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Pauli blocking and final-state interaction in 

electron-nucleus quasielastic scattering 

Lon-chang Liu t 
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(June 27, 2008) 

The nucleon final-state interaction in electron-nucleus quasielastic 

scattering is studied. Based on the unitarity equation satisfied by the 

scattering-wave operators, a doorway model is developed to implement the 

Pauli-blocking of nucleon knockout. The model is complementary to the com­

monly used nuclear Fermi gas model which can not be applied with confidence 

to light- and medium-mass nuclei. Pauli blocking in these latter nuclei is il­

lustrated with the case of Coulomb interaction. Significant effects are noted 

for beam energies below rv 350 MeV/c. Extension of the model to high-energy 

hadron-nucleus quasielastic scatterings is discussed. 
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I. INTRODUCTION 

The dominant contribution to electron-nucleus reactions at energies below the pion 

production thrreshold comes from quasielastic electron-nucleus scattering, in which a target 

nucleon is knocked out to the continuum by the incoming electron. In the energy spectrum 

of the scattered electron, the quasielastic scattering gives a broad peak [1]. There are two 

classes of quasielastic experiments. In exclusive quasielastic experiments, both the outgoing 

electron and nucleon are measured and in coincidence. This class of experiments can provide 

detailed nuclear structure information of the struck nucleon [2]. On the other hand, in an 

inclusive quasielastic experiment, only the outgoing electron is measured. In other words, the 

energy and momentum of the knocked-out nucleon as well as the final state of the residual 

nucleus are not known specifically. Inclusive experiments cover the entire kinematic region 

down to a few MeV in the energy-loss spectrum of the electron. They allow us to check the 

consistency of various proposed nuclear reaction dynamics. 

Since electromagnetic interaction is relatively weak, the distortion of the electron 

waves in the initial and final states can be ignored and only the interaction between the 

knocked-out nucleon and the residual nucleus (the nucleon final-state interaction) needs to 

be taken into account. In the literature,the potentials used to calculate the nucleon final­

state interaction are energy dependent and complex valued. They differ, therefore, from the 

potential that binds the nucleon in the nucleus. Because eigenstates of different Hamiltonians 

are not orthogonal to each other, the nucleon scattering wavefunctions generated in the 

above-mentioned way are not orthogonal to the bound-state wavefunction of the nucleon. 

This nonorthogonality between the wavefunctions leads to non-vanishing (spurious) 

contribution to nucleon knockout cross sections in the limit q ----+ 0, where q is the momen­

tum transfered to the nucleon. In the literature [3]- [5], various methods were proposed to 

remediate this lack of orthogonality. The same problem equally exists in theoertical calcu­

lations of an inclusive spectrum. A successful method has been developed with the use of 

Fermi-gas nuclear model. However, the application of Fermi gas to light and medium-mass 

nuclei is questionable. In this work, we show how to implement the orthogonality scatter­

ing in inclusive quasielastic scattering from light and medium-mass nuclei in a simple way. 
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We derive the model in Section II and give its application in Section III. Discussion and 

conclusions are summarized in Section IV. 

II. ELECTRON QUASIELASTIC SCATTERING FROM A NUCLEUS 

The one-photon exchange, one-nucleon knockout amplitude, A, is illustrated in Fig.I. 

The 4-momenta of the on-shell particles ( external lines of the diagram) are given by: Pi = 

(Ei,ili) with i = (0,1,2, C, A). In the laboratory frame, PA = UvIA' 0). The 4-momentum 

of the photon is denoted by q - Po - P2 = (Eo - E 2 , Po - pJ (w, if). As in any Feynman 

diagram, the intermediate particles are off-mass-shell particles. This is the case with the 

intermediate photon, the intermediate nucleon, j, and the corresponding residual nucleus, 

denoted C(j). However, it is useful to put the intermediate heavy nucleus, C(j), on its mass 

shell. This covariant approximation enables one to use the bound-state nuclear wavefunctions 

given by traditional nuclear structure theories in which the negative-energy component of 

the wavefunction is not considered. [6] As a result, one has P' = (E' ,P.-~). Because 
e e(j) 

the difference among various Me(j) is « M N' it is useful to define Me as an average of 

