

LA-UR- 08-4299

*Approved for public release;
distribution is unlimited.*

Title: Climatic implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca and Gállego Rivers, NE Spain

Author(s): Claudia J Lewis
Eric V McDonald
Carlos Sancho
Jose-Luis Pena
Edward J Rhodes

Intended for: publication in the journal:
Global and Planetary Change

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **Climatic implications of correlated Upper Pleistocene glacial and fluvial**
2 **deposits on the Cinca and Gállego Rivers, NE Spain**

4 Claudia J. Lewis^{1*}, Eric V. McDonald², Carlos Sancho³, José Luis Peña⁴, and Edward J. Rhodes⁵

6 ¹ Earth & Environmental Sciences Division, MS D452, Los Alamos National Laboratory, Los Alamos, NM, 87545,
7 USA; TEL: 1-505-665-7728; FAX: 1-505-667-1628; E-mail: clewis@lanl.gov

8 ² Desert Research Institute, 2205 Raggio Parkway, Reno, NV, USA

9 ³ Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain

10 ⁴ Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza, Zaragoza, Spain

11 ⁵ Laboratory of the Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, UK;
12 now at: Department of Environmental and Geographical Sciences, Manchester Metropolitan University, Manchester,
13 UK

14 *Corresponding author

15 **Abstract**

16 We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River
17 valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence
18 dates, and time-related trends in soil development. The ages obtained from glacial deposits
19 indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka
20 (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive
21 terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11
22 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of
23 maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine
24 isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial
25 occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive
26 in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in
27 fluvial discharge and availability of sediments related to the transition to deglaciation. The global
28 Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly
29 dry conditions at that time. Precipitation must be controlled by the position of the Iberian
30 Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems

31 and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by
32 insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the
33 North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling
34 precipitation on the Iberian Peninsula. Our model of glacial and fluvial evolution during the Late
35 Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in
36 southern Europe.

37 **Key words:** glacial deposits; fluvial terraces; OSL dating; climate change; Pleistocene; Pyrenees.

38 **1. Introduction**

39 The Iberian Peninsula is located in a pivotal geographic position that is highly sensitive to
40 climatic perturbations in the North Atlantic. Some investigators have proposed, from
41 paleoclimate marine proxies in the western Mediterranean area, a link between North Atlantic
42 circulation and weather in Iberia (e.g., Cacho et al., 2000; Sánchez-Goñi et al., 2002; Bout-
43 Roumazeilles et al., 2007). What is lacking, however, is a robust determination of the timing of
44 Pleistocene cold stages on the Iberian peninsula and their consequences in terms of glacial and
45 fluvial sedimentary deposits.

46 Until now, few chronologic data have been available to pin down the timing and extent of
47 major Pleistocene glaciations in any of the mountain ranges of southern Europe (e.g., Hughes et
48 al., 2006a, b). Furthermore, the timing of maximum ice extent is a controversial topic. The global
49 Last Glacial Maximum (LGM) is associated with a major advance of glaciers in some parts of
50 northwest Europe, and it is generally agreed that maximum cold occurred at 20-18 ka (e.g.,
51 Bowen et al., 1986). However, this does not represent the timing of the maximum extent of
52 glaciers in either the northern or southern Pyrenees (Hérail et al., 1986; García-Ruiz et al., 2003;

53 Sancho et al., 2003, 2004). The LGM in the Pyrenees began as early as 50-60 ka and ended
54 around 18 ka (Pallás et al., 2006). Only in the eastern Pyrenees did the maximum ice advance
55 occur during the LGM (Delmas et al., 2008) .

56 Chronological control on Pleistocene fluvial terrace development in southern Europe is
57 somewhat better (Macklin et al., 2002), especially on the Iberian Peninsula (Santisteban and
58 Schulte, 2007). Major fluvial aggradation events appear to correlate across the Mediterranean
59 basin and may be synchronous with climate changes (Macklin et al., 2002). However, compiled
60 chronological data for Iberia suggest each river system may respond differently to local and
61 regional climate control and other effects (Santisteban and Schulte, 2007).

62 The Cinca and Gállego are major rivers of northern Spain with their headwaters in the
63 highest part of the Pyrenean range (Fig. 1). Their river valleys preserve excellent records of
64 glacial episodes and periods of fluvial incision and aggradation (Sancho et al., 2004). Moraines
65 and fluvial terraces from this area provide a means of dating cold periods in the Pyrenees for
66 comparison with the few dated glacial and fluvial deposits from other areas in Europe and to
67 proxy records of climate change.

68 In this paper, we present chronological data on Upper Pleistocene glacial and fluvial
69 deposits from valleys in the south central Pyrenees and Ebro basin, analyze the response of
70 glacial and fluvial systems to climate change, and relate the climate signal evident in northern
71 Spain to climatic changes recorded in both the Mediterranean and the North Atlantic. The
72 chronology of valley glacier dynamics and the associated fluvial response in areas of southern
73 Europe may have implications for our understanding of the effects of global climate change on
74 the continents.

75 **2. Study area**

76 Numerous moraine remnants preserved in the headwaters of the Cinca and Gállego
77 Rivers demonstrate that the length of valley glaciers surpassed 35 km, and the thickness of ice
78 exceeded 500 m in some localities (Chueca et al., 1998). In addition, fluvial terraces are well
79 preserved and easily recognized along the valleys of the Cinca and Gállego Rivers. Strath
80 terraces comprise the dominant terrace type on both rivers (Sancho, 1988; Benito, 1989). Terrace
81 deposits in the vicinity of terminal moraines in many cases show signs of flavioglacial activity,
82 providing a direct link between glacial episodes and fluvial terrace formation.

