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Pauli blocking and final-state interaction in
electron-nucleus quasielastic scattering
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Theoretical Division, Group T-16, Mail Stop B243,
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(June 27, 2008)

The nucleon final-state interaction in electron-nucleus quasielastic
scattering is studied. DBased on the unitarity equation satisfied by the
scattering-wave operators, a doorway model is developed to implement the
Pauli-blocking of nucleon knockout. The model is complementary to the com-
monly used nuclear Fermi gas model which can not be applied with confidence
to light- and medium-mass nuclei. Pauli blocking in these latter nuclei is il-
lustrated with the case of Coulomb interaction. Significant effects are noted
for beam energies below ~ 350 MeV/c. Extension of the model to high-energy

hadron-nucleus quasielastic scatterings is discussed.
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I. INTRODUCTION

The dominant contribution to electron-nucleus reactions at energies below the pion
production thrreshold comes from quasielastic electron-nucleus scattering, in which a target
nucleon is knocked out to the continuum by the incoming electron. In the energy spectrum
of the scattered electron, the quasielastic scattering gives a broad peak [1]. There are two
classes of quasielastic experiments. In exclusive quasielastic experiments, both the outgoing
electron and nucleon are measured and in coincidence. This class of experiments can provide
detailed nuclear structure information of the struck nucleon [2]. On the other hand, in an
inclusive quasielastic experiment, only the outgoing electron is measured. In other words, the
energy and momentum of the knocked-out nucleon as well as the final state of the residual
nucleus are not known specifically. Inclusive experiments cover the entire kinematic region
down to a few MeV in the energy-loss spectrum of the electron. They allow us to check the
consistency of various proposed nuclear reaction dynamics.

Since electromagnetic interaction is relatively weak, the distortion of the electron
waves in the initial and final states can be ignored and only the interaction between the
knocked-out nucleon and the residual nucleus (the nucleon final-state interaction) needs to
be taken into account. In the literature, the potentials used to calculate the nucleon final-
state interaction are energy dependent and complex valued. They differ, therefore, from the
potential that binds the nucleon in the nucleus. Because eigenstates bf different Hamiltonians
are not orthogonal to each other, the nucleon scattering wavefunctions generated in the
above-mentioned way are not orthogonal to the bound-state wavefunction of the nucleon.

This nonorthogonality between the wavefunctions leads to non-vanishing (spurious)
contribution to nucleon knockout cross sections in the limit q — 0, where q is the momen-
tum transfered to the nucleon. In the literature [3]— [5], various methods were proposed to
remediate this lack of orthogonality. The same problem equally exists in theoertical calcu-
lations of an inclusive spectrum. A successful method has been developed with the use of
Fermi-gas nuclear model. However, the application of Fermi gas to light and medium-mass
nuclei is questionable. In this work, we show how to implement the orthogonality scatter-

- ing in inclusive quasielastic scattering from light and medium-mass nuclei in a simple way.




We derive the model in Section IT and give its application in Section III. Discussion and

conclusions are summarized in Section TV.

II. ELECTRON QUASIELASTIC SCATTERING FROM A NUCLEUS

The one-photon exchange, one-nucleon knockout amplitude, A, is illustrated in Fig.1.
The 4-momenta of the on-shell particles (external lines of the diagram) are given by: p, =
(E;, p;) with ¢ = (0,1,2,C, A). In the laboratory frame, p, = (MA,(T). The 4-momentum
of the photon is denoted by ¢ = p, — p, = (E, — E,, P, — P,) = (w, 7). As in any Feynman
diagram, the intermediate particles are off-mass-shell particles. This is the case with the
intermediate photon, the intermediate nucleon, j, and the corresponding residual nucleus,
denoted C(j). However, it is useful to put the intermediate heavy nucleus, C(j), on its mass
shell. This covariant approximation enables one to use the bound-state nuclear wavefunctions

given by traditional nuclear structure theories in which the negative-energy component of