Ale(j) and substitute the former for the latter. With the Bjorken-Drell convention [7] for 

the metric, single-particle state normalization, and reaction cross section, the quasielastic 

scattering differential cross section equals to 

(1) 

where Vin = EoEA/ J(po . PA)2 - P5P~ is the relative velocity in the initial channel, JA is the 

spin of the target nucleus, and the summation is over the spin projections of the external 

particles. The amplitude A is shown graphically in Fig.I. 
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FIG. 1. Amplitude A for quasielastic scattering. The dashed, wavy, solid, and multiple solid 

lines represent, respectively, the electrons, the photon, the nucleon, and the nuclei. n( _)t is the 

wave operator for the nucleon final-state interaction. A summation over the target nucleon label j 

is understood. 

Upon putting P~ on its mass shell and keeping only the positive-energy spinors of the 

nucleon j, one obtains for amplitude A (see Fig.l): 

(
eep f (q2)) -(--> ) (--> ) '" '" '" J diJ) 

A = q2 U P2, S2 ivU Po, So L L ~ (27r)3(E)M )(E' IAI )(E'IM ) 
JJJ.LJ JC(j)sc(j) SJSl J N C C 1 N 

( -->1 .-->J 1,,(_)t l-->,l"-->'J )(-->,l'I'7V ()I-->l) x Pl"2S1, Pc cSc Hj Pl"2 S1 ' Pc c(j)sc(j) Pl"2 S1 J 0 Pj"2 Sj 

x [(iJ)~Sj; P~(jdJc(j)Sc(j).lrlpAJASA)l . (2) 
Pj - Ej + zc 

Here the abbreviated notations E~- Ec(p~),Ej EN(iJ)) and E~ - EN (p/) are used. The 

4-momentum consevation at each interaction vertex gives iN = iJ) + if, p~ = PA - iJ), and 

pJ = EA (PA) - E~ (p~). The Jj , /-Lj are the total angular momentum and its third component 

of the j-th target proton, and LJ./I = Z being the total number of the target protons. The 
J ,..J 

e and ep denote, respectively, the electron and proton charges, and the u(u) and U(U) the 

corresponding spinors. The f(q2) is the iPP form factor. In Eq.(2) 

(3) 

where .1 = (.10
, j) is the electromagnetic current operator. 
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The quantity inside the square brackets in Eq.(2) is the covariant single-particle nu­

clear wavefunction. To see this, one notes that for the single-nucleon process shown in Fig.I, 

one can represent the target nucleus as an active nucleon i and a corresponding spectator 

residual nucleus C (i), i. e., 

JPAJASA) = L F(JiJC(i); JA) 
JiJC(i) 

- L J<P{i}'~ JA SA) . 
{ i} 

(4) 

Here F(JiJC(i); JA) - [Jr-1(JC(i))JiJA J} Jr JAl is the coefficient of fractional parentage, 

with v being the number of protons in the shell having the momentum Ji . The C's are 

the Clebsch-Gordan coefficients. The {i} stands for the ensemble of quantum numbers 

Ji,/1i, JC(i) , SC(i),si,.ei,mi' (Owing to parity conservation, only one.ei is associated with a 

given Ji ; hence, no summation over.ed In a single-nucleon process, r acts only on the active 

nucleon. Consequently, 

(~~Sj; p~(n JC(j)SC(j) Jrj~jA SA) 
P~ - E j + it 

= F( JiJC(i); JA )C( Jj /1j, JC(j) SC(j) I JA SA) (~~Sj I pJ _ ~j + it rjJj/1j) 

= F(JJC(i); JA)C(Jj /1j, JC(j)/1C(nIJASA)(Pj~SjIJj/1j) 
== <P {j} (,\ j )( A~ I <P {j}) . 

