 2). The pressure head at the 2.6 m 

depth is responding least dynamically to rainfall at the surface. The dual porosity (MVG-DP) 

and the MVG-HR (which considers hysteresis) soil hydraulic models are the best predictors at 

this depth with associated RMSE values of 0.058 / 0.059 m and high coefficients of determina­

375 =tion and efficiency. The 4-layer stratification used in 1IVG-4 performs similarly well (RMSE 

0.072m) which indicates that a better representation of the horizontal layering in HYDRUS-1D 

also improves the pressure head predictions at the 2.6 m depth. 

Table 3 lists the R1ISEc ) R~, Cp,C) and Bias summary statistics for the fit between the observed 

and predicted pressure head for the combined 0.4, 1.0, and 2.6 m depths during the calibration 

380 period. At this time, please only consider the fitting criteria of the individual model forecasts in 
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ensemble 4. These forecasts correspond to the compromise solutions (P4) of the Pareto 

The R\ISE c ranges from 0.101 to 0.153 m for the individual models. As expected, these values 

are somewhat than the single depth Rl\ISE values previously reported in Table 2. OveralL 

l\IVG-4 is the performing model with the best summary statistics. As shown previously, 

385 the 4-layer stratification used in the l\fVG-4 model results in the most accurate predictions of 

the pressure heads throughout the Spydia vadose zone. The overall performance of this model 

is even better than the dual-porosity MVG-DP model that explicitly accounts for the presence 

of preferential flow and therefore provides the closest fit to measured hydraulic heads at the 

OAm depth in the top part of the soil. 

390 To illustrate the probabilistic properties of the soil hydraulic models, consider 3b-d 

which depict the observed pressure head (bold solid lines) and the individual model predictions 

(thin lines) at the 0.4, l.0, and 2.6 m depths during the calibration period. The calibrated 

model predictions correspond to the compromise solution (Pd of the three objective {FI' F.,} 

Pareto surface. response to rainfall at the surface (Figure 3a) is rnost dynamic' at the 0.4 m 

395 	 depth (Figure 3b) whereas the response is lllore damped deeper down in the profile. (Figure 

d). This is due to the time required for the water to move through the soil and the 

deeper layers. It is interesting to observe that the spread of the individual model predictions is 

quite narrow at the 1.0 m depth and wider at the 0.4 and 2.6 III depths. The calibrated models 

appear to provide quite different predictions which generally bracket the observations. This is 

400 	 a desirable characteristic for accurate ensemble forecasting with the BJ\,IA method. 

3.2 BMA 

In this section, we first illustrate how BMA works by showing the prediction of tensiometric 

pressure head at one location and time (result.s presented ill Table 4 and Figure 4). Then we 

describe the results for the entire evaluation period and the three depths. 

405 Illustration of the BMA Approach 

Consider the pressure head forecast at the s = 0.4 m depth on October .5, 2007, 5:00 pm 

(t 542.3 days). Table 4 shows the individual model forecasts, the bias corrected forecasts. 
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the Bl\IA weights, the Bl\IA variances, and the verifying observation. Figure 4 depicts the 

BrvIA predictive pdf (solid line) which is the weighted sum of the seven normal pdf's of the 

410 individual ensemble members (dashed, dashed-dotted, dotted lines, and combinations thereof). 

The Bl\IA pdf distribution is bimodal, indicating that there are disagTeeing forecasts. In our 

example, the MVG-DP model predicted a somewhat larger pressure head a.s compared to the 

other models. The verifying observation is captured within the ensemble range as is the ca.'le 

in 82.8% of the times for the evaluation data set for the 0.4 m depth. The distinct shape of 

415 the BMA pdf in Figure 4 is defined predominantly by the conditional pdf's of the '\lVG-DP 

model (dashed-dotted line) which has received the largest BMA weight (66.7%), the KM model 

(dotted line) with the second largest B'\lA weight (17.9%), and by the MVG-4 model (large 

dashed line). It is interesting that the MVG-4 model has a considerable influence on the shape 

of the Bl\IA pdf despite its relatively low weight of 3.8%. This is caused by its relatively small 

420 standard deviation (Table 4) causing a significant spike in BMA predictive pdf. Note that 

the yIVG and Be models exhibit very small BMA weights and a large variance (cf. Table 4). 

These models' contribution to the overall BMA predictive pdf is therefore negligible. The 

relatively large 95% uncertainty ranges (shaded area in 4) are a result of the spread or 

disagreement of the individual model forecasts (Table 4). 

425 The ensemble members' importance over the training period is reflected by the optimized BMA 

weights, Wi for the individual soil hydraulic models. It seems reasonable to assume that the 

rank order of the weights should be similar to the reverse order of the RMSEs, based on the 

a.'lsumption that better models should get a higher weight in the BMA model. Indeed in 

our example, the MVG-DP forecast has the highest Bl\IA weight (Table 4) and the lowest 

430 RMSE (Table 2). This i;,; not an unexpected result since macropore flow path;,; are typically 

present close to the surface and in the active root zone. Therefore the dual-porosity flow 

model '\IVG-DP can be expected to perform better t.han a uniform flow model. However, the 

uniform flow model Kl\l ranks second in BMA weights, but sixth in reversed RMSE order. 