!
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is < M,, it is useful to define M, as an average of

the wavefunction is not considered. [6] ~As a result, one has p!, = (E/ ,75)). Because

the difference among various M.,

M_ . and substitute the former for the latter. With the Bjorken-Drell convention [7] for

C(J)

the metric, single-particle state normalization, and reaction cross section, the quasielastic

scattering differential cross section equals to
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where v;, = EOEA/\/(pO - pa)? — pAp% is the relative velocity in the initial channel, J4 is the
spin of the target nucleus, and the summation is over the spin projections of the external

particles. The amplitude A is shown graphically in Fig.1.
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FIG. 1. Amplitude A for quasielastic scattering. The dashed, wavy, solid, and multiple solid
lines represent, respectively, the electrons, the photon, the nucleon, and the nuclei. Q" is the
wave operator for the nucleon final-state interaction. A summation over the target nucleon label j

1s understood.

Upon putting p’c on its mass shell and keeping only the positive-energy spinors of the

nucleon j, one obtains for amplitude A (see Fig.1):
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Here the abbreviated notations £, = E,(p,), E; = Enx(p;) and E{ = E(p/) are used. The
4-momentum consevation at each interaction vertex gives py = p; + ¢, p; = 9, — P, and
pY =E,(p,) - E.(P}). The Jj, u; are the total angular momentum and its third component
of the j-th target proton , and ZJj“;. = Z being the total number of the target protons. The
e and e, denote, respectively, the electron and proton charges, and the u(u) and U(U) the

corresponding spinors. The f(q?) is the vpp form factor. In Eq.(2)
o1, v _ L Tr=0 v iGE v |
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where J = (J°, J) is the electromagnetic current operator.



The quantity inside the square brackets in Eq.(2) is the covariant single-particle nu-
clear wavefunction. To see this, one notes that for the single-nucleon process shown in Fig.1,
one can represent the target nucleus as an active nucleon ¢ and a corresponding spectator

residual nucleus C'(7), i.e.,
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Here F(JiJ,.;J,) = [Ji”_l(JC(Z.))JiJA |} J¥J,] is the coefficient of fractional parentage,

with v being the number of protons in the shell having the momentum J;. The C’s are
the Clebsch-Gordan coefficients. The {i} stands for the ensemble of quantum numbers
Jis is Joiys Sy si, £;,m;. (Owing to parity conservation, only one /; is associated with a
given J;; hence, no summation over 4;.) In a single-nucleon process, I' acts only on the active
nucleon. Consequently,
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In obtaining the third line of the equation, the bound-state equation GoI'®py = Ppy was
used. From Eq.(4) one verifies easily
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In Eqgs.(1)-(6), the states | ) and ( | are covariantly normalized, namely, ( K, s'|ks) =

(E(K)/M)Y26(k' — E')0y,. On the other hand, in nonrelativistic nuclear theories the states

are ususally not covariantly normalized. These latter states, denoted | )) and (({ |, have



the normalization (( ¥',s'|k,s ))= 8(k' — k)dy,. The relation between the covariant and
nonocovariant states is |k ) = |k )) (E(k)/M)/2. It follows that the relation between @ and

its non-covariantly normalized counterpart, ¢, is

/2
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where ¢, ¢,m, (%) = Ryye, (1)) Yo (Ay), and X; = n;—p. /A = 5=, /A withn = (A—1)/A

is the relative momentum between nucleon j and the corresponding residual nucleus C(j).
In the coordinates space, ¢ depends on the relative distance £ between the nucleon j and
the residual nucleus, namely, ¥ = 7 — ;). Hence, ¢(Z) is related.to the single-particle
shell-model wave function (%) by ¢(&) = n=32(7;). [8] In the momentum space, one has

6(X;) = n~0(5)).
Upon introducing Eqs.(2)-(6) into Eq.(1), one obtains
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Eq.(8) can be rewritten in the following compact form:
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Here, L is a second-order leptonic tensor defined by
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and
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is the Mott differential cross section, with & = €/(4m) = e/(4m) being the fine-structure
constant. In obtaining the last equality in Eq.(11), the energy scale Ey > me, Ey > m, is
used, so that kg = Ey, ko = Fy, and ¢° = —4FyE,5in?(6,/2).