In obtaining the third line of the equation, the bound-state equation GOr<Pbd 

used. From Eq.(4) one verifies easily 

(5) 

<Pbd was 

1 
<P{j}('\j) = F(JiJC(i); JA)C(Jj /1j, JC(j)SC(nIJASA) C("2Sj, .ejmjJJj/1j) <PJj£jmj(\j) 

= (Pj~Sjl<P{j}'PAJASA) (6) 

In Eqs.(1)-(6), the states J ) and ( I are covariantly normalized, namely, ( k', s'lk, S ) = 

(E(k)/M)1/20(k' - k')0818' On the other hand, in nonrelativistic nuclear theories the states 

are ususally not covariantly normalized. These latter states, denoted I )) and (( I, have 
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the normalization (( kl,S'lk,s ))= r5(k' ~ k)r5s I S ' The relation between the covariant and 

nonocovariant states is Ik) = Ik ))(E(k)/A1)1/2. It follows that the relation between <P and 

its non-covariantly normalized counterpart, ¢, is 

(7) 

where ¢h1!jmj ().j) - Rh1!j (j).jj)y;Zj (.\j), and ).j = rJiiJ-p~(j/A = iiJ-PA/ A with rJ = (A-l)/ A 

is the relative momentum between nucleon j and the corresponding residual nucleus C(j). 

In the coordinates space, ¢ depends on the relative distance x between the nucleon j and 

the residual nucleus, namely, x = ij - ~(j). Hence, ¢(i) is related to the single-particle 

shell-model wave function 'IjJ(ij) by ¢(i) = rJ-3/2'IjJ(r;"). [8] In the momentum space, one has 

¢().j) = rJ-3/2'IjJ(iiJ)· 

Upon introducing Eqs.(2)-(6) into Eq.(l), one obtains 

2 ( )3 I I d (J f 27f -,3 ( - - - - - ) -'(E E E) P2 E2 ---" = -- u Po + PA - Pl - P2 - Pc u 0 + A - El - E2 - c 
d02dE2 Vin (E2/me) 

e2e~lf(q2)j2 (meMA) 1 '"""' [_(_ ) (_ )_(_ ) (_ '] 
(2 )2 4 E E 2(2J + 1) L.. U Po, So !f.lu P2, S2 U P2, S2 !VU Po, So) 

7f q 0 A A SOS2 

L f . diiJdpi (~) (Mc ) ( MN 2 ) 

{ "}{O} (27f)6(E)-/MN) (EdMN) E'o E"" EN (p)o +ij)EN(ili + if' 
) , t C(J) C(,) {J 

~ L(Pi~Si IJf.l(O) I (Pi+ij)~S~) ((iiJ+ij)~s~ JJV(O)j iiJ~Sj) 
s~ s~ 

I_I . - J IO(-)t
l
- _1 '0 -IJ ) dp1dpc 

X \P1 2S1,Pc cSc j p) + q, 2su Pc C(J)SC(J) (27f)6(El/ MN)(Ec/Mc) (8) 

Eq.(8) can be rewritten in the following compact form: 

(9) 

Here, 1: is a second-order leptonic tensor defined by 

1 
1:f.lV = 2 L [u(iio, sOhf.lU(P2, S2)U(P2, s2hvu(po, so)] 

SOS2 

= 2 [P Of.lP2V + P2f.lPOv + gf.lv(q2/2)] /(4m;) , (10) 

and 
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(11) 

is the Mott differential cross section, with a = e2
/ (41f) = e~/ (41f) being the fine-structure 

constant. In obtaining the last equality in Eq.(l1), the energy scale Eo /> me, E2 /> me is 

used, so that ko = Eo, k2 = E2, and q2 = -4EoE2sin2(B2/2). 

The nuclear tensor W'W equals, therefore, to 

(( .... ;;'\ 1 II . .... "J In(-)I( C)n(-)t l(.... ;;'\ 1 ' . .... 'J ) 
Pi + Q}2 S1 ' Pc C(i)SC(i) Hi 1, Hj Pj + Q}2 sU Pc c(j)SC(j) (12) 

where 

I(l,C) - L (13) 
81JC 8 C 

as a result of the completeness of free two-particle states. Consequently, in Eq.(12) 

(14) 

The appearance of Oij is a consequence of one-step reaction process in which the residual 

nucleus acts as a spectator. Because the nucleon j and the residual nucleus can form bound 

states, the unitary equation of the wave operators is [9J 

(15) 

with 

(16) 
n=O n 

Here, r)n) denotes the projector to the bound state In{j}), with n = 0 denoting the nuclear 

ground state and n =I=- 0 the nucleon-emission-stable (NES) excited nuclear states. In the 
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single-step reaction model, In{j}) = IJ;n)) ® IJc(j»)' Here, a nucleon j is lifted from its 

ground-state orbital (denoted Jj ) to an excited orbital ( denoted Jjn) , n #- 0). 