This seems counter-intuitive, but is explained by the presence of significant correlation among 

435 the prediction;,; of the individual model forecasts. The (linear) correlation coefficients among 

the models, reI vary between 0.95 and 0.98, demonstrating a strong similarity in tensiometric 

head predictions between the different ;,;oil hydraulic models. Such a st.rong correlation among 
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model predictions makes the information from some lllembers of the ensemble redundant. 

This results in optimized B~IA weights that for at least a fe\v soil hydraulic models might 

440 appear counter-intuitive at a first glance. This phenomena was also observed in other B\IA 

studies (for example for streamflow forecasting). For similar cases &') reported we would 

suggest that the B.~IA approach tends to assign a relative high weight to the best of the highly 

correlated models and explores additional information content of other, less correlated models. 

Another good example of this is the MVG-4 model which has the second best RT\ISE, 

445 but ranks only fifth in its B'\IA weight. The additional information provided by this model 

is small because its forecasts are highly correlated with the J\IVG-DP model that has received 

the highest among the ensemble members. One should therefore be careful in 

conclusions about the usefulness of individual models based on their optimized B.\IA weight. 

Note, that the DPIM and I\IVG-HR models rank third and fourth in both BT\IA weight and 

450 reversed RMSE order. 

In the following, we provide the aggregated re~mlts for the BMA method for the depths 

of pressure head ob;ervations at the Spydia. site. 

Combined depth Pressure Head Forecasts with individual Pareto Solutions 

The results for the combined depth pressure head forecasts are in 

455 Table 5 and Figure 5 and will be discussed here. The computational requirements of Bl\lA 

are relatively small. In our analysis a typical BMA run would take not more than a couple of 

minutes using the computer architecture described above, which is less time t han required for an 

average forward simulation of the HYDRUS-ID model. Table 5 presents summary of 

the combined pressure head forecasts using the four different model ensembles for the evaluation 

460 period. The results are presented for the individual ensemble members (models) and BMA 

predictive model (BMA pdf mean). 

The performance of the soil hydraulic models during the evaluation period is best for the 

compromise solutions (ensemble 4) which is confirmed by relatively high R~ and C", values 

up to 0.89 and 0.84, respectively (Table 5). On the other hand, the R; and Cce values did 

4<55 not exceed 0.72 and 0.57 for ensembles 1 - :3 that contain the hydraulic head predict ions of 

the respective single objective solutions of the Pareto surface. In addition, the of 
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the individual soil hydraulic models in ensembles 1 to 3 often attain negative values, which is 

indicative of a rather poor fit to the observed pressure head data. 

The 	best overall performance is obtained for ensemble 4, consisting of the model predictions 

470 of the compromise solutions of the Pareto surface. The performance of the individual soil 

hydraulic models in this ensemble, and the associated BMA model is significantly better than 

the performance observed for ensemble 1, 2 and 3. This is confirmed by significantly better 

values of the RMSEc , Bias, R~ and ee.c performance scores for the individual members of 

ensemble 4 for both the calibration and evaluation period. This is an expected result since the 

475 compromise solutions (as aggregated in ensemble 4) should provide a better fit to the combined 

data than the Pareto extremes (represented in ensembles 1 - 3). We observe that the BMA 

mean is better than any of the individual models of the ensembles for both the calibration and 

evaluation period (cf. Tables 3 and 5). A notable exception is the performance of the BMA 

mean in ensemble 4 during the evaluation period. The BMA predictive pdf does not exhibit the 

480 appropriate coverage during the evaluation period. Only 83% of the observations are captured 

at the 95% uncertainty interval. In addition, the RMSEc value is significantly higher for the 

evaluation period as compared to the calibration period (Table 5). This indicates that the 

forecast spread of 0.40 (m) of the BMA model is too small during the evaluation period, and 

needs reconsideration. We anticipate that statistically more reliable results can be obtained 

485 when the BMA model is fitted using a calibration data that spans a larger variety of rainfall 

and drying events. 

It is interesting to note that the optimized values of the BMA weights of the individual models 

differ quite substantially between the four different ensembles. A strong preference to the MVG­

4 model (w = 0.753) is given in ensemble 1 with the remaining weight primarily allocated to 

490 the MVG-HR model (Table 5). Note that the models in ensemble 1 represent the calibration 

with regard to the 0.4 m depth and that the dual-porosity model MVG-DP performed best for 

this depth (Table 2). However, the four layer equilibrium flow model MVG-4 provides a better 

representation of the data in the deeper layers (as measured in the 1.0 m and 2.6 m depths) of 

the vadose zone profile as compared to the ~lVG-DP model. Similarly, the models performing 

495 	 best at the 1.0 and 2.6 m depths do not obtain the highest weights in ensembles 2 and 3. In 

ensemble 2, a high preference (w = 0.802) is given to the MVG-DP model, whereas the other 
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models receive very small weights. The :\IVG-HR and MVG-4 models receive the highest B~IA 

weights in ensemble 3 with values of l1J = OA64 and U' = 0.455, respectively. In ensemble 4 

most of the individual soil hydraulic model receive appreciable B'\IA weights. This shows that 

500 each member contributes to the overall B~IA modeL suggesting independent and additional 

information of each individual soil hydraulic model. This is desirable and explains why this 

ensemble is best suited for prediction of pressure heads throughout the soil profile. 