The nuclear tensor W* equals, therefore, to
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as a result of the completeness of free two-particle states. Consequently, in Eq.(12)
_ Iy Sy ()
O7z(1,0)00)" = P07, (14)

The appearance of d;; is a consequence of one-step reaction process in which the residual
nucleus acts as a spectator. Because the nucleon j and the residual nucleus can form bound

states, the unitary equation of the wave operators is [9]

- Y
Q0 6y = (1-1y) 85, (15)
with
Dy= 3 |ngy)ngyl =308 (16)
n=0 n ‘

Here, Fg-") denotes the projector to the bound state |n;), with n = 0 denoting the nuclear

ground state and n # 0 the nucleon-emission-stable (NES) excited nuclear states. In the




single-step reaction model, |ngy) = |J n)) ® |J,,,). Here, a nucleon j is lifted from its
ground-state orbital (denoted J;) to an excited orbital ( denoted J; (™) n 4 0).

The projectors Fg.") have the properties I‘g”) = Pj” and F P mt _ Fj(.”)énm. These
properties allow us to rewrite Eqgs.(15) and (16) as

Q0 by = (1-T,) 8y = (1 =Y Inpng | 1 ing)ng| ) - (1D
n=0

This last equation defines the doorway-state model of final-state nucleon-nucleus interaction.

Using Eqs.(14)-(17) for the last line of Eq.(12), one obtains, after some angular-

momentum recoupling algebra, that
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where X = npy — A71p,, is the relative momentum of the nucleon-residual nucleus system
in the final state. Because of the momentum conservation at the ypp vertex, X = Xj + nq.
For succintness of notation, Eqgs.(19) and (20) are expressed in terms of non-covariantly
normalized nuclear wave functions ¢y}, and noncovariant states (( | and | )). Consequently,

various normalization factors, of the form (E/M), are implicit. (See the discussion after

Eq.(6). )



FIG. 2. The doorway-state model for Pauli-blocking corrections. As in Fig.1, the subscript j

and a summation over it on both side of the graphic equation is implied.

Eq.(18) is illustrated in Fig.2. Its physics content is as follows. The =, leads to cross
sections obtained with using plane waves in the final state. The =,, gives the cross sections
for the struck nucleon to remain bound. The subtraction of Z;; from Z; corrects the spurious
contribution arising from using plane waves. At ¢=0, the subtraction is total, same as the
orthogonality-scattering correction mentioned in section I.

Equations (18)-(20) also indicate that WW* depends only on two independent four-
vectors, p, and ¢, where ¢ = (Ey — E2,pp — P2) = (w,§). The most general Lorentz and

gauge invariant second-order tensor has, therefore, the form [10], [11]

v —pw vy
W# = W1(q2, qu)g# +W2(q2a qu) ]I{}QA y (21)

where



7" =g" - ¢"¢"/¢*,
Py = [p" — (q-pa) 0"/¢*] /M, . (22)

Using the relations ¢*L,, = ¢"L,, = 0, and p, = (MA,ﬁ) in the laboratory frame, one

obtains

2
e LV =Walg? q-p,)cos?(02/2) — 2Wi(g?, q - p,)sin(62/2) . (23)
EO E2 lab

Consequently,
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Using the standard procedure [11], one can reexpress the functions W, and W, as a combi-

nation of two new functions X and Y, namely,
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q2 4

where
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The function Y has the same form as X but with the operator product (J°)(J°) in X
replaced by Yy (€7 - j)(jT . f?:%A), where the é;, are the spherical unit vectors defined

with respect to the direction of the momentum transfer ¢.

