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Abstract

Most studies in vadose zone hydrology use a single conceptual model for predictive in-
ference and analysis. Focusing on the outcome of a single model is prone to statistical
bias and underestimation of uncertainty. In this study, we combine multi-objective op-
timization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil
hydraulic models. To illustrate our method, we use observed tensiometric pressure head
data at three different depths in a layered vadose zone of voleanic origin in New Zealand.
A set of seven different soil hydraulic models is calibrated using a multi-objective formu-
lation with three different objective functions that each measure the mismatch between
observed and predicted soil water pressure head at one specific depth. The Pareto solution
space corresponding to these three objectives is estimated with AMALGAM, and used to
generate four different model ensembles. These ensembles are post-processed with BMA
and used for predictive analysis and uncertainty estimation. Our most important conclu-
sions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits
similar predictive capabilities as the best individual performing soil hydraulic model, {2}
the size of the BMA uncertainty ranges increase with increasing depth and dryness in the
soil profile, (3) the best performing ensemble corresponds to the compromise {or balanced)
solution of the three-objective Pareto surface, and (4) the combined multi-objective opti-
mization and BMA framework proposed in this paper is very useful to generate forecast

ensembles of soil hydraulic models.

Keywords: Bayesian model averaging, vadose zone modeling, soil hydraulic models, inverse

parameter estimation, multi-objective optimization
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1 Introduction

Faced with the complexity, spatial and temporal variability of processes occurring in natural
systems, and the difficulty of performing controlled experiments, a variety of numerical sim-
ulation models have been developed to predict the behavior of environmental systems. Even
the most elaborate model, however, cannot reflect the true complexity and heterogeneity of the
processes occurring in the field. To some degree it must always conceptualize and aggregate
complex interactions driven by a number of spatially distributed and highly interrelated energy,
mass transport, and biogeochemical processes by the use of only relatively simple mathematical
equations. There is significant uncertainty associated with the correct formulation of these pro-
cesses underlying the system of interest (Beven and Binley, 1992; Gupta et al., 1998; Kuczera
et al., 2006; Vrugt and Robinson, 2007a). Quantification of this uncertainty is necessary to
better understand what is well and what is not very well understood about the processes and

systems that are being studied.

Single deterministic soil-hydraulic models are often used for studying flow and transport through
the vadose zone (e.g.Mertens et al. 2005; Guber et al. 2006; Sansoulet et al. 2008, and others).
In particular, the Mualem-van Genuchten (van Genuchten, 1980) (MVG) model has become the
standard choice for analyzing unsaturated porous media. This model is relatively simple to use,
and many contributions to the hydrologic literature have shown that it works well for a range
of problems and soil types. Moreover, direct (laboratory procedures) and indirect approaches
{pedotransfer functions) are widely available to obtain estimates of the MVG parameters for
the specific site under consideration. Notwithstanding this progress made, the use of a single
model for predictive inference and analysis is prone to statistical bias (Hoeting et al., 1999;
Neuman, 2003; Raftery et al., 2003, 2005) as it implicitly rejects alternative and other plausible
soil hydraulic models for the vadose zone under consideration. Arguably, there is significant
advantage to using multiple different models simultaneously for predictive analysis and inference
as their individual ability to fit the experimental data will infer important information about
the key hydrological processes affecting flow (and transport) through the unsaturated zone of

interest.

Ensemble Bayesian model averaging has recently been proposed as a methodology to explicitly
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handle conceptual niodel uncertainty in the interpretation and analysis of environmental sys-
tems. This method combines the predictive capabilities of multiple different models and jointly
assesses their uncertainty. The probability density function (pdf) of the quantity of interest
predicted by Bayvesian model averaging is essentially a weighted average of individual pdf’s
predicted by a set of different models that are centered around their forecasts (Raftery et al.,
2005; Vrugt et al., 2006a). The weights assigned to each of the models reflect their contribution
to the forecast skill over the training period. Typically, the ensemble mean outperforms all or
most of the individual members of the ensemble (Raftery et al., 2003). Bayesian model aver-
aging has been successfully applied to forecasting of surface temperature (Raftery et al.. 2005),
surface temperature and sea level pressure (Vrugt et al., 2006a), streamflow (e.g. Kuczera et al.
2006: Vrugt and Robinson 2007b; Ajami et al. 2007), and permeability structures in ground-
water hydrology (Neuman, 2003; Ye et al., 2004). Guber et al. (2006) have used ensembles of
pedotransfer functions to simulate water content time series. Recently, Ye et al. (2008) have

provided a comprehensive test of model selection criteria in multi-model analysis.

In this study, we combine the strengths of multi-objective optimization and Bayesian model
averaging (BMA) to better quantify predictive uncertainty of models of flow through unsatu-
rated porous media. In our analysis, we consider seven different soil hydraulic models including
water retention and unsaturated hvdraulic conductivity function formulations based on uniform
flow, hysteresis and dual-porosity. In the first step, each of these models is calibrated by posing
the parameter estimation problem into a multi-objective framework. The resulting optimiza-
tion problem is solved by means of the AMALGANM evolutionary search algorithm (Vrugt and
Robinson, 2007a). Then, the Pareto trade-off surface of each of these models is analvzed and
combined to generate different forecast ensembles. In the second step, these different ensembles
are post-processed with BMA to analyze and quantify predictive uncertainty. We illustrate our
approach using observations of tensiometric pressure head at three different depths in a layered

vadose zone at a field site in New Zealand.
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2 Materials and Methods

2.1 Bayesian Model Averaging

In a previous study (Wohling et al., 2008) we analyzed the ability of the MVG soil hydraulic
model (1980) to reproduce field data of tensiometric pressure with parameter sets estimated
by multiobjective optimization. The use of a single model for predictive inference and analysis
implicitly rejects other possible plausible conceptual models of the system under study, and
therefore may underestimate uncertainty (Raftery et al., 2003). Bayesian model averaging
(BMA, Leamer, 1978; Kass and Raftery, 1995; Hoeting et al., 1999) provides a way to combine
inferences and predictions of several different conceptual models and to jointly assess their
predictive uncertainty. If an ensemble of k different statistical models M = {Al}, A, ..., M} is
considered and the quantity of interest is A, then its posterior distribution given the observation

data y is (Hoeting et al., 1999):

p(Ay) =Y p(A] Muy) p(M, | y) (1)

i=1

where p (A | M;,y) is the forecast pdf based on the model M; alone, and p(M; | y) is the
posterior probability of model M; under the assumption that it is correct for the training data
and reflects how well model M, fits the data (Raftery et al., 2003). All probabilities are implicitly
conditional on the set of models under consideration A. The posterior model probabilities are
positive and add up to one and can thus be viewed as weights, reflecting the models relative
contributions to predictive skill over the training period. Thus, Eq. (1) is a weighted average
of the posterior distributions under each of the k& models, weighted by their posterior model
probabilities.

Raftery et al. (2005) recently extended BMA to ensembles of dynamical models and demon-
strated how it can be used to postprocess forecast ensembles from dynamic weather models. To
explicate the BMA method developed by Raftery et al. (2005), each ensemble member forecast

fi is associated with a conditional pdf, g (A | f;), which can be interpreted as the pdf of A given
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fi- From Eq. (1), the BMA predictive model can be expressed as

k
p(A|fi> ~~-afk):ZU'igi(A‘fi) (2)

i=1
where w; denotes the posterior probability of forecast 7 being the best one.

The original ensemble BMA method described in Raftery et al. (2005) assumes that the con-
ditional pdf’s g; (A | f;) of the different ensemble members can be approximated by a normal
distribution centered at a linear function of the original forecast, with mean a; + b,f; and
standard variation o;:

Alf,;wN(ame,,;ft-,a?) (3)

The values for a; and b; are bias-correction terms that are derived by simple linear regression

of A on f; for each of the individual ensemble members.