83 We have studied the fluvial terraces of the Cinca River (Fig. 1) along the entire length of
84 its valley (~170 km long) and the terraces of the Gállego from the headwaters to the town of
85 Gurrea (~130 km) in the Ebro basin; below Gurrea, thick composite fill terraces related to
86 gypsum bedrock dissolution obscure relations near the Gállego's confluence with the Ebro River
87 (Benito et al., 1998). On both the Cinca and Gállego, broad terrace treads (paleochannels of a
88 braided stream) are underlain typically by <2-10 m of largely cobble-sized gravels in a sand
89 matrix with sparse sand lenses. Terrace deposits also contain large (20-100 cm diameter) rounded
90 boulders. Separation between adjacent strath terraces ranges up to 40 m, facilitating mapping and
91 measurement of the straths and the alluvial deposits that overlie them. Along both rivers, straths
92 are carved into Paleozoic basement, Cretaceous to Eocene marine strata of a previous extensional
93 episode, and Eocene to Miocene Pyrenean synorogenic marine strata along the mountain reaches
94 and Eocene to Miocene synorogenic continental strata along the Ebro basin reach.

95 **3. Material and methods**

96 Geomorphic mapping on an aerial photographic base (1:18,000 scale), soils analysis, and
97 numeric dating were carried out as part of this study. Mapped terrace remnants were extensively
98 field checked.

99 We used optically stimulated luminescence (OSL) techniques to date the following: 1)
100 sand lenses within glacial till, 2) well-sorted fluvial sands from lenses within massive gravel
101 deposits, 3) overbank deposits on top of the gravels, and 4) eolian silt on top of terrace deposits.
102 We used standard sampling techniques for poorly lithified materials, sampling with plastic and
103 metal tubes or under a light-tight black plastic sheet into plastic bags that were then wrapped in
104 aluminum foil. Sample preparation and OSL measurements were carried out at the Luminescence
105 Dating Laboratory of the Research Laboratory for Archaeology and the History of Art (University
106 of Oxford, UK) and the Luminescence Dating Laboratory of the Research School of Earth
107 Sciences (The Australian National University, Australia). Sand-sized quartz was extracted using
108 the methodology described by Rhodes (1988), which includes sieving, concentrated hydrofluoric
109 acid treatment, and density separation of heavy minerals using sodium polytungstate solution.
110 OSL dating was based on a single aliquot regenerative-dose (SAR) protocol (Murray and Wintle,
111 2000, 2003), using a Risø TL-DA-15 automated luminescence reader. For the majority of the
112 samples, the dose rate is based on in situ gamma ray spectrometry. For a few samples, beta and
113 gamma dose rate were estimated using neutron activation analysis (NAA) of sediment U, Th and
114 K content, and cosmic dose rates were calculated using the equations of Prescott and Hutton
115 (1994). Based on in-situ samples, a value of $10 \pm 5\%$ water content was used in age calculations.

116 We report here 53 new OSL dates. All OSL dates are presented with one-sigma
117 uncertainties. Where multiple dates were obtained for a given terrace or moraine, we determine a

118 weighted mean age in which weights are based on the uncertainty associated with each age
119 determination. We refer to these weighted mean ages as “mean ages.”

120 We used ^{14}C dating for three samples of charcoal found in soil pits in terrace deposits.
121 These samples were analyzed using AMS techniques at the University of Arizona. The ^{14}C dates
122 were converted to calibrated ages to correct for the effects of fluctuations in the $^{14}\text{C}/^{12}\text{C}$ ratio in
123 the atmosphere. One of the ^{14}C dates was calibrated using the program CALIB 5.0, according to
124 the technique described in Stuiver and Reimer (1993), Stuiver et al. (1998), and Reimer et al.
125 (2004). Two samples are beyond the range of calibration.

126 We also used soil development indices to correlate principal terrace levels and to evaluate
127 the dates determined by OSL and radiocarbon. Soils were described according to standard
128 methods and nomenclature of the U.S. Soil Survey Staff (1993). Sample analyses were conducted
129 at the Desert Research Institute’s Soil Characterization and Quaternary Pedology Laboratory.
130 Time-related changes in soil morphology were analyzed using a well-tested soil development
131 index (SDI; Harden, 1982; Harden and Taylor, 1983; McDonald et al., 1996). Calculation of SDI
132 values is based on a conversion of soil morphology into numerical data to enable a quantitative
133 comparison of the degree of soil development. Points are assigned to each property based on the
134 difference between the described soil property and the parent material. Index values were
135 calculated using morphologic properties of rubification, texture, structure, dry consistence, moist
136 consistence, secondary carbonates, lightening, and argillans. The primary value produced by the
137 SDI is the Profile Development Index (PDI) value which reflects the overall degree of soil
138 development. The PDI values provide a means of comparison among soils within a given
139 sequence or area and can be used to develop a soil chronofunction. We plot PDI values using
140 mean age estimates for dated terraces to evaluate both radiometric age estimates and correlations

141 of terrace stratigraphy between the Cinca and Gállego Rivers. The SDI has proven useful for
142 providing correlations and calibrated age estimates for undated surfaces.

143 **4. Distribution and chronology of glacial and fluvial morphosedimentary records**

144 *4.1. Cinca River valley*

145 We focus on five Pleistocene terraces preserved along the Cinca River (Sancho, 1988),
146 numbered Qt5, Qt6, Qt7, Qt8, and Qt9 from oldest to youngest, and on outcrops of glacial tills
147 near the headwaters of the Cinca (Fig. 2a). Table I shows the results from OSL dating.