ITI. EFFECTS OF PAULI BLOCKING

To illustrate the effects of Pauli blocking correction (PBC), let us consider Coulomb

scattering only. In this latter case, 7* = (5,0). Hence, Y=0 and

10
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The charge density operator p is given in the second quantization by

p(E) = D)D) . | (28)

~ L dk Z_‘if
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It follows that
/ eTEH(T) dT = ;/ dk altc'+q*,§ fe - (30)

With the aid of Eq.(30), the two matrix elements of 7 in the first square brackets in Eq.(26)
equal to d,,,, while the two matrix elements of J % in the second square brackets become,

respectively, d,r, and dy,;. Consequently,

x= [ w5, - BB pwn ()

Uln
with

R(w,§) = 6(w+E, — E, — E,) / (2‘?)3

[Z(w{j}(mﬁ—rmj}( )P FP@FR (@) - > S 185 (NP FM@FM@) (32)
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In obtaining Eqs.(31) and (32) we used the relation dp\dp, = dKdX with K = p, + P, and

the relation

d 1 )% T *
/ 5 p) B (K4 nd) 615y (%) = [ €97 97 (7) i) (7) = FP™(@) (33)

The 3 ' in Eq.(32) indicates that not every target proton is involved in a 0 — n transition.
Hence, Zj’ 1 = 7' < Z. The ¢ function in Eq.(32) constrains the energy loss w. For example,
in the nonrelativistic limit of kinematics this constraint gives w = K2/(2M; + 2M¢) +
XQ/(2m)+Esep, where m = M; M¢/(My+Mc) is the reduced mass and Ey., = Mi+M_—M,

is the average seperation energy of the target protons.
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In Eq.(32), F}°(q) = Fg*79%(q) is the nuclear (ground-state) form factor of the
j-th proton with the property F7°(0) = 1. For n # 0, F’]Q"((j') = F)7"(q) are the transition
form factors, and F;"(0) = 0. Consequently, when ¢ — 0, R(w,q) — 0; i.e., the knockout
of a target proton is completely blocked at ¢ = 0. Because experimental form factors are
parametrized with respect to the whole nucleus instead of to an individual proton, it is

“appropriate to define

Fq) = - FR(@ = F"(@) ;

Mg = iFO"(q) =F"™() (n#0). (34)

The g-dependence of PBC can be obtained by integrating over all energy loss in

Eq.(32). With the aid of the normalization of the nuclear wave functions:

ax | A | v
[ G409 = [ Gsleiti)r

L, (35)
we obtain

S@) = [ dw Riw.d) = 2 ( ~[F@P - 8 3 [F(@) )
ns#0

= ZL(J) . (36)
The ratio 8 = Z'/Z depends on nuclear excitation mechanisms. The function L(§) gives the
probability for a struck proton to leave the nucleus. Eq.(36) highlights the difference between
the doorway and Fermi gas models. In the Fermi gas model, the nucleon density distribution v
in the ground state, |1 (7;)[?, is assumed to be §(|p;j| — kr) where kp is the Fermi momentum.
Because of Pauli principle, this box-type momentum distribution blocks %(p;) — ¥ (7; + §)
transitions for any momentum transfer ¢ such that |p; + ¢] < kp. In a realistic nucleus,
there is no such sharp momentum cutoff for Pauli blocking. In fact, the ¥ (5;) to ™ (5; + §)
transition probability is proportlonal to [FO"(Q)]*. Hence, [F*(Q)]* + 8 T pz0 [FO"(@)]* is the
probability that the struck nucleon remains bound and gives the Pauli-blocking correction
to nucleon knockout in a realistic nucleus. We will soon see the marked difference between
the PBC given by the doorway and Fermi gas models.

A comment on Eq.(36) is in order. While charge form factors F® have been deter-

mined experimentally for a large number of nuclei, experimental information on transition

12



form factors % (n # 0) is much less systematic. However, in nuclei with mass number
A < 5 there is no NES excited states. Consequently, only the term [F%°()]? is needed in
- Eq.(36). The L(§) can, therefore, be calculated exactly for these light nuclei with the use of

the measured charge form factors.

1.1 T T T T

09 -

0.7 -

0.6 [~

L(g)

0.4 |

02 -

0.0 04 0.8 1.2 1.6 2.0 2.4 2.8
A
q [fm ]

FIG. 3. Function L(g) = 1 — [F%(q)]? for nuclei *He and “He.

