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Abstract. It is well known that the Casimir force between two half-spaces is dictated by their 
electromagnetic properties. In particular, when one of the half-spaces is mainly metallic or 
dielectric and the other is mainly magnetic, it is possible to show that the force is repulsive. 
This has attracted lots of interest towards the study of metamteriais (MMs) in the context of 
Casimir effect, as their magnetic activity might help bring the idea of Casimir repulsion from 
the theoretical realm to experimental verification. In thL,> paper we investigate the possibility of 
repulsion when the MM magnetic permeability is given not by a Drude-Lorentz behaVior, but 
by a model put forward by Pendry et al. [16J. After introdudng the model and deriving the 
necessary formulas, we show that it is impossible to achieve repulsion with such a model and 
present a qualitative discussion of why this is so. 

1. Introduction 
The last decade has witnessed an increased interest in Casimir physics [1,2] thanks to improved 
precision measurements [3] of the force between material objects separated by micron and sub­
micron gaps. In a few words, the Casimir force may be thought of as a consequence of changing 
the vacuum fluctuations spectrum through the insertion of material boundaries. \;Vnile the 
Casimir force offers new possibilities for nanotechnology, such as actuation mediated by the 
quantum vacuum, it also presents some challenges, as micro and nanoelectromechanical systems 
(l\1EMS and NEMS) may stick together and cease to work due to the attractive nature of van del' 
Waals and Casimir forces. Recent years have also witnessed a huge activity in the development 
of metamaterials (MMs) [4J, boosted by the possibility that such engineered media may give rise 
to novel optical properties at selected frequency ranges, including negative refraction [5], perfect 
lensing [6]' and cloaking [7], among others. Generally speaking, metamaterials are made of 
micro and nanostructures carefully designed to collectively present a particular electromagnetic 
feature. They are able to produce the aforementioned striking phenomena, inaccessible with 
natural materials, due to the significant magnetic activity built into them, starting at microwave 
frequencies and going all the way up to the optical range. 

Substantial magnetic activity at high frequencies is exactly what brings Casimir physics and 
metamaterials close together. It is known for a long time that the attractive character of Casimir 
forces is not universal, that it actually depends crucially on the geometry and composition of 
a given setup. This naturally leads to speculations about the feasibility of customized systems 
displaying repusive Casimir forces, or maybe strongly reduced attraction, thus providing a so 
desired anti- "stiction" effect. An interesting possibility of flipping attraction into repulsion was 
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first demonstrated by Boyer [8], where he showed that a perfect conducting plate repels a perfect 
magnetic one with vacuum in between. The requirement of having a perfect magnet was relaxed 
in subsequent works [9], where it was shown that non-ideal materials could give rise to repulsion 
(provided one was mainly electric and the other mainly magnetic), but even this more realistic 
scenario is constrained by the absence of natural strong magnets at high frequencies l

. However, 
recent developments in nanofabrication have resulted in metamaterials with magnetic response 
in the visible range of the electromag'Iletic spectrum [10], fueling the hope for Casimir repulsion 
[11]. The expectation is that, by tuning this magnetic response to theright frequency range and 
making it strong enough, one could produce an experimentally measurable Casimir repulsion 
between, say, a MM slab and a thin metallic plate, or at least a significantly reduced attraction. 

The major issue about Casimir repulsion and, more generally, about any degree of Casimir 
force control is that the Casimir interaction between real dispersive materials is a broadband 
frequency phenomenon, as shown by the Lifshitz formula expressing the force between two 
semispaces as an integral over all (imaginary) frequencies with an exponential cut-off eld [12]. 
In previous works [13, 14] we have shown that this is a formidable obstacle on the route to Casimir 
repulsion, as typically the magnetic response of a MM is restricted to a narrow frequency band. 
In this work we would like to discuss an additional issue, briefly touched in [13] (see also [15]), 
concerning the modeling of magnetic activity in a given metamaterial. As we shall see below, 
this is a very important discussion since the Casimir force depends crucially on the choice of the 
propel' model. 

2. Metamaterials: a simple model 
As our first step, we want to present a simple yet effective procedure of how to characterize the 
magnetic activity of a metamaterial. This is better illustrated by tackling a specific example, so 
let us consider the metamaterial depicted in Fig. 1 [16]. It consists on a periodic array of double 
layered conducting cylindrical sheets, each one being characterized byits radius r, separation s 
between the sheets and length L. The layers themselves have some structure they are tinily 
split apart on opposite sides, in such a way to prevent currents of completing an entire loop 
(see fig. 2). The array itself has period b, in addition we assume that the cylinders are long 
(rIL « 1) and that there is little space between the two layers (sir « 1) of a given cylinder. 
By turning on an external magnetic field H(t) = H(t)z = Hoe-iwtz parallel to the cylinders we 
induce circulating currents on them, that therefore induce a new magnetic field H12. The total 
field is therefore 

(1) 

where x is the position where the field is being evaluated and HJ(x) is still to be determined. 
In this approximate model, our first assumption is that HI, despite having different expressions 
inside and outside a given cylinder, is space independent in each of these two regions. Inside of a 
given cylinder, the field may be naturally divided into two contributions: the one that originates 
from that cylinder itself and another that comes from all the other cylinders combined, recalling 
here that the cylinders are finite in length and as such they "leak" some magnetic field to their 
surroundings. The first contribution is readily expressed in terms of the induced current per unit 
oflength J with the help of Ampere's law, resulting in H?) = Jle. This of course holds exactly 
only for infinite cylinders, but is an excellent approximation for cylinders sufficiently long. For 
the second contribution we shall present an heuristic argument, based on the conservation of the 
number of field lines. We know that the field strength in a given location is roughly proportional 

1 There are plenty of natural strong magnets at low frequencies, but they become magnetically inert at frequenCies 

well below where d is the distance between the half-spaces. 

2 In principle, this new field induces another current, which in turn induces another field and so on and so forth. 

These subsequent fields and currents,however, are very small and therefore neglected in this approximate model. 
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Figure 2. Structure of each cylinder, 

Figure 1. Sketch of the array of seen from the top. 

cylinders. The distance from center 
to center (the period) is b and each 
cylinder has radius r. For the sake of 
clarity, we don't show the structure of 
each cylinder in this figure. 

to the density of field lines in that location, so the first contribution gives 

(2) 

where N is the number of lines, Pin is the density of lines and fi, is a proportionality constant. By 
following the same reasoning, in order to get the second contribution we must find the density of 
field lines "leaked" by all the cylinders, which is simply the density Pout "leaked" by one cylinder 
times the number of cylinders Ncyl 

(3) 

where A is the (infinite) area of a plane perpendicular to the cylinders and we used the fact that 
a given (finite) cylinder leaks all of its lines to its surroundings. From (3) we get 

(4) 

and, knowing that H?) and H?) have opposite signs, we may use our previous results to rewrite 
the total field inside a cylinder as 

(5) 
c 

Since the field outside the cylinders may be worked out in a similar way, we shall just quote the 
result 

(6) 

and point out that the only difference is that H?) vanishes in this case. The key advantage 
of expressions (,5) and (6) is that they are written in tenns of the current density J, to what 



now we turn our attention. Each cylinder may be viewed as an RC circuit, and application of 
Faraday's law in one of them gives 

J 1rr2 0 [ 1 l1rr2 ]£ = 21rraJ - -­ -- Ho+-J---J (7)
iwC cot c cb2 ' 

where where a is the resistivity of the cylinder sheets and C is the effective circuit capacitance 
also per unit of length. By assuming that it evolves harmonically in time, i.e., that J Jociwt , 

we get 

J (8)
iwH 

(1 2) ,W 1fTc ic lj2­
iWC1fT2 

which might be used in (5) and (6) to give explicit expressions to the fields. We are not, 
however, so interested in these absolute expressions as we are in their spatial average, since the 
latter presumably gives a better account of effective properties, specially at large scales. Starting 
from the integral form of Faraday's and Ampere's laws 

·t E dl --1 d 1B· ds H·dl= 11· J·ds, (9). ic s c c S 

we see that the important quantities in these equations are the flUX of B and the ci'rc1.tlation of 
H. This clearly suggests that B is to be averaged over a surface while H should be averaged 
over a line. For a periodic system we need to average over an unit cell only, so, using the unit 
cell defined in Fig. 3 and the fact that HT points in the z-direction, we conclude that a sensible 
definition of Bave and Have is [16, 17] 

Bave :2 r B· ds 1 r HT ·ds H (10)
.JSz JSz 

Have ~ r HT· dl H:rut , (11)
b JLz 

where Sz is either of the two faces perpendicular to the z-axis, and Lz is one of the edges parallel 
to 2. Now, following [16] and defining the effective magnetic permeability 88 

(12) 


we get finally 

(13) 

where we defined of the filling factor f, the resonant frequency Wm and the dissipation coefficient 

1m· 
There are some peculiarities about the pTe'llious formula that we should point out. The first 

thing is the functional resemblance between expression (13) and the Drude-Lorentz model for 
the electric permittivity, the only difference between them being the presence of a w2 in the 
numerator of (13). As we shall see in the next section, this leads to interesting consequences 
in the Casimir force. In addition, it is easy to see that f.teff does not go to unity in the high 
frequency limit, as we should expect on physical grounds. This tells us that (13) cannot be valid 
up to arbitrarily high frequencies, what is makes perfect sense given that all our calculations 
are based on an effective medium picture that breaks down for very small wavelengths. Our 



Figure 3. Illustration of the unit cell 
used in our array. Again, for the sake 
of simplicity, the cylinder is shown as 
a single sheet. 

final remark is that, despite the problems in the high frequency range, expression (13) is totally 
acceptable from causality requirements, since it is analytic in the upper half plane of complex 
frequencies. Indeed, it may be shown that its real and imaginary part are linked together by a 
slightly modified Kramers-Kronig formulae 

2 1'00 elf() 1e'(w)=(I-f)+-P dyy / -2' 
'If 0 Y w 

_ 2wpl°Odyel (y) - (1 1)e" (W) (14)
W2'If 0 y2 ­

where c'(w) = Rec(w) and €"(W) = Im€(w). 

3. The Casimir Force 
Now that we have an explicit formula for the magnetic activity of our MM, we may proceed 
with the evaluation of the Casimir force. There is, however, an important issue we have to deal 
with before going directly to calculations. The metamaterial described in the previous section 
is anisotropic, and (13) gives the right magnetic response only when H is parallel to 
the z-axis. As the Casimir force depends on virtual fluctuations coming from all directions, the 
inevitable conclusion is that tLeff has to be generalized in order to take arbitrary propagation 
directions into account. Unfortunately, the simplicity present in the previous section disappears 
when we depart from the particular case where H//2, with effects like polarization mixing and 
spatial dispersion [18] coming into play. In addition, this high degree of complication obscures 
all the physics we are trying to analyze, namely, magnetic effects affecting the Casimir force. So, 
in order to avoid unnecessary distractions, from now on we consider a toy model that is based 
in the one we have been discussing, but with an isotropic magnetic permeability described by 
eq. (13) and an isotropic electric permittivity given by 

(15) 


where ne , We and Ie are respectively the electric oscillating strength, resonance frequency and 
dissipation coefficient. 

The Casimir pressure between two real (Le., non-ideal) isotropic half-spaces, as shown in Fig. 
4, is given by the Lifshitz formula [12] 

(16) 



where K3 = JkO + eIc2 and the reflection coefficients RJE, RJM , are given by 

P-n(iOK3 - JkO+ P-n(i~)En(iOelc2 
R;E(i~,kll) = ----~======= 

P-n(i~)K3 + JkIT + P-n(iOEn(iOe Ic2 

En(i~)K3 - JkIT + P-n(iOEn(i~)e lc2 
R;M(i~,kll) = , (17) 

En(i~)K3 + VkIT + P-n(i~)En(iOe Ic2 

where En and P-n are respectively the permittivity and permeability of the n-th half-space. In 
our conventions, a positive (negative) value of the force means attraction (repulsion). We are 
interested in the case where one of the half-spaces (see fig . 4) is purely metallic, implying in 

[22 

El(W)=l-( 2 ~ ) (18) 
W + 2/1W 

where [21 is the metallic plasma frequency and /1 is the dissipation coefficient, and the other 
half-space is a MM characterized by E2(W) = Eeff(W) and P-2(W) = P-eff(W), given respectively by 
(15) and (12). 

d 

Metal Vacuum 

Figure 4. Illustration of the setup 
used in this paper to calculate the 

I Y I 
Casimir force. z =-d z = 0 

Before going straight to the results we would like to point out a small subtlety brought by 
the use of P-eff in the Lifshitz formula. Buried in expression (16) is the assumption that the 
reflection coefficients are analytic in the whole upper plane of complex frequencies , which is 
based itself on the assumption that El,2 (i~), P-l,2 (i~) ~ O. It is easy to see that functions El,2(i~) 
meet this condition for any choice of parameters, but for fJ-2(i~) it only holds when rib < 11ft. 
Fortunately, in our case we have necessarily rib < 1/2 < 11ft so we don't have to worry, but 
this little analysis shows that one must be careful with the validity conditions of the Lifshitz 
formula when considering alternative permittivity and permeability models. 

In Figs. 5 and 6 we compare the Casimir pressure as a function of the separation d for 
different MMs. We see that when the magnetic part is given by a Drude-Lorentz contribution, 
namely 

(19) 

the force decreases at least as fast as 1 Id3 , while for MMs modeled by (13) we have a transition 
region where FId3 actually increases before it goes to zero for large distances. We see also that 
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Figure 6. The Casimir pressureMM modeled by permittivity (15) and 
between a metallic half-space and apermeability (19), for several values of 
MM modeled by permittivity (15) andthe magnetic oscillating strength flm. 
permeability (13), for several values of The parameters used are fldfl = 0.96, 
the filling factor f. The parametersIdfl 0.004, 0.e/fl 0.04, we/0. = 
used are the same as in figure 5.

Wm/fl 0.1, le/fl = Im/0. 0.005. 
The frequency scale fl is chosen as 
1.43 x lOH; rad/s and A is defined as 
11.= 21fc/fl. 

in the first scenario the force might even assume negative v-alues for strong enough magnetic 
activity, while on the second case the enhancement of the magnetic part just makes attraction 
stronger and stronger in the transitional region. This is a clear indication that it is impossible 
to achieve repulsion with a MM described by (13), and it is actually not difficult to check that 
this is indeed the case. As we can see from (16), a necessary (but not sufficient) condition for a 
negative force to occur is that, for at lea.':lt one polarization, R{ (i~) and R~(i~) must have different 
signs. This information is entirely contained in the numerators of both reflection coefficients in 
(17), and a simple (but tediOUS) analysis shows that when the permittivities and permeabilities 
of the materials involved are given by (15), (18) and (13) we have 

fLn(ic,)K3 - .Jk~ + fLn(if,)en(ifJe /c2 < 0 

(20)tn(i~)K3 .Jk~ + fLn(i~Jen(i~)e/2 > 0 

what prevents any difference in between R{ and This is to be compared with the case 
where the MM permeability is described by (19), since in this instance it is possible to have 
RrE(i~) . RrE(i~) < 0 and therefore Casimir repulsion is not ruled out. 

4. Conclusions 

In this paper we discussed how to obtain the magnetic permeability of a specific MM from 

a theoretical/phenomenological point of view, and how the Casimir force is affected by it. 

Unfortunately, the kind of magnetic activity we obtained does not lead to Casimir repulsion, 

nor even to reduced attraction. Incidentally, these results also show that for Casimir purposes, 

extrapolations of models for electromagnetic properties must be done in a very careful fashion, 

as these extrapolations may be extremely important to the determination of the Casimir force. 

We therefore conclude that, as the description of practical MMs is typically known only on a 

narrowband of frequencies 8.nd incidence angles, much has yet to be learned before a definitive 

statement about the possibility of repulsive Casimir forces can be made. 
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