148 Terraces Qt5 and Qt6 are well-developed in the lower, Ebro basin reach of the river (Fig.
149 2e). Between Monzon and Fraga (Fig. 1), they are 60-80 m above the active channel (Fig. 2a and
150 e). We obtained two dates (Table I) for Qt5 (171 ± 22 ka and 180 ± 12 ka), giving a weighted
151 mean age of 178 ± 21 ka, and one date for Qt6 (97 ± 16 ka) (Table I). In addition, a single sample
152 of eolian silt (loess) on top of fluvial gravels of the Qt5 gave an age of 20 ± 3 ka.

153 The relative degree of soil development is consistent with the stratigraphic separation
154 between the Qt5 and Qt6 terraces and the age estimates (Fig. 3; Table III). The Qt5 soils at
155 Belver (RCT6-1, RCT6-2, RCT6-3) have PDI values that range from 45.1 to 59.9, and have well
156 developed Bk and Bkm horizons with stage III⁺ to IV⁺ carbonate morphology. Only one soil was
157 described on the Qt6 surface at Belver (RCT5-1). This soil is weaker in development relative to
158 the soils on the Qt5, having a PDI of 43.0, a well developed Btk horizon, and strong stage III⁺
159 carbonate morphology. The difference in soil development corroborates the younger age of the
160 Qt6 terrace, although we have only one observation on this terrace for comparison with other
161 terraces.

162 The Cinca Qt7 terrace (Fig. 2c, d and e) is prominent in the landscape (~4 km wide along
163 the Ebro basin reach of the river and 35-50 m above the active channel) and can be traced along
164 140 km of the river's length. Fourteen OSL dates were obtained on this terrace (Table I). Two
165 samples from overbank sands on Qt7 terrace remnants at Alfántega and El Grado (Fig. 2a) gave
166 dates of 52 ± 11 ka and 54 ± 9 ka and likely correspond to large floods during formation of the
167 next younger terrace Qt8 (see below). However, they overlap other dates in this group within
168 uncertainties. One date of 28 ± 5 ka came from a sand lens riddled with insect burrows and likely
169 resulted from light exposure due to bioturbation. Six samples constitute a tightly grouped set of
170 dates with a weighted mean age of 61 ± 4 ka. Finally, five dates from this terrace are significantly
171 older than the cluster of dates that fall between 56 and 64 ka; these five dates fall into two groups
172 with weighted mean ages of 126 ± 11 ka and 86 ± 12 ka respectively. One of these dates comes
173 from an isolated terrace remnant at Ligüerre de Cinca (Table I) that has an elevation above the
174 active channel similar to Qt7 remnants upstream and downstream. However, without further
175 geochronologic data, we cannot rule out the possibility that this is a remnant of a terrace older
176 than Qt7. We therefore interpret all these older dates as coming from remnants of older terraces
177 incorporated into Qt7.

178 Five soils described on Qt7 terraces at Monzón, Albalate, and Almudáfar (RCTM4-1,
179 RCTM4-2, RCT4-1, RCT4-2, RCTZ4-1) have PDI values ranging from 27.0 to 33.3 and with
180 moderately- to well-developed Btk horizons and stage II to weak stage III carbonate morphology
181 (Fig. 3; Table III). The soils developed on the Qt7 terraces are noticeably less developed than
182 soils on the older Qt5 and Qt6 terraces, indicating that the soils on the Qt7 terraces must be
183 considerably younger than the best age of 97 ± 16 ka for the Qt 6 terrace. Moreover, the five PDI
184 values for the soils form a tight cluster around the best fit line, generally supporting an age of ~61

185 ka for the Qt7 surface. We note that the soil pits at Albalate and Almudáfar were the source of
186 four OSL dates, three of which fall in the range 56-65 ka.

187 The Cinca Qt8 terrace is not as extensively preserved as the Qt7. It crops out only along
188 the lower 35 km of the river, where it is ~2-3 km wide and sits about 20 m above the river (Fig.
189 2e). We have obtained six OSL dates (Table I) on Qt8 deposits, four of which are from the same
190 outcrop at Fraga (Fig. 2a). Three of these latter dates range from 39 ± 5 ka to 50 ± 3 ka and
191 overlap within uncertainties; the fourth is considerably older (79 ± 6 ka) and perhaps reflects
192 incorporation of an older terrace remnant, although there is no observable geomorphic reason
193 why this sample might be older than the rest. The six dates on Qt8 give a best age of 51 ± 4 ka.
194 Disregarding the outlier gives an age of 47 ± 4 ka, which is the same within uncertainties.

195 Two soils were described on the Qt8 terrace at Albalate (RCT3-1, RCT3-2) with PDI
196 values of 24.7 and 23.2 (Fig. 3; Table III). These soils have moderately developed Btk horizons
197 with stage I⁺ carbonate morphology. The soils on the Qt8 are less developed relative to the soils
198 on the Qt7 terrace, supporting the OSL age of 47 ± 4 ka for the Qt8; however, the PDI values of
199 the two soils fall below the the best fit line, suggesting that these soils may be younger than the
200 best age estimate for the Qt8.

