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Abstract 

A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and 

used to predict the micromechanical fields that develop in columnar Ih ice polycrystals 

deforming in compression by dislocation creep. The predicted intragranular mechanical 

fields are in qualitative good agreement with experimental observations, in particular 

those involving the formation of shear and kink bands. These localization bands are 

associated with the large internal stresses that develop during creep in such anisotropic 

material, and their location, intensity, morphology and extension are found to depend 

strongly on the crystallographic orientation of the grains and on their interaction with 

neighbor crystals. The predictions of the model are also discussed in relation with the 

deformation of columnar sea and lake ice, and with the mechanical behavior of granular 

ice of glaciers and polar ice sheets, as well. 
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1- Introduction 

Ih ice single crystals deform plastically in the dislocation glide regime essentially by 

(0001) < 1210 > basal slip. The yield point observed during the early stage of plastic 

flow, associated with the formation of slip lines, is related to the multiplication of basal 

dislocations by slip, cross-slip and/or dislocation climb [1]. The stress required to 

produce a given effective strain-rate along a crystallographic direction not lying on the 

basal plane is between one and two orders of magnitude greater than the stress necessary 

to produce the same strain-rate along a direction belonging to the basal plane [2]. 

The single crystals that form glacier ice and polar ice sheets exhibit a wide range of sizes 

and morphologies, but, in general, the structure of this polycrystalHne ice can be 

characterized as being "granular" or "three-dimensional" (3-D). Another natural form of 

ice is the so-called "columnar" or "two-dimensional" (2-D) polycrystalline ice, consisting 

of an aggregate of columnar grains with the <c>-axis of each single crystal randomly 

oriented in the plane perpendicular to the direction of the columns. This kind of aggregate 

is obtained when ice grows from the surface of calm water in an unidirectional 

temperature gradient This type of ice forms the natural covers of the Arctic Ocean and 

northern large rivers. Two-dimensional ice samples can be also prepared in the 

laboratory, for controlled testing [3-6]. 

The aforementioned very large viscoplastic anisotropy of ice single crystals has 

consequences on the mechanical response of ice polycrystals. On the one hand, the 

development of lattice preferred orientations (crystallographic textures) as ice deforms 

(e.g. when it is transported into the depths of a polar ice sheet) determines striking 

differences in the viscous response of textured ice polycrystals to stresses applied along 

different directions (e.g. [7]). On the other hand, the fulfillment of both compatibility and 

stress equilibrium across grain boundaries results in heterogeneous intragranular 

deformation patterns [3-6, 8-10]. High orientation gradients were observed in ice crystals 

extracted from the Antarctic ice sheet [11]. Dynamic continuous and discontinuous 

recrystallization, which is very active in ice sheets [12], contributes to the reduction of the 
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long-range internal stresses field induced by such intragranular deformation 

heterogeneities. 

Texture development in polar ice sheets and the resulting anisotropic response of 

polycrystalline ice have been intensively studied using mean-field models (e.g. [l3-15]). 

This kind of approaches is based on the statistical characterization of the intragranular 

mechanical fields (in terms of average grain stresses and strain-rates, and, in the most 

advanced formulations, also through the determination of the intracrystalline average 

field fluctuations [15]), but the actual micromechanical fields remain inaccessible to these 

homogenization approaches. 

The modelling of the intracrystalline heterogeneity that develops in ice polycrystals 

(which requires the use of full-field approaches) has been, on the other hand, much less 

investigated. To fill this gap, this work is devoted to the study of the correlation existing 

between the heterogeneous deformation patterns that appear inside the constituent single 

crystal grains of an ice aggregate and their corresponding crystallographic orientations, 

along with the influence of other factors, like orientation and size of neighboring grains. 

To this end, a full-field formulation based on the Fast Fourier Transform (FFT) [16-18] 

has been adapted to obtain the micro mechanical fields that develop in polycrystalline ice 

deforming by dislocation creep. 

We have chosen to pursue this study on columnar ice polycrystals, for various reasons. 

On the one hand, dealing with a 2-D problem allowed us to use higher resolution (i.e. 

more discretization points) to characterize the intracrystalline fields, and to fully visualize 

the results in a 2-D representation. Another advantage is that the mathematical 

representation of this kind of polycrystals is easier since each crystallographic orientation 

is almost fully characterized by only one angular parameter (rather than by three Euler 

angles, as in the case of 3-D polycrystals). Also, most importantly, we have available a 

comprehensive set of experimental results on crystal orientation and neighborhood type 

dependence of the intracrystalline localization patterns observed in laboratory grown and 

tested columnar ice specimens with different microstructures [3-6], which can be used for 

validation of our model predictions. 
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The plan of this paper is as follows. In section 2 we review the available experimental 

evidence on the effective and local viscoplastic behavior of polycrystalline ice and recall 

some experimental results obtained by Mansuy [4] on the orientation- and rnicrostructure­

dependent deformation localization patterns in columnar ice polycrystals. In section 3 we 

provide details of the model utilized and the unit cell used in this study. In section 4 we 

present the results of our simulations and compare them with the experimental evidence. 

In section 5 we conclude discussing possible improvements of the modelling of natural 

polycrystalline ice, based on the capabilities of the present micromechanical formulation. 

