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Abstract. It is well known that the Casimir force between two half-spaces is dictated by their
electromagnetic properties. In particular, when one of the half-spaces is mainly metallic or
dielectric and the other is mainly rmagnetic, it is possible to show that the force is repulsive.
This has attracted lots of interest towards the study of metamterials (MMs) in the context of
Casimir effect, as their magnetic activity might help bring the idea of Casimir repulsion from
the theoretical realm to experimental verification. In this paper we investigate the possibility of
repulsion when the MM magnetic permeability is given not by a Drude-Lorentz behavior, but
by a model put forward by Pendry et al. [16]). After introducing the model and deriving the
necessary formulas, we show that it is impossible to achieve repulsion with such a model and
present a qualitative discussion of why this is so.

1. Introduction

The last decade has witnessed an increased interest in Casimir physics [1, 2] thanks to improved
precision measurements [3] of the force between material objects separated by micron and sub-
micron gaps. In a few words, the Casimir force may be thought of as a consequence of changing
the vacunm fluctuations spectrum through the insertion of material boundaries. While the
Casimir force offers new possibilities for nanotechnology, such as actuation mediated by the
guantum vacuum, it also presents some challenges, as micro and nanoelectromechanical systems
(MEMS and NEMS) may stick together and cease to work due to the attractive nature of van der
Waals and Casimir forces. Recent years have also witnessed a huge activity in the development
of metamaterials (MMs) [4], boosted by the possibility that such engineered media may give rise
to novel optical properties at selected frequency ranges, including negative refraction [5], perfect
lensing (6], and cloaking [7], among others. Generally speaking, metamaterials are made of
micro and nanostructures carefully designed to collectively present a particular electromagnetic
feature. They are able to produce the aforementioned striking phenomena, inaccessible with
natural materials, due to the significant magnetic activity built into them, starting at microwave
frequencies and going all the way up to the optical range.

Substantial magnetic activity at high frequencies is exactly what brings Casimir physics and
metamaterials close together. Tt is known for a long time that the attractive character of Casimir
forces is not universal, that it actually depends crucially on the geometry and composition of
a given setup. This naturally leads to speculations about the feasibility of customized systems
displaying repusive Casimir forces, or maybe strongly reduced attraction, thus providing a so
desired anti-“stiction” effect. An interesting possibility of flipping attraction into repulsion was
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first demonstrated by Boyer [8], where he showed that a perfect conducting plate repels a perfect
magnetic one with vacuum in between. The requirement of having a perfect magnet was relaxed
in subsequent works [9], where it was shown that non-ideal materials could give rise to repulsion
(provided one was mainly electric and the other mainly magnetic), but even this more realistic
scenario is constrained by the absence of natural strong magnets at high frequencies'. However,
recent developments in nanofabrication have resulted in metamaterials with magnetic response
in the visible range of the electromagnetic spectrum [10], fueling the hope for Casimir repulsion
[11]. The expectation is that, by tuning this magnetic response to the right frequency range and
making it strong enough, one could produce an experimentally measurable Casimir repulsion
between, say, a MM slab and a thin metallic plate, or at least a significantly reduced attraction.

The major issue about Casimir repulsion and, more generally, about any degree of Casimir
force control is that the Casimir interaction between real dispersive materials is a broadband
frequency phenomenocn, as shown by the Lifshitz formula expressing the force between two
semispaces as an integral over all (imaginary) frequencies with an exponential cut-off ¢/d [12].
In previous works {13, 14] we have shown that this is a formidable obstacle on the route to Casimir
repulsion, as typically the magnetic regsponse of a MM is restricted to a narrow frequency band.
In this work we would like to discuss an additional issue, briefly touched in [13] (see also [15]),
concerning the modeling of magnetic activity in a given metamaterial. As we shall see below,
thig is a very important discussion since the Casimir force depends crucially on the choice of the
proper model.