201 The Cinca Qt9 (Fig. 2e) terrace sits about 6-10 m above the active channel of the Cinca
202 River. It is generally co-extensive with the Qt7 and traceable along ~140 km of the river's total
203 length. The Qt9 is also approximately co-extensive with the Qt8, where the latter is preserved,
204 and much the same width (~2 km wide). We have obtained eight OSL dates (Table I) on sand
205 lenses within gravels of the Qt9 terrace along the Ebro basin reach, achieving good repeatability
206 on three samples from Castejón del Puente and two samples from Chalamera (Fig. 2a). All dates

207 are well grouped, ranging from 9 to 14 ka. The weighted mean age for these deposits is 11 ± 1
208 ka.

209 This age is corroborated by soils on the Qt9 terrace at Castejón del Puente and Albalate
210 (RCT2-1, RCTM-1). The two soils have PDI values of 14.7 and 18.1 (Fig. 3; Table III) and
211 moderately developed Bw and Bk horizons with stage I-II carbonate morphology. The PDI values
212 of these soils bracket the best fit line, supporting an age of about 11 ka for the Qt9 terrace. OSL
213 dates from Castejón del Puente and Albalate come from the soil pits.

214 At Ainsa (Fig. 2a), we obtained two ^{14}C dates from the base of a thick sequence of
215 overbank sand on top of terrace gravels close to the elevation of the active channel (Table II).
216 These dates, 18.6 cal ka BP and 22.1 ± 0.2 ka radiocarbon BP, constrain the gravels beneath to be
217 at least that old and demonstrate the existence of important floods during the Last Glacial
218 Maximum.

219 In addition, near the headwaters of the Cinca at Salinas and San Marcial (~ 25 km from
220 the headwaters; Fig. 2a), we mapped and dated glacial and fluvioglacial deposits (Fig. 2b). The
221 lack of interfingering relationships between these deposits and terrace remnants in the area makes
222 direct correlation difficult to confirm. Four OSL dates on these deposits range from 46 ± 4 ka to
223 76 ± 13 ka. The oldest one (San Marcial) clearly corresponds to a fluvioglacial deposit with
224 terrace morphology located 1 km to the south. The one young date among these four seems
225 anomalous and may pertain to a later phase of glaciation; the outcrop was deformed by ice
226 pushing (Fig. 2b), which may have mixed superposed deposits from two phases of glaciation.
227 The weighted mean age for the three older dates is 64 ± 11 ka, which is similar to the Qt7 age (61
228 ± 4 ka). Based on OSL dates and geomorphic position, we correlate these glacial deposits with
229 the Qt7 and propose that the Qt7 terrace deposits are glacial outwash.

230 4.2. *Gállego River valley*

231 In the valley of the Gállego River, the fluvial terrace sequence is more complicated than
232 that of the Cinca. Controlled by Pyrenean structure, the trace of the river undergoes abrupt
233 changes in direction (Fig. 4a). Along the Pyrenean reach of the river, the degree of incision of the
234 Gállego River is small, whereas once the river enters the Ebro basin at Murillo (Fig. 4a and e)
235 incision is substantially greater, thereby making correlation of terrace remnants by elevation
236 alone impractical. Nevertheless, using OSL dates and soil development we have differentiated
237 and mapped a system of three terrace levels along both reaches that we call “upper,” “middle,”
238 and “lower.” In addition, a well-preserved sequence of moraines lies along the Pyrenean reach of
239 the Gállego valley (Fig. 4b). Table I shows the results from OSL dating.

240 The upper terrace is represented by remnants preserved along both reaches. In the Ebro
241 basin, this terrace is found 72 m and 46 m above the active channel at Concilio and Gurrea de
242 Gállego respectively (Fig. 4a). We have dated three samples (156 ± 22 ka, 148 ± 8 ka, and $140 \pm$
243 18 ka), obtaining similar ages in both localities. Upstream, near Sabiñánigo (Fig. 4a and b),
244 flavioglacial remnants of this terrace level are located 51 m above the active channel. Included in
245 these deposits are glacially striated boulders more than 70 cm in diameter. We dated four
246 samples from the upper terrace at Sabiñánigo (84 ± 9 ka, 99 ± 11 ka, 155 ± 24 ka, and 156 ± 10
247 ka).

248 Soil development indices show that the older ages are more reasonable for upper terrace
249 soils (RGAT7-1, RGAT7-2), with the overall degree of soil development similar to soils on the
250 ~178 ka Cinca River Qt5 terrace (Fig. 3; Table III). Upper terrace soils have well-developed Bt to
251 Bkm horizons; however, the degree of carbonate morphology is weaker relative to similar age
252 soils on the Cinca because the soils on the Gállego upper terrace have formed at higher

253 elevations and under a more humid climate, factors that favor developed Bt horizons and limit
254 development of carbonate morphology. As a consequence, the best age for this terrace is the $151 \pm$
255 11 ka weighted mean of five dates from Concilio, Gurrea, and Sabiñánigo, excluding the two
256 anomalously young ages from Sabiñánigo.

257 The middle terrace is well preserved along the Pyrenean reach of the Gállego and shows
258 clear evidence of fluvioglacial activity. We observed several intervals of large diameter boulders
259 (up to 110 cm), in particular at the gravel pit at Hostal de Ipiés (Fig. 4d). Between Sabiñánigo
260 and La Peña (Fig. 4a), the height of this terrace above the active channel is 11-17 m, although in
261 the gravel pit at Ipiés the strath is at the same elevation as the active channel. Two dates from
262 Hostal de Ipiés (66 ± 4 ka) and Llano de Yeste (74 ± 10 ka) agree within uncertainty. From a soil
263 pit at Sabiñánigo, we dated two more fluvioglacial samples, one of which gave a date (69 ± 8 ka)
264 that agrees well with dates from Hostal de Ipiés and Llano de Yeste. The other date from this soil
265 pit (103 ± 7 ka) comes from fine sand with abundant silt-sized matrix on top of the Gállego
266 gravels, suggesting turbid water conditions during deposition. This sample may have been
267 incompletely zeroed. The weighted mean age for these fluvioglacial deposits, excluding the older
268 date, is 68 ± 7 ka. The two soils described on the middle terrace at Sabiñánigo and Llano de
269 Yeste (RGAT9-1, RGLA-9-1) are very similar in development to the soils developed on the Qt7
270 terraces of the Cinca River (Fig. 3; Table III), supporting OSL age estimates for the middle
271 terrace of the Gállego and stratigraphic correlation with the Cinca Qt7.