2- Mechanical behavior of polycrystalline ice 

2-1 Effective and local viscoplastic behavior ofpolycrystalline ice 

The secondary creep of polycrystalline ice is reached at strains of about I%. The 

corresponding stress exponent is close to 3 for deviatoric stresses higher than 0.2 MPa 

[2]. Otherwise, for conditions prevailing in polar ice sheets (deviatoric stresses lower than 

0.2 MPa and strain-rates lower than 10-10 
S-1) the stress exponent for steady state creep is 

lower than 2, as suggested by borehole deformation measurements [19], bubbly ice 

densification [20] and laboratory tests [21]. Under these very low stress and strain-rate 

conditions, dislocation creep remains the dominant deformation mode [22,23] but grain 

boundary sliding [24,25] and grain boundary migration [23] can also accommodate strain 

and control the deformation kinetics. Therefore, in what follows, for consistency with the 

assumption of dislocation glide being the exclusive viscoplastic deformation mechanism, 

and also for a meaningful comparison with laboratory measurements of deformation 

localization in columnar ice [3-6], obtained at strain-rates between 10-8 and 10-7 s-\ a 

stress exponent of 3 is assumed. 

Hexagonal ice single crystals have a cia relation of 1.629. Based on direct and indirect 

evidence (e.g. see [13] and references therein), is usually assumed that they can deform 

by means of slip on three soft (0001) < 1210 > basal ("basil) slip systems, three hard 

{1Q10}<121Q> prismatic Cpr") systems, and six hard {1122} <1123 > pyramidal 

4 




("pyr") systems. The rate-sensitive equation, relating the shear-rate on each slip system 

and the stress acting on the crystal, is given by: 

(1) 

where aij is the deviatoric stress tensor, m~j is the Schmid tensor of slip system (s) 

defined as mfj (nrbj +njbr )/2, with nsand bS being the normal and Burgers vectors 

Sof system (s); i' and t are, respectively, the shear-rate and the threshold stress of slip 

system (s); n=3 is the creep exponent and Yo is reference shear-rate. Hence, the single 

crystal anisotropy is characterized by the ratio between the critical stresses of the different 

=1:pyr pr l1:bas 1:pyr l1:basslip modes. In what follows, we have adopted 1:pr and M t . 

The value of the anisotropic parameter M was adjusted to experiments, according to the 

following considerations. A normalized effective response of a viscoplastic material can 

be obtained in terms of the reference equivalent stress ao ' defined as [13]: 

. Leq 
(2)Yo (. )l/n

Eeq 

where n is the macroscopic stress exponent, and Leq and Eeq are the macroscopic von 

Mises equivalent stress and strain-rate. For Yo =1, a typical value of the reference stress 

for an isotropic ice polycrystal (i.e. one made of randomly-oriented crystals), at -lOoe, 

basfor a viscosity exponent n=3 is a 1t =18 [13]. The latter relation expresses the ratio o 

between the viscosity of a isotropic polycrystalline ice sample and a single crystal 

deforming by basal glide. Previous studies [15] using the FFT-based model to calculate 

the effective response of isotropic ice showed a linear dependence of the reference stress 

with the anisotropy parameter M, with a slope very close to one. Based on this scaling ao 

behavior, a value of the anisotropic parameter M=20 was adopted in the calculations that 
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follow. It is worth noting that the choice of a higher M value does not change 

qualitatively the results to be presented below. 

2-2 Deformation heterogeneity in columnar ice polycrystals 

Mansuy [4,6] conducted a series of compression creep experiments on laboratory-grown 

large columnar ice crystals and multicrystals with different orientations and surrounded 

by a matrix of smaller crystals. The specimens were plates of 2lOx140mm with a 

relatively thick (8 mm) section, consisting of a large columnar single crystal or a 

multicrystalline cluster, located in the center of the plate, with columnar axes along plate 

thickness (that is, having their <c>-axes lying on the plane of the plate) and embedded in 

fine-grained ice matrices. In what follows, results of two types of specimens tested by 

Mansuy are going to be discussed and compared with corresponding simulations: 

a) Specimen #1 (Fig. 1), consisting of a single crystal with a circular section in the plane 

of the plate, measuring 30 mm in diameter, embedded in an isotropic matrix of very fine 

globular grains (of around Imm in diameter, i.e. small compared to the sample thickness) 

with random orientations. The <c>-axis of the central crystal was inclined 45 deg with 

respect to the compression axis. 

b) Specimen #2 (Fig. 2), consisting of seven grains, hexagonal in shape, of about 20 mm 

in size, surrounded by a matrix of smaller (3-8 mm in diameter) columnar grains. The 

<c>-axes of the central grains had different initial orientations in the plane of the plate. 

These ice specimens were tested under compression exerted in the their plane at -lOoe. 