BMA Predictive Mean and Variance

The BMA predictive mean is the conditional expectation of A given the forecasts:

k

EA]f, ... Z (a; + bif3) (4)

and the associated variance can be computed as (Raftery et al., 2005; Vrugt and Robinson,

2007b)

k k 2

k
Var (Ast l fi,,.stv e fkbf = Z at + bifzbf Z aj + b f}st + Z’wéa‘? (5)
i=1

where f;; denotes the i-th forecast in the ensemble for location s and time t. We assume a
normal predictive distribution in our proposed BMA approach. Although a normal distribution
seems to be inappropriate for any quantity primarily driven by precipitation, Vrugt and Robin-
son (2007a) showed that this assumption works well for streamflow simulation and forecasting.
Using different statistical distributions to describe g; (A | f;) for the individual models of the
ensemble resulted in very similar conclusions as those presented here for the normal conditional

pdfs. We therefore do not discuss these results here.
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Posterior Forecast Probability

The estimation of the posterior probability of the individual forecasts or weights, w;, are required
for the implementation of BMA. Raftery et al. (2005) estimated w;, 7 = 1,...,k; ¢ by a
maximum likelihood approach. Assuming independence of forecast errors in space and time,

the log-likelihood function corresponding to the predictive model Eq. (2) can be written as

k
g (LUU ceey Wi, UQ) = Z log |:Z w; g, (Ast | fist):| (6)
St =1

where the summation is over s and ¢ to include all observations in the training set. Eq. (6)
must be maximized to obtain the BMA weights and variances. In this study we follow the
approach of Vrugt and Robinson (2007a), who used the Shuffled Complex Evolution Metropolis
algorithm (SCEM-UA) algorithm for the maximization of Eq. (6). The SCEM-UA algorithm
is a general purpose optimization algorithm that uses adaptive Markov Chain Monte Carlo
(MCMC) sampling (Vrugt et al., 2003b) to estimate the traditional best parameter combination
and its underlying posterior probability density function within a single optimization run. The
method uses a predefined number of different Markov Chains to independently explore the
search space. These chains communicate with each other through an external population of
points, which are used to continuously update the size and shape of the proposal distribution
in each chain. The MCMC evolution is repeated until the R-statistic of Gelman and Rubin
(1992) indicates convergence to a stationary posterior distribution. More information about

the SCEM-UA algorithm can be found in Vrugt et al. (2003b) and so will not be repeated here.

2.2 Bayesian Model Averaging of Soil Hydraulic Models
Field Data

We used field data from the Spydia experimental site in the northern Lake Taupo catchment,
New Zealand. The vadose zone materials at Spydia encompass a young volcanic soil (0 - 1.6
m depth), unwelded Taupo Ignimbrite (TI, 1.6 - 4.4 m), and two older buried soils (Palaeosols,
4.4 to 5.8 m depth). Tensiometric pressure head was measured in the vadose zone at 15 min

intervals using Tensiometer probes (type UMS T4e, Germany, accuracy +0.5 kPa) installed at
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five different depths (0.4, 1.0, 2.6, 1.2, and 5.1 m) and three locations per depth. The pressure
head measurements at each depth were averaged before they were used in our calculations.
Daily values of potential evaporation were calculated by the Penman-Monteith equation (Allen
et al., 1998) using data from the nearby Waihora meteorological station (500 m distance).
Precipitation was recorded on site using a 0.2 mm bucket gauge and upscaled to hourly values
for use in our calculations. A detailed description of the Spydia experimental data can be found

in Wohling et al. (2008).

A period of 546 days (April 11, 2006 to October 9, 2007) was used for all our calculations. Since
the available data comprises two wet (winter) seasons and only one dry (sununer) season, the
model was calibrated for the first winter/spring season (April 11, 2006 to January, 18, 2007)
and evaluated with a representative 96 days time period of the second wet season (July 5, 2007

to October 9, 2007).

Models in the Study

We used the HYDRUS-1D model (Simiinek et al., 2005) to simulate water flow in the Spydia
vadose zone. HYDRUS-1D utilizes the Galerkin finite element method based on the mass con-
servative iterative scheme proposed by Celia et al. (1990). The model solves the one-dimensional

Richards’ equation:

09 0 . (0h

where 6 is the volumetric water content [L*L "], ¢ represents time [T], z is the vertical coor-
dinate (positive upward) [I.], h denotes the pressure head [L], K is the unsaturated hydraulic

conductivity function [LT™!'], and S is a sink term representing processes such as plant water

uptake [L°L7°T ).

Soil hydraulic functions need to be specified to solve Eq. (7). The seven soil hydraulic models
employed in our BMA approach encompass not only different formulations of the same physical
relationships but also different conceptual models. The first four models listed below are based
on the concept of uniform flow. This concept assumes the porous medium as a system of
impermeable particles separated by pores through which water fow takes place. Hysteresis

of the functional relationships might be considered to account for wetting-drving cycles. In
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contrast, non-equilibrium flow models assume the particles to have their own micro-porosity.
The fifth model in the list below assumes that water can move into and out of the micro-pore
domain whereas time-constant (immobile) water content is assumed in the micro-pore domain
by the sixth model. The different model concepts are expected to have a different ability to
reproduce a given set of field data. Non-equilibrium models are more flexible than uniform flow
models and typically perform better when macro-pores or preferential flow paths are present in
the porous media under investigation.

The individual models used in our approach are:

1. The modified Mualem-van Genuchten model (non-hysteretic) (MVG, Vogel et al. 2001):

9— 6, Or + h < hs

s - _ "] ®)
05 — 0 | h> h,
K(S.) =K. [1 - (1-sy™)"]" 9)

where S, is the effective water content, 6, and 8, denote the residual and saturated water
content, respectively [L*L™%], « [L™'] and n [-] are parameters that define the shape of
the water retention function, K, represents the saturated hydraulic conductivity [LT™'], I
is the pore-connectivity parameter by Mualem (1976), and h, = —0.02 m is the assumed

air entry value. In this study, we further assume that m =1 — 1/n and n > 1.

2. The modified Mualem-van Genuchten model utilizing hysteresis in the water retention
function (MVG-HR) (Simanek et al., 2005). This model uses a separate drying and
wetting curve of the retention function with the mathematical formulation provided by
Eq. (8) using two sets of parameter values, (8¢, 8¢, where the subscripts d and w indicated
wetting and drying, respectively. Following Simtinek et al. (2005), we assume that ¢ = 9
and n¢ = n%. The HYDRUS-1D implementation of the hysteretic MVG model also

requires an estimate of the empirical parameter 6, (Siminek et al., 2005). We estimate

this value following Vogel et al. (2001) as

Om =0, + (62— 6,) [1+ (Jo’ry|)"]" (10)
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Thus, the hysteretic model MVG-HR model requires three more parameters (7, o, KY)

than the original MVG fornwulation.

3. The Brooks and Corey {1966} model (BC):

|ach]" h < —1/c

S, = (11)
1 h>-1/a

K(h) = K,§%/n++2 (12)

4. The two-parameter log normal distribution model of Kosugi (1996) (KM):

0—6, Lere ["‘(f}ﬁ) h <o
S& = 9 g = 2 f [ Vin -J (13)
s — Vr 1 h :Z O
K542 [Lepef |n/e) | ? h <0
Ky - 4 oS Gaeref [P wnl} N
ks hz0

where « and n are substitutes of the original Kosugi (1996) notation (Simunek et al.,

2005).

5. The dual-porosity model of Durner (1994) (MVG-DP) which divides the porous medium

into two overlapping regions using Mualem - van Genuchten type functions for each of

the two regions:

So = wy [1+ (c [B)™]™ + w1 + (ag |R))™] ™ (15)

f{(s{ﬂ} _ K, (?}}15&1 —+ 3}1;25(.)2}5 {wlal [1 - (1 - S:j:ml)ml} -+ Wolky [1 — (1 - Sgg”?)mj }2

(wyoy + wgag)z
(16)

where w; are the weighting factors for the two sub-regions of the porous medium (w; +w, =
1) and o4, n;. m; (=1—1/n;}. and | are empirical parameters of the corresponding

functions (i = 1,2).

. The two-region, dual porosity model by Simtnek et al. (2003) which partitions the liquid

phase into a mobile (inter-aggregate) and immobile (intra-aggregate) region. Water How

10
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in the mobile region 86,,,/0t is described by the Richards’ Eq. (7) with an additional
term on the right hand side of the equation, —I',,, representing the transfer rate of water
from the inter- to the intra-aggregate pores. The moisture dynamics in the matrix is

described by a simple mass balance equation (Simunek et al., 2005)

ab;
kb = Sémo - Fw 17
5 (17)

where S;,,, is the sink term for the immobile region. In this study, we assumed that
flow of water between the mobile and immobile region can be described with a simple
linear exchange equation (Siminek et al., 2005), with I', = w [Se.mo — Seimol, where
Se mo and S, ;e denote the effective fluid saturations of the mobile and immobile regions,
respectively. The residual 8, .., and saturated 8, ;,,, water content of the immobile region
are two additional parameters in this model formulation that need to be estimated against

observations.

Table 1 summarizes the calibration parameters in each of the six soil hydraulic models. The

initial and boundary conditions used to solve Eq. (7) are:

and

h(z,t) = h(z) at t =0, (18)
h(z,t) = hr(t) at 2 =L, (19)
-K (% + 1) = go(t) — % at z =20, for hy < h <h,
h(0, t) : ha for h < hy (20)
h(0,t) = h, for h > h,

where h;(z) is the initial pressure head derived from linear interpolation of observed tensiometric

pressure at the 0.4, 1.0, 2.6, and 4.2 m depths, h(t) is the prescribed (observed) pressure head at

the bottom boundary L = - 4.2 m (depth of the model is 4.2 m), gy(¢) is the net infiltration rate

(i.e. precipitation minus evaporation) and hy4 and h, are the minimum and maximum pressure

head allowed at the soil surface. Eq. (20) describes the atmospheric boundary condition at the

soil-air interface (Siminek et al., 1996) which switches between a prescribed flux condition and

11
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a prescribed head condition, depending on the prevailing transient pressure head conditions
near the surface. The plant water uptake, S in Eq. (7). is simulated by the Feddes model
(1978) using HYDRUS-1D default parameters for grass and a rooting depth of 0.35 m. Because
our study considers a relatively coarse textured soil with high infiltration capacity, we neglect
infiltration-excess overland How and use the limits of by = —200 m and h, = —0.02 m. The
initial pressure heads measured at April 11, 2006 were -0.41, -1.38, -1.18 and -0.85 m at the

0.4, 1.0, 2.6, and 4.2 m depths, respectively.