272 The lower terrace is more or less continuous along the length of the Gállego valley. The
273 strath height above the active channel is <5 m in the valley of La Peña (Fig. 4a), but increases at
274 Murillo to 45 m and decreases from there downstream to 35 m at Biscarrués. We have dated
275 three samples from La Peña and Biscarrués (32 ± 4 ka and 45 ± 3 ka respectively). The date from

276 La Peña could be too young because this outcrop shows abundant insect burrows and may have
277 been modified by bioturbation. A soil described on the lower terrace at Marracos (Fig. 4a;) has a
278 PDI of 22.3, moderately-developed Bwk and Bk horizons, and a stage II carbonate morphology
279 similar in development to a soil developed on the Qt8 terrace of the Cinca River (RGAT2-1; Fig.
280 3; Table III). This supports the age estimate for the lower terrace of the Gállego at Biscarrués and
281 stratigraphic correlation with the Qt8 terrace of the Río Cinca, although more data are needed to
282 confirm this.

283 Near the headwaters of the Gállego, we mapped and dated two moraine deposits (Fig.
284 4b), one at Senegüe that retains its arcuate terminal moraine form (Fig. 4c) and one at Aurin that
285 is degraded and retains none of its original geomorphic form. The two samples from Senegüe are
286 from laminated sands and silts that overlie till of the moraine. The dates are quite consistent (36
287 \pm 3 ka and 36 ± 2 ka) and give a weighted mean age of 36 ± 3 ka. One sample from Aurin, dated
288 at 85 ± 5 ka, is from laminated sands within a till sequence. A second sample from Aurin gave a
289 date of 38 ± 4 ka. Owing to the moraine's geomorphic position downstream of the Senegüé
290 moraine, we consider the older date more reasonable.

291 The soil on the Aurin moraine (AMOR-1), with a PDI of 21.6, is clearly much better
292 developed relative to the soil on the Senegüe moraine (SMOR-1), with a PDI of 11.3, indicating
293 that the Aurin moraine is older (Table III). This is the common way to use soils on moraines
294 (Birkeland, 1999). As moraines in many cases are dynamic features with episodic surface
295 erosion, soils should be viewed as minimum relative age indicators.

296 **5. Discussion**

297 *5.1. Reliability of methods*

298 The reliability of OSL dating of the terrace deposits is confirmed by the excellent
299 agreement among the eight Qt9 dates. Some dispersion in the OSL dates is apparent in the older
300 terrace deposits. This is in some cases due to bioturbation, but may also reflect incorporation of
301 older terrace remnants during reworking by floods. Nonetheless, the dates obtained from Qt7 are
302 so well grouped that the weighted mean for all dates (64 ± 3 ka), including outliers, is the same
303 as the weighted mean calculated from the six dates that fit best with geomorphic relations and
304 soil development (61 ± 4 ka).

305 There is also a high degree of correspondence among OSL dates and time-related changes
306 in degree of soil development for correlated terrace remnants. Soil PDIs provide an important
307 means of confirming OSL dates, highlighting the utility and importance of using more than one
308 technique to date glacial and fluvial materials, where possible. The soils best denote the age of
309 surface stability and will not always reflect the age of deposition, however. It is possible, indeed
310 likely, that deposition will occur over many years before the fluvial system changes to one of
311 channel incision and yields stabilized soil-terrace surfaces.

312 *5.2. Regional morphosedimentary glacial sequence*

313 In the valley of the Gállego River, glacial and fluvioglacial sediments are more abundant
314 and better preserved than in the Cinca valley. We have dated glacial sediments (Fig. 5) on the
315 Gállego at 85 ± 5 ka and 36 ± 3 ka. An intermediate cold stage is represented by glacial
316 sediments near the Cinca headwaters dated at 64 ± 11 ka. Eolian silt (loess) on the Cinca
317 provides evidence of a cold stage at 20 ± 3 ka (Fig. 5) as loess accumulation is generally
318 associated with Pleistocene glaciations (Liu et al., 1993). Correlated glacial and loess deposits
319 have also been identified in Central Europe (Bradley, 1995).

320 From our data, we propose a regional, multi-phase model of glaciation, with single or
321 multiple events within the periods 90-80 ka, 75-52 ka, 39-32 ka, and 22-17 ka. Our results
322 confirm that the maximum extent of glacial ice in the southern Pyrenees during the last glacial
323 occurred at 64 ± 11 ka, well prior to the LGM (García-Ruiz et al., 2003; Sancho et al., 2003).
324 Fluvial discharge from melting LGM glaciers was small, as evidenced by the scarcity of
325 corresponding terrace deposits. This is consistent with the well established view that glaciers
326 during the LGM were restricted to the headwaters of river drainages in the Central Pyrenees
327 (García-Ruiz et al., 2003; Pallás et al., 2006). During marine isotope stage 2 (MIS 2), loess
328 accumulation (dated at 20 ± 3 ka) took place in areas of the Ebro basin adjacent to the Cinca and
329 Gállego Rivers, locally covering some previous terrace surfaces. By contrast with the rest of the
330 Pyrenees, the maximum ice advance in the eastern Pyrenees occurred late, during MIS 2 (Delmas
331 et al., 2008).