The proJ'ectors r(n) have the properties r(n) = r(n)t and r(n)r(m)t = r(n)b These 
J J J J J J nm· 

properties allow us to rewrite Eqs.(15) and (16) as 

This last equation defines the doorway-state model of final-state nucleon-nucleus interaction. 

Using Eqs.(14)-(17) for the last line of Eq.(12), one obtains, after some angular­

momentum recoupling algebra, that 

with 

Bit = ~ L L (( Pj~Sj 13/L(0)lpl~Sl))(( Pl~Sl 13V (0)1 Pj~Sj)) 1¢{j}(Xj )1 2
, (19) 

81 Jj/LjRjmjsj 

and 

Bj; = nf:x ~ L L I¢~;~ (XW 
n=O s's" Jj/LjRjmj8j 

x [I (~~3 ¢{j}(Xj ) (( Pj~Sj 13/L(0)1 (Pj + q}~SIf)) ¢~;~(Xj + 77q}] 

x [I (~:~3 ¢~;~*(Xi + 77q) (( (Pi + q}~S' 13
V

(0)1 Pi~Sj )) ¢{j}(Xi)] , (20) 

where X = 77Pl - A -lpc is the relative momentum of the nucleon~residual nucleus system 

in the final state. Because of the momentum conservation at the ,pp vertex, X = Xj + 77Q. 

For succintness of notation, Eqs.(19) and (20) are expressed in terms of non-covariantly 

normalized nuclear wave functions ¢{j}, and noncovariant states (( 1 and 1 )). Consequently, 

various normalization factors, of the form (ElM), are implicit. (See the discussion after 

Eq.(6). ) 
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FIG. 2. The doorway-state model for Pauli-blocking corrections. As in Fig.I, the subscript j 

and a summation over it on both side of the graphic equation is implied. 

Eq.(18) is illustrated in Fig.2. Its' physics content is as follows. The 3 1 leads to cross 

sections obtained with using plane waves in the final state. The 3 II gives the cross sections 

for the struck nucleon to remain bound. The subtraction of 3 II from 3 f corrects the spurious 

contribution arising from using plane waves. At i/=O, the subtraction is total, same as the 

orthogonality-scattering correction mentioned in section 1. 

Equations (18)-(20) also indicate that WJLv depends only on two independent four­

vectors, P A and q, where q = (Eo - E2, Po - P2) = (w, if) . The most general Lorentz and 

gauge invariant second-order tensor has, therefore, the form [10], [11] 

(21) 

where 
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glW = glW _ qJ.LqV /q2 , 

p~ = [p~ - (q. PA) qJ.L /q2] /MA . (22) 

Using the relations qJ.L LJ.Lv = qV LJ.Lv = 0, and P A = (MA' 6) in the laboratory frame, one 

obtains 

Consequently, 

(24) 

Using the standard procedure [11], one can reexpress the functions WI and W2 as a combi­

nation of two new functions X and Y, namely, 

(25) 

where 

X = Woo = 1 (i:l)~~;n 63(ij + PA - PI - Pe)6(w + EA - EI - Ee) lillf(q2) 12 L 
JjJ.Ljf!jmjs) 

{ [ ~ ~ (( Pj~Sj IJO(O)lpl~Sl )) (( PI~SI IJO(O)I Pj~Sj )) 1¢{j}(Xj )1 2
] 

- [nZ;;~;; 1 (~~3¢{j}(Xj) ((Pj.~s" IJO(O)I (Pj+q)~Sj)) ¢~]~(Xj+77q)] 

[1 (~~3¢~]r(Xi+77q) (( (Pi+q)~s' IJO(O)IPi~sj)) ¢{j}(Xi)] I¢J
n

) (X) 12 }. (26) 

The function Y has the same form as X but with the operator product (JO)(JO) in X 

replaced by L,\=±l (e,f,,\ . j)(jt . eL)' where the 4,'\ are the spherical unit vectors defined 

with respect to the direction of the momentum transfer ij. 