Figures 5b-d illustrate the observed pressure head (bold solid lines) and the model forecasts of 

ensemble 4 (thin lines) at the 0.4, 1.0, and 2.6 m depths during the evaluation period. Also 

505 shown are the B~IA mean (bold dashed lines) and the associated 95% prediction uncertainty 

bounds (shaded area). The spread of the pressure head predictions of the different soil hydraulic 

models increases with increasing depth and dryness in the soil profile. This is caused by error 

propagation and the functional shape of the water retention curve that predicts large variations 

in hydraulic head at lower water content values. The BMA prediction uncertainty intervals 

510 generally capture the observed pressure heads and are especially tight at the 0.4 and 1.0 m 

depths. Unfortunately, virtually all observations fall outside the 95% prediction uncertainty 

bounds at the 2.6 m depth during the period between days 450 - 490. During this time interval, 

the compromise Pareto solution is simply unable to provide pressure heads predictions that 

are consistent with the observations. A significant bias toward higher pressure head values is 

515 observed. A better result could have been obtained if we would have explicitly included this 

event in our calibration procedure with AMALGA~I. This will be discussed in the final section 

of this paper. 

Single depth Pressure Head Forecasts with individual Pareto Solutions 

The aggregated results for the single depth pressure head forecasts are summarized in Table 6 

520 and Figure 6 and will be discussed here. Table 6 presents summary statistics of the single depth 

pressure head forecasts of ensembles 1, 2 and 3 over the evaluation period for the individual 

models and the BMA mean. \Ve like to reiterate that the single depth solutions correspond to a 

specific depth and that these solutions represent the best attainable fit to the tensiometric head 

data as determined with AMALGA~I. Therefore, the Rl\ISE values of the models in ensemble 

525 1, 2 and 3 (Table 6) should generally be lower than their corresponding RMSEc counterparts 
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derived for the combined depth forecasts (cf. Table 5). The only exception to this is the Be 

model in ensemble 3. This is probably caused by the fact that the Be model attains a much 

better fit at the 0.4 and 1.0 m depths (represented by ensembles 1 and 2) as compared to the 

2.6 m depth (ensemble 3) and that the combined depth forecasts represent an average fit to all 

530 three depths. 

The best fit to the observed pressure head data is found at the 1.0 m depth where RMSE values 

of the individual models and the BMA mean range between 0.065 and 0.115 m. While the BMA 

model outperformed all of the individual ensemble members during the calibration period, this 

is not necessarily the case during the evaluation period. This can be seen by comparison of the 

535 performance statistics of BMA against the summary statistics of the individual soil hydraulic 

models. As discussed for the combined depth forecasts, this might have to do with the selection 

of the calibration period. 

The performance of the various soil hydraulic models in ensemble 1 and 2 during the evaluation 

period is very similar to their performance during the calibration period. This is confirmed by 

540 relatively small differences in RMSEc values ranging between -0.036 and 0.009 m (cf. Tables 2 

and 6). In contrast, larger RMSEc differences of up to -0.265 m were observed for the MVG, Be, 

and MVG-HR models at the 2.6 m depth (ensemble 3). The importance of the individual soil 

hydraulic models is strongly dependent on the depth of forecasting as represented by ensemble 

1, 2 and 3. The MVG-DP model attains the largest B~IA weight at the 0.4 m (w = 0.667) 

545 and 2.6 m (w = 0.438) depths. The good performance of the non-equilibrium flow model 

close to the surface is caused by the presence of preferential flow paths as discussed previously. 

Interestingly, the dual-porosity model performs also best for the 2.6 m depth, where pressure 

head change gradients are much smaller as compared to those at the shallower depths. The 

hysteretic uniform flow model MVG-HR attains the largest BMA weight (w = 0.528) at the 1.0 

550 m depth. This is a surprising result because one would expect the MVG-DP model to receive 

more weight at this depth. In fact, the performance of MVG-DP and MVG-HR is very similar 

with nearly identical RMSE values (Table 2). Strong correlation between the pressure head 

predictions of these two models again influence the selection of the B~IA weights. 

Note that the single depth BMA weights in ensemble 1, 2 and 3 are also significantly different 

555 than their corresponding counterparts of the combined depth solutions, which were previously 

23 



reported in Table 5. 

Similar to the performance of the individual ensemble members, the single depth Bt-.IA models 

perform better than their corresponding combined depth models. The Rt-.ISE values are 0.102, 

0.080. and 0.122 m for the 0.4. l.0, and 2.6 m depths. respectively (Table 6). To further illus­

560 trate these results, consider Figures 6b-d which provides time series plots of the Bl'vIA mean 

(bold dashed lines), the observations (bold solid lines), and the ensemble 1 - 3 forecasts (thin 

lines) at the 0.4, l.0, and 2.6 m depths during the evaluation period. Particularly at the l.0 

m depth, (Figure 6c). the average width of the 95% prediction uncertainty bounds (shaded 

area) is significantly smaller than the average widths of the combined forecasts (Figure 5c). 

565 Despite this smaller spread, the prediction uncertainty ranges generally encompass the obser­

vations. About 73% of all observations are covered by the 95% uncertainty bounds at the 0.4 m 

depth with the remainder of the measurements appearing only slightly outside the uncertainty 

bounds. At the l.0 m depth, the coverage is relatively high at 89% (Table 6 and Figure 5c) 

with observations primarily falling outside the uncertainty ranges immediately following rainfall 

570 	 events at simulation days 467, and 476 - 477, respectively. Note that at the l.0 m depth the 

upper bound of the 95% uncertainty interval derived with the Bt-.IA model is in close vicinity 

of the observed pressure heads for most times during the evaluation period. At the 2.6 m depth 

the observations fall consistently outside the uncertainty bounds between days 485 and 492 

resulting in a coverage of about 74%. 