332 In general, our chronology of glacial events in the Pyrenees bolsters previous models
333 derived from geomorphic and stratigraphic relations in other areas of the Pyrenees (Vilaplana,
334 1983; Bordonau, 1992; García-Ruiz and Martí-Bono, 1994; Chueca et al., 1998; Serrano, 1998)
335 while demonstrating via OSL dating and soils geomorphology that the southern European glacial
336 maximum hypothesized by previous authors, well prior to the LGM, is essentially correct.
337 Asynchronicity of glaciation in southern Europe with respect to northern Europe has also been
338 documented in the Cantabrian Mountains of Spain (Jiménez and Farias, 2002), the French
339 Pyrenees (Héral et al., 1986; Andrieu et al., 1988; Jalut et al., 1992), the French Vosges (Seret et
340 al., 1990), the Swiss Alps (Chapron, 1999), the Italian Apennines (Giraudi and Frezzotti, 1997;
341 Kotarba et al., 2001), and the Pindus Mountains in Greece (Woodward et al., 2004).

342 *5.3. Regional morphosedimentary fluvial sequence*

343 The robust correlation among terraces on the two rivers allows us to construct a regional
344 morphogenetic model of glacial outwash and terrace development at 178 ± 21 ka to 151 ± 11 ka,
345 ca. 97 ka, 68 ± 7 ka to 61 ± 4 ka, 47 ± 4 ka to 45 ± 3 ka, and 11 ± 1 ka (Fig. 5). In addition,
346 evidence of fluvial activity at 126 ± 11 ka, 86 ± 12 ka, and ca. 22-18 ka has been noted, but no
347 mapped terrace remnants correspond to these deposits.

348 For the rest of the Pyrenees and Ebro basin, chronologic data on terraces are almost non-
349 existent, and more data are required to thoroughly test our regional model. Nevertheless, some
350 comparisons can be made with previously published data. In the central Ebro basin, Luzón et al.
351 (2008) obtained four OSL ages grouped around 78-73 ka and 58-50 ka from Ebro River terraces
352 affected by synsedimentary karstic subsidence. One of the best developed terraces in the Cinca-
353 Gállego system (68 ± 7 ka to 61 ± 4 ka) overlaps the ages of the Ebro terraces within
354 uncertainties, suggesting a link not only between periods of alluviation but also between periods
355 of glacial outwash and formation of karst topography. On the southern side of the Ebro basin
356 (Guadalupe River and tributaries), Fuller et al. (1998) differentiated a series of fluvial
357 aggradational episodes (based on infrared stimulated luminescence dating), which they
358 associated, in most cases, with marine isotope stages and Heinrich events (H) as follows: MIS 6,
359 MIS 5e, transition MIS 5e-5d, MIS 5b, MIS 3 (including one event centered on H4), and MIS 2
360 (with an event centered on H1). These aggradational episodes are thought to coincide with
361 stadials (Fuller et al., 1998), although these rivers were not glaciated in their headwaters. Some,
362 but not all, of these aggradational events can be correlated with the Cinca and Gállego
363 chronology (MIS 6, MIS 5e, MIS 5b, H4, and H1) and with other records across the
364 Mediterranean basin (Macklin et al., 2002).

365 Other important Iberian rivers (Duero, Tajo and Guadalquivir; Pérez-González et al.,
366 1994; Pérez-González et al., 2004; Díaz del Olmo et al., 1989) have extensive multi-stage terrace
367 sequences constrained by paleontological, paleomagnetic, and archaeological data. However,
368 these data do not permit definitive correlation with the terrace systems of the Cinca and Gállego
369 Rivers. Thorndycraft and Benito (2006) identified a period of greater frequency of large
370 magnitude floods at 12-10 ka on the Tajo River, which coincides with a cold climatic phase. This
371 event could correlate with the Qt9 on the Cinca River.

372 As alluvial aggradation in the southern Iberian Peninsula is partially controlled by
373 tectonic activity (Harvey and Wells, 1987; Harvey et al., 1995; Candy et al., 2004), we hesitate to
374 make correlations with those chronologies.

375 *5.4. Correlation at global scale*

376 High resolution proxy climate data for the last 250 kyr from the Alborán Sea
377 (southwestern Mediterranean basin; Martrat et al., 2004) suggest that periods of alluviation
378 registered on the Cinca and Gállego may coincide with cold phases in a context of highly
379 variable climate marked by abrupt climate changes, although an exact fit for all alluvial stages is
380 not apparent. Stages of terrace development appear to be associated with stadials, marked by the
381 lowest values of $\delta^{18}\text{O}$ in *G. bulloides*, lowest sea surface temperatures, and highest percentages
382 of Tenaghi Philippon woody taxa (Martrat et al., 2004).