III. EFFECTS OF PAULI BLOCKING 

To illustrate the effects of Pauli blocking correction (PBC), let us consider Coulomb 

scattering only. In this latter case, JJ.L = (p,O). Hence, Y=O and 
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(27) 

The charge density operator p is given in the second quantization by 

p(x) = {j;t(x){j;(x) . (28) 

In the nonrelativistic nuclear-structure theories, the two-component proton field is 

(29) 

It follows that 

J 
iif-x ~ (-+) d -+ '""' J dk-+ t e p x x = ~ ak+if,E, ak,E, . 

E, 
(30) 

With the aid ofEq.(30), the two matrix elements of:;-O in the first square brackets in Eq.(26) 

equal to OSlSj while the two matrix elements of :;-0 in the second square brackets become, 

respectively, Os" sand OSI s. Consequently, 
J J 

(31 ) 

with 

J is R(w, if) = o(w + EA - El - Ec) (27f)3 

[2: (1¢{j}(A~)12 -1¢U}(X)1 2 Fj
OO (if) Fj

OO (il) ) - 2:' 2: 1¢~;~(X)12 Fr(if)Fr(if)] (32) 
J J n:;z':O 

In obtaining Eqs.(31) and (32) we used the relation dpldfc = dKdX with K - PI + Pc and 

the relation 

J 
diJi A.(n)*(, :1\ A. (,) -Jd-+ iq.ri nl,(n)*(-+) nl, (-+) -FOn(:1\ (27f)3'P{j} /Ii + TN) 'P{j} /Ii - Ti e 'P{j} Ti 'P{j} Ti - j q). (33) 

The L ' in Eq.(32) indicates that not every target proton is involved in a 0 --+ n transition. 

Hence, L/ 1 == Z' ::; Z. The 0 function in Eq.(32) constrains the energy loss w. For example, 

in the nonrelativistic limit of kinematics this constraint gives w = K2/ (2Ml + 2Mc) + 
-+2 _ . 
A /(2rn)+EsePJ where rn = MIMc/(Ml +Mc) IS the reduced mass and Esep = Ml +Mc -MA 

is the average seperation energy of the target protons. 
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In Eq.(32), FjOO(if) == Frs.--+g,s'(if) is the nuclear (ground-state) form factor of the 

j-th proton with the property FjOO(O) = 1. For 71, =1= 0, Fr(if) Fl--+n(if) are the transition 

form factors, and Fr(O) = O. Consequently, when if -+ 0, R(w, if) -+ 0; i.e., the knockout 

of a target proton is completely blocked at if = O. Because experimental form factors are 

parametrized with respect to the whole nucleus instead of to an individual proton, it is 

appropriate to define 

1 
FjOO(if) = ZF1°(if) - FOO(if) ; 

Fr(if) = ~,F1n(if) FOn(if) (71, =1= 0) . (34) 

The q-dependence of PBC can be obtained by integrating over all energy loss in 

Eq. (32). With the aid of the normalization of the nuclear wave functions: 

J if. 1 -+ \ 12 J if.j 1 -+ \ 12 
(21f)3 cPj(Aj) = (21f)3 cPj(Aj) = 1 , (35) 

we obtain 

S(if) = J dw R(w, if) = Z (1- [FOO(if)]2 - f3 nf " [Fon (if)]2) 
n#O 

= ZL(if) . (36) 

The ratio f3 == z' / Z depends on nuclear excitation mechanisms. The function L( if) gives the 

probability for a struck proton to leave the nucleus. Eq.(36) highlights the difference between 

the doorway and Fermi gas models. In the Fermi gas model, the nucleon density distribution 

in the ground state, 1?,b(Pj) 12, is assumed to be 8(IPjI-kp ) where kp is the Fermi momentum. 