The applied compression stress was respectively 0.5 MPa for specimen #1 and 0.75 MPa 

for specimen #2. Figure 1 shows the localization of the deformation in basal slip lines in 

specimen #1 after a strain of about 0.06. Figure 2 shows, after about the same strain 

(0.07), three types of localization bands: basal shear bands, kink bands and sub­

boundaries, that change orientation to fol1ow crystallographic directions when they cross 

from one grain to another. Kink band boundaries are roughly parallel to the <c>-axis and 

are seen inside in two grains (#2 and #7). These kink bands appear to form after some 

basal slip and the bending of basal planes [4,6]. On the other hand, kink bands are not 
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observed in grains #3, #5 and #6, which are not well oriented for basal slip. Sub­

boundaries parallel to the <c>-axis can be seen in grain #3. The difference in behavior for 

the two types of specimens is related to the stress conditions at the interface between each 

crystal and its neighborhood. A better accommodation of basal slip by the fine-grained 

matrix explains the absence of shear and kink bands in the central grain of specimen # 1. 

It is worth noting that the formation of kink bands, described as a sharp or discontinuous 

change in orientation of the active slip surface, had been previously reported in many 

experimental studies conducted on 3-D ice polycrystals (e.g. [8-10]). In particular, Wilson 

et al [9] reported the fonnation of kink bands in grains of a 3-D polycrystal deformed in 

plane strain, with <c>-axis lying on the plane containing the shortening and extension 

directions, nonnal to the shortening axis. Furthennore, kinking is not restricted to plastic 

deformation of ice. It has been reported to occur in different low-symmetry materials, 

both as an inelastic mechanism (alternative to easy glide and defonnation twinning, when 

the former is not favorably-oriented and the later is inactive due to, e.g., a high single 

crystal's cIa ratio [26-29]) and, recently, also as an elastic (reversible) deformation 

mechanism (e.g. [30,31 D. Kink bands were also observed in fcc single crystals (e.g. [32]), 

specially at sites of high stress concentration like crack tips [33]. The development of 

these kink bands has been successfully simulated using crystal plasticity-based Finite 

Element (FE) analysis [33-35]. Therefore, the present analysis of the deformation of 

columnar polycrystalline ice can be regarded also as a model material study, to better 

understand this ubiquitous mechanism that kinking represents. 

3- Model 

3-1 The FFT-basedformulation 

The intracrystalline states that are developed during creep of polycrystalline ice can be 

obtained using an extension of an iterative method based on FFT, originally proposed by 

Moulinec and Suquet [16] and Michel et al [17] for linear and non-linear composites. 

This formulation was later adapted to polycrystals and applied to the prediction of texture 

development of fcc materials [18], and in tum used for the computation of field statistics 
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and effective properties of power-law 2D polycrystals [36,37] and 3D cubic, hexagonal 

[38] and orthorhombic [39] materials. The FFT-based formulation was also recently 

applied to compute the development of local misorientations in polycrystalline copper, 

with direct input from orientation images [40]. The present work is the first application of 

this formulation for the prediction of local fields in non-cubic materials. 

The FFT-based full-field formulation for viscoplastic polycrystals is conceived for a 

periodic unit cell, provides an exact solution of the governing equations, and has better 

numerical performance than a FE calculation for the same purpose and resolution. The 

viscoplastic FFT-based formulation consists in finding a strain-rate field, associated with 

a kinematically-admissible velocity field, which minimizes the average of local work­

rate, under the compatibility and eqUilibrium constraints. The method is based on the fact 

that the local mechanical response of a periodic heterogeneous medium can be calculated 

as a convolution integral between the Green function of a linear reference homogeneous 

medium and the actual heterogeneity field. Such type of integrals reduces to a simple 

product in Fourier space, therefore the FFT algorithm can be used to transform the 

heterogeneity field into Fourier space and, in tum, to get the mechanical fields by 

anti transforming that product back to real space. However, since the actual heterogeneity 

field depends precisely on the a priori unknown mechanical fields, an iterative scheme 

should be implemented to obtain, upon convergence, a compatible strain-rate field and a 

stress field in equilibrium. 

The periodic unit cell representing the polycrystal is discretized by means of a regular 

grid {xd }, which in tum determines a corresponding grid of the same dimensions in 

Fourier space {;d}. Velocities and tractions along the boundary of the unit cell are left 

undetermined. An average velocity gradient Vi,j is imposed to the unit cell, which gives 

an average strain-rate Eij = ~ (Vi,j +Vj,J The local strain-rate field is a function of the 

local velocity field, i.e. £ij (Vk (x)), and can be split into its average and a fluctuation term: 
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conditions, the velocity fluctuation field vk (x) is assumed to be periodic across the 

boundary of the unit cell, while the traction field is antiperiodic, to meet equilibrium on 

the boundary between contiguous unit cells. 

The local constitutive equation that relates the deviatoric stress crij (x) and the strain-rate 

tij (x) at point x is obtained from Eq. (1) adding the contribution of the 12 slip systems 

assumed to be active in the ice single crystal: 

(3) 


If p(x) is the hydrostatic pressure field, the Cauchy stress field can be written as: 

(4) 


where the polarization field <Pi/X) given by: 

(5) 


and where LO is the stiffness of a linear reference medium. Combining Eq. (5) with the 

equilibrium and the incompressibity conditions gives: 

L?jklVk,lj(X)+<Pij)X)- P,i (x) = 0 
(6) 

Vkk(X)=O. 
The system of differential equations (5), with periodic boundary conditions across the 

unit cell boundary, can be solved by means of the Green function method. If Gkrn and 