575 The results presented here are significantly better than those obtained previously in Table 5 and 

Figure 5d using the Bl'vIA model for the combined depths. For instance, the uncertainty ranges 

have increased considerably for the first 40 days of the evalnation period (days 450 - 490). but 

have become more consistent with the observed tensiometric pressure head data (Figure 6cl). 

After day 490, the spread of the Bt-.IA uncertainty bounds narrows because the tensiometric 

580 pressure head predictions of the individual soil hydraulic models become in closer agreement. 

Use of a single BMA Variance for each Model in the Ensemble 

So far we have used different Bl'vIA variances for the conditional pdf's of the individual soil 

hydraulic models. Here we illustrate the performance of the Bt-.IA model using a single variance 

for each of the individual ensemble members. To this end, we replace the last term 2::7=1 Wia2 
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585 in Eq. (5) with a single variance CJ2 . The results of the analysis are listed in Table 7. 

In general, the results presented here are very similar to those obtained previously with the use 

of multiple different Bl\[A variances for the individual models (cf. Tables 6 and 7). For ensemble 

1, the MVG-DP and KM models again rank first and second in their respective R\IA weights, 

and the RMSE, R2, and C" summary statistics of the B'\IA model are very similar to those 

590 presented previously in 6. The average width of the 95% uncertainty interval (0.22 m) and 

the coverage (69%) during the evaluation period were slightly smaller than their corresponding 

values when multiple different Bl\IA variances. Qualitatively similar results were obtained 

for ensemble 2. ensemble 3, the MVG-DP and '\IVG-HR models rank first and second in 

importance with Bl\IA weights of w =0.513 and w =0.327, respectively. However, the Bl\lA 

595 weight of the MVG-HR model is significantly larger than its weight derived previously when 

using multiple different BMA variances (Table 6). Not surprising therefore, is that the RMSE 

values for both the calibration and evaluation period are slightly different than those obtained 

previously. The most significant difference is that the coverage of the prediction uncertainty 

bounds of 3 has significantly improved from about 74% in the case of multiple different 

600 BMA variances to approximately 90% for the analysis considered here. 

The results presented in Table 7 are very similar to those presented in Table 6, ':>UI",I",""'Lllll", that 

the optimized BMA results are fairly insensitive to the choice of a single or multiple different 

BMA variances of the individual soil hydraulic models in the ensemble. Similar have 

been found in other BMA modeling studies. 

60S Impact of Ensemble size on Performance of BMA Model 

In this section, we discuss the single depth BMA model forecasts for the ensembles la 3a and 

Ib - 3b. These ensembles represent sub-sets of the original ensembles 1-3 where the models with 

the best predictive characteristics (i.e. the models which received the largest Bl\lA weights) 

have sequentially been removed. For example, the '\IVG-DP model received the largest BMA 

610 weight of seven models in ensemble 1 (Table 6) and was therefore excluded in ensemble 

lao This ensemble therefore contains the predictions of the remaining 6 soil hydraulic models. 

Further, the K1I model was the second best performing model in ensemble I (and the 

best model of ensemble la). and was therefore removed from ensemble la to create ensemble 
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Ib that now consists of 5 different soil hydraulic model"). 

615 The information content of an ensemble should generally deteriorate with decreasing size of 

the ensemble, k. Hence, it seems logical to assume that ensembles 1 - 3 should contain more 

information than ensembles 1a 3a, which in turn should be more informative than ensembles 

1 b - 3b. The smallest possible ensemble that st ill contains all the necessary information to 

make good predictions and reliable estimates of uncertainty is warranted. A small ensemble 

620 has important computational advantages, since it requires calibrating and running the smallest 

possible number of soil hydraulic models. Here \ve investigate the influence of ensemble size on 

the performance of the B~IA rnodel. 

Table 8 lists summary statistics of the performance of the BMA model generated using the 

information contained in la - 3a. and Ib 3b. The quality of the fit between 

625 observed and BMA predicted pressure heads generally decreases with decreasing size of the 

ensemble. The RMSE values increase from 0.067 to 0.075 0.086 m, when moving from 

ensemble 1 to la and Ib, respectively. This is what is to be expected. The largest increase in 

H~ISE of about 0.025 m was observed at the 2.6 m depth (ensemble 3b). This deterioration 

in performance is still relatively small. considering that we have sequentially removed the best 

630 two ensemble members. The information content of the full ensemble is only slightly better 

than the information content of the reduced ensemble because of highly correlated predictions 

of the individual soil hydraulic models. 