Because of Pauli principle, this box-type momentum distribution blocks ?,b(Pj) -+ ?,b(Pj + if) 
transitions for any momentum transfer if such that IPj + tJ1 ::; kp . In a realistic nucleus, 

there is no such sharp momentum cutoff for Pauli blocking. In fact, the ?,b(Pj) to ?,ben) (Pj + if) 
transition probability is proportional to [FOn(q)]2. Hence, [FOO (q)j2 + f3~n#o [FOn(if)j2is the 

probability that the struck nucleon remains bound and gives the Pauli-blocking correction 

to nucleon knockout in a realistic nucleus. We will soon see the marked difference between 

the PBC given by the doorway and Fermi gas models. 

A comment on Eq. (36) is in order. While charge form factors F OO have been deter­

mined experimentally for a large number of nuclei, experimental information on transition 
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form factors FOn (n i- 0) is much less systematic. However, in nuclei with mass number 

A ::; 5 there is no NES excited states. Consequently, only the term [F0o (q) j2 is needed in 

Eq.(36). The L(q) can, therefore, be calculated exactly for these light nuclei with the use of 

the measured charge form factors. 
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FIG. 3. Function L(q) = 1 - [F00(q)]2 for nuclei 3He and 4He. 

In Fig.3, the functions L(q) = 1 - [F00(q)j2 for two light nuclei are shown. In both 

cases L(q) = 0 at q = 0 and, L(q) --+ 1 when q > 2.7fm-l. Graphically, the PBC is 

represented by 1 - L(q) which is the vertical distance between the curve and the horizontal 

line passing through L(q)=1. Fig.3 shows the PBC is complete i.e., 100% at q=O. It further 

illustrates how PBC decreases with increasing q. . Since there is only one bound state in 

3He and 4He (the ground states), 1 - [F00(q)J2 represents an exact calculation of L(q) for 

these nuclei. 
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FIG. 4. Function L(q) for 12C. The Ln includes transitions to NES states 2+,1-,3-, and 4+. 

In nuclei with mass number A 2: 6, there are NES states and its number increases 

with A. . To illustrate the effects of NES states in 1p-shell nuclei, we show in Fig.4 the 

function L(q) of 12 C, assuming (3 = 1 in Eq.(36). The PBC effects due to [pOOF and [F0oF 

+ [PO,2+F are given, respectively, by the dashed and solid curves in the figure. Here 2+ 

is the 4.44 MeV (T = 0) excited state. The dot-dashed curve further includes the PBC 

arising from longitudinal transitions to the NES states [12]- [17] at 7.12 MeV (1-, T = 0), 

9.64 MeV (3-,T=0), and 14.1 MeV (4+,T=0). Since the proton seperation energy in 12C 

is 15.11 MeV, the inclusion of these four states should take into account most of the NES 

transition strength. As one can see, the most important effects of [F0nF(n 'I- 0) comes from 

the longitudinal transition to the first 2+ excited state at 4.44 MeV. The inclusion of other 

three states brings in only small additional effects. One could expect that, in general, only a 

limited number of transitions to NES states needs to be considered in medium-mass nuclei. 
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The relative importance of PBC effects due to different doorway channels can be evalu­

ated from comparing the corresponding J L(q)dq. \Ve have found that J(l-[F°O(q)j2)dq (inte­

gration of the dashed curve) differs from J(l- [FOO(q)j2_ Ln[FOn(q)j2)dq, (n = 2+,1-,3-,4+) 

(integration of the dot-dashed curve) by less than 2%. In the following calculations of PBC 

in 12C, we will, therefore, use the term [F00]2 only. 

In Fig.5, we show PBC effects on inclusive quasielastic scattering cross sections at 

Eo = 200 MeV and O2 = 60° from 3He and 12C as a function of energy loss w. For 12C 

calculation an average separation energy B = 25 MeV was used. In Fig.6, we show PBC 

effects in these two nuclei at Eo = 500 Me V and O2 = 60°. As one can see, the effects of 

PBC are significant at 200 MeV but negligible at 500 MeV. 
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FIG. 5. Inclusive cross sections (da/dE2 /dn 2 )Zab at Eo = 200 MeV and 82 = 60° as a function of 

energy loss w. Dotted curve: 3He without PEC; Dot-dashed curve: 3He with PEC; Dashed cureve: 

12C without PEC; Solid curve: 12C with PEC. 
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PBC; Solid curve: 12C with PBC. Average separation energy used for 12C. 