383 At the global scale, our chronology of meltwater discharge events and terrace
384 development coincides with maxima in insolation at 65° N during the summer solstice (Berger
385 and Loutre, 1991) (Fig. 5b). The chronology of terrace development also corresponds reasonably
386 well with the SPECMAP standard $\delta^{18}\text{O}$ isotopic curve obtained from deep sea sediments
387 (Martinson et al., 1987) (Fig. 5c). There is a general correlation between alluvial events and MIS

388 6, 5e, transition 5c-5b, 5a, transition 4-3, 3, and transition 2-1 (Fig. 5d; Martinson et al., 1987).
389 From the curve that relates ice-rafted debris (IRD; McManus et al. 1999) in North Atlantic
390 sediments to Heinrich events (Bond et al., 1992, 1993), we see a coincidence between some
391 peaks of detrital discharge in the ocean and stages of alluviation in the Cinca and Gállego River
392 valleys (~128 ka; H6; ~60 ka; H5; H1, and the Younger Dryas at ~12 ka; Fig. 5e). Fluvial
393 aggradation appears to respond to the same climate signals as does marine sedimentation. Solar
394 forcing drives melting of sea ice and glacial ice, causing freshwater pulses that affect
395 thermohaline circulation in the North Atlantic.

396 In the southern Pyrenees, the glacial stage at 64 ± 11 ka represents the maximum extent
397 of ice during the Late Pleistocene in the southern Pyrenees and resulted in massive fresh water
398 discharge on both the Cinca and Gállego Rivers. What was different during stage 4? The answer
399 may lie in the direction and intensity of storm tracks in the North Atlantic. Climate during stage 4
400 is known to have been warmer than stage 2, but perhaps it was stormier, delivering more
401 precipitation to Iberia than during stage 2.

402 Global circulation models have demonstrated that Iberian rainfall is mainly influenced by
403 anomalies in atmospheric circulation in the North Atlantic, not by regional or remote sea surface
404 temperature anomalies (Zorita et al., 1992). A close relationship exists between the North
405 Atlantic Oscillation and rainfall in northwest Africa, Iberia, and other parts of Western Europe
406 (Meehl and van Loon, 1979; Zorita et al., 1992; Hurrell, 1995). The severity of Pyrenean
407 glaciations might therefore be connected to the intensity of atmospheric circulation (Florineth
408 and Schlüchter, 2000). During MIS 4, the North Atlantic polar front occupied an intermediate
409 latitudinal position (Ruddiman and McIntyre, 1977), resulting in transfer of heat and moisture
410 from warm subtropical water to the atmosphere in the path of the prevailing westerlies that bring

411 storm tracks across Iberia. During the LGM, the jet stream was deflected far south by the extreme
412 zonal position of the North Atlantic polar front, resulting in high lake levels in the Tibesti
413 Mountains of North Africa (Maley, 2000) and leaving Iberia dry. The extent of ice sheets in the
414 Barents and Kara Seas (determined by distribution of IRD on the continental shelf) also appears
415 coupled to the influence of Atlantic water and therefore moisture supply (Siegert & Dowdeswell,
416 2004). MIS 4 was marked by continuous Atlantic water inflow and eastward penetration of
417 moisture-bearing storms, resulting in major ice sheet buildup in the Kara Sea (Knies et al., 2001).
418 MIS 2, on the other hand, was a less intense glaciation, with no ice in the Kara Sea. The
419 magnitude of the MIS 4 glaciation in the Pyrenees may have been driven by oceanic moisture and
420 sea level feedbacks, amplifying the precessional insolation minimum that occurred at that time
421 (Ruddiman and McIntyre, 1981).

422 **6. Conclusions**

423 The robust chronological correlation of glacial, fluvioglacial, and fluvial deposits along
424 the Cinca and Gállego Rivers (Pyrenees and Ebro basin, northeastern Spain), based on
425 consistency between geomorphic field relations, chronologic data from optically stimulated
426 luminescence dating, and soil development, allows us to draw the following conclusions:

427 1. We have combined radiometric dating results with time-related trends in soil
428 development to make reasonable age interpretations that support the idea that fluvial terraces
429 [Cinca Qt5 (Gállego upper), Cinca Qt7 (Gállego middle), Cinca Qt8 (Gállego lower)] are
430 regionally correlative.

431 2. We have developed a regional morphogenetic glacial sequence consisting of periods of
432 glacial stability at 85 ± 5 ka, 64 ± 11 ka, 36 ± 3 ka, and 20 ± 3 ka and periods of elevated fluvial
433 activity with development of extensive terraces at 178 ± 21 ka to 151 ± 11 ka, ca. 97 ka, 68 ± 7

434 ka to 61 ± 4 ka, 47 ± 4 ka to 45 ± 3 ka, and 11 ± 1 ka. In addition, equivocal evidence of
435 alluviation at 126 ± 11 ka, 86 ± 12 ka, and ca. 22-18 ka exists within terrace deposits but not
436 associated with mappable terrace remnants.

437 3. During the Late Pleistocene in northeastern Spain, the most extensive
438 morphosedimentary glacial (64 ± 11 ka) and associated fluvial deposits (68 ± 7 ka to 61 ± 4 ka)
439 accumulated during marine isotope stage 4 and Heinrich event 6. The maximum in glacial and
440 fluvial activity does not coincide with the Last Glacial Maximum owing, probably, to
441 predominantly arid conditions during the LGM on the Iberian Peninsula linked to anomalies in
442 atmospheric circulation in the North Atlantic.

443 4. Large glacial meltwater discharges were involved in the formation of the terraces. We
444 see a strong correlation between phases of fluvial aggradation and terrace development and
445 periods of maximum insolation in the northern hemisphere, ice rafting events in the North
446 Atlantic, and patterns of atmospheric circulation in the North Atlantic. The glacial systems and
447 the associated fluvial dynamic during the Late Pleistocene in northern Iberia seem sensitive to
448 solar forcing as well as North Atlantic oceanic and atmospheric circulation.