2. Metamaterials: a simple model
Ag our first step, we want to present a simple yet effective procedure of how to characterize the
magnetic activity of a metamaterial. This is better illustrated by tackling a specific example, so
let us consider the metamaterial depicted in Fig. 1 [16]. It consists on a periodic array of double
layered conducting cylindrical sheets, each one being characterized by its radius r, separation s
between the sheets and length L. The layers themselves have some structure - they are tinily
split apart on opposite sides, in such a way to prevent currents of completing an entire loop
(see fig. 2). The array itself has period b, in addition we assume that the cylinders are long
(r/L <« 1) and that there is little space between the two layers (s/r < 1) of a given cylinder.
By turning on an external magnetic field H(t) = H(¢)2 = Hpe™*2 parallel to the cylinders we
induce circulating currents on them, that therefore induce a new magnetic field Hy?. The total
field is therefore

Hy(x) = H + Hy(x) = (H + Hr(x)2, (1)

where x is the position where the field is being evaluated and Hr(x) is still to be determined.
In this approximate model, our first assumption is that Hi, despite having different expressions
inside and outside a given cylinder, is space independent in each of these two regions. Inside of &
given cylinder, the field may be naturally divided into two contributions: the one that originates
from that cylinder itself and another that comes from all the other cylinders combined, recalling
here that the cylinders are finite in length and as such they “leak” some magnetic field to their
surroundings. The first contribution is readily expressed in terms of the induced current per unit
of length J with the help of Ampere’s law, resulting in H§1) = J/c. This of course holds exactly
only for infinite cylinders, but is an excellent approximation for cylinders sufficiently long. For
the second contribution we shall present an heuristic argument, based on the conservation of the
number of field lines. We know that the field strength in a given location is roughly proportional

1 There are plenty of natural strong magnets at low frequencies, but they become magnetically inert at frequencies
well below ¢/d, where d is the distance between the half-spaces.

2 In principle, this new field induces another current, which in turn induces another field and so on and so forth.
These subsequent fields and currents, however, are very small and therefore neglected in this approximate model.



Figure 2. Structure of each cylinder,
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to the density of field lines in that location, so the first contribution gives

N
H}l) = Ky = g (2)

where NV is the number of lines, py, is the density of lines and & is a proportionality constant. By
following the same reasoning, in order to get the second contribution we must find the density of
field lines “leaked” by all the cylinders, which is simply the density pout “leaked” by one cylinder
times the number of cylinders Ny
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where A is the (infinite) area of a plane perpendicular to the cylinders and we used the fact that
a given (finite) cylinder leaks all of its lines to its surroundings. From (3) we get
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and, knowing that H§2) and Hgl) have opposite signs, we may tse our previous results to rewrite
the total field inside a cylinder as
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Since the field outside the cylinders may be worked out in a similar way, we shall just quote the

result Lp?
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and point out that the only difference is that H }1) vanishes in this case. The key advantage

of expressions (5) and (6) is that they are written in terms of the current density J, to what

g (6)



now we turn our attention. Each cylinder may be viewed as an RC circuit, and application of
Faraday’s law in one of them gives

J mr? 8 1 7r?
ik ™)
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where where « is the resistivity of the cylinder sheets and C is the effective circuit capacitance

also per unit of length. By assuming that it evolves harmonically in time, i.e., that J = Joe™**,

we get
, wH

J = ; ; (8)

2moc . _c o dw (q T2
T 1wCrr2 [4 R

which might be used in (5) and (6) to give explicit expressions to the fields. We are not,
however, so interested in these absolute expressions as we are in their spatial average, since the
latter presumably gives a better account of effective properties, specially at large scales. Starting
from the integral form of Faraday’s and Ampere’s laws

j{E-dlz—}-i B-ds jéH»dl:}-/J'ds, 9)
c cdt Jg c cJs

we see that the important quantities in these equations are the flux of B and the circulation of
H. This clearly suggests that B is to be averaged over a surface while H should be averaged
over a line. For a periodic system we need to average over an unit cell only, so, using the unit
cell defined in Fig. 3 and the fact that Hy points in the z-direction, we conclude that a sensible
definition of Bgye and Hgy,, is [16, 17]

1 1
Bave:b—z‘[ng-ds=b—2 SszrdS:H (10)
1 :
Hye =3 | Hr-dl=Hp", (11)
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where S, is either of the two faces perpendicular to the z-axis, and L, is one of the edges parallel
to 2. Now, following [16] and defining the effective magnetic permeability as
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we get finally
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where we defined of the filling factor f, the resonant frequency wy, and the dissipation coefficient
Yrn-

There are some peculiarities about the previous formula that we should point out. The first
thing is the functional resemblance between expression {13) and the Drude-Lorentz model for
the electric permittivity, the only difference between them being the presence of a w? in the
numerator of (13). As we shall see in the next section, this leads to interesting consequences
in the Casimir force. In addition, it is easy to see that u.s does not go to unity in the high
frequency limit, as we should expect on physical grounds. This tells us that {13} cannot be valid
up to arbitrarily high frequencies, what is makes perfect sense given that all our calculations
are based on an effective medium picture that breaks down for very small wavelengths. Our
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Figure 3. Ilustration of the unit cell
< used in our array. Again, for the sake
\ L L : )

I— of simplicity, the cylinder is shown as
e — [ — a single sheet.

final remark is that, despite the problems in the high frequency range, expression (13} is totally
acceptable from causality requirements, since it is analytic in the upper half plane of complex
frequencies. Indeed, it may be shown that its real and imaginary part are linked together by a
slightly modified Kramers-Kronig formulae

¢w)= -0+ 2p [ ap S,
& / dy '(y; Susa (14)

where € {(w) = Ree(w) and €’ (w) = Im e(w).

3. The Casimir Force

Now that we have an explicit formula for the magnetic activity of our MM, we may proceed
with the evaluation of the Casimir force. There is, however, an important issue we have to deal
with before going directly to calculations. The metamaterial described in the previous section
is severely anisotropic, and (13) gives the right magnetic response only when H is parallel to
the z-axis. As the Casimir force depends on virtual Anctuations coming from all directions, the
inevitable conclusion is that p.s has to be generalized in order to take arbitrary propagation
directions into account. Unfortunately, the simplicity present in the previous section disappears
when we depart from the particular case where H/ /2, with effects like polarization mixing and
spatial dispersion [18] coming into play. In addition, this high degree of complication obscures
all the physics we are trying to analyze, namely, magnetic effects affecting the Casimir force. So,
in order to avoid unnecessary distractions, from now on we consider a toy model that is based
in the one we have been discussing, but with an isotropic magnetic permeability described by
eq. {13) and an isotropic electric permittivity given by

2
eet(w) =1~ 3 5 (15)

w? — w2 + ivew’
where (2., w, and -y, are respectively the electric oscillating strength, resonance frequency and
dissipation coefficient. -

The Casimir pressure between two real (i.e., non-ideal) isotropic half-spaces, as shown in Fig.
4, is given by the Lifshitz formula [12]
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where K3 = , /k:lg| +€2/c? and the reflection coefficients RTF, RT™™  are given by

n(i€)Ks — [k + pin (1€)en(i6)€2
(€YK + \[K7 + 1n(i€)en (i6)€2/ 2
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RYE(i€ k) =

RM(ig k) =

(17)

where ¢, and p, are respectively the permittivity and permeability of the n-th half-space. In
our conventions, a positive (negative) value of the force means attraction (repulsion). We are
interested in the case where one of the half-spaces (see fig. 4) is purely metallic, implying in
0

61((4)) (w2 + i'ylw) ’ /Ll(w) ) ( )
where Q; is the metallic plasma frequency and -, is the dissipation coefficient, and the other
half-space is a MM characterized by es(w) = €eg(w) and po(w) = peg(w), given respectively by
(15) and (12).
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Vacuum

Figure 4. Ilustration of the setup
used in this paper to calculate the
Casimir force.

Before going straight to the results we would like to point out a small subtlety brought by
the use of peg in the Lifshitz formula. Buried in expression (16) is the assumption that the
reflection coefficients are analytic in the whole upper plane of complex frequencies, which is
based itself on the assumption that €1 2(2€), p1,2(2€) > 0. It is easy to see that functions €; 2(i€)
meet this condition for any choice of parameters, but for u2(#€) it only holds when /b < 1//7.
Fortunately, in our case we have necessarily /b < 1/2 < 1/,/7 so we don’t have to worry, but
this little analysis shows that one must be careful with the validity conditions of the Lifshitz
formula when considering alternative permittivity and permeability models.

In Figs. 5 and 6 we compare the Casimir pressure as a function of the separation d for
different MMs. We see that when the magnetic part is given by a Drude-Lorentz contribution,
namely

60

w)=1- m , 19
[LDL( ) T — w;qn + iymw ( )

the force decreases at least as fast as 1/d®, while for MMs modeled by (13) we have a transition
region where F'/d® actually increases before it goes to zero for large distances. We see also that
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Figure 5. The Casimir pressure
between a metallic half-space and a . _
MM modeled by permittivity (15) and f ipure 6. Tﬁ%e Salsfnmr ;pressglrle
permeability (19), for several values of Me;?eendale;nita 1c ha. _'SP&wl ;m Z
the magnetic oscillating strength Q. modeled by permittivity (15) an
The parameters used are (1 /() = 0.96, permeability (13), for several values of
1 /Q = 0.004, Q,/Q = 0.04, w,/Q — the filling factor f. The parameters
w2 = O 1 ,"l ;&2 _ '/Q’_GO 005 used are the same as in figure 5.

m = U, e = /et = U .

The frequency scale 2 is chosen as
1.43 x 10'% rad/s and A is defined as
A = 2re/Q.

in the first scenario the force might even assume negative values for strong enough magnetic
activity, while on the second case the enhancement of the magnetic part just makes attraction
stronger and stronger in the transitional region. This is a clear indication that it is impossible
to achieve repulsion with a MM described by (13), and it is actually not difficult to check that
this is indeed the case. As we can see from (16), a necessary (but not sufficient) condition for a
negative force to occur is that, for at least one polarization, RI(i€) and R} (i¢) must have different
signs. This information is entirely contained in the numerators of both reflection coefficients in
(17), and a simple (but tedious) analysis shows that when the permittivities and permeabilities
of the materials involved are given by (15), (18) and (13) we have

1 (i€)Ks = /K + pn(i)en (i€)6%/ < 0
en(i€) K3 — \/kﬁ + pn(@)en(i§)?/* > 0, Vi, &, n, (20)

what prevents any difference in sign between R{ and Rf’g;. This is to be compared with the case
where the MM permeability is described by (19), since in this instance it is possible to have
RYE(i¢) - RFE(i¢) < 0 and therefore Casimir repulsion is not ruled out.

4. Conclusions

In this paper we discussed how to obtain the magnetic permeability of a specific MM from
a theoretical/phenomenological point of view, and how the Casimir force is affected by it.
Unfortunately, the kind of magnetic activity we obtained does not lead to Casimir repulsion,
nor even to reduced attraction. Incidentally, these results also show that for Casimir purposes,
extrapolations of models for electromagnetic properties must be done in a very careful fashion,
as these extrapolations may be extremely important to the determination of the Casimir force.
We therefore conclude that, as the description of practical MMs is typically known only on a
narrowband of frequencies and incidence angles, much has yet to be learned hefore a definitive
statement about the possibility of repulsive Casimir forces can be made.
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