To quantify the integrated PBC effects on the cross section, let us define 

J _ (da/dD2toPBC - (da/dD2)PBC 

- (da/dD2toPBC 
(37) 

The values of 6 in 3He and 12C are given in Table I where a blank entry represents a 6 <1 %. 

One can see that PBC increases with decreasing energy Eo and scattering angle e2 . 

TABLE 1. Pauli blocking correction 0 [%]. 

Eo [MeV] 3He: 82 = 30° 82 = 45° 82 = 60° 12C: 82 = 30° 82 = 45° 82 = 60° 

200 78 58 40 63 37 18 

350 44 18 6 21 3 

500 18 3 3 
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FIG. 7. Functions L(q) given by doorway and Fermi gas models for 12C. 

In heavy-mass nuclei, the number of NES excited states becomes very large. In addi­

tion, very little is known about these states individually. It becomes, therefore, necessary to 

use the Fermi-gas nuclear model to calculate PBC. For a nonrelativistic Fermi gas, the prob­

ability for a nucleon to occupy the unoccupied levels situated above the Fermi momentum 

kFis[l1] 

L(q) = 1 ; q::=:: 2kp 

3 ( q) 1 ( q )3 
= 2" 2kp - 2" 2kp 

;q::; 2kF · (38) 

(L(q) equals to the function Sin(q, kp)/Z in ref. [11].) Eq.(38) shows that in Fermi gas model, 

L( q) depends only on kF . Hence, L( q) does not contain information of any finer aspect of 

nuclear structure. In Fig.7, we compare the L(q) given by the doorway PBC model using 

realistic 12C nuclear wave function (dashed curve) with those given by the Fermi-gas model 

having different kF (dotted and dot-dashed curves) . As we can see, the Fermi-gas model 
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gives less PBC at q < 0.3 fm- l , but greater PBC at intermediate q's. This difference reflects· 

the effect of nuclear structure. 
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FIG. 8. Cross sections of quasielastic scattering from 12C at Eo = 500 MeV and (h = 600
• 

In the literature [19J, upon treating kF as a free parameter, a good fit to inclusive 

electron quasielastic scattering from 12C at Eo = 500 Me V and ()2 = 60 0 was obtained with 

an average nucleon separation energy, which we denote B, equal to 25 MeV and with a 

kF = 1.12 fm- l (the standard value of kF is 1.34 fm- l .) In Figs. 8 and 9, we compare the 

lab. cross sections of quasielastic scattering from 12C at ()2 = 600 , and at Eo = 500 and 

200 MeV, respectively. The dotted curves are given by Fermi gas model having the same 

parameters as those of ref. [19], i.e., B=25 MeV and kp = 1.12 fm-l. The solid curves are 

given by the doorway model having the same average separation energy B=25 MeV. The 

dashed curves are also due to doorway model but with realistic separation energies Bp = 15 

and Bs = 35 MeV respectively for the Ip- and 18- shell protons in 12C. One notes that 
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the difference between the cross sections given by the Fermi gas and doorway models are 

relatively small at 500 MeV (Fig. 8) but significant at 200 MeV (Fig. 9). At Eo = 500 MeV 

and O2 = 60° the average momentum transfer is > 2.4 fm- 1 , it follows that PBC is negligible. 

Hence, the difference between the various w-dependences of the cross sections in Fig. 8 is due 

mainly to the use of different nucleon momentum distributions in Fermi gas and doorway 

models. 
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FIG. 9. Cross sections of quasielastic scattering from 12C at Eo = 200 MeV and e2 = 60°. 

This apparent similarity disappears, however, at 200 MeV (Fig. 9). The rapid de­

crease of cross sections shown by the dotted curve at w > 60 Me V arises from the step­

function nucleon momentum distrbution with kF = 1.12 fm- 1 in the Fermi gas model. This 

w-dependence of the cross sections is in marked difference with those given by the door­

way model (solid and dash-dotted curves) where the use of realistic nucleon momentum 

distribution leads toa more gradual PBC. In addition, the use of realistic shell-dependent 
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proton seperation energies in the doorway model predicts that at 200 MeV the contributions 

to cross sections arising from the 13- and Ip- shells proton begin to seperate from each 

other in the spectrum. This valuable information cannot be given by the Fermi gas model. 

Fig. 9 indicates, therefore, that Fermi gas becomes an inadequate representation of nucleon 

momentum distribution in 12C. 

IV. DISCUSSION AND CONCLUSIONS 

The doorway model can be easily extended to treat final-state interaction in inclusive 

hadron-nucleus quasielastic scattering from nuclei. For hadron-nucleus quasielastic scattering 

at high energies (Eo> 1 GeV), the probability that the scattered high-energy hadron and the 

residual nucleus t810rm bound states is almost zero. Consequently, as long as the residual 

nucleus is not measured, plane wave can be used, to a very good approximation, to describe 

the scattered hadron. In addition, at very high energies the spin-flip part of the hadron­

nucleon interaction is negilgible with respect to the spin-nonflip part. As a result, high-energy 

hadron-nucleon amplitude can be treated as spin-independent [18]. This leads to a situation 

similar to Coulomb scattering in electron-nucleus quasielastic scattering, namely, only the 

density operator p is relevant to the Pauli blocking. However, owing to the strong hadron­

nucleus interaction, the distortion of the incoming hadronic wave function must be taken 

into account. In fixed-scatterer approximation to the hadron-nucleus quasielastic scattering 

Eq. (33) retains its basic formal structure but with the following replacements: 

Z A 

L ----+ L ' (39) 
j=1 j=l 

where X~+) (ji ') is the distorted wavefunction of the incoming hadron, which can be calcu­

lated with an optical model and eikonal approximation. The ji and jJ' denote, respectively, 

the relative momenta between the hadron probe and the target nucleus in the initial state 

and in the intermediate state prior to the direct hadron-nucleon collision that knocks out 

the nucleon. In Eq.(39) the momentum Xj depends on ji,' namely, in the hadron-nucleus 

20 



G.m. frame).j = -r;ji'- Pc. Accordingly, the first term of Eq.(32) is to be replaced by 

I:j (27T)-3 J d).I¢E-}('\~)12 - AeJJ with AeJJ < A. 

The orthogonality-scattering approaches proposed in the literature make use of optical 

potentials to model the nucleon-residual nucleus interaction. However, for some nuclear 

states of a residual nucleus the corresponding nucleon optical potential is not known. The 

present approach is less model-dependent, because the inputs to the calculation are the 

experimentally determined form factors. Consequently, the doorway approach to nucleon­

nucleus final-state interaction represents a useful alternate to the orthogonality-scattering 

formalism proposed in the literature. 

While at the present time the application of the doorway model to heavy-mass nuclei 

is hindered by the lack of a systematic experimental knowledge of the NES transition form 

factors in these nuclei, it does have advantages over the Fermi gas model in evaluating 

Pauli blocking correction in medium-mass and light nuclei. Firstly, the doorway model 

can incorporate realistic nuclear structure while the Fermi gas model cannot. Secondly, 

while a large number of nucleons in a heavy-mass nuclei may be represented by a nucleonic 

gas, the adequacy of treating a small number of nucleons as a structureless gas is certainly 

questionable. We have seen that for carbon (A=12), the Fermi gas representation becomes 

already inadequate. For nuclei with mass numbers A :S 5, the doorway calculation is exact. 

For Ip-shell nuclei such as 12C the model can be calculated to a very good approximation 

with only using the measured ground-state (g.s.) nuclear form factor. One could expect that 

this latter approximation equally holds for Id- and If -shell medium-mass nuelci. Further 

studies are called for. We have seen that at 500 Me V the doorway and Fermi gas model give 

qualitatively similar results. In other words, in inclusive quasielastic scatterings the detailed 

nuclear structure information begin to be washed out as the beam energy increases. On the 

other hand, as the beam energy decreases the nuclear structure effect becomes important. 

In summary, the doorway formalism of Pauli blocking of spurious nucleon knockout is less 

model dependent than the usual orthogonality scattering approach, it incorporates nuclear 

structure effects, and can be readily applied to light and medium-mass nuclei. 
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