The average width of the uncertainty intervals and associated coverage of the observations 

increase with decreasing ensemble size during the evaluation period. The largest increase in 

635 width was about 0.09 m. The increase in covemge compared to the original seven member 

ensemble is the largest at the 2.6 III depth (931\'. coverage for ensemble ~jb vs. 74% for ensemble 

3). This is accompanied by a relatively large average width of 0.46 m (ensemble 3b, 

The largest coverage of uncertainty bounds (95%) was observed for the BrvIA forecasts of 

ensemble 2b (1.0 m depth). Interestingly, this is associated with a relatively small width of 

640 the uncertainty ranges of approximately 0.21 nl. These show that the model forecasts 

are most dosely centered around the observations for 1.0 m depth. Larger prediction 

uncertainty ranges are observed at the soil surface and 2.6 III depths. 
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Importance of the Choice of the Calibration Period 

In the analysis presented above we decided to calibrate the individual soil hydraulic models and 

645 the BMA model for the first wet season and to evaluate their performance during the second wet 

season. This decision was made because water flow in the highly porous volcanic vadose zone at 

the Spydia field site occurs primarily under wet conditions, and the soil hydraulic conductivity 

declines rapidly with decreasing soil water pressure heads (Wohling et aL 2008). To investigate 

the eflect of the choice of calibration period on the final accuracy and reliability of the soil 

650 hydraulic and BMA model forecasts, we conducted a second analysis using another calibration 

and evaluation period. \Ve now included dry and wet conditions in calibration data set 

using a 296 days period between December 17, 2006 and October 9, 2007 (296 days). The 

evaluation period was selected to span the period between May 1, 2006 and December 16,2006 

(230 days), using a 20 day spin-up period for state-value initialization. We re-calibrated the 

655 seven soil-hydraulic models and the BMA model using this new calibration period. Hereafter, 

we refer to this second calibration data set as Approach B and to our initial results as Approach 

A. The most important results of this analysis are summarized here. 

The optimized parameter sets for Approach B resulted in a substantially lower quality of fit to 

the calibration data at the 0.4, 1.0 and 2.6 m depths as compared to Approach A. This poorer 

660 fit was caused by an inability of the individual models to accurately reproduce the tensiometric 

head data during the dry period which was excluded in Approach A. Our data interpretation 

and analysis suggests that this rather large misfit is caused by water repellency, which is not 

included in any of the seven soil hydraulic models. 

The combined pressure head forecasts using the four diflerent model ensembles for the evaluation 

665 period also showed a poorer fit to the observed tensiometer data with RMSE values ranging 

between 0.190 and 0.417 m and R2 values between 0.13 and 0.63. :Vloreover, the individual 

soil hydraulic models in ensemble 4 (consisting of the forecasts of the compromise solutions), 

did not perform better than the respective models in the ensembles 1, 2 and 3 as was the case 

in Approach A. In addition, the average width of the 95% uncertainty bounds was noticeably 

670 larger than obtained previously in Approach A (Table 5). Similar results were found for the 

single depth pressure head forecasts for the evaluation period. 
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\Ve conclude that the choice of the calibration period has a strong influence on the results of 

the It determines the accuracy of the individual model forecasts on olle haud, and 

the accuracy and uncertainty estimates of the Bl\IA model on the other hand. For accurate 

675 forecast it is desirable to use a calibration period of the soil hydraulic and Bl\IA model that 

spans the largest possible range of drying and events. However, water repellency is 

not included in any of our model formulations, so it 1::; better not to include rainfall events 

during prolonged dry periods in the calibration of the individual soil hydraulic models. This 

avoids the in these models to take unrealistic optimized values so as to compensate 

680 	 for this missing physical process. 

4 Summary and Conclusions 

Uncertainty estimation is currently receiving a surge in attention because researchers are trying 

to better understand what is well and what is not very well understood about the environmental 

systems that are being studied and as decision PllHh to better quantify accuracy and 

685 precision of model predictions. In thb paper, we presented a combined multi-objective 

optimization and Bayesian :Model Averaging (Bl\IA) framework to calibrate forecast ensembles 

of soil hydraulic model~·;. To illustrate our methodology. we used pressure head data from three 

different depths in a layered vadose zone of volcanic in New Zealand. A multi-objective 

formulation was used to calibrate the individual soil hydraulic models. The re:mlting Pareto 

690 solution space was estimated with the AI\lALGAl\1 multi-method global optimization algorithm 

and used to generate different model ensembles. The most important conclusions of our study 

are: 

1. 	 uniform flow model MVG-4 provides the most accurate predictions of the com­

bined pressure heads throughout the Spydia zone. Its performance is superior to 

695 	 the dual-porosity l\IVG-DP model that explicitly accounts for the presence of preferential 

flow and provides the best fit to measured pressure heads at the OAm depth. 

2. 	 The mean pressure head forecast of the Bl\IA model has similar predictive capabilities 

&<; the best performing soil hydraulic model in the ensemble. This is because the various 

hydraulic models have been calibrated well c>o">1",d the observed pressure head data. 
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700 3. 	 The optimized values of the BMA weights do not necessarily follow the reverse RMSE 

order of the individual models. This is because of cross-correlations between predictions 

of the individual models in the ensemble. One should therefore be particularly careful in 

drawing conclusions about the usefulness of individual ensemble members based on their 

optimized Bl\IA weight. 

705 4. 	 The best Bl\lA model at each particular depth is made up of the ensemble of forecasts 

corresponding to the respective Pareto extremes. The best BMA model at one depth 

however, receives relatively poor performance in predicting tensiometric pressure heads 

at the other two depths. 

i). The overall best ensemble and BMA model is obtained when selecting the compromise 

solution of the Pareto trade-off surface. This is a balanced solution that minimizes the 

overall RMSE of observed and simulated pressure heads at the three different measurement 

depths. 

710 

6. 	 Removing the best two soil hydraulic models of the ensemble only slightly deteriorated the 

performance of the BMA model with a small increase in the spread of the 95% prediction 

715 uncertainty bounds. Significant correlation between the predictions of the individual soil 

hydraulic models in the ensemble causes a large amount of redundancy in information. 

7. 	 The selection of the calibration period greatly affects the final optimized BMA weights and 

variances. The results of the Bl\IA model are fairly insensitive to the choice of a single 

or multiple different values for the variances of the conditional pdf's of the individual 

720 ensemble members. 

8. 	 The prediction uncertainty bounds of the BMA model generally increase with increasing 

depth and dryness in the soil profile. 

9. 	 The combined multi-objective optimization and Bl\IA framework proposed in this paper 

is very useful to generate forecast ensembles of soil hydraulic models and appropriately 

725 	 quantify predictive uncertainty of flow through unsaturated porous media. Accurate 

uncertainty quantification is important for decision makers and end-users. 
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Figure captions 

Figure 1: Flowchart of the combined multi-objective optimization and Bayesian modeling 

averaging approach used in our study. A detailed explanation of the various boxes, and numbers 

appears in the text. 

Figure 2: Pareto optimal solutions (solid circles) of the three-dimensional Pareto trade-off 

space for the ~IVG model: (a) the FJ - F2plane, (b) the F] Fa plane, (c) the F2 F',1 plane 

of the objective space. The single objective solutions (0 symbol, PI P3 ) and the compromise 

solution symbol, P4 ) are also indicated in each paneL 

Figure 3: Pressure head predictions of the individual models for the calibration period using 

the compromise solution - parameter sets: a) daily rainfall, b) - d) the pressure head forecasts 

at the 0.4, 1.0, and 2.6 m depths, respectively. 

Figure 4: BMA predictive probability density function (solid line) and the conditional pdf's 

(dashed, dashed-dotted, and dotted lines: the abbreviations of the individual models are given 

in the text) for the pressure head forecast at the 0.4 m depth on October 5,2007, .5:00 pm. The 

9.5% uncertainty bounds (shaded area), the individual model forecasts (dots) and the verifying 

observation (x) are also indicated. 

Figure 5: Pressure head forecasts of the individual models of the BMA ensemble 4 for the 

evaluation period: a) daily rainfall and b)-d) the pressure head forecasts at the 0.4, 1.0, and 

2.6 m depths, respectively. The observations (thick solid line), the BMA mean (thick dashed 

line), and the 95% prediction uncertainty bounds (shaded area) are also shown. 

Figure 6: Pressure head forecasts of the BMA ensemble members for the evaluation period: 

a) daily rainfall and the pressure head forecasts b) at the 0.4 m depth using ensemble 1, c) at 

the 1.0 m depth using ensemble 2, and d) at the 2.6 m depth ensemble 3. Also shown are 

the observations (thick solid line), the BMA mean (thick dashed line), and the 95% prediction 

uncertainty bounds (shaded area). 
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Table 1: Number of parameters, np, to be estimated for the seven soil hydraulic models used 
in this study 

.Model I Parameters npI I I 

MVG, Be, K~I e,,, n, a, l, K" 15 
MVG-HR ea . ,a ,a l Kd elL' U' KW8~n,a" 8'8,0:, ,<) 24 
J\IVG-DP e",nl, n2, aI, 02, l, K", W2 24 
DPIJ\I e",mo, '(1, a, l, K", es,imo , W 21 
J\IVG-4 e", n, a, I, K" 20 
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Tahle 2: 1\feasures of fit between the observed and simulated pressure head at the 0.4, 1.0, and 
2.6 m depths (represented by the objectives FJ - F3 ), using single objective Pareto efficient 
parameter sets (Pj P3) in the simulations with the various models in the study. Performance 
criteria are shown for the optimized objective and the values are calculated for the calihration 
period. The hest Rl\ISE values in the ensembles are indicated in bold fonts. 

Be 0.117 0.096 0.108 0.91 0.68 0.86 0.89 0.68 
KI\I 0.096 0.065 0.099 0.92 0.95 0.75 0.92 0.95 0.73 
MVG-HR 0.090 0.058 0.059 0.91 0.96 0.91 0.91 0.96 0.91 
MVG-DP 0.069 0.059 0.058 0.95 0.96 0.91 0.95 0.96 0.91 
DPIl\1 0.089 0.074 0.088 0.92 0.94 0.80 0.92 0.94 0.79 
MVG-4 0.087 0.052 0.072 0.92 0.97 0.86 0.92 0.97 0.86 
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Table 3: i\lea::mres of fit bet\\'een the observed and simulated pressure head for the 0.4, 1.0, 
and 2.6 m depths combined using the Pareto extreme" (PI P,) and the compromise solution 
parameter sets (P~) in the simulations with the individual models. The criteria are calculated 
for the calibration period. The best R1\ISE r values in the are indicated in bold fonts. 

Be 
KM 
MVG-HR 
1\IVG-DP 
DPI1\I 
MVG-4 

Be 
Ki\l 
.\IVG-HR 
'\IVG-DP 
DPIM 
l\IVG-4 

Be 
K1\I 
1\IVG-HR 
l\IVG-DP 
DPTI\1 
MVG-4 

Be 
K1\1 
MVG-HR 
l\IVG-DP 
DPII\[ 
.\IVG-4 

0.261 
0.307 
0.213 
0.:335 
0.409 
0.216 
0.235 
0.835 
0.349 
0.183 
0.135 
0.274 
0.405 

0.338 
0.383 
0.306 
0.362 
0.365 
0.352 

0.149 
0.153 
0.112 
0.120 
0.144 
0.101 

0.:33 0.07 -2.1 
0.39 -0.28 1.3 
0.53 0.38 -12.8 
0.32 -0.52 4.1 
0.25 - -36.7 
0.71 0.36 -20.0 

0.16 
0..51 
0.7:3 
0.80 
0.56 
0.26 

0.23 
0.27 
0.38 
0.15 
0.12 
0.33 

0.70 
0.74 
0.84 
0.81 
0.7:3 
0.86 

-8.48 
-0.66 
0.54 
0.75 
-0.02 
1.24 

-0.56 
-1.00 
-0.27 
-0.79 
-0.82 
-0.69 

0.70 
0.68 
0.83 
0.80 
0.72 
0.86 

63.6 
-11.9 
9.7 
4.0 
-8.4 
17.8 

-27.5 
-32.0 
-21.9 
-27.9 
-27.7 
-29.5 

0.6 
-3.4 
-0.4 
-0.5 
-3.1 
1.0 
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Table 4: Ensemble forecasts of pressure head, bias corrected forecasts, B~IA weights and 
variances, and verifying observation for the OA m depth of the Spydia vadose zone at time t 
542,3 days (October 5, 2007, 5:00 pm). 

Forecast [m] 
Bias corrected forecast [m] 
BlVIA weight 
BlVIA variance 
Observation [m] 

-OA35 

0.055 
0.072 
-0.342 

-0.299 
0.667 
0.036 

-0.433 
0.038 
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Table 5: Summary statistics of the combined depth pressure head forecasts Hsing the individual 
models and the BMA predictive model in ensembles 1-,:J, for the evaluation period. The statistics 
are also listed for the B.\IA model during the calibration period, BI\IA (cali). The best Rl\ISEc 

values in the ensembles are indicated in bold fonts. 

BC 0.286 0.25 0.18 -0.8 0.000 0.28 
KM 0.317 0.70 -0.01 10.3 0.000 0.21 
MVG-HR 0.297 0.24 0.11 15.3 0.246 0.07 
l\IVG-DP 0.349 0.19 -0.22 1.0 0.000 0.29 
DPIM 0.497 0.01 -1.47 -39.2 0.000 0.23 
l\IVG-4 0.232 0.66 0.46 17.1 0.753 0.15 
BMA 0.60 3.8 86.0 0.5.5 
Bl\IA 95.1 0.55 

BC 0.861 0.:38 -6.42 77.0 0.000 0.23 
KM 0.332 0.30 -0.10 -14.9 0.000 0.43 
MVG-HR 0.239 0.46 0.43 7.5 0.170 0.17 
MVG-DP 0.222 0.51 0.51 2.1 0.802 0.07 
DPIM 0.252 0.48 0.37 -7.2 0.000 0.4:3 
MVG-4 0.382 0.55 -0.46 26.0 0.028 0.18 
B'\IA 0.219 0.01 84.1 0.47 
Bl\IA 96.2 0.47 

Be 0.319 0.41 -0.02 -28.4 0.067 0.35 
KM 0.314 0.59 0.01 -23.1 0.000 0.33 
MVG-HR 0.266 0.56 0.29 -18.2 0.464 0.12 
MVG-DP 0.275 0.51 0.24 -20.1 0.014 0.01 
DPIl\T 0.271 0..57 0.27 -14.5 0.000 0.07 
MVG-4 0.291 0.15 -23.9 0.455 0.18 
BMA 0.207 0.57 8.07 93.8 0.76 
BMA 9.5.1 0.75 

Be 0.276 0.24 0.24 0.8 0.006 0.20 
KM 0.143 0.89 0.79 7.1 0.000 0.25 
l\IVG-HR 0.182 0.74 0.67 0.4 0.237 0.14 
l\IVG-DP 0.228 0,48 0.48 1.0 0.097 0.02 
DPL\l 0.193 0.64 0.63 -0.4 0,1;38 0.03 
l\IVG-4 0.137 0.87 0.81 5.0 0.512 0.05 
BMA 0.154 0.83 0.76 2.5 82.9 0.40 
BMA 0.099 0.87 0.87 95.2 0.39 
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Table 6: Summary statistics of the single depth pressure head forecasts using the individual 
models and the BJVIA predictive model in ensembles 1-3 for the evaluation period. The 
l-ltatistics are all-lo listed for the BMA model during the calibration period, Bl\IA (cali). The 
best RMSE values in the ensembles are indicated in bold fonts. 

mble [mj [<)i(l] [%] [m] 
1 

... 

MVG 0.108 0.95 0.78 13.9 0.000 0.377 
Be 0.133 0.94 0.67 17.8 0.004 0.007 
KM 0.112 0.84 0.77 9.9 0.179 0.062 
MVG-HR 0.111 0.93 0.77 13.9 0.055 0.072 
MVG-DP 0.097 0.91 0.82 11.5 0.667 0.036 
DPIM 0.098 0.94 0.82 11.7 0.056 0.132 
MVG-4 0.098 0.91 0.82 10.9 0.038 0.010 
BMA 0.102 0.91 0.80 12.6 73.2 0.24 
BMA 94.2 0.23 

2 
Be 0.115 0.92 0.76 13.2 0.000 0.688 
KM 0.070 0.95 0.91 7.0 0.000 0.113 
:vlVG-HR 0.090 0.91 0.86 8.3 0.528 0.027 
.\IIVG-DP 0.067 0.97 0.92 8.3 0.025 0.131 
DPIM 0.065 0.95 0.93 5.5 0.056 0.005 
MVG-4 0.080 0.97 0.89 10.3 0.391 0.048 
BMA 0.080 0.95 0.89 8.9 88.6 0.14 
BMA 96.3 0.18 

Be 0.373 0.14 -0.15 -19.4 0.000 0.057 
KM 0.136 0.90 0.85 5.3 0.000 0.142 
MVG-HR 0.217 0.67 0.61 -6.2 0.190 0.092 
MVG-DP 0.121 0.91 0.88 -5.1 0.438 0.017 
DPIM 0.118 0.97 0.88 5.0 0.190 0.020 
MVG-4 0.141 0.87 0.84 -2.4 0.080 0.023 
BMA 0.122 0.89 0.88 -3.9 74.5 0.40 
BMA 0.055 0.92 0.92 96.1 0.21 
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Table 7: SUIllmary statistics for the single depth B::\IA predictive models using a single BMA 
variance for the hydraulic models in ensemble L 2 and 3. The words 'cali.' and 'eval.' are 
abbreviations for the calibration and evaluation period. Coverage and average width are given 
for the 95% uncertainty bounds. 

BJ\IA model Ensemble Number 
1 2 


weight, 11' I\IVG 0.000 0.000 0,001 
BC 0.002 0.000 0.000 
KJ\f 0.130 0.001 0.000 
I\fVG-HR 0.039 0.581 0.327 
MVG-DP 0.786 0.081 0.513 
DPL\I 0.036 0.000 0.156 
fvIVG-4 0.007 0.337 o.om 

Variance, a2 0.051 0.041 0.046 
RMSE, cali. [rn] 0.067 0.049 0.055 
RMSE, eval. [rn] 0.102 0.080 0.132 
Coverage, cali. [%] 94.0 95.6 95.8 
Coverage, ev"al '%] 69.1 85.7 90.2 
A verage width, cali. :rn] 0.23 0.18 0.21 
A verage width, eval. [m] 0.22 0.18 0.32 
Bias, eval. 12.5 8.9 12.6 
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Table 8: Summary statistics for the single depth BMA predictive models excluding best­
fitting model forecast in the ensembles 1a - 3a and 1b - 3b. The abbreviation for the 
excluded models are: b =KM , d =MVG-HR, e =MVG-DP, f =DPIM, and 9 =MVG-4. Fur­
ther , 'cali .' and 'eva!. ' are abbreviations for the calibration and evaluation period, respectively. 

BMA model Ensemble Number 
1a 1b 2a 2b 3a 3b 

Excluded model e b, e d d , 9 e d , e 
Model number, k 6 5 6 5 6 5 
RMSE, cali. [m] 0.075 0.086 0.053 0.058 0.062 0.084 
RMSE, eva!. [m] 0.109 0.101 0.074 0.068 0.123 0.099 
Coverage, cali. [%] 0.94 0.94 0.95 0.94 0.95 0.95 
Coverage, eva!. [%] 0.80 0.87 0.92 0.95 0.92 0.93 
A verage wid th, cali. [m] 0.30 0.34 0.21 0.22 0.27 0.32 
Average width, eva!. [m] 0.27 0.33 0.20 0.21 0.43 0.46 
Bias, eva!. [%] 13.7 12.6 9.3 8.0 -1.5 -2.9 
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Figure 1: Flowchart of the combined multi-objective optimization and Bayesian modeling av­
eraging approach used in our study. A detailed explanation of the various boxes, and numbers 
appears in the text. 
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.... 


Figure 2: Pareto optimal solutions (solid circles) of the three-dimensional Pareto trade-off space 
for the MVG model; (a) the FI - F2 plane, (b) the FI - F3 plane, (c) the F2 - F3 plane of the 
objective space. The single objective solutions (0 symbol, PI - P3) and the compromise solution 
(+ symbol, P4.) are also indicated in each panel. 
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Figure 3: Pressure head predictions of the individual models for t.he calibration period using 
the compromise solution - parameter sets: a) daily rainfall , b) - d) the pressure head forecasts 
at the 0.4, 1.0, and 2.6 m depths, respectively. 
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Figure 4: BMA predictive probability density function (solid line) and the conditional pdf's 
(dashed, dashed-dotted, and dotted lines; the abbreviations of the individual models are given 
in the text) for the pressure head forecast at the 0.4 m depth on October 5, 2007, 5:00 pm. The 
95% uncertainty bounds (shaded area) , the individual model forecasts (dots) and the verifying 
observation (x) are also indicated. 
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Figure 5: Pressure head forecasts of the individual models of the BMA ensemble 4 for the 
evaluation period: a) daily rainfall and b)-d) the pressure head forecasts at the OA, 1.0, and 
2.6 m depths, respectively. The observations (thick solid line), the BMA mean (thick dashed 
line), and the 95% prediction uncertainty bounds (shaded area) are also shown. 
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Figure 6: Pressure head forecasts of the BMA ensemble members for the evaluation period: a) 
daily rainfall and the pressure head forecasts b) at the 0.4 m depth using ensemble 1, c) at the 
1.0 m depth using ensemble 2, and d) at the 2.6 m depth using ensemble 3. Also shown are 
the observations (thick solid line), the BMA mean (thick dashed line), and the 95% prediction 
uncertainty bounds (shaded area). 
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