In Fig.3, the functions L(q) = 1 — [FY(§)]? for two light nuclei are shown. In both
cases L(q) = 0 at ¢ = 0 and , L(q) — 1 when ¢ > 2.7fm™!. Graphically, the PBC is
represented by 1 — L(g) which is the vertical distance between the curve and the horizontal
line passing through L(q)=1. Fig.3 shows the PBC is complete i.e., 100% at q=0. It further
illustrates how PBC decreases with increasing ¢. . Since there is only one bound state in
*He and “He (the ground states), 1 — [F%(g)]* represents an exact calculation of L(q) for

these nuclel.
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FIG. 4. Function L(q) for 12C. The ¥, includes transitions to NES states 27,17,37, and 4.

In nuclei with mass number A > 6, there are NES states and its number increases
with A. . To illustrate the effects of NES states in 1p-shell nuclei, we show in Fig.4 the
function L(q) of 1C, assuming 8 = 1 in Eq.(36). The PBC effects due to [F)? and [F]?
+ [F0’2+]2 are given, respectively, by the dashed and solid curves in the figure. Here 2+
is the 4.44 MeV (T = 0) excited state. The dot-dashed curve further includes the PBC
arising from longitudinal transitions to the NES states [12]- [17] at 7.12 MeV (17,7 = 0),
9.64 MeV (37,7=0), and 14.1 MeV (47,T=0). Since the proton seperation energy in '2C
is 15.11 MeV, the inclusion of these four states should take into account most of the NES
transition strength. As one can see, the most important effects of [F'%)?(n # 0) comes from
the longitudinal transition to the first 2% excited state at 4.44 MeV. The inclusion of other
three states brings in only small additional eflects. One could expect that, in general, only a

limited number of transitions to NES states needs to be considered in medium-mass nuclei.
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The relative importance of PBC effects due to different doorway channels can be evalu-
ated from comparing the corresponding [ L(q)dg. We have found that [(1—[F%(q)]?)dq (inte-

gration of the dashed curve) differs from [(1—[F%(¢)]?—,[F*(q)]*)dg, (n = 27,17,37,4T)
(integration of the dot-dashed curve) by less than 2%. In the following calculations of PBC

in 12C, we will, therefore, use the term [F°]? only.
In Fig.5, we show PBC effects on inclusive quasielastic scattering cross sections at

Ey = 200 MeV and 6, = 60° from 3He and '2C as a function of energy loss w. For 2C

calculation an average separation energy B = 25 MeV was used. In Fig.6, we show PBC

effects in these two nuclei at £y = 500 MeV and 6, = 60°. As one can see, the effects of

PBC are significant at 200 MeV but negligible at 500 MeV.
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FIG. 5. Inclusive cross sections (do/dE2/dSd),,, at Ey = 200 MeV and 62 = 60° as a function of
energy loss w. Dotted curve: 3He without PBC; Dot-dashed curve: 3He with PBC; Dashed cureve:

12C without PBC; Solid curve: '2C with PBC.
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FIG. 6. Inclusive cross sections (do/dEs/dS2),,, at Eg = 500 MeV and 6, = 60° as a function of
energy loss w. Circles: *He without PBC; Dot-dashed curve: *He with PBC; Crosses: '2C without

PBC: Solid curve: 2C with PBC. Average separation energy used for 2C.

To quantify the integrated PBC effects on the cross section, let us define

J =
(dO’/dQQ)nOPBC

- (37)

The values of § in *He and 12C are given in Table I where a blank entry represents a § <1 %.

One can see that PBC increases with decreasing energy Fy and scattering angle 6.

TABLE I. Pauli blocking correction § [%)].

‘EQ [MeV]| 3He: 6 =30°| 0y =45° 0,=060° 2C: 02=230° 0y=45° 0y=060°
200 78 58 40 63 37 18
350 44 18 6 21 3
500 18 3 3

16



1.1 T T T
T s
09 b / -
/// ',’/
l/ ///
0.8 [ / ]
,/ ,/‘/
07 |- / .
// //
o H //
) 0.6 - ! / 1
i A
- [
) 5/
05 A -1
1 R s/
! 7
/ F; //
04 k- Iy _
. Iy
l’l e
03 ,,",: /,/ ]
3 00
[/ 1 - [F? :
/ . -
o2l 45 Fermi gas: kg=1.12 fm -
”/ mrm Fermi gas: kp=1.34 fm
i
i —]
v/
g 7
S/
0.0 & L 1 |
16 20 24 28

0.0 04 0.8 1.2
q[fm™]

FIG. 7. Functions L(q) given by doorway and Fermi gas models for *2C.

In heavy-mass nuclei, the number of NES excited states becomes very large. In addi-
tion, very little is known about these states individually. It becomes, therefore, necessary to
use the Fermi-gas nuclear model to calculate PBC. For a nonrelativistic Fermi gas, the prob-

ability for a nucleon to occupy the unoccupied levels situated above the Fermi momentum

kFiS[ll]
Lig) =1 yq > 2kp
(o) -5 (5)
=o( L) (L g < 2kp .
2(2@) 2 \2kp 14 < 2k (38)

(L(q) equals to the function S™(q, kr)/Z in ref. [11].) Eq.(38) shows that in Fermi gas model,
L(q) depends only on kp. Hence, L(g) does not contain information of any finer aspect of
nuclear structure. In Fig.7, we compare the L(g) given by the doorway PBC model using
realistic *?C nuclear wave function (dashed curve) with those given by the Fermi-gas model

having different kr (dotted and dot-dashed curves) . As we can see, the Fermi-gas model
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gives less PBC at g < 0.3 fm™!, but greater PBC at intermediate ¢’s. This difference reflects -

the effect of nuclear structure.
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do/dBx/d €2,y [107% mbMeV/sr]

0 30 60 9 120 150 180 210 240
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FIG. 8. Cross sections of quasielastic scattering from ?C at Ey = 500 MeV and 6, = 60°.

In the literature [19], upon treating kr as a free parameter, a good fit to inclusive
electron quasielastic scattering from 12C at Ey = 500 MeV and 0, = 60° was obtained with
an average nucleon separation energy, which we denote B, equal to 25 MeV and with a
krp = 1.12 fm~! (the standard value of kr is 1.34 fm~%.) In Figs. 8 and 9, we compare the
lab. cross sections of quasielastic scattering from '2C at 6, = 60°, and at E;, = 500 and
200 MeV, respectively. The dotted curves are given by Fermi gas model having the same
parameters as those of ref. [19], i.e., B=25 MeV and kp = 1.12 fm~'. The solid curves are
given by the doorway model having the same average separation energy B=25 MeV. The
dashed curves are also due to doorway model but with realistic separation energies B, = 15

and B; = 35 MeV respectively for the 1p- and 1s— shell protons in '2C. One notes that
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the difference between the cross sections given by the Fermi gas and doorway models are
relatively small at 500 MeV (Fig. 8) but significant at 200 MeV (Fig. 9). At Ey = 500 MeV
and 0, = 60° the average momentum transfer is > 2.4 fm~!, it follows that PBC is negligible.
Hence, the difference between the various w-dependences of the cross sections in Flg 8 is due
mainly to the use of different nucleon momentum distributions in Fermi gas and doorway

models.
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FIG. 9. Cross sections of quasielastic scattering from ?2C at Ey = 200 MeV and 65 = 60°.

This apparent similarity disappears, however, at 200 MeV (Fig. 9). The rapid de-
crease of cross sections shown by the dotted curve at w > 60 MeV arises from the step-

function nucleon momentum distrbution with kr = 1.12 fm™!

in the Fermi gas model. This
w-dependence of the cross sections is in marked difference with those given by the door-
way model (solid and dash-dotted curves) where the use of realistic nucleon momentum

distribution leads to a more gradual PBC. In addition, the use of realistic shell-dependent
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proton seperation energies in the doorway model predicts that at 200 MeV the contributions
to cross sections arising from the 1s— and 1p— shells proton begin to seperate from each
other in the spectrum. This valuable information cannot be given by the Fermi gas model.
Fig. 9 indicates, therefore, that Fermi gas becomes an inadequate representation of nucleon

momentum distribution in *2C.