449 **7. Acknowledgements**

450 This work was funded by grants from the National Geographic Society, the National
451 Science Foundation (EAR-0088714), the Spanish Ministry of Education, and a Fulbright Senior
452 Scholar grant to the first author. We thank the Institute of Geophysics and Planetary Physics and
453 Laboratory Directed Research and Development (LDRD) at Los Alamos National Laboratory for
454 additional funding. Desert Research Institute and the Departamento de Geografía y Ordenación

455 del Territorio at the University of Zaragoza provided GPS equipment. We thank Erica Bigio for
456 assistance in the field, Marta Lopez for GIS cartography, and Martha Ros for logistical support.

457 **8. References**

458 Andrieu, V., Hubschman, J., Jalut, G., Herial, G., 1988. Chronologie de la deglaciation des
459 Pyrénées françaises. Dynamique de sedimentation et contenu pollinique des paléolacs:
460 application à l'interpretation du retrait glaciare. Bull. Assoc. Française Etude Quat. 2/3, 55-
461 67.

462 Benito, G., 1989. Geomorfología de la Cuenca Baja del río Gállego. Zaragoza, Spain, PdD
463 dissertation, Universidad de Zaragoza. 764 p.

464 Benito, G., Pérez-González, A., Gutiérrez, F., Machado, M.J., 1998. River response to
465 Quaternary large-scale subsidence due to evaporite solution (Gállego River, Ebro Basin,
466 Spain). Geomorphology 22, 243-263.

467 Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years.
468 Quat. Sci. Rev. 10, 297-317.

469 Birkeland, P.W., 1999. Soils and Geomorphology. Oxford University Press. New York. 430 p.

470 Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., 1993.
471 Correlations between climate records from North Atlantic sediments and Greenland ice.
472 Nature 365, 143-147.

473 Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S.
474 Jantschick, R., Clausen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., Ivy, S., 1992.
475 Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last
476 glacial period. Nature 360, 245-249.

477 Bordonau, J., 1992. Els complexes glàcio-lacustres relacionats amb el darrer cicle glacial als
478 Pirineus. Geoforma Ediciones. Logroño, Spain. 251 p.

479 Bout-Roumazeilles, V., Combouieu Nebout, N., Peyron, O., Cortijo, E., Landais, A., Masson-
480 Delmotte, V., 2007. Connection between South Mediterranean climate and North African
481 atmospheric circulation during the last 50,000 yr BP North Atlantic cold events. *Quat. Sci.*
482 *Rev.* 26, 3197-3215.

483 Bowen, D.Q., Richmond, G.M., Fullerton, D.S., Šibrava, V., Fulton, R.J., Velichko, A.A., 1986.
484 Correlation of Quaternary glaciations in the northern hemisphere. *Quat. Sci. Rev.* 5, 509-
485 510.

486 Bradley, R., 1995. Paleoclimatology: reconstructing climates of the Quaternary. International
487 Geophysics Series 64. Academic Press. San Diego, CA. 613 p.

488 Bridgland, D. Westaway, R., 2007. Climatically controlled river terrace staircases: A worldwide
489 Quaternary phenomenon. *Geomorphology*. doi:10.1016/j.geomorph.2006.12.032.

490 Broecker, W.S., 1994. Massive iceberg discharges as triggers for global climate change. *Nature*.
491 372, 421-424.

492 Cacho, I., Grimalt, J.O., Sierro, F.J., Shackleton, N., Canals, M., 2000. Evidence for enhanced
493 Mediterranean thermohaline circulation during climatic coolings. *Earth Planet. Sci. Lett.*
494 183, 417-429.

495 Candy, I., Black, S., Sellwood, B.W., 2004. Interpreting the response of a dryland river system to
496 Late Quaternary climate change. *Quat. Sci. Rev.* 23, 2513-2523.

497 Chapron, E., 1999. Contrôle climatique et sismo-tectonique de la sédimentation lacustre dans
498 l'Avant-Pays Alpin (Lac du Bourget) durant le Quaternaire récent. *Géologie Alpine*
499 Mémoire HS 30. Université Joseph Fournier, Grenoble. 216 p.

500 Chueca, J., Peña, J.L., Lampre, F., García-Ruiz, J.M., Martí-Bono, C., 1998. Los glaciares del
501 Pirineo aragonés: estudio de su evolución y extensión actual. Departamento de Geografía y
502 Ordenación del Territorio. Universidad de Zaragoza, Zaragoza, Spain. 104 p.

503 Delmas, M., Gunnell, Y., Braucher, R., Calvet, M., Bourlès, D., 2008. Exposure age chronology
504 of the last glaciation in the eastern Pyrenees. *Quat. Res.* 69, 231-241.

505 Díaz del Olmo, F., Vallespí, E., Baena, R., Recio, J.M., 1989. Terrazas pleistocenas del
506 Guadalquivir occidental: geomorfología, suelos, paleosuelos y secuencia cultural. *AEQUA*
507 Monografías 1, 33-42.

508 Florineth, D., Schlüchter, C., 2000. Alpine Evidence for Atmospheric Circulation Patterns in
509 Europe during the Last Glacial Maximum. *Quat. Res.* 54, 295-308.

510 Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.G., Wintle, A.G., 1998. River response to
511 high-frequency climate oscillations in southern Europe over the past 200 k.y. *Geology* 26,
512 275-278.

513 García-Ruiz, J.M., Martí-Bono, C., 1994. Rasgos fundamentales del galcierismo cuaternario en
514 el Pirineo aragonés. In: Martí-Bono, C., García-Ruiz, J.M. (Eds.), *El glaciarismo*
515 *surpirenaico: nuevas aportaciones*. Geoforma Ediciones, Logroño, Spain, