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Abstract

A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and
used to predict the micromechanical fields that develop in columnar Ih ice polycrystals
deforming in compression by dislocation creep. The predicted intragranular mechanical
fields are in qualitative good agreement with experimental observations, in particular
those involving the formation of shear and kink bands. These localization bands are
associated with the large internal stresses that develop during creep in such anisotropic
material, and their location, intensity, morphology and extension are found to depend
strongly on the crystallographic orientation of the grains and on their interaction with
neighbor crystals. The predictions of the model are also discussed in relation with the
deformation of columnar sea and lake ice, and with the mechanical behavior of granular

ice of glaciers and polar ice sheets, as well.
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1- Introduction

Ih ice single crystals deform plastically in the dislocation glide regime essentially by
(0001) <1210 > basal slip. The yield point observed during the early stage of plastic
flow, associated with the formation of slip lines, is related to the multiplication of basal
dislocations by slip, cross-slip and/or dislocation climb [1]. The stress required to
produce a given effective strain-rate along a crystallographic direction not lying on the
basal plane is between one and two orders of magnitude greater than the stress necessary

to produce the same strain-rate along a direction belonging to the basal plane [2].

The single crystals that form glacier ice and polar ice sheets exhibit a wide range of sizes
and morphologies, but, in general, the structure of this polycrystalline ice can be
characterized as being "granular” or "three-dimensional” (3-D). Another natural form of
ice is the so-called "columnar” or "two-dimensional” (2-D) polycrystalline ice, consisting
of an aggregate of columnar grains with the <c>-axis of each single crystal randomly
oriented in the plane perpendicular to the direction of the columns. This kind of aggregate
is obtained when ice grows from the surface of calm water in an unidirectional
temperature gradient. This type of ice forms the natural covers of the Arctic Ocean and
northern large rivers. Two-dimensional ice samples can be also prepared in the

laboratory, for controlled testing [3-6].

The aforementioned very large viscoplastic anisotropy of ice single crystals has
consequences on the mechanical response of ice polycrystals. On the one hand, the
development of lattice preferred orientations (crystallographic textures) as ice deforms
(e.g. when it is transported into the depths of a polar ice sheet) determines striking
differences in the viscous response of textured ice polycrystals to stresses applied along
different directions (e.g. [7]). On the other hand, the fulfillment of both compatibility and
stress equilibrium across grain boundaries results in heterogeneous intragranular
deformation patterns [3-6, 8-10]. High orientation gradients were observed in ice crystals
extracted from the Antarctic ice sheet [11]. Dynamic continuous and discontinuous

recrystallization, which is very active in ice sheets [12], contributes to the reduction of the



long-range internal stresses field induced by such intragranular deformation

heterogeneities.

Texture development in polar ice sheets and the resulting anisotropic response of
polycrystalline ice have been intensively studied using mean-field models (e.g. [13-15]).
This kind of approaches is based on the statistical characterization of the intragranular
mechanical fields (in terms of average grain stresses and strain-rates, and, in the most
advanced formulations, also through the determination of the intracrystalline average
field fluctuations [15]), but the actual micromechanical fields remain inaccessible to these

homogenization approaches.

The modelling of the intracrystalline heterogeneity that develops in ice polycrystals
(which requires the use of full-field approaches) has been, on the other hand, much less
investigated. To fill this gap, this work is devoted to the study of the correlation existing
between the heterogeneous deformation patterns that appear inside the constituent single
crystal grains of an ice aggregate and their corresponding crystallographic orientations,
along with the influence of other factors, like orientation and size of neighboring grains.
To this end, a full-field formulation based on the Fast Fourier Transform (FFT) [16-18]
has been adapted to obtain the micromechanical fields that develop in polycrystalline ice

deforming by dislocation creep.

We have chosen to pursue this study on columnar ice polycrystals, for various reasons.
On the one hand, dealing with a 2-D problem allowed us to use higher resolution (i.e.
more discretization points) to characterize the intracrystalline fields, and to fully visualize
the results in a 2-D representation. Another advantage is that the mathematical
representation of this kind of polycrystals is easier since each crystallographic orientation
is almost fully characterized by only one angular parameter (rather than by three Euler
angles, as in the case of 3-D polycrystals). Also, most importantly, we have available a
comprehensive set of experimental results on crystal orientation and neighborhood type
dependence of the intracrystalline localization patterns observed in laboratory grown and
tested columnar ice specimens with different microstructures [3-6], which can be used for

validation of our model predictions.



The plan of this paper is as follows. In section 2 we review the available experimental
evidence on the effective and local viscoplastic behavior of polycrystalline ice and recall
some experimental results obtained by Mansuy [4] on the orientation- and microstructure-
dependent deformation localization patterns in columnar ice polycrystals. In section 3 we
provide details of the model utilized and the unit cell used in this study. In section 4 we
present the results of our simulations and compare them with the experimental evidence.
In section 5 we conclude discussing possible improvements of the modelling of natural

polycrystalline ice, based on the capabilities of the present micromechanical formulation.

2- Mechanical behavior of polycrystalline ice
2-1 Effective and local viscoplastic behavior of polycrystalline ice

The secondary creep of polycrystalline ice is reached at strains of about 1%. The
corresponding stress exponent is close to 3 for deviatoric stresses higher than 0.2 MPa
[2]. Otherwise, for conditions prevailing in polar ice sheets (deviatoric stresses lower than

0.2 MPa and strain-rates lower than 10

s the stress exponent for steady state creep is
lower than 2, as suggested by borehole deformation measurements [19], bubbly ice
densification [20] and laboratory tests [21]. Under these very low stress and strain-rate
conditions, dislocation creep remains the dominant deformation mode [22,23] but grain
boundary sliding [24,25] and grain boundary migration [23] can also accommodate strain
and control the deformation kinetics. Therefore, in what follows, for consistency with the
assumption of dislocation glide being the exclusive viscoplastic deformation mechanism,
and also for a meaningful comparison with laboratory measurements of deformation
-1

localization in columnar ice [3-6], obtained at strain-rates between 10° and 107 s, a

stress exponent of 3 is assumed.

Hexagonal ice single crystals have a c/a relation of 1.629. Based on direct and indirect

evidence (e.g. see [13] and references therein), is usually assumed that they can deform

by means of slip on three soft (0001) <1210 >basal ("bas") slip systems, three hard

{1010} <1210 > prismatic ("pr") systems, and six hard {1122} <1123 >pyramidal



("pyr") systems. The rate-sensitive equation, relating the shear-rate on each slip system

and the stress acting on the crystal, is given by:

n
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where cﬁj is the deviatoric stress tensor, mf‘j is the Schmid tensor of slip system (s)
defined as mj; = (nisbi? +n3b; )/ 2, with n® and b® being the normal and Burgers vectors

of system (s); ¥° and ©° are, respectively, the shear-rate and the threshold stress of slip
system (s); n=3 is the creep exponent and 7, is reference shear-rate. Hence, the single
crystal anisotropy is characterized by the ratio between the critical stresses of the different

slip modes. In what follows, we have adopted T =tP¥" and M = tP" /1% = ¢P¥T /P35
The value of the anisotropic parameter M was adjusted to experiments, according to the
following considerations. A normalized effective response of a viscoplastic material can
be obtained in terms of the reference equivalent stress 0, defined as [13]:

Zeq

Co =Yo W (2)

where n is the macroscopic stress exponent, and X, and Eeq are the macroscopic von

Mises equivalent stress and strain-rate. For ¥, =1, a typical value of the reference stress

for an isotropic ice polycrystal (i.e. one made of randomly-oriented crystals), at —10°C,

bas

for a viscosity exponent n=3 is 6/t =18 [13]. The latter relation expresses the ratio

between the viscosity of a isotropic polycrystalline ice sample and a single crystal
deforming by basal glide. Previous studies [15] using the FFT-based model to calculate
the effective response of isotropic ice showed a linear dependence of the reference stress

G, with the anisotropy parameter M, with a slope very close to one. Based on this scaling

behavior, a value of the anisotropic parameter M=20 was adopted in the calculations that



follow. It is worth noting that the choice of a higher M value does not change

qualitatively the results to be presented below.
2-2 Deformation heterogeneity in columnar ice polycrystals

Mansuy [4,6] conducted a series of compression creep experiments on laboratory-grown
large columnar ice crystals and multicrystals with different orientations and surrounded
by a matrix of smaller crystals. The specimens were plates of 210x140mm with a
relatively thick (8 mm) section, consisting of a large columnar single crystal or a
multicrystalline cluster, located in the center of the plate, with columnar axes along plate
thickness (that is, having their <c>-axes lying on the plane of the plate) and embedded in
fine-grained ice matrices. In what follows, results of two types of specimens tested by

Mansuy are going to be discussed and compared with corresponding simulations:

a) Specimen #1 (Fig. 1), consisting of a single crystal with a circular section in the plane
of the plate, measuring 30 mm in diameter, embedded in an isotropic matrix of very fine
globular grains (of around 1mm in diameter, i.e. small compared to the sample thickness)
with random orientations. The <c>-axis of the central crystal was inclined 45 deg with

respect to the compression axis.

b) Specimen #2 (Fig. 2), consisting of seven grains, hexagonal in shape, of about 20 mm
in size, surrounded by a matrix of smaller (3-8 mm in diameter) columnar grains. The

<c>-axes of the central grains had different initial orientations in the plane of the plate.

These ice specimens were tested under compression exerted in the their plane at -10°C.
The applied compression stress was respectively 0.5 MPa for specimen #1 and 0.75 MPa
for specimen #2. Figure 1 shows the localization of the deformation in basal slip lines in
specimen #1 after a strain of about 0.06. Figure 2 shows, after about the same strain
(0.07), three types of localization bands: basal shear bands, kink bands and sub-
boundaries, that change orientation to follow crystallographic directions when they cross
from one grain to another. Kink band boundaries are roughly parallel to the <c>-axis and
are seen inside in two grains (#2 and #7). These kink bands appear to form after some

basal slip and the bending of basal planes [4,6]. On the other hand, kink bands are not



observed in grains #3, #5 and #6, which are not well oriented for basal slip. Sub-
boundaries parallel to the <c>-axis can be seen in grain #3. The difference in behavior for
the two types of specimens is related to the stress conditions at the interface between each
crystal and its neighborhood. A better accommodation of basal slip by the fine-grained

matrix explains the absence of shear and kink bands in the central grain of specimen #1.

It is worth noting that the formation of kink bands, described as a sharp or discontinuous
change in orientation of the active slip surface, had been previously reported in many
experimental studies conducted on 3-D ice polycrystals (e.g. [8-10]). In particular, Wilson
et al [9] reported the formation of kink bands in grains of a 3-D polycrystal deformed in
plane strain, with <c>-axis lying on the plane containing the shortening and extension
directions, normal to the shortening axis. Furthermore, kinking is not restricted to plastic
deformation of ice. It has been reported to occur in different low-symmetry materials,
both as an inelastic mechanism (alternative to easy glide and deformation twinning, when
the former is not favorably-oriented and the later is inactive due to, e.g., a high single
crystal's c¢/a ratio [26-29]) and, recently, also as an elastic (reversible) deformation
mechanism (e.g. [30,31]). Kink bands were also observed in fcc single crystals (e.g. [32]),
specially at sites of high stress concentration like crack tips [33]. The development of
these kink bands has been successfully simulated using crystal plasticity-based Finite
Element (FE) analysis [33-35]. Therefore, the present analysis of the deformation of
columnar polycrystalline ice can be regarded also as a model material study, to better

understand this ubiquitous mechanism that kinking represents.

3- Model
3-1 The FFT-based formulation

The intracrystalline states that are developed during creep of polycrystalline ice can be
obtained using an extension of an iterative method based on FFT, originally proposed by
Moulinec and Suquet [16] and Michel et al [17] for linear and non-linear composites.
This formulation was later adapted to polycrystals and applied to the prediction of texture

development of fcc materials [18], and in turn used for the computation of field statistics
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and effective properties of power-law 2D polycrystals [36,37] and 3D cubic, hexagonal
[38] and orthorhombic [39] materials. The FFT-based formulation was also recently
applied to compute the development of local misorientations in polycrystalline copper,
with direct input from orientation images [40]. The present work is the first application of

this formulation for the prediction of local fields in non-cubic materials.

The FFT-based full-field formulation for viscoplastic polycrystals is conceived for a
periodic unit cell, provides an exact solution of the governing equations, and has better
numerical performance than a FE calculation for the same purpose and resolution. The
viscoplastic FFT-based formulation consists in finding a strain-rate field, associated with
a kinematically-admissible velocity field, which minimizes the average of local work-
rate, under the compatibility and equilibrium constraints. The method is based on the fact
that the local mechanical response of a periodic heterogeneous medium can be calculated
as a convolution integral between the Green function of a linear reference homogeneous
medium and the actual heterogeneity field. Such type of integrals reduces to a simple
product in Fourier space, therefore the FFT algorithm can be used to transform the
heterogeneity field into Fourier space and, in turn, to get the mechanical fields by
antitransforming that product back to real space. However, since the actual heterogeneity
field depends precisely on the a priori unknown mechanical fields, an iterative scheme
should be implemented to obtain, upon convergence, a compatible strain-rate field and a

stress field in equilibrium.

The periodic unit cell representing the polycrystal is discretized by means of a regular

grid {Xd }, which in turn determines a corresponding grid of the same dimensions in

Fourier space {éd } Velocities and tractions along the boundary of the unit cell are left

undetermined. An average velocity gradient V; ; is imposed to the unit cell, which gives

. =1 . . .
an average strain-rate Ej; =§-(Vi) i +Vj,i). The local strain-rate field is a function of the

local velocity field, i.e. &;(vy (x)), and can be split into its average and a fluctuation term:

&j (vi (x))= Eij + EIJ (Vi (x)), where v;(x)= Eijx itV (x). By imposing periodic boundary



conditions, the velocity fluctuation field ¥, (x) is assumed to be periodic across the

boundary of the unit cell, while the traction field is antiperiodic, to meet equilibrium on

the boundary between contiguous unit cells.
The local constitutive equation that relates the deviatoric stress OU( x) and the strain-rate
&;(x) at point x is obtained from Eq. (1) adding the contribution of the 12 slip systems

assumed to be active in the ice single crystal:

\3
£y )= m ) ) Do) A )J o
- s=1 *(x)
If p(x) is the hydrostatic pressure field, the Cauchy stress field can be written as:
03(x) = L (%) + 955(x) - p(x) 8;; 4)
where the polarization field @i (x) given by:
0;§(%) = 6% (x) = Lijig €0 (%) )

and where L° is the stiffness of a linear reference medium. Combining Eq. (5) with the

equilibrium and the incompressibity conditions gives:

Lk Vi, (%) + 05,i(x)-p;(x)=0

(6)
Vi (x)=0

The system of differential equations (5), with periodic boundary conditions across the
unit cell boundary, can be solved by means of the Green function method. If Gy, and
H,, are the periodic Green functions associated with the velocity and hydrostatic
pressure fields, the solutions of system (6) are convolution integrals between those Green
functions and the actual polarization term. In the case of the velocity and its gradient,
after some manipulation:

Vk(®)= [Gyg,j(x—x") oy (x) dx’ 7
R3



Vii(x)= ,[Gik,jl (x—x) o (x') dx’ (8)
R3

Convolution integrals in direct space are simply products in Fourier space. Hence:

Vi (&)= (“iij)éki(%)@ij(@) 9)

~

&€)=T31"€)0u(e) (10)
where l“lj‘ilm = sym(Gik’ j1)~ The tensors Gj;(%) and fi?ilm (¢) are only functions of L° and

can be readily obtained for every point belonging to {Z;d} (for details, see [40]). Having

current guess values of the strain-rate field in the regular grid {xd} and computing the

corresponding stress field from the local constitutive relation (Eq. 3) allow us to obtain a

guess for the polarization field in direct space @ (xd) (Eq. 5), from which, by application
of FFT, ¢ij (&d) can be readily calculated. An improved guess for the strain-rate field in

{xd} can be then obtained antitransforming Eq. (10), and so on. The actual iterative
procedure used in the present case of creep of polycrystalline ice is based on an
augmented lagrangians algorithm [17] that guarantees that the converged stress and
strain-rate fields fulfill equilibrium and compatibility, respectively (see [17,40] for

details).

Upon convergence, the stress at each material point can be used to calculate the shear-
rates associated with each slip system (Eq. 1), from which fields of relative activity of the

basal, prismatic and pyramidal slip modes can be obtained, as well.

It is worth noting that, while it is certainly possible to use the present FFT-based
formulation for the prediction of microstructure evolution (e.g. using an explicit scheme
such that the strain-rate and velocity fields, and the corresponding local lattice rotation-
rates [40] are assumed constant during a time interval, and thus can be integrated to
predict local texture evolution, morphologic changes of the grains and local strain-

hardening), in this work, we have restricted our analysis to the local fields that are

10



obtained for a fixed configuration. In this sense, for example, the high strain-rate regions
predicted by the model (see below) should be regarded as precursors of localization
bands. Evidently, microstructural changes that are not considered under this
approximation, like the eventual grain's and subgrain’s morphologic evolution and
rotation, as well as the possible occurrence of local strain-hardening (although the latter
remains small in ice deforming at high temperature), may modify some of the trends
observed in the initial micromechanical fields. In order to account for these
microstructural changes, we are presently in the process of coupling the FFT-based
formulation with a front-tracking numerical platform [41]. Results of this coupled model

will be reported elsewhere [42,43].
3-2 Unit cell construction

The crystallographic texture of a 2-D ice polycrystal consisting of columnar grains with

<c>-axes perpendicular to the axial (vertical) direction x3 can be described in terms of a

collection of Euler angles triplets of the form (¢, 90°,¢,) (Bunge convention). The
angle @ determines the orientation of the <c>-axis on the plane perpendicular to the
columnar direction and ¢, gives the rotation of the hexagonal prism (i.e. the
conventional unit cell of the hep crystal structure) around its <c>-axis. The application of
the FFT method required the generation of a periodic unit cell or representative volume
Element (RVE), by repetition along x; and x; of a square domain. This square domain

was constructed in such a way that it contained the cross-sections of 200 columnar grains,

generated by Voronoi tessellation (see Fig. 3). Each Voronoi partition represents the

cross-section of a columnar grain with orientation (¢, 90°,¢,), where and were
g P P2 1 2

randomly selected from the interval [-180°,180°] (except for three grains assigned with
hand-picked orientations, see below). This square domain is the cross-section of the unit
cell, consisting of columnar grains with axes along x3 and sections in the x;-x; plane. This
unit cell was discretized using a 1024x1024x1 grid of regularly-spaced Fourier points,
resulting in an average of around 5250 Fourier points per grain. Note that the periodic

repetition of this unit cell along x3 determines infinitely long grains along this direction.
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For reasons that will become apparent below, the following three orientations:

(0°,90°,0°), (45°,90°.0°), (90°,90°,0°) were forced to make part of the set of 200
(otherwise random) orientations assigned to the grains. For this, three relatively big
Voronoi cells with large separations between each other (located in the lower left, at the
center, and in the upper right sections of the unit cell, see Fig. 3), were respectively
designated to have the above orientations. In the figure, the arrows indicate the

orientation of the corresponding <c>-axes. For a plane-strain state, such that x; is the

tensile direction and x; is the compression direction, the grain with @ =45° (“45 deg”
grain in what follows) is favorably-oriented to deform by soft basal slip, while in the “0
deg” and “90 deg” grains, the hard pyramidal systems are the only ones favorably-
oriented to accommodate deformation. It is worth noting that due to the above plane-
strain condition and the in-plane orientation of the <c>-axes, the prismatic slip systems

are not well-oriented, for any ¢; angle.

4- Results and discussion

A FFT-based calculation was run to obtain the overall and local mechanical response of
the above-described unit cell representing a columnar ice polycrystal, to the following

imposed strain-rate tensor (see also Fig. 3):

1x1078 0 0
E.=| 0 =1x10"% 0 (10)
0 0 0

The computed effective equivalent stress reached a value of 0.01875 in units of T°%,

resulting in a normalized reference equivalent stress G, (see Eq. 2) [13] of 9.11xt"3.

This roughly represents an effective response twice softer of this kind of isotropic
columnar ice polycrystal deformed in-plane, compared to an isotropic 3-D polycrystalline

bas is around the value of the single

ice (the magnitude of G, of the latter, in units of 1
crystal's anisotropic parameter [15], i.e. 6, = 20X 8 in the present case). As expected,

12



the computed overall relative activities of the different slip modes (i.e. 90.7%, 7.6% and
1.7% for basal, pyramidal and prismatic slip respectively) show a preeminence of basal

slip, a minor contribution of pyramidal slip and a very low activity of prismatic slip.
Figure 4 shows the computed equivalent strain-rate field for the entire unit cell,
normalized with respect to the average equivalent strain-rate (Eeq =1.15x1078). The

mean feature observed in this plot is a network of high strain-rate bands, precursors of
localization bands (in what follows we will sometimes refer to them simply as
"localization bands"). These bands are transmitted from grain to grain and are, in general,
inclined with respect to the shortening and extension directions. They follow tortuous
paths, sometimes with large deviations from 45 deg (i.e. the macroscopic directions of
maximum shear stress). As it will be shown in more detail below, the reason for this is
that they follow crystallographic directions (basal poles or basal planes) inside each grain,
forming either kink or shear bands. Some segments of these bands also follow favorably-
oriented grain boundaries and frequently go through triple or multiple points between
grains, in good agreement with some Mansuy's [4] observations (see Fig. 2). These
transgranular bands usually fade and eventually stop inside grains whose orientations
force the bands to adopt an orientation close at O or 90 deg. The most intense bands (>10
times the macro strain-rate) are thinner and generally only one of them is found inside a
given grain. Less intense bands appear in parallel pairs inside some grains, connected by
another system of orthogonal and even less intense bands (see also fields predictions in

the vicinity of the 45 deg grain below).

The next three figures show in more detail the predicted fields of equivalent strain-rate

bas

(normalized to Eeq ), equivalent stress (in units of T ) and relative basal activity, in the

vicinities of the 0, 45 and 90 deg grains, together with the map of randomly-assigned
orientations of the surrounding grains in those vicinities. Figure S corresponds to the
vicinity of the 45 deg grain. Two very intense (i.e. local strain-rates higher than 10 times
the macroscopic strain-rate) and parallel kink bands (note the alignment of the latter with
the basal pole direction) are seen inside the 45 deg grain, connected by several less

intense shear bands (orthogonal to the pair of kink bands, lying on to the basal plane), in

13



good agreement with Mansuy's experiments (see Fig. 2). Both bands go through triple and
quadruple points formed by the central grain and neighbor crystals. The upper kink band
propagates down and to the right, into the -54.9 deg grain, in the form of a shear band.
The lower band propagates up and to the left, following two well-oriented (i.e. with an
inclination close to 45 deg) grain boundaries. The basal activity in the 45 deg grain is very
high, although some regions of higher non-basal activity can be observed between shear
bands and immediately outside the kink bands. The latter is compatible with a low or
even vanishing resolved shear stress on basal planes in those locations, which may be
responsible for the formation of basal dislocation walls that are at the origin of a kink
band [4,6]. This correlation between kink band precursors and nearby localized higher

non-basal activity is systematic in our results.

In the case of the surroundings of the 0 deg grain (Fig. 6) one can observe a shear band
coming into the central grain, out of the highly stressed quadruple point on the right that
struggles to propagate inside the 0 deg grain. The only clear kink band is found in the
37.2 deg crystal again well oriented for basal slip. No kink band precursors are observed
in the O deg grain. This is compatible with the absence of a clear indication of kink bands
in grains #5 and #6 of Fig. 2. The reason for this behavior is that kink bands in grains of
such orientation are ineffective to accommodate the applied deformation (i.e. shortening

along the compressive direction or extension along the tensile direction).

The 90 deg grain and its vicinity are shown in Fig. 7. In this case, a kink region initiates at
a triple point between the central grain and the 82.9 deg and 58.0 deg crystals, by the
confluence of two bands coming from these neighbors, but it vanishes inside the grain. It
is also worth noting that the sharp shear band observed in grains with a small tilt with
respect to 90 deg, like the 82.9 deg grain on the upper-left, indicates the possibility of
finding of intense basal slip lines in grains with orientations very close to 90 deg, as also
reported by Mansuy [4]. In such grains, a relatively low basal activity and a relatively

high equivalent stress is observed.

The effect of the size of the surrounding crystals on the deformation heterogeneity of

large grains is analyzed next. Figure 8 shows another RVE configuration studied using
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the FFT-based approach. This unit cell was constructed as follows. A new 2-D Voronoi
tessellation with 100,000 grains was generated and discretized using the same number of
Fourier points (1024x1024) as before. The resulting average grain size (linear dimension,

in same units as the distance between two adjacent Fourier points) is given by

d=\/(1024)2/100000 ~3. Since the average grain size of the original RVE was

\/(1024)2 / 200 =72, the ratio between these two average grain sizes roughly represents

the ratio between the linear dimensions of the large central single crystal and the
surrounding globular grains, of Mansuy's specimen #1 shown in Fig. 1. Next, the two
Voronoi structures (i.e. of 200 and 100,000 grains, respectively) were superimposed and
combined. In this combination, the small grains were kept, except for 0, 45 and 90 deg
grains, which replaced the overlapping fine grains, resulting in the configuration of Fig. 8.
The predicted equivalent strain-rate field is shown in Fig. 9. While the 0 and 90 deg
grains deform very little, the strain-rate field inside the 45 deg grain is around two times
the average strain-rate, with much less fluctuation than in the RVE surrounded by large
grains. However, unlike Mansuy's specimen #1 (see Fig. 1), both types of (mild) bands of
higher strain-rate (contained in, and perpendicular to the basal plane, respectively) were
predicted. The retained sharp angles of the 45 deg grain (as opposite to the circular
geometry of the central crystal of Fig. 1) are the likely cause of this disagreement. In what
concerns the strain-rate field predicted in the matrix outside the large grains, it is apparent
from the comparison of Figs. 4 and 9 that the length of the localization bands correlates
with the typical grain size of the microstructure. This result of our model can be
qualitatively compared with Doumalin et al. observations [44,45] on strain localization
patterns in different heterogeneous materials. These authors have used microextensometry
techniques to characterize strain localization bands in a Ni/Ag two-phase material
deformed plastically in compression, forming at 45 deg with respect to the compression
axis, and having a characteristic length of between 2 and 6 times the correlation length of
the phase distribution [44]. Also, in polycrystalline Zr deformed in tension, localization
bands were formed at a slightly higher angle (£52 deg) with respect to the tensile

direction, with a characteristic length of 5-10 times the aggregate's grain size [45].
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Although the precise value of the factor between the length of the localization bands and
the heterogeneity length-scale evidently depends on the mechanical contrast between
phases, or on the single-crystal anisotropy, our simulations are in good qualitatively
agreement with Doumalin et al observations. This can be seen in Fig. 10, which shows
the strain-rate field (in two different scales, and with and without grain boundaries

superimposed) in the vicinities of the large 0, 45 and 90 grains.

5- Concluding remarks

A full-field formulation was adapted and used to predict the micromechanical fields that
develop in columnar ice polycrystals deformed under plane strain compression. This
formulation, conceived as a very efficient alternative to FE methods (which calculation
times usually scale with Nz, where N is the number of discretization points), is based on
the repetitive use of the FFI algorithm, which computing time scales with NxlogN.
This high numerical efficiency combined with the resolution of the 2-D problem
associated with the deformation of columnar ice polycrystals, allowed us to obtain very

detailed predictions of the intragranular mechanical fields.

Under the assumption of creep deformation accommodated exclusively by dislocation
glide (consistent with stresses >0.3 MPa and strain-rates >10® s), the deformation
heterogeneity predicted by the model is in good qualitative agreement with the available
experimental evidence. Narrow regions of high strain-rate comprising several grains,
compatible with the subsequent formation of localization bands lying on the basal plane
(shear bands) and perpendicular to the basal plane (kink bands), were found, and their
dependence with crystallographic orientation, grain morphology and interaction with
neighbor grains was studied and validated. In the laboratory, kink bands were observed to
form after significant basal slip [4, 9] and, specially, in grains well oriented for basal slip
(Fig. 2). From Figs. 6 and 7, kink bands predicted by the FFT model were also not
observed in the 0 deg and 90 deg grains, which are not well oriented for basal slip. Kink
bands with basal planes parallel to the compression axis have been observed in 2-D
columnar ice, but at a strain rate of about 10° s, within the ductile-brittle transition [46].

At these high strain rates, cracks induced by the pileup of dislocations were observed at
16



the kink band boundaries. It is worth noting that the difficulty to initiate reversible
incipient kink bands in ice, which are seen to nucleate on the easy slip plane in several
anisotropic hexagonal metals when loaded parallel to this plane [29-31], is related to the

brittle behavior of ice at relatively low stresses [47,48].

Kink bands, as predicted by the FFT-based model, are expected to easily form in 2-D
columnar sea and lake ice [8], especially in high pressure zones located at the interface
between ice and rigid marine structures. On the other hand, this is generally not the case
in 3-D natural glacier ice that deforms at strain rates generally lower than 107 571 At
those low stresses and strain-rates, alternative accommodation processes, such as grain
growth, dynamic recrystallization and, possibly, diffusion and grain-boundary sliding can
efficiently contribute to reduce the long-range internal stress field associated with the
mismatch of slip at grain boundaries in such anisotropic material. These accommodation
processes should therefore preclude the formation of kink bands [9]. This may be the
reason why kink bands have never been observed in polar ice sheets. On the other hand,
the active slip modes in 2-D and 3-D ices can be different. In the present FFT-based
simulations, the predicted relative activity of non-basal slip was less than 10%, and
essentially associated with pyramidal slip. The rather low activity of the prismatic slip
systems (1.7%), compared with that predicted for a 3D granular ice (about 8%) [13] is
related to a vanishing resolved component of the applied stress on the prismatic planes

when 2-D ice is deformed under compression normal to the columnar axis.

The present micromechanical formulation can be adapted to 3-D granular ice and used as
a basis to account for more of the relevant accommodation processes taking place in polar
ice sheets, but it obviously needs further improvement. Microstructural update using an
explicit scheme as explained at the end section 3-1 can provide information about the
development of dislocation structures. Intragranular misorientations [40] and the excess
dislocation density fields [49] can be readily obtained and incrementally updated by
numerical derivation of the predicted deformation gradient field. In turn, these fields, in
combination with an appropriate thermomechanical modeling platform (e.g. [41]), can be
used to calculate local driving forces for the prediction of dynamic recrystallization

[42,43]. Furthermore, a more straightforward and quantitative comparison with
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experimental evidence can be achieved using the present model in combination with
direct input from microstructure images, integrating in-situ Electron Back Scattering
Diffraction (EBSD) observations (e.g. [50], and [51] in specific case of ice polycrystals)

with numerical simulations [50].
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Figure Captions

Figure 1: Photograph of specimen #1 (after Mansuy [4]) between crossed polarizers, after a
deformation of 6.3 x 10”%. The corresponding strain-rate was 4.5 x 10® s, The diameter of
the initially circular monocrystalline inclusion was 30 mm. Parallel lines are the traces of the

basal planes.

Figure 2: Photograph of specimen #2 (after Mansuy [4]) between crossed polarizers, after a
deformation of 6.6 x 10 The corresponding strain-rate was 6.0 x 10 s™'. The mean size of
each hexagonal grain was 20 mm. Black and white arrows indicate the initial c-<axis>
orientations.

Figure 3: Unit cell containing the cross-sections of 200 columnar grains generated by
Voronoi tesellation. The three hand-picked orientations: (Q°, 90°, 0°) , (45°, 90°, 0°) and

(90°, 90°, 0°), and the extension and shorting directions are also indicated.
Figure 4: Predicted equivalent strain-rate field over the entire unit cell of Fig. 1, normalized

with respect to the average equivalent strain-rate (Eeq =1.15x107%).

Figure 5: Predicted fields of equivalent strain-rate (normalized to Eeq), equivalent stress (in

bas

units of T ), relative basal activity, and map of neighbor orientations, for the 45 deg grain

and its surroundings.

Figure 6: Predicted fields of equivalent strain-rate (normalized to Eeq), equivalent stress (in

bas)

units of 1" ), relative basal activity, and map of neighbor orientations, for the 0 deg grain

and its surroundings.

Figure 7: Predicted fields of equivalent strain-rate (normalized to Eeq), equivalent stress (in

bas

units of 77 ), relative basal activity, and map of neighbor orientations, for the 90 deg grain

and its surroundings.

Figure 8: Unit cell obtained combining 100,000 Voronoi grains the three grains of the 200-

grain unit cell of Fig. 1 with hand-picked orientations.
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Figure 9: Predicted equivalent strain-rate field over the entire unit cell of Fig. 8, normalized

with respect to the average equivalent strain-rate (Eeq =1.15x107%).

Figure 10: Predicted equivalent strain-rate field in the vicinities of the 0, 45 a 90 deg grains,
normalized with respect to the average equivalent strain-rate (Eeq =1.15x107% ). Left

column; Grain boundaries shown and highest color in the scale represents intensities of 5+.
Right column: highest color in the scale represents intensities of 2+ and grain boundaries are

not plotted.
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