Hm are the periodic Green functions associated with the velocity and hydrostatic 

pressure fields, the solutions of system (6) are convolution integrals between those Green 

functions and the actual polarization term. In the case of the velocity and its gradient, 

after some manipulation: 

Vk(X)= fGki,j(X-X')<pj/x')dx' (7) 
R3 
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Vi,j (x) = JGik,jI (x - X') <Pkl (X') dx' (8) 
R3 

Convolution integrals in direct space are simply products in Fourier space. Hence: 

(9) 

(10) 

where rij~m =sym(Gik,jI)' The tensors Gij(~) and fij~m(~) are only functions of LO and 

can be readily obtained for every point belonging to {~d} (for details, see [40]). Having 

current guess values of the strain-rate field in the regular grid {xd } and computing the 

corresponding stress field from the local constitutive relation (Eq. 3) allow us to obtain a 

guess for the polarization field in direct space <Pi/xd) (Eq. 5), from which, by application 

of FFT, <Pij (;d) can be readily calculated. An improved guess for the strain-rate field in 

{xd } can be then obtained antitransforming Eq. (10), and so on. The actual iterative 

procedure used in the present case of creep of polycrystalline ice is based on an 

augmented lagrangians algorithm [17] that guarantees that the converged stress and 

strain-rate fields fulfill eqUilibrium and compatibility, respectively (see [17,40] for 

details). 

Upon convergence, the stress at each material point can be used to calculate the shear­

rates associated with each slip system (Eq. 1), from which fields of relative activity of the 

basal, prismatic and pyramidal slip modes can be obtained, as well. 

It is worth noting that, while it is certainly possible to use the present FFT-based 

formulation for the prediction of microstructure evolution (e.g. using an explicit scheme 

such that the strain-rate and velocity fields, and the corresponding local lattice rotation­

rates [40] are assumed constant during a time interval, and thus can be integrated to 

predict local texture evolution, morphologic changes of the grains and local strain­

hardening), in this work, we have restricted our analysis to the local fields that are 
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obtained for a fixed configuration. In this sense, for example, the high strain-rate regions 

predicted by the model (see below) should be regarded as precursors of localization 

bands. Evidently, microstructural changes that are not considered under this 

approximation, like the eventual grain's and subgrain's morphologic evolution and 

rotation, as well as the possible occurrence of local strain-hardening (although the latter 

remains small in ice deforming at high temperature), may modify some of the trends 

observed in the initial micromechanical fields. In order to account for these 

microstructural changes, we are presently in the process of coupling the FFf-based 

formulation with a front-tracking numerical platform [41]. Results of this coupled model 

will be reported elsewhere [42,43]. 

3-2 Unit cell construction 

The crystallographic texture of a 2-D ice polycrystal consisting of columnar grains with 

<c>-axes perpendicular to the axial (vertical) direction X3 can be described in terms of a 

collection of Euler angles triplets of the form (<PI, 90°, <P2) (Bunge convention). The 

angle <PI determines the orientation of the <c>-axis on the plane perpendicular to the 

columnar direction and <P2 gives the rotation of the hexagonal prism (Le. the 

conventional unit cell of the hcp crystal structure) around its <c>-axis. The application of 

the FFf method required the generation of a periodic unit cell or representative volume 

Element (RVE), by repetition along Xl and X2 of a square domain. This square domain 

was constructed in such a way that it contained the cross-sections of 200 columnar grains, 

generated by Voronoi tessellation (see Fig. 3), Each Voronoi partition represents the 

cross-section of a columnar grain with orientation (<PI, 90° ,<P2), where <P1 and <P2 were 

randomly selected from the interval [-180°,180°] (except for three grains assigned with 

hand-picked orientations, see below). This square domain is the cross-section of the unit 

cell, consisting of columnar grains with axes along X3 and sections in the XI-X2 plane. This 

unit cell was discretized using a 1024x 1024x 1 grid of regularly-spaced Fourier points, 

resulting in an average of around 5250 Fourier points per grain. Note that the periodic 

repetition of this unit cell along X3 determines infinitely long grains along this direction. 
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For reasons that will become apparent below, the following three orientations: 

(0°,90° ,0°), (45°,90'" ,0°), (90°,90° ,0"') were forced to make part of the set of 200 

(otherwise random) orientations assigned to the grains. For this, three relatively big 

Voronoi cells with large separations between each other (located in the lower left, at the 

center, and in the upper right sections of the unit cell, see Fig. 3), were respectively 

designated to have the above orientations. In the figure, the arrows indicate the 

orientation of the corresponding <c>-axes. For a plane-strain state, such that Xl is the 

tensile direction and X2 is the compression direction, the grain with <PI = 45'" ("45 deg" 

grain in what follows) is favorably-oriented to deform by soft basal slip, while in the "0 

deg" and "90 deg" grains, the hard pyramidal systems are the only ones favorably­

oriented to accommodate deformation. It is worth noting that due to the above plane­

strain condition and the in-plane orientation of the <c>-axes, the prismatic slip systems 

are not well-oriented, for any <PI angle. 

4~ Results and discussion 

A FFl'-based calculation was run to obtain the overall and local mechanical response of 

the above-described unit cell representing a columnar ice polycrystal, to the following 

imposed strain-rate tensor (see also Fig. 3): 

. rlXIO-S 
£..IJ = ° -lxlO-S ° 00)° °l° ° ° 
The computed effective equivalent stress reached a value of 0.01875 in units of 'tbas , 

resulting in a normalized reference equivalent stress Go (see Eq. 2) [13] of 9.11x'tbas . 

This roughly represents an effective response twice softer of this kind of isotropic 

columnar ice polycrystal deformed in-plane, compared to an isotropic 3-D polycrystalline 

ice (the magnitude of Go of the latter, in units of 'tbas 
, is around the value of the single 

crystal's anisotropic parameter [15], i.e. Go == 20x'tbas in the present case). As expected, 
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the computed overall relative activities of the different slip modes (i.e. 90.7%, 7.6% and 

1.7% for basal, pyramidal and prismatic slip respectively) show a preeminence of basal 

slip, a minor contribution of pyramidal slip and a very low activity of prismatic slip. 

Figure 4 shows the computed equivalent strain-rate field for the entire unit cell, 

normalized with respect to the average equivalent strain-rate (Eeq =1.15 x 10-8). The 

mean feature observed in this plot is a network of high strain-rate bands, precursors of 

localization bands (in what follows we will sometimes refer to them simply as 

"localization bands"). These bands are transmitted from grain to grain and are, in general, 

inclined with respect to the shortening and extension directions. They follow tortuous 

paths, sometimes with large deviations from ±45 deg (Le. the macroscopic directions of 

maximum shear stress). As it will be shown in more detail below, the reason for this is 

that they follow crystallographic directions (basal poles or basal planes) inside each grain, 

forming either kink or shear bands. Some segments of these bands also follow favorably­

oriented grain boundaries and frequently go through triple or multiple points between 

grains, in good agreement with some Mansuy's [4] observations (see Fig. 2). These 

transgranular bands usually fade and eventually stop inside grains whose orientations 

force the bands to adopt an orientation close at 0 or 90 deg. The most intense bands (>10 

times the macro strain-rate) are thinner and generally only one of them is found inside a 

given grain. Less intense bands appear in parallel pairs inside some grains, connected by 

another system of orthogonal and even less intense bands (see also fields predictions in 

the vicinity of the 45 deg grain below). 

The next three figures show in more detail the predicted fields of equivalent strain-rate 

(normalized to Eeq ), equivalent stress (in units of 'tbas ) and relative basal activity, in the 

vicinities of the 0, 45 and 90 deg grains, together with the map of randomly-assigned 

orientations of the surrounding grains in those vicinities. Figure 5 corresponds to the 

vicinity of the 45 deg grain. Two very intense (i.e. local strain-rates higher than 10 times 

the macroscopic strain-rate) and parallel kink bands (note the alignment of the latter with 

the basal pole direction) are seen inside the 45 deg grain, connected by several less 

intense shear bands (orthogonal to the pair of kink bands, lying on to the basal plane), in 
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good agreement with Mansuy's experiments (see Fig. 2). Both bands go through triple and 

quadruple points formed by the central grain and neighbor crystals. The upper kink band 

propagates down and to the right, into the -54.9 deg grain, in the form of a shear band. 

The lower band propagates up and to the left, following two well-oriented (i.e. with an 

inclination close to 45 deg) grain boundaries. The basal activity in the 45 deg grain is very 

high, although some regions of higher non-basal activity can be observed between shear 

bands and immediately outside the kink bands. The latter is compatible with a low or 

even vanishing resolved shear stress on basal planes in those locations, which may be 

responsible for the formation of basal dislocation walls that are at the origin of a kink 

band [4,6]. This correlation between kink band precursors and nearby localized higher 

non-basal activity is systematic in our results. 

In the case of the surroundings of the 0 deg grain (Fig. 6) one can observe a shear band 

coming into the central grain, out of the highly stressed quadruple point on the right that 

struggles to propagate inside the 0 deg grain. The only clear kink band is found in the 

37.2 deg crystal again well oriented for basal slip. No kink band precursors are observed 

in the 0 deg grain. This is compatible with the absence of a clear indication of kink bands 

in grains #5 and #6 of Fig. 2. The reason for this behavior is that kink bands in grains of 

such orientation are ineffective to accommodate the applied deformation (i.e. shortening 

along the compressive direction or extension along the tensile direction). 

The 90 deg grain and its vicinity are shown in Fig. 7. In this case, a kink region initiates at 

a triple point between the central grain and the 82.9 deg and 58.0 deg crystals, by the 

confluence of two bands coming from these neighbors, but it vanishes inside the grain. It 

is also worth noting that the sharp shear band observed in grains with a small tilt with 

respect to 90 deg, like the 82.9 deg grain on the upper-left, indicates the possibility of 

finding of intense basal slip lines in grains with orientations very close to 90 deg, as also 

reported by Mansuy [4]. In such grains, a relatively low basal activity and a relatively 

high equivalent stress is observed. 