I'V. DISCUSSION AND CONCLUSIONS

The doorway model can be easily extended to treat final-state interaction in inclusive
hadron-nucleus quasielastic scattering from nuclei. For hadron-nucleus quasielastic scattering
at high energies (Ey > 1 GeV), the probability that the scattered high-energy hadron and the
residual nucleus pgﬁrm bound states is almost zero. Consequently, as long as the “‘residual'
nucleus is not measured, plane wave can be used, to a very good approximation, to describe
the scattered hadron. In addition, at very high energies the spin-flip part of the hadron-
nucleon interaction is negilgible with respect to the spin-nonflip part. As a result, high-energy
hadron-nucleon amplitude can be treated as spin-independent [18]. This leads to a situation
similar to Coulomb scattering in electron-nucleus quasielastic scattering, namely, only the
density operator p is relevant to the Pauli blocking. However, owing to the strong hadron-
nucleus interaction, the distortion of the incoming hadronic wave function must be taken
into account. In fixed-scatterer approximation to the hadron-nucleus quasielastic scattering

Eq.(33) retains its basic formal structure but with the following replacements:

b1 (%) — ) A)—/d x5 (061 ()

Fon((f) — F Cf) /d)\ Qb{]} )\ +U@) ¢{]} ( ) )
3 —>§1, (39)

=1

where X(JL)

5 (P') is the distorted wavefunction of the incoming hadron, which can be calcu-

lated with an optical model and eikonal approximation. The p and 7'’ denote, respectively,
the relative momenta between the hadron probe and the target nucleus in the initial state
and in the intermediate state prior to the direct hadron-nucleon collision that knocks out

the nucleon. In Eq.(39) the momentum Xj depends on 7, namely, in the hadron-nucleus
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cam. frame Xj = —np "= P,. Accordingly, the first term of Eq.(32) is to be replaced by
55 (2m) 73 [ dX|PW (X)) |2 = Aeyy with Aepp < A

The orthogonality-scattering approaches proposed in the literature make use of optical
potentials to model the nucleon-residual nucleus interaction. However, for some nuclear
states of a residual nucleus the corresponding nucleon optical potential is not known. The
present approach is less model-dependent, because the inputs to the calculation are the
experimentally determined form factors. Consequently, the doorway approach to nucleon-
nucleus final-state interaction represents a useful alternate to the orthogonality-scattering
formalism proposed in the literature.

While at the present time the application of the doorway model to heavy-mass nuclei
is hindered by the lack of a systematic experimental knowledge of the NES transition form
factors in these nuclei, it does have advantages over the Fermi gas model in evaluating
Pauli blocking correction in medium-mass and light nuclei. Firstly, the doorway model
can incorporate realistic nuclear structure while the Fermi gas model cannot. Secondly,
while a large number of nucleons in a heavy-mass nuclei may be represented by a nucleonic
gas, the adequacy of treating a small number of nucleons as a structureless gas is certainly
questionable. We have seen that for carbon (A=12), the Fermi gas representation becomes
already inadequate. For nuclei with mass numbers A < 5, the doorway calculation is exact.
For 1p—shell nuclei such as 2C the model can be calculated to a very good approximation
with only using the measured ground-state (g.s.) nuclear form factor. One could expect that
this latter approximation equally holds for 1d— and 1f—shell medium-mass nuelci. Further
studies are called for. We have seen that at 500 MeV the doorway and Fermi gas model give
qualitatively similar results. In other words, in inclusive quasielastic scatterings the detailed
nuclear structure information begin to be washed out as the beam energy increases. On the
other hand, as the beam energy decreases the nuclear structure effect becomes important.
In summary, the doorway formalism of Pauli blocking of spurious nucleon knockout is less
model dependent than the usual orthogonality scattering approach, it incorporates nuclear

structure effects, and can be readily applied to light and medium-mass nuclei.
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