The HYDRUS-1D model was set up for three horizons. The first being the more recent materials
{0 - 0.69 m depths), and the other two simulation layers being the disturbed Taupo [gnimbrite
{(0.69 - 1.6 m) and the in-situ Taupo Ignimbrite (1.6 - 4.2 m), respectively. Additional to the
six soil hydraulic models with three layers, we also included the MVG model with four horizons
(MVG-4). This was done to investigate the effect of lumping different layers of stratification
into larger numerical horizons, and was accomplished by dividing the upper layer (0.69 - 1.6 m)
into two individual layers: the first being the Ap and Bs horizons (0 - 0.38 m) and the second

the BC and C1 horizons (0.38 - 0.69 m}).

In summary, the ensemble used in our BMA approach consists of the predictions of seven
different soil hydraulic models, hereafter also referred to as ensemble members. For both the
3- and 4-layer stratifications, we used a computationally efficient uniform discretization scheme
with Ax = 0.02 m in the vertical domain. This results in a total of 211 nodes in the HYDRUS-

1D model.

Multi-objective Calibration of Soil Hydraulic Models

The hydraulic models used in this study require the estimation of different parameters to
quantify the soil water retention and unsaturated soil hydraulic conductivity functions for the
various layers throughout the soil profile. For each model, these parameters are estimated using
inverse modeling by minimizing the difference between observed and modeled tensiometric

pressure head at three different observation depths. Similar to our previous work (Wohling

12
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et al., 2008), we use a multi-objective formulation with three different criteria:

Fi(u)
min F(u) = | Fy(u) (21)
Fs(u)

where F)- Fy are defined as the root-mean square error (RMSE, e.g. Hall 2001) of the fit
between the simulated and observed pressure heads at the 0.4, 1.0, and 2.6 m depths in the

vadose zone profile, and u is a vector of np model parameters to be optimized (Table 1).

The inverse problem expressed in Eq. (21) is solved with the AMALGAM evolutionary search al-
gorithm (Vrugt and Robinson, 2007a). Among several different state-of-the-art multi-objective
optimization algorithms, this method was shown to be the most efficient for the problem consid-
ered herein (Wohling et al., 2008). The AMALGAM algorithm combines simultaneous multi-
method search and self-adaptive offspring creation to ensure a reliable and computationally
efficient solution to multiobjective optimization problems. The only algorithmic parameter to
be defined by the user is the population size, s. In all the calculations reported here, we used a
value of s = 100. To create the initial sample to be iteratively improved with AMALGAM, we
used uniform sampling within the parameter bounds specified as follows: 6,,8,,,0, 1m0.85.imo =
03 -07[m*m™3; 0, a1, ap=1-20[m™};n, n;, no=11 - 90 [-}; K, Kgp = 10-7 - 10-3
[ms™'; 1 =01 - 1.0; w, wy = 0 — 1 []. To reduce the number of parameters to be optimized,
8, and 8, ;.. in the MVG and DPIM model, respectively, were set to zero. This assumption is
not going to influence the analysis, as there is very little sensitivity to these two parameters
within the range of pressure heads spanned by the calibration data used in this study. The
individual optimization runs were set up for the 282 days calibration period reported above and
a 10 days initialization period was considered for the calculation of the performance measures.
The runs were terminated after 50,000 HYDRUS-1D model evaluations. A detailed description
of AMALGAM has been presented in Vrugt and Robinson (2007a) and is therefore not repeated

here.

Our multi-objective formulation will result in a set of Pareto optimal solutions that represent
trade-offs among the three different objectives. These solutions have the property that moving

from one to another along the trade-off surface results in the improvement of one objective

13
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while causing deterioration in at least one other objective (Gupta et al.. 1998: Deb, 2001; Vrugt
et al., 2003a). Consistent with our earlier approach (Wohling et al., 2008). we isolate four
different parameter combinations from the Pareto surface that we believe are most informative
and useful for postprocessing with the BMA method. The first three Pareto points, P — Py,
are the best solutions with respect to each of the individual objectives (subsequently referred
to as Pareto extremes). The fourth solution, Pj. is the balanced solution, i.e. where the overall
RMSE of all three objectives is at its minimum. This point is hereafter also referred to as the

comprormise solution.

Two additional criteria are used to measure the fit between observed and simulated tensiometric
data of the selected Pareto solutions: the coefficient of determination R?, and the coefficient
of efficiency, C,, by Nash-Sutcliffe (ASCE, 1993). C, is a widely used fitting criterion and may
assume a negative value if the mean square error of the best prediction exceeds the variance of
the observations (Hall, 2001). Model predictions are considered satisfactorily if the values of
R? and C, are close to unity. We further used the coefficient of correlation r. to calculate the

correlation between the forecasts of the individual models.

Model Ensembles used in the BMA Approach

Pressure heads were forecasted at the three different depths during the evaluation period us-
ing each individual soil hydraulic model. To simplify the analvsis, these pressure heads were
interpolated to hourly values. We use four different model ensembles in our BMA approach.
Each ensemble consists of seven members, namely the MVG, MVG-HR, BC, KM, MVG-DP,
DPIM., and MVG-4 soil hydraulic models. The hydraulic head predictions in these four ensem-
bles are different because different Pareto solutions were used to create the forecasts. Ensemble
1 contains the predictions of the seven models using the best solution to objective F7 of the
Pareto surface, P{(MVG), P,(MVG-HR). P(BC). P, (KM), PL(MVG-DP), P (DPIM), and
P (MVG-4). Similarly, ensemble 2 and 3 were generated using the Pareto extremes Py and Py
for each individual model, whereas ensemble 4 contains the predictions of the individual soil

hydraulic models for the compromise Pareto solutions, Fy.

We follow five different steps in our analvsis. A flowchart summarizing our approach and

analysis is presented in Figure Twith the individual steps numbered in circles.

14
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First (number 1 in Fig. 1), we investigate the performance of the BMA approach for the four
different model ensembles using combined performance measures for all three depths, i.e. the
RMSE, R?, and C, fitting criteria are calculated for the 0.4, 1.0, and 2.6 m depths. These
criteria are hereafter referred to as RMSE, (subscript ¢ stands for combined), B2, and C,..
This investigation is used to explore how the performance of the BMA model depends on the
parametrization of the individual models. In the second step (2 in Fig. 1), we investigate the
BMA performance at the individual depths. The best attainable pressure head forecasts at
the 0.4, 1.0, and 2.6 m depths are post-processed with BMA using the parametrization of the
corresponding Pareto extremes. In the remainder of this paper, these forecasts are subsequently
referred to as single depth forecasts. Then we compare the results of the single depth and the
combined depth forecasts. In the third step (3 in Fig. 1), we analyze the sensitivity of the
BMA results to the use of a single or multiple different variances of the conditional pdf’s of the
individual ensemble members. In the fourth step (4 in Fig. 1), we explore the importance of
the individual soil hydraulic models in the ensemble by comparing the BMA results of ensemble
1, 2 and 3 with results of a reduced ensembile size created by only selecting a sub-set of models.
For instance, in ensemble 1a, 2a and 3a, we exclude the model that receives the highest BMA
weight amongst all the models. Similarly, ensemble 1b, 2b and 3b are formed by excluding the
two best performing soil hydraulic models. Hence, ensemble 1a, 2a and 3a contain six individual
time series of model predictions, whereas ensemble 1b, 2b and 3b consist of ounly five members.
Finally, in the last step (5 in Fig. 1) we discuss how the choice of the calibration period affects

the BMA results.

3 Results and Discussion

3.1 Optimized Parameter Sets

The MVG, MVG-HR, BC, KM, MVG-DP, DPIM, and MVG-4 soil hydraulic models were cal-
ibrated with AMALGAM using the observed tensiometric pressure heads at the 0.4, 1.0, and
2.6 m depths in the Spydia vadose zone during the calibration period. One of the drawbacks
of inverse modeling for vadose zone problems is the computational requirements. For instance,

a single optimization run using 50,000 HYDRUS-1D model evaluations required several days

15
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using the Matlab® R2007a (64 bit) - Microsoft Windows™ XP Professional (64 bit) modeling
environment. on a Dell™ Precision 390 workstation with a Quad-Core Intel® Core™2 Ex-
treme processor QX6700 (2.67 GHz) and 2GB of RAM. Note. however that AMALGAM often
converged to the Pareto solution set within less than the maximum total of 50,000 HYDRUS-
1D model evaluations. Between 16,000 and 27,000 model evaluations were required for the
MVG-HR, KM, BC, and MVG-DP models to approximate the three-objective Pareto solution
set, whereas about 44,000 HYDRUS-1D model evaluations were needed with AMALGAM to
converge for MVG-4. Use of multiple different computational nodes within a distributed com-
puting environment would significantly reduce the time needed for calibration (Vrugt et al.,

2006b).

To illustrate the outcome of a typical AMALGAM optimization run, consider Figure 2 that
presents the Fy — Fy, Fy — Fy, and Fy—Fy bi-criterion trade-off fronts of the full three-dimensional
Pareto surface for the MVG-model. In each panel, the rank 1 solutions are indicated with gray
circles. Note, that AMALGAM has sampled the Pareto surface quite densely and uniformly
with emphasis on sampling the front of objectives F} and Fy. This front shows considerable
trade-off demonstrating an inability of the MVG model to simultanecusly provide good fits to
the pressure head observations at the 0.4 and 1.0 m depths. More discussion on this can be
found in Wohling et al. (2008). In contrast, the Fy — F3 and Fy — Fy fronts exhibit a more
rectangular trade-off pattern (Figures 2b, 2¢), illustrating that it is possible to minimize both
of these objectives simultaneously using only a single combination of values of the hydraulic
parameters in the MVG model. As described above, the Pareto solutions that are separately

indicated in each panel with P1, P2, P3 and P4 are used for further analysis with BMA.

The Pareto optimal parameter solutions derived with AMALGADMI for the MVG-HR, BC, KM,
MVG-DP, DPIM, and MVG-4 models were analyzed in the same way as described here for the
MVG model. Because of space limitations, however, these results are not reported here. This

information can be obtained from the corresponding author upon request.

Tables 2 and 3 summarize the performance of the seven hydraulic models with the various
Pareto solutions derived with AMALGANM. Table 2 lists the RMSE, R?, and C, performance
criteria for the simulations with the Pareto extremes (P, — P;), i.e. with the parametrization

vielding the best attainable fit to each of the three objectives F} — Fy. Note that we only report
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the fit for the optimized (single) objective solutions. The RMSE of the fit between observed
and simulated pressure heads at the three depth varies between 0.052 and 0.117 m. This
average error can be considered quite small with magnitude similar to the average standard
deviation of the pressure head measurements of the three different tensiometers at each depth.
This shows the ability of AMALGAM to find good calibrated parameter values for each of
the seven soil hydraulic models. However, even these relatively small RMSE values are based
on simulations that include parts with significant deviations between observed and modeled
tensiometric pressure heads. This will be shown and discussed later. Our results further show
(not in the Table) that a good fit of a particular model at one depth is typically accompanied

with a significantly worse fit at the other two measurement depths.

At the 0.4 m depth, the MVG-DP model has the best predictive capability with summary
statistics of RMSE = 0.069 m, R? = 0.95 and C. = 0.95, respectively. Seemingly, the ten-
siometers in the top part of the soil are affected by the presence of preferential flow paths that
quickly move water to deeper layers in the profile. A dual-porosity model such as the MVG-DP
model is expected to better account for this rapid movement of water than a single porosity
(MVG) model. The best fit at the 1.0 m depth (measured with objective Fy) was obtained by
the MVG-4 model with the lowest RMSE value in the analysis (RMSE = 0.052 m, cf. Table 2).
This shows that a 4-layer numerical stratification better represents the actual soil profile at the
Spydia field site. This is in agreement with soil textural information, as highlighted before. It
should be noted, however, that all soil hydraulic models, but the BC model attained a very
good fit to the observations at the 1.0 m depth (Table 2). The pressure head at the 2.6 m
depth is responding least dynamically to rainfall at the surface. The dual porosity (MVG-DP)
and the MVG-HR (which considers hysteresis) soil hydraulic models are the best predictors at
this depth with associated RMSE values of 0.058 / 0.059 m and high coefficients of determina-
tion and efficiency. The 4-layer stratification used in MVG-4 performs similarly well (RMSE =
0.072m) which indicates that a better representation of the horizontal layering in HYDRUS-1D

also improves the pressure head predictions at the 2.6 m depth.

Table 3 lists the RMSEL,, Rz, Ce., and Bias summary statistics for the fit between the observed
and predicted pressure head for the combined 0.4, 1.0, and 2.6 m depths during the calibration

period. At this time, please only consider the fitting criteria of the individual model forecasts in
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enserible 4. These forecasts correspond to the compromise solutions (Fy) of the Pareto surface.
The RMSE, ranges from 0.101 to 0.153 m for the individual models. As expected, these values
are somewhat higher than the single depth RMSE values previously reported in Table 2. Overall,
MVG-4 is the best performing model with the best summary statistics. As shown previously,
the 4-layer stratification used in the MVG-4 model results in the most accurate predictions of
the pressure heads throughout the Spydia vadose zone. The overall performance of this model
is even better than the dual-porosity MVG-DP model that explicitly accounts for the presence
of preferential flow and therefore provides the closest fit to measured hydraulic heads at the

0.4m depth in the top part of the soil.

To illustrate the probabilistic properties of the soil hydraulic models, consider Figures 3b-d
which depict the observed pressure head (bold solid lines) and the individual model predictions
(thin lines) at the 0.4, 1.0, and 2.6 m depths during the calibration period. The calibrated
model predictions correspond to the comipromuise solution ( £y} of the three objective { F\, F, F3}
Pareto surface. The response to rainfall at the surface (Figure 3a) is most dynamic at the 0.4 m
depth (Figure 3b) whereas the response is more damped deeper down in the profile. (Figure 3c-
d}. This is due to the time required for the water to move through the soil and reach the
deeper layers. It is interesting to observe that the spread of the individual model predictions is
quite narrow at the 1.0 m depth and wider at the 0.4 and 2.6 mn depths. The calibrated models
appear to provide quite ditferent predictions which generally bracket the observations. This is

a desirable characteristic for accurate ensemble forecasting with the BMA method.

3.2 BMA

In this section, we first illustrate how BMA works by showing the prediction of tensiometric
pressure head at one location and time {results presented in Table 4 and Figure 4). Then we

describe the aggregated results for the entire evaluation period and the three depths.

Hlustration of the BMA Approach

Consider the pressure head forecast at the s = 0.4 m depth on October 5, 2007, 5:00 pm

(t = 542.3 days). Table 4 shows the individual model forecasts, the bias corrected forecasts,
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the BMA weights, the BMA variances, and the verifying observation. Figure 4 depicts the
BMA predictive pdf {solid line) which is the weighted sum of the seven normal pdf’s of the
individual ensermble members {dashed, dashed-dotted, dotted lines, and combinations thereof).
The BMA pdf distribution is bimodal, indicating that there are disagreeing forecasts. In our
example, the MVG-DP model predicted a somewhat larger pressure head as compared to the
other models. The verifying observation is captured within the ensemble range as is the case
in 82.8% of the times for the evaluation data set for the 0.4 m depth. The distinct shape of
the BMA pdf in Figure 4 is defined predominantly by the conditional pdf’'s of the MVG-DP
model (dashed-dotted line) which has received the largest BMA weight (66.7%), the KM model
(dotted line) with the second largest BMA weight (17.9%), and by the MVG-4 model (large
dashed line). It is interesting that the MVG-4 model has a considerable influence on the shape
of the BMA pdf despite its relatively low weight of 3.8%. This is caused by its relatively small
standard deviation (Table 4) causing a significant spike in the BMA predictive pdf. Note that
the MVG and BC models exhibit very small BMA weights and a large variance (cf. Table 4).
These models’ contribution to the overall BMA predictive pdf is therefore negligible. The
relatively large 95% uncertainty ranges (shaded area in Figure 4) are a result of the spread or

disagreement of the individual model forecasts (Table 4).

The ensemble members’ importance over the training period is reflected by the optimized BMA
weights, w; for the individual soil hydraulic models. It seems reasonable to assume that the
rank order of the weights should be similar to the reverse order of the RMSEs, based on the
assumption that better models should get a higher weight in the BMA model. Indeed in
our example, the MVG-DP forecast has the highest BMA weight (Table 4) and the lowest
RMSE (Table 2). This is not an unexpected result since macropore flow paths are typically
present close to the surface and in the active root zone. Therefore the dual-porosity flow
model MVG-DP can be expected to perform better than a uniform flow model. However, the
uniform flow model KM ranks second in BMA weights, but sixth in reversed RMSE order.
This seems counter-intuitive, but is explained by the presence of significant correlation among
the predictions of the individual model forecasts. The (linear) correlation coefficients among
the models, r., vary between 0.5 and 0.98, demonstrating a strong similarity in tensiometric

head predictions between the different soil hydraulic models. Such a strong correlation among
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model predictions makes the information from some uembers of the ensemble fairly redundant.
This results in optimized BMA weights that for at least a few soil hydraulic models might
appear counter-intuitive at a first glance. This phenomena was also observed in other BMA
studies (for example for streamflow forecasting). For shmilar cases as reported here, we would
suggest that the BMA approach tends to assign a relative high weight to the best of the highly
correlated models and explores additional information content of other, less correlated models.
Another good example of this is the MVG-4 model which has the second best (lowest) RASE,
but ranks only fifth in its BMA weight. The additional information provided by this model
is small because its forecasts are highly correlated with the MVG-DP model that has received
the highest weight among the ensemble members. One should therefore be careful in drawing
conclusions about the usefulness of individual models based on their optimized BMA weight.
Note, that the DPIM and MVG-HR models rank third and fourth in both BMA weight and
reversed RMSE order.

In the following, we provide the aggregated results for the BMA method for the three depths

of pressure head ohservations at the Spydia site.

Combined depth Pressure Head Forecasts with individual Pareto Solutions

The aggregated results for the combined depth pressure head forecasts are summarized in
Table 5 and Figure 5 and will be discussed here. The computational requirements of BMA
are relatively small. In our analysis a typical BMA run would take not more than a couple of
minutes using the computer architecture described above, which is less time than required for an
average forward simulation of the HYDRUS-1D model. Table 5 presents suminary statistics of
the combined pressure head forecasts using the four different model ensembles for the evaluation
period. The results are presented for the individual ensemble members (nodels) and the BMA

predictive model (BMA pdf mean).

The performance of the soil hydraulic models during the evaluation period is best for the
compromise solutions (ensemble 4) which is confirmed by relatively high Rf and C., values
up to 0.89 and 0.84. respectively (Table 5). On the other hand, the R? and C, . values did
not exceed 0.72 and 0.57 for ensembles 1 - 3 that contain the hydraulic head predictions of

the respective single objective solutions of the Pareto surface. In addition, the C, . values of
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the individual soil hydraulic models in ensembles 1 to 3 often attain negative values, which is

indicative of a rather poor fit to the observed pressure head data.

The best overall performance is obtained for ensemble 4, consisting of the model predictions
of the compromise solutions of the Pareto surface. The performance of the individual soil
hydraulic models in this ensemble, and the associated BMA model is significantly better than
the performance observed for ensemble 1, 2 and 3. This is confirmed by significantly better
values of the RMSE,, Bias, R? and C, . performance scores for the individual members of
ensemble 4 for both the calibration and evaluation period. This is an expected result since the
compromise solutions (as aggregated in ensemble 4) should provide a better fit to the combined
data than the Pareto extremes (represented in ensembles 1 - 3). We observe that the BMA
mean is better than any of the individual models of the ensembles for both the calibration and
evaluation period (cf. Tables 3 and 5). A notable exception is the performance of the BMA
mean in ensemble 4 during the evaluation period. The BMA predictive pdf does not exhibit the
appropriate coverage during the evaluation period. Only 83% of the observations are captured
at the 95% uncertainty interval. In addition, the RMSE, value is significantly higher for the
evaluation period as compared to the calibration period (Table 5). This indicates that the
forecast spread of 0.40 (m) of the BMA model is too small during the evaluation period, and
needs reconsideration. We anticipate that statistically more reliable results can be obtained
when the BMA model is fitted using a calibration data that spans a larger variety of rainfall

and drying events.

It is interesting to note that the optimized values of the BMA weights of the individual models
differ quite substantially between the four different ensembles. A strong preference to the MVG-
4 model (w = 0.753) is given in ensemble 1 with the remaining weight primarily allocated to
the MVG-HR model (Table 5). Note that the models in ensemble 1 represent the calibration
with regard to the 0.4 m depth and that the dual-porosity model MVG-DP performed best for
this depth (Table 2). However, the four layer equilibrium flow model MVG-4 provides a better
representation of the data in the deeper layers (as measured in the 1.0 m and 2.6 m depths) of
the vadose zone profile as compared to the MVG-DP model. Similarly, the models performing
best at the 1.0 and 2.6 m depths do not obtain the highest weights in ensembles 2 and 3. In

ensemble 2, a high preference (w = 0.802) is given to the MVG-DP model, whereas the other
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models receive very small weights. The MVG-HR and MVG-4 models receive the highest BMA
weights in ensemble 3 with values of w = 0.464 and w = 0.455, respectively. In ensemble 4
most, of the individual soil hydraulic model receive appreciable BMA weights. This shows that
each member contributes to the overall BMA model, suggesting independent and additional
information of each individual soil hydraulic model. This is desirable and explains why this

ensemble is best suited for prediction of pressure heads throughout the soil profile.

Figures 5b-d illustrate the observed pressure head (bold solid lines) and the model forecasts of
ensemble 4 (thin lines) at the 0.4, 1.0, and 2.6 m depths during the evaluation period. Also
shown are the BMA mean (bold dashed lines) and the associated 95% prediction uncertainty
bounds (shaded area). The spread of the pressure head predictions of the different soil hydraulic
models increases with increasing depth and dryness in the soil profile. This is caused by error
propagation and the functional shape of the water retention curve that predicts large variations
in hydraulic head at lower water content values. The BMA prediction uncertainty intervals
generally capture the observed pressure heads and are especially tight at the 0.4 and 1.0 m
depths. Unfortunately, virtually all observations fall outside the 95% prediction uncertainty
bounds at the 2.6 m depth during the period between days 450 - 490. During this time interval,
the compromise Pareto solution is simply unable to provide pressure heads predictions that
are consistent with the observations. A significant bias toward higher pressure head values is
observed. A better result could have been obtained if we would have explicitly included this
event in our calibration procedure with AMALGANMI. This will be discussed in the final section

of this paper.

Single depth Pressure Head Forecasts with individual Pareto Solutions

The aggregated results for the single depth pressure head forecasts are sunimarized in Table 6
and Figure 6 and will be discussed here. Table 6 presents summary statistics of the single depth
pressure head forecasts of ensembles 1, 2 and 3 over the evaluation period for the individual
models and the BMA mean. We like to reiterate that the single depth solutions correspond to a
specific depth and that these solutions represent the best attainable fit to the tensiometric head
data as determined with AMALGAM. Therefore, the RMSE values of the models in ensemble

1, 2 and 3 (Table 6) should generally be lower than their corresponding RMSE, counterparts
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derived for the combined depth forecasts (cf. Table 5). The only exception to this is the BC
model in ensemble 3. This is probably caused by the fact that the BC model attains a much
better fit at the 0.4 and 1.0 m depths (represented by ensembles 1 and 2) as compared to the
2.6 m depth (ensemble 3) and that the combined depth forecasts represent an average fit to all

three depths.

The best fit to the observed pressure head data is found at the 1.0 m depth where RMSE values
of the individual models and the BMA mean range between 0.065 and 0.115 m. While the BMA
model outperformed all of the individual ensemble members during the calibration period, this
is not necessarily the case during the evaluation period. This can be seen by comparison of the
performance statistics of BMA against the summary statistics of the individual soil hydraulic
models. As discussed for the combined depth forecasts, this might have to do with the selection

of the calibration period.

The performance of the various soil hydraulic models in ensemble 1 and 2 during the evaluation
period is very similar to their performance during the calibration period. This is confirmed by
relatively small differences in RMSE, values ranging between -0.036 and 0.009 m (cf. Tables 2
and 6). In contrast, larger RMSE., differences of up to -0.265 m were observed for the MVG, BC,
and MVG-HR models at the 2.6 m depth (ensemble 3). The importance of the individual soil
hydraulic models is strongly dependent on the depth of forecasting as represented by ensemble
1, 2 and 3. The MVG-DP model attains the largest BMA weight at the 0.4 m (w = 0.667)
and 2.6 m (w = 0.438) depths. The good performance of the non-equilibrium flow model
close to the surface is caused by the presence of preferential flow paths as discussed previously.
Interestingly, the dual-porosity model performs also best for the 2.6 m depth, where pressure
head change gradients are much smaller as compared to those at the shallower depths. The
hysteretic uniform flow model MVG-HR attains the largest BMA weight (w = 0.528) at the 1.0
m depth. This is a surprising result because one would expect the MVG-DP model to receive
more weight at this depth. In fact, the performance of MVG-DP and MVG-HR is very similar
with nearly identical RMSE values (Table 2). Strong correlation between the pressure head

predictions of these two models again influence the selection of the BMA weights.

Note that the single depth BMA weights in ensemble 1, 2 and 3 are also significantly different

than their corresponding counterparts of the combined depth solutions, which were previously
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reported in Table 5.

Similar to the performance of the individual ensemble members, the single depth BMA models
perform better than their corresponding combined depth models. The RMSE values are 0.102,
0.080. and 0.122 m for the 0.4, 1.0, and 2.6 m depths, respectively (Table 6). To further illus-
trate these results, consider Figures 6b-d which provides time series plots of the BMA mean
(bold dashed lines), the observations (bold solid lines), and the ensemble 1 - 3 forecasts (thin
lines) at the 0.4, 1.0, and 2.6 m depths during the evaluation period. Particularly at the 1.0
m depth, (Figure 6¢), the average width of the 95% prediction uncertainty bounds (shaded
area) is significantly smaller than the average widths of the combined forecasts (Figure 5c).
Despite this smaller spread, the prediction uncertainty ranges generally encompass the obser-
vations. About 73% of all observations are covered by the 95% uncertainty bounds at the 0.4 m
depth with the remainder of the measurements appearing only slightly outside the uncertainty
bounds. At the 1.0 m depth, the coverage is relatively high at 89% (Table 6 and Figure 5c)
with observations primarity falling outside the uncertainty ranges immediately following rainfall
events at simulation days 467, and 476 - 477, respectively. Note that at the 1.0 m depth the
upper bound of the 95% uncertainty interval derived with the BMA model is in close vicinity
of the observed pressure heads for most times during the evaluation period. At the 2.6 m depth
the observations fall consistently outside the uncertainty bounds between days 485 and 492

resulting in a coverage of about 74%.

The results presented here are significantly better than those obtained previously in Table 5 and
Figure 5d using the BMA model for the combined depths. For instance, the uncertainty ranges
have increased considerably for the first 40 days of the evaluation period (days 450 - 490). but
have become more consistent with the observed tensiometric pressure head data (Figure 6d).
After day 490, the spread of the BMA uncertainty bounds narrows because the tensiometric

pressure head predictions of the individual soil hydraulic models become in closer agreement.

Use of a single BMA Variance for each Model in the Ensemble

So far we have used different BMA variances for the conditional pdf’s of the individual soil
hydraulic models. Here we illustrate the performance of the BMA model using a single variance

for each of the individual ensemble members. To this end, we replace the last term Zf;l w;o?
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in Eq. (5) with a single variance 0. The results of the analysis are listed in Table 7.

In general, the results presented here are very similar to those obtained previously with the use
of multiple different BMA variances for the individual models (cf. Tables 6 and 7). For ensemble
1, the MVG-DP and KM models again rank first and second in their respective BMA weights,
and the RMSE, R?, and C, summary statistics of the BMA model are very similar to those
presented previously in 6. The average width of the 95% uncertainty interval (0.22 m) and
the coverage (69%) during the evaluation period were slightly smaller than their corresponding
values when using multiple different BMA variances. Qualitatively similar results were obtained
for ensemble 2. For ensemble 3, the MVG-DP and MVG-HR models rank first and second in
importance with BMA weights of w =0.513 and w =0.327, respectively. However, the BMA
weight of the MVG-HR model is significantly larger than its weight derived previously when
using multiple different BMA variances (Table 6). Not surprising therefore, is that the RMSE
values for both the calibration and evaluation period are slightly different than those obtained
previcusly. The most significant difference is that the coverage of the prediction uncertainty
bounds of ensemble 3 has significantly improved from about 74% in the case of multiple different

BMA variances to approximately 90% for the analysis considered here.

The results presented in Table 7 are very similar to those presented in Table 6, suggesting that
the optimized BMA results are fairly insensitive to the choice of a single or multiple different
BMA variances of the individual soil hydraulic models in the ensemble. Similar results have

been found in other BMA modeling studies.

Impact of Ensemble size on Performance of BMA Model

In this section, we discuss the single depth BMA model forecasts for the ensembles la - 3a and
1b - 3b. These ensermbles represent sub-sets of the original ensembles 1-3 where the models with
the best predictive characteristics (i.e. the models which received the largest BMA weights)
have sequentially been removed. For example, the MVG-DP model received the largest BMA
weight of the seven models in ensemble 1 (Table 6) and was therefore excluded in ensemble
la. This ensemble therefore contains the predictions of the remaining 6 soil hydraulic models,
Further, the KM model was the second best performing model in ensemble 1 {and hence the

best model of ensemble 1a), and was therefore removed from ensemble la to create ensemble
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1b that now consists of 5 different soil hydraulic models.

The information content of an ensemble should generally deteriorate with decreasing size of
the enseinble, k. Hence, it seems logical to assume that ensenibles 1 - 3 should contain more
information than ensembles la - 3a, which in turn should be more informative than ensembles
1b - 3b. The smallest possible ensemble that still contains all the necessary information to
make good predictions and reliable estimates of uncertainty is warranted. A small ensemble
has important computational advantages, since it requires calibrating and running the smallest
possible number of soil hydranlic models. Here we investigate the influence of ensemble size on

the performance of the BMA model.

Table 8 lists summary statistics of the performance of the BMA model generated using the
information contained in ensembles la - 3a, and 1b - 3b. The quality of the fit between
observed and BMA predicted pressure heads generally decreases with decreasing size of the
ensemble. The RMSE values increase from 0.067 to 0.075 and 0.086 m, when moving from
ensemble 1 to 1a and b, respectively. This is what is to be expected. The largest increase in
RMSE of about 0.025 m was observed at the 2.6 m depth {ensemble 3b). This deterioration
in performance is still relatively small, considering that we have sequentially removed the best
two ensemble members. The information content of the full ensemble is only slightly better
than the information content of the reduced ensemble because of highly correlated predictions

of the individual soil hydraulic models.

The average width of the 95% uncertainty intervals and associated coverage of the observations
increase with decreasing ensemble size during the evaluation period. The largest increase in
width was about 0.09 m. The increase in coverage compared to the original seven member
ensemble is the largest at the 2.6 m depth (93% coverage for ensemble 3b vs. 74% for ensemble
3). This is accompanied by a relatively large average width of 0.46 m (ensemble 3b, Table 8).
The largest coverage of the uncertainty bounds (95%) was observed for the BMA forecasts of
ensemble 2b (1.0 m depth). Interestingly, this is associated with a relatively small width of
the uncertainty ranges of approximately 0.21 m. These results show that the model forecasts
are most closely centered around the observations for the 1.0 m depth. Larger prediction

uncertainty ranges are observed at the soil surface and 2.6 m1 depths.

26



650

655

660

665

670

Importance of the Choice of the Calibration Period

In the analysis presented above we decided to calibrate the individual soil hydraulic models and
the BMA model for the first wet season and to evaluate their performance during the second wet
season. This decision was made because water flow in the highly porous volcanic vadose zone at
the Spydia field site occurs primarily under wet conditions, and the soil hydraulic conductivity
declines rapidly with decreasing soil water pressure heads (Wahling et al. 2008). To investigate
the effect of the choice of calibration period on the final accuracy and reliability of the soil
hydraulic and BMA model forecasts, we conducted a second analysis using another calibration
and evaluation period. We now included dry and wet conditions in the calibration data set
using a 296 days period between December 17, 2006 and October 9, 2007 (296 days). The
evaluation period was selected to span the period between May 1, 2006 and December 16, 2006
{230 days), using a 20 day spin-up period for state-value initialization. We re-calibrated the
seven soil-hydraulic models and the BMA model using this new calibration period. Hereafter,
we refer to this second calibration data set as Approach B and to our initial results as Approach

A. The most important results of this analysis are summarized here.

The optimized parameter sets for Approach B resulted in a substantially lower quality of fit to
the calibration data at the 0.4, 1.0 and 2.6 m depths as compared to Approach A. This poorer
fit was caused by an inability of the individual models to accurately reproduce the tensiometric
head data during the dry period - which was excluded in Approach A. Our data interpretation
and analysis suggests that this rather large misfit is caused by water repellency, which is not

included in any of the seven soil hydraulic models.

The combined pressure head forecasts using the four different model ensembles for the evaluation
period also showed a poorer fit to the observed tensiometer data with RMSE values ranging
between 0.190 and 0.417 m and R? values between 0.13 and 0.63. Moreover, the individual
soil hydraulic models in ensemble 4 (consisting of the forecasts of the compromise solutions),
did not perform better than the respective models in the ensembles 1, 2 and 3 as was the case
in Approach A. In addition, the average width of the 95% uncertainty bounds was noticeably
larger than obtained previously in Approach A (Table 5). Similar results were found for the

single depth pressure head forecasts for the evaluation period.
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We conclude that the choice of the calibration period has a strong influence on the results of
the analvsis. [t determines the accuracy of the individual model forecasts on one haud, and
the accuracy and uncertainty estimates of the BMA model on the other hand. For accurate
forecasting, it is desirable to use a calibration period of the soil hvdraulic and BMA model that
spans the largest possible range of drying and wetting events. However, water repellency is
not included in any of our model formulations, and so it is better not to include rainfall events
during prolonged dry periods in the calibration of the individual soil hydraulic models. This
avoids the parameters in these models to take unrealistic optimized values so as to compensate

for this missing physical process.

4 Summary and Conclusions

Uncertainty estimation is currently receiving a surge in attention because researchers are trying
to better understand what is well and what is not very well understood about the environmental
systems that are being studied and as decision makers push to better quantify accuracy and
precision of model predictions. In this paper, we have presented a combined multi-objective
optimization and Bayesian Model Averaging (BMA) framework to calibrate forecast ensembles
of soil hydraulic models. To illustrate our methodology, we used pressure head data from three
different depths in a layered vadose zone of volcanic origin in New Zealand. A multi-objective
formulation was used to calibrate the individual soil hydraulic models. The resulting Pareto
solution space was estimated with the AMALGAM multi-method global optimization algorithm
and used to generate different model ensermnbles. The most important conclusions of our study

are:

1. The 4-layer uniform flow model MVG-4 provides the most accurate predictions of the com-
bined pressure heads throughout the Spydia vadose zone. Its performance is superior to
the dual-porosity MVG-DP miodel that explicitly accounts for the presence of preferential

flow and provides the best fit to measured pressure heads at the 0.4m depth.

2. The mean pressure head forecast of the BAMA model has similar predictive capabilities
as the best performing soil hydraulic model in the ensermble. This is because the various

hydraulic models have been calibrated well against the observed pressure head data.
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. The optimized values of the BMA weights do not necessarily follow the reverse RMSE

order of the individual models. This is because of cross-correlations between predictions
of the individual models in the ensemble. One should therefore be particularly careful in
drawing conclusions about the usefulness of individual ensemble members based on their

optimized BMA weight.

4. The best BMA model at each particular depth is made up of the ensemble of forecasts

corresponding to the respective Pareto extremes. The best BMA model at one depth
however, receives relatively poor performance in predicting tensiometric pressure heads

at the other two depths,

. The overall best ensemble and BMA model is obtained when selecting the compromise

solution of the Pareto trade-off surface. This is a balanced solution that minimizes the
overall RMSE of observed and simulated pressure heads at the three different measurement

depths.

. Removing the best two soil hydraulic models of the ensemble only slightly deteriorated the

performance of the BMA model with a small increase in the spread of the 95% prediction
uncertainty bounds. Significant correlation between the predictions of the individual soil

hydraulic models in the ensemble causes a large amount of redundancy in information.

. The selection of the calibration period greatly affects the final optimized BMA weights and

variances. The results of the BMA model are fairly insensitive to the choice of a single
or multiple different values for the variances of the conditional pdf’s of the individual

ensemble members.

. The prediction uncertainty bounds of the BMA model generally increase with increasing

depth and dryness in the soil profile.

. The combined multi-ohjective optimization and BMA framework proposed in this paper

is very useful to generate forecast ensembles of soil hydraulic models and appropriately
quantify predictive uncertamnty of flow through unsaturated porous media. Accurate

uncertainty quantification is important for decision makers and end-users.
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Figure captions

Figure 1: Flowchart of the combined multi-objective optimization and Bavesian modeling
averaging approach used in our study. A detailed explanation of the various boxes, and numbers

appears in the text.

Figure 2: Pareto optimal solutions (solid circles) of the three-dimensional Pareto trade-off
space for the MVG model; (a) the F} — Fyplane, (b) the F| — Fy plane, (¢) the F;, — F3 plane
of the objective space. The single objective solutions (o symbol, P, — P;) and the compromise

solution (+ symbol, P,;) are also indicated in each panel.

Figure 3: Pressure head predictions of the individual models for the calibration period using
the compromise solution - parameter sets: a) daily rainfall, b) - d) the pressure head forecasts

at the 0.4, 1.0, and 2.6 m depths, respectively.

Figure 4: BMA predictive probability density function (solid line) and the conditional pdf’s
(dashed, dashed-dotted, and dotted lines; the abbreviations of the individual models are given
in the text) for the pressure head forecast at the 0.4 m depth on October 5, 2007, 5:00 pm. The
95% uncertainty bounds (shaded area), the individual model forecasts (dots) and the verifying

observation (x) are also indicated.

Figure 5: Pressure head forecasts of the individual models of the BMA ensemble 4 for the
evaluation period: a) daily rainfall and b)-d) the pressure head forecasts at the 0.4, 1.0, and
2.6 m depths, respectively. The observations (thick solid line), the BMA mean (thick dashed

line), and the 95% prediction uncertainty bounds (shaded area) are also shown.

Figure 6: Pressure head forecasts of the BMA ensemble members for the evaluation period:
a) daily rainfall and the pressure head forecasts b) at the 0.4 m depth using ensemble 1, ¢) at
the 1.0 m depth using ensemble 2, and d) at the 2.6 m depth using ensemble 3. Also shown are
the observations (thick solid line), the BMA mean (thick dashed line), and the 95% prediction

uncertainty bounds (shaded area).



Table 1: Number of parameters, np, to be estimated for the seven soil hydraulic models used
in this study

( Model [ Parameters ‘ np ‘
MVG, BC, KM | 8;, n, o, I, K, 15
MVG-IR 69, nd o I, KLO¥, ¥, K¥ | 24
MVG-DP f,.n1, na, oy, ag, L, K, ws 24
DPIM Os.mor My, by Wey Oy e » W 21
MVG-4 Os.n, o, l, Ky 20
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Table 2: Measures of fit between the observed and simulated pressure head at the 0.4, 1.0, and
2.6 m depths (represented by the objectives Fy — F3), using single objective Pareto efficient
parameter sets (P — P3) in the simulations with the various models in the study. Performance
criteria are shown for the optimized objective and the values are calculated for the calibration
period. The best RMSE values in the ensembles are indicated in bold fonts.

RMSE [m] R? Ce
Model FI/PI Fg/Pz F;/P; Fl/Pl Fz/Pz Fg/Pg FI/PI Fz/P‘z Fg/Pg
MVG 0.095 0.079 0.106 0.91 0.93 0.71 090 093 0.70
BC 0.117  0.086 0.108 0.86 0.91 0.68 0.86  0.89 0.68
KM 0.096 0.065 0.099 092 095 075 092 095 073
MVG-HR 0.090 0.058 0.059 0.91 0.96 091 091 096 091
MVG-DP 0.069 0.059 0.058 095 096 091 095 096 091
DPIM 0.089 0.074 0.088 0.92 0.94 0.80 0.92 0.94 0.79
MVG-4 0.087 0.052 0.072 092 097 086 092 097 0.86
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Table 3: Measures of fit between the observed and simulated pressure head for the 0.4, 1.0,
and 2.6 m depths combined using the Pareto extremes (P, — ;) and the compromise solution
parameter sets () in the simulations with the individual models. The criteria are calculated
for the calibration period. The best RMSE, values in the ensembles are indicated in bold fonts.

Pareto  Model RMSE, R? (.. Bias

point [m] (%]

P MVG 0.222 054 033 -155
BC 0.261 033 007 -21
KM 0.307 039 -028 -1.3

MVG-HR 0.213 0.533 038 -12.8
MVG-DP 0335 032 -0.52 4.1

DPIAM 0.409  0.25 -1.27 -36.7
MVG-4 0216  0.71 036 -20.0
P, MVG 0.235 068 0256 156
BC 0835 0.16 -848 63.6
KM 0.349 051 -0.66 -11.9

MVG-HR  0.183  0.73 054 9.7
MVG-DP  0.135 0.80 0.75 4.0

DPIM 0.274 056 -0.02 -84
MVG-4 0405 026 -1.24 178
P MVG 0.428 007 -1.50 -35.4
BC 0.338  0.23 -0.56 -27.5
KM 0.383 0.27 -1.00 -32.0

MVG-HR 0.306 038 -027 -21.9
MVG-DP 0362  0.15 -0.79 -279

DPIM 0.365 0.12 -0.82 -27.7
MVG-4 0.352 033 -0.69 -29.5
Py MVG 0.147 074 071 -3.0
BC 0.149 070 070 06
KM 0153 074 068 -34

MVG-HR 0.112 084 083 -04
MVG-DP  0.120 081 080 -0.5
DPIM 0.144 073 072 -3.1
MVG-A4 0.101 036 0.8 1.0
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Table 4: Ensemble forecasts of pressure head, bias corrected forecasts, BMA weights and
variances, and verifying observation for the 0.4 m depth of the Spydia vadose zone at time ¢ =

542.3 days {October 5, 2007, 5:00 pm).
| MVG | BC | KM | MVG-HR | MVG-DP | DPIM | MVG-1 |

|

Forecast [m] -0.440 | -0.480 | -0.360 -0.440 -0.300 -0.440 | -0.430
Bias corrected forecast m| | -0.425 | -0.441 | -0.390 | -0.435 -0.299 | -0.439 | -0.433
BMA weight 0.001 | 0.004 | 0.179 0.055 0.667 0.056 | 0.038
BMA variance 0.377 | 0.007 | 0.062 0.072 0.036 0.132 | 0.010
Observation [m] -0.342
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Table 5: Summary statistics of the combined depth pressure head forecasts using the individual
models and the BMA predictive model in ensembles 1-4 for the evaluation period. The statistics
are also listed for the BMA model during the calibration period, BMA (cali). The best RMSE,
values in the ensembles are indicated in bold fonts.

Model Evaluation period BMA 95% interval:
Ense- RMSE. Rf C.. Bias w; o; Coverage Width
mble [m] YA [%] [in]
1 MVG 0.269 039 028 -14.1 0.000 0.31

BC 0286  0.25 018 -08 0.000 0.28

KM 0.317 070 -0.01 103 0.000 0.21

MVG-HR 0.297 024 011 -153 0.246 0.07
MVG-DP 0.345 019 -022 1.0 0.000 0.29

DPIM 0.497 001 -1.47 -39.2 0.000 0.23

MVG-4 0.232 066 046 -17.1 0.753 0.15

BMA 0.216 0.60 0.53 3.8 - - 86.0 (.55

BMA (cali) 0.143 073 0.72 - - - 95.1 0.55
2 MVG 0.237 055 044 140 0.000 0.06

BC 0.861  0.38 -6.42 770 0.000 0.23

KM 0332 030 -0.10 -14.9 0.000 043

MVG-HR 0.239 046 043 75 0.170 0.17
MVG-DP 0.222 051 051 2.1 0.802 0.07

DPIM 0252 048 037 -7.2  0.000 0.3

MVG-4 0382 055 -0.46 260 0028 0.18

BMA 0.219 054 052 0.01 - - 84.1 0.47

BMA (cali) 0.118 081 081 - - - 96.2 0.47
3 MVG 0.356 033 -027 -32.5  0.000 0.43

BC 0.319 041 -0.02 -284 0067 0.35

KM 0314 059 001 -231  0.000 0.33

MVG-HR 0266 056 029 -182 0464 0.12

MVG-DP 0275 051 024 -20.1 0014 0.01

DPIM 0271 057 027 -145  0.000 0.07

MVG-4 0.291 058 015 -239 0455 0.18

BMA 0.207 072 057 8.07 - - 93.8 0.76

BMA (cali) 0201 049 045 - - - 95.1 0.75
1 MVG 0.125 088 084 1.3 0010 001

BC 0276 024 024 08  0.006 0.20

KM 0.143 089 079 7.1 0.000 0.25

MVG-HR  0.182 074 067 04 0237 0.14

MVG-DP 0228 048 048 -1.0  0.097 0.02

DPIM 0.193 064 063 -04 0133 0.03

MVG-4 0.137 087 081 50 0512 0.05

BMA 0.154 083 076 25 - - 82.9 0.40

BMA (calij 0.099 087 087 - - - 95.2 0.39
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Table 6: Summary statistics of the single depth pressure head forecasts using the individual
models and the BMA predictive model in ensembles 1-3 for the evaluation period. The
statistics are also listed for the BMA model during the calibration period, BMA (cali). The
best RMSE values in the ensembles are indicated in bold fonts.

Model Evaluation period BMA 95% interval:
Ense- RMSE R* (., Bias w; o; Coverage Width
mble m] (%] (%] [m]
1 MVG 0.10 095 078 139 0.000 0.377

BC 0.133 094 067 178 0.004 0.007

KM 0.112 084 077 99 0.179 0.062

MVG-HR 0.111 093 077 139 0.055 0.072

MVG-DP 0.097 091 082 11.5 0.667 0.036

DPIM 0.088 094 082 11.7 0.056 0.132

MVG-4 0.088 091 082 109 0.038 0.010

BMA 0.102 091 080 126 - - 73.2 0.24

BMA (cali) 0067 095 095 - - ; 942 023
2 MVG 0.083 093 088 8.1 0.000 0.107

BC 0.115 092 076 132 0.000 0.688

KM 0.070 095 091 7.0 0.600 0.113

MVG-HR 0.000 091 086 &3 0.528 0.027

MVG-DP 0.067 097 092 83 0.025 0.131

DPIM 0.065 095 093 55 0.056 0.005

MVG-4 0.080 0.97 0.8 10.3 0.391 0.048

BMA 0.080 095 089 89 - - 88.6 0.14

BMA (cali) 0.049 097 0.97 - - - 96.3 0.18
3 MVG 0.313 0.54 019 -19.1 0.102 0.010

BC 0.373 0.14 -0.15 -194 0.000 0.057

KM 0.136 090 0.85 5.3 0.000 0.142

MVG-HR 0.217 067 0.61 -6.2 0.190 0.092

MVG-DP 0.121 091 088 -5.1 0.438 0.017

DPIM 0.118 0.97 088 5.0 0.190 0.020

MVG-4 0.141 087 084 -24 0.080 0.023

BMA 0.122 089 088 -39 - - 74.5 0.40

BMA (cali) 0055 092 0.92 - - - 96.1 0.21
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Table 7: Sunuuary statistics for the single depth BMA predictive models using a single BMA
variance for the hydraulic models in ensemble 1, 2 and 3. The words ’cali.” and ‘eval.” are
abbreviations for the calibration and evaluation period. Coverage and average width are given
for the 95% uncertainty bounds.

BMA model Ensemble Number
1 2 3
weight, w MVG 0.000 0.000 0.001
BC 0.002 0.000 0.000
KM 0.130 0.001 0.000

MVG-HR 0.038 0.581 0.327
MVG-DP 0.786 0.081 0.513

DPIM 0.036 0.000 0.156

MVG-4 0.007 0.337 0.003
Variance, o2 0.051 0.041 0.046
RMSE, cali. ] 0.067 0.049 0.055
RMSE, eval. [m] 0.102 0.080 0.132
Coverage, cali. [%)] 94.0 956 958
Coverage, eval. [%] 69.1 857  90.2

Average width, cali. [m] 0.23 018 0.21
Average width, eval. [m)] 0.22 018 032
Bias, eval. (%] 125 89 126
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Table 8: Summary statistics for the single depth BMA predictive models excluding best-
fitting model forecast in the ensembles la - 3a and 1b - 3b. The abbreviation for the
excluded models are: b =KM, d =MVG-HR, e =MVG-DP, f =DPIM, and ¢ =MVG-4. Fur-
ther, ’cali.’” and 'eval.” are abbreviations for the calibration and evaluation period, respectively.

BMA model

Ensemble Number

la 1b 2a 2b 3a 3b

Excluded model

Model number, k
RMSE, cali. [m]

RMSE, eval. [m]
Coverage, cali. [%]
Coverage, eval. [%)]
Average width, cali. [m]
Average width, eval. [m]
Bias, eval. [%]

e b, e d d, g e d, e

6 5 6 5 6 5
0.075 0.086 0.0563 0.058 0.062 0.084
0.109 0.101 0.074 0.068 0.123 0.099
094 094 095 094 095 095
0.80 087 092 095 092 0.93
0.30 034 021 0.22 027 0.32
027 033 020 021 043 046
13.7  12.6 9.3 8.0 -1.5  -2.9
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Figure 1: Flowchart of the combined multi-objective optimization and Bayesian modeling av-
eraging approach used in our study. A detailed explanation of the various boxes, and numbers
appears in the text.
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Figure 2: Pareto optimal solutions (solid circles) of the three-dimensional Pareto trade-off space
for the MVG model; (a) the F} — Fyplane, (b) the Fy — F3 plane, (¢) the F; — F; plane of the
objective space. The single objective solutions (o symbol, P, — P3) and the compromise solution
(+ symbol, P;) are also indicated in each panel.
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Figure 3: Pressure head predictions of the individual models for the calibration period using

the compromise solution - parameter sets: a) daily rainfall, b) - d) the pressure head forecasts
at the 0.4, 1.0, and 2.6 m depths, respectively.
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(dashed, dashed-dotted, and dotted lines; the abbreviations of the individual models are given
in the text) for the pressure head forecast at the 0.4 m depth on October 5, 2007, 5:00 pm. The
95% uncertainty bounds (shaded area), the individual model forecasts (dots) and the verifying
observation (x) are also indicated.
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Figure 5: Pressure head forecasts of the individual models of the BMA ensemble 4 for the
evaluation period: a) daily rainfall and b)-d) the pressure head forecasts at the 0.4, 1.0, and
2.6 m depths, respectively. The observations (thick solid line), the BMA mean (thick dashed
line), and the 95% prediction uncertainty bounds (shaded area) are also shown.
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Figure 6: Pressure head forecasts of the BMA ensemble members for the evaluation period: a)
daily rainfall and the pressure head forecasts b) at the 0.4 m depth using ensemble 1, ¢) at the
1.0 m depth using ensemble 2, and d) at the 2.6 m depth using ensemble 3. Also shown are
the observations (thick solid line), the BMA mean (thick dashed line), and the 95% prediction
uncertainty bounds (shaded area).
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