The effect of the size of the surrounding crystals on the deformation heterogeneity of 

large grains is analyzed next. Figure 8 shows another RVE configuration studied using 
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the FFT-based approach. This unit cell was constructed as follows. A new 2-D Voronoi 

tessellation with 100,000 grains was generated and discretized using the same number of 

Fourier points (1 024x I 024) as before. The resulting average grain size (linear dimension, 

in same units as the distance between two adjacent Fourier points) is given by 

d = ~(1024)2 /100000"", 3. Since the average grain size of the original RVE was 

~(1024l /200 "'" 72, the ratio between these two average grain sizes roughly represents 

the ratio between the linear dimensions of the large central single crystal and the 

surrounding globular grains, of Mansuy's specimen #1 shown in Fig. 1. Next, the two 

Voronoi structures (i.e. of 200 and 100,000 grains, respectively) were superimposed and 

combined. In this combination, the small grains were kept, except for 0, 45 and 90 deg 

grains, which replaced the overlapping fine grains, resulting in the configuration of Fig. 8. 

The predicted equivalent strain-rate field is shown in Fig. 9. While the 0 and 90 deg 

grains deform very little, the strain-rate field inside the 45 deg grain is around two times 

the average strain-rate, with much less fluctuation than in the RVE surrounded by large 

grains. However, unlike Mansuy's specimen #1 (see Fig. 1), both types of (mild) bands of 

higher strain-rate (contained in, and perpendicular to the basal plane, respectively) were 

predicted. The retained sharp angles of the 45 deg grain (as opposite to the circular 

geometry of the central crystal of Fig. 1) are the likely cause of this disagreement. In what 

concerns the strain-rate field predicted in the matrix outside the large grains, it is apparent 

from the comparison of Figs. 4 and 9 that the length of the localization bands correlates 

with the typical grain size of the microstructure. This result of our model can be 

qualitatively compared with Doumalin et aL observations [44,45] on strain localization 

patterns in different heterogeneous materials. These authors have used microextensometry 

techniques to characterize strain localization bands in a NilAg two-phase material 

deformed plastically in compression, forming at ±45 deg with respect to the compression 

axis, and having a characteristic length of between 2 and 6 times the correlation length of 

the phase distribution [44]. Also, in polycrystalline Zr deformed in tension, localization 

bands were formed at a slightly higher angle (±52 deg) with respect to the tensile 

direction, with a characteristic length of 5-10 times the aggregate's grain size [45]. 
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Although the precise value of the factor between the length of the localization bands and 

the heterogeneity length-scale evidently depends on the mechanical contrast between 

phases, or on the single-crystal anisotropy, our simulations are in good qualitatively 

agreement with Doumalin et al observations. This can be seen in Fig. 10, which shows 

the strain-rate field (in two different scales, and with and without grain boundaries 

superimposed) in the vicinities of the large 0, 45 and 90 grains. 

5- Concluding remarks 

A full-field formulation was adapted and used to predict the micro mechanical fields that 

develop in columnar ice polycrystals deformed under plane strain compression. This 

formulation, conceived as a very efficient alternative to FE methods (which calculation 

times usually scale with N2
, where N is the number of discretization points), is based on 

the repetitive use of the FFr algorithm, which computing time scales with N x log N . 

This high numerical efficiency combined with the resolution of the 2-D problem 

associated with the deformation of columnar ice polycrystals, allowed us to obtain very 

detailed predictions of the intragranular mechanical fields. 

Under the assumption of creep deformation accommodated exclusively by dislocation 

glide (consistent with stresses >0.3 MPa and strain-rates> 10-8 
S-I), the deformation 

heterogeneity predicted by the model is in good qualitative agreement with the available 

experimental evidence. Narrow regions of high strain-rate comprising several grains, 

compatible with the subsequent formation of localization bands lying on the basal plane 

(shear bands) and perpendicular to the basal plane (kink bands), were found, and their 

dependence with crystallographic orientation, grain morphology and interaction with 

neighbor grains was studied and validated. In the laboratory, kink bands were observed to 

form after significant basal slip [4, 9] and, specially, in grains well oriented for basal slip 

(Fig. 2). From Figs. 6 and 7, kink bands predicted by the FFT model were also not 

observed in the °deg and 90 deg grains, which are not well oriented for basal slip. Kink 

bands with basal planes parallel to the compression axis have been observed in 2-D 

columnar ice, but at a strain rate of about 10-5 
S·l, within the ductile-brittle transition [46]. 

At these high strain rates, cracks induced by the pileup of dislocations were observed at 
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the kink band boundaries. It is worth noting that the difficulty to initiate reversible 

incipient kink bands in ice, which are seen to nucleate on the easy slip plane in several 

anisotropic hexagonal metals when loaded parallel to this plane [29-31], is related to the 

brittle behavior of ice at relatively low stresses [47,48]. 

Kink bands, as predicted by the FFT-based model, are expected to easily form in 2-D 

columnar sea and lake ice [8], especially in high pressure zones located at the interface 

between ice and rigid marine structures. On the other hand, this is generally not the case 

in 3-D natural glacier ice that deforms at strain rates generally lower than 10-9 S-I. At 

those low stresses and strain-rates, alternative accommodation processes, such as grain 

growth, dynamic recrystallization and, possibly, diffusion and grain-boundary sliding can 

efficiently contribute to reduce the long-range internal stress field associated with the 

mismatch of slip at grain boundaries in such anisotropic material. These accommodation 

processes should therefore preclude the formation of kink bands [9]. This may be the 

reason why kink bands have never been observed in polar ice sheets. On the other hand, 

the active slip modes in 2-D and 3-D ices can be different. In the present FFT-based 

simulations, the predicted relative activity of non-basal slip was less than 10%, and 

essentially associated with pyramidal slip. The rather low activity of the prismatic slip 

systems (1.7%), compared with that predicted for a 3D granular ice (about 8%) [13] is 

related to a vanishing resolved component of the applied stress on the prismatic planes 

when 2-D ice is deformed under compression normal to the columnar axis. 

The present micromechanical formulation can be adapted to 3-D granular ice and used as 

a basis to account for more of the relevant accommodation processes taking place in polar 

ice sheets, but it obviously needs further improvement. Microstructural update using an 

explicit scheme as explained at the end section 3-1 can provide information about the 

development of dislocation structures. Intragranular misorientations [40] and the excess 

dislocation density fields [49] can be readily obtained and incrementally updated by 

numerical derivation of the predicted deformation gradient field. In turn, these fields, in 

combination with an appropriate thermomechanical modeling platform (e.g. [41]), can be 

used to calculate local driving forces for the prediction of dynamic recrystallization 

[42,43]. Furthermore, a more straightforward and quantitative comparison with 
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experimental evidence can be achieved using the present model in combination with 


direct input from microstructure images, integrating in-situ Electron Back Scattering 


Diffraction (EBSD) observations (e.g. [50], and [51] in specific case of ice polycrystals) 


with numerical simulations [50]. 


Acknowledgments 


This work was supported by CNRS ST2I Department (France). 


References 


1- Montagnat M, Weiss J, Chevy J, Duval P, Brunjail H, Bastie P, Gil Sevillano J. Phil 


Mag 2006; 86: 4259. 


2- Duval P, Ashby MF, Anderman I. J Phys Chern 1983; 87: 4066. 


3- Mansuy P, Philip A, Meyssonnier J. Annals of Glaciol2000; 30: 121. 


4- Mansuy P. Contribution al'etude du comportement viscoplastique d'un multicristal de 


glace: heterogeneite de la deformation et localisation, experiences et modeles. These de 


l'Universite Joseph Fourier, Grenoble, France, 2001. 


5- Mansuy P, Philip A, Meyssonnier J. J Phys IV 2001; 11: 267. 


6- Mansuy P, Meyssonnier J, Philip A. Comp Mater Sci 2002; 25: 142. 


7- Pimienta P, Duval, P, Lipenkov, VY. Constitutive properties of ice at Dye 3, 


Greenland. In: Physical Basis of Ice Sheet Modelling. Vancouver: AIHS; 1987, p. 57. 


8- Gold LW. Deformation mechanisms in ice. In: Kingery WD editor. Ice and Snow, MIT 


Press; 1963, p. 8. 


9- Wilson CJL, Burg JP, Mitchell Jc. Tectonophysics 1986; 127: 27. 


10- Wilson, CJL, Zhang Y. J Glaciol 1994; 40: 46. 


11- Montagnat M, Duval P, Bastie P, Hamelin B, Lipenkov VY. Earth Planet Sci Lett 


2003; 214: 369. 


18 




12- De La Chapelle S, Castelnau 0, Lipenkov VY, Duval P. J Geophys Res B 1998; 103: 

5091. 


13- Castelnau 0, Duval P, Lebensohn RA, Canova GR. J. Geophys Res B, 1996; 101: 


13851. 


14- Castelnau 0, Canova GR, Lebensohn RA, Duval P. Acta Mater 1997; 45: 4823. 


15- Lebensohn RA, Tome CN, Ponte Castaneda P. Phil Mag 2007; 87: 4287. 


16- Moulinec H, Suquet P. Comput Meth Appl Mech Eng 1998; 157: 69. 


17- Michel JC, Moulinec H., Suquet P. Comput. Model Eng Sci 2000; I: 79. 


18- Lebensohn RA, Acta Mater 2001; 49: 2723. 


19- Dahl-Jensen, D, Gundestrup NS. Constitutive properties of ice at Dye 3, Greenland. 


In: Physical Basis of Ice Sheet Modelling. Vancouver: AlliS; 1987, p. 31. 


20- Lipenkov VY, Salamatin A, Duval P. J Glaciol 1997; 43: 397. 


21- Montagnat M, Duval P. CR Physique 2004; 5: 699. 


22- Alley, RB. J Glaciol 1992; 38: 245. 


23- Montagnat M, Duval P. Earth Planet Sci Lett 2000; 183: 179. 


24- Goldsby DL., Kohlstedt DL. Scripta Mater 1997; 37: 1399. 


25- Goldsby DL, Kohlstedt DL. J Geophys Res B 2001; 106: 110 17. 


26- Orowan E. Nature (London) 1942; 149: 643. 


Hess JB, Barrett CS. Trans AIME 1949; 185: 599. 

28- Farber L, Levin I, Barsoum MW. Phil Mag Lett 1999; 79: 163. 

29- Barsoum MW, Farber L, EI-Raghy T. Metall Mater Trans A 1999; 30: 1727. 

30- Barsoum MW, Zhen T, Kalidindi SR, Radovic M, Murugaiah A. Nature Mater 2003; 

2: 107. 

31- Barsoum MW, Zhen T, Zhou A, Basu S, Kalidindi SR, Phys Rev B 2005; 71: 

134101. 

19 




32- Mader S, Seeger A. Acta Metall 1960; 8:513. 

33- Flouriot S, Forest S, Cailletaud G, Koster A, Remy L, Burgardt B, Gros V, Mosset S, 


Delautre J. Int J Fracture 2003; 124:43. 


34- Forest S. Acta Mater 1998; 46: 3265. 


35- Forest S, Boubidi P, Sievert R. Scripta Mater 2001; 44: 953. 


36- Lebensohn RA, Liu Y, Ponte Castaneda P. Proc R Soc Lond A 2004; 460: 1381. 


37- Lebensohn RA, Castelnau 0, Brenner R, Gilormini P. Int J Solids Struct 2005; 42: 5441. 


38- Lebensohn RA, Liu Y, Ponte Castaneda P. Acta Mater 2004; 52: 5347. 


39- Castelnau 0, Blackman DK, Lebensohn RA, Ponte Castaneda P. J. Geophys Res B 


2008; 113: B09202. 


40- Lebensohn RA, Brenner R, Castelnau 0, Rollett AD, Acta Mater 2008; 56: 3914. 


41- Jessell MW, Bons PD, Evans L, Barr TD, Stuwe K. Computers Geosci 2001; 27: 17. 


42- Griera A, Jesell M, Evans L, Lebensohn RA. Geophys Res Abstracts 2008; 10: 


EGU2008-A-10157. 


43- Griera A, Jesell M, Evans L, Lebensohn RA, in preparation. 


44- Doumalin P, Bornert M, Soppa S. In: Miannay D, Coasta P., Francoise D, Pineau A, 


editors. Advances in mechanical behavior, plasticity and damage (Proc. EUROMA T 

2000) Kidlington: Elsevier; 2000, p. 323. 

45- Doumalin P, Bornert M, Crepin J. Mec et Ind 2003; 4: 607. 

46- Manley ME and Schulson EM. Phil Mag 1997; 75: 83. 

47- Schulson EM. Eng Fracture Mech 2001; 68: 1839. 

48- Barsoum MW, Radovic M, Finkel P, EI-Raghy T. Applied Phys Lett 2001; 79: 479. 

49- Acharya A, Bassani JL, Beaudoin A. Scripta Mater 2003; 48: 167. 

50- Piazolo S, Jessell MW, Prior DJ, Bons PD. J Microscopy 2004: 213: 273. 

51- Piazol0 S, Montagnat M, Blackford J. J Microscopy 2008; 230: 509. 

20 



Figure Captions 

Figure 1: Photograph of specimen #1 (after Mansuy [4]) between crossed polarizers, after a 

deformation of 6.3 x 10-2
. The corresponding strain-rate was 4.5 x 10-8 

S-l. The diameter of 

the initially circular monocrystalline inclusion was 30 mm. Parallel lines are the traces of the 

basal planes. 

Figure 2: Photograph of specimen #2 (after Mansuy [4]) between crossed polarizers, after a 

deformation of 6.6 x 10-2
. The corresponding strain-rate was 6.0 x 10-8 

S-l. The mean size of 

each hexagonal grain was 20 mm. Black and white arrows indicate the initial c-<axis> 

orientations. 

Figure 3: Unit cell containing the cross-sections of 200 columnar grains generated by 

Voronoi tesellation. The three hand-picked orientations: (Q0, 90°, 0°) , (45°, 90°, 0°) and 

(90°, 90°, 0°), and the extension and shorting directions are also indicated. 

Figure 4: Predicted equivalent strain-rate field over the entire unit cell of Fig. 1, normalized 

with respect to the average equivalent strain-rate (Eeq 1.15xlO-8 ). 

Figure 5: Predicted fields of equivalent strain-rate (normalized to E eq ), equivalent stress (in 

units of ,;bas), relative basal activity, and map of neighbor orientations, for the 45 deg grain 

and its surroundings. 

Figure 6: Predicted fields of equivalent strain-rate (normalized to Eeq ), equivalent stress (in 

units of ,;bas), relative basal activity, and map of neighbor orientations, for the 0 deg grain 

and its surroundings. 

Figure 7: Predicted fields of equivalent strain-rate (normalized to Eeq ), equivalent stress (in 

units of ,;bas), relative basal activity, and map of neighbor orientations, for the 90 deg grain 

and its surroundings. 


Figure 8: Unit cell obtained combining 100,000 Voronoi grains the three grains of the 200­

grain unit cell of Fig. 1 with hand-picked orientations. 
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Figure 9: Predicted equivalent strain-rate field over the entire unit cell of Fig. 8, normalized 

with respect to the average equivalent strain-rate (Eeq 1.15x1O-8 ). 

Figure 10: Predicted equivalent strain-rate field in the vicinities of the 0, 45 a 90 deg grains, 

normalized with respect to the average equivalent strain-rate (Eeq =1.15 x 10-8 ). Left 

column: Grain boundaries shown and highest color in the scale represents intensities of 5+. 

Right column: highest color in the scale represents intensities of 2+ and grain boundaries are 

not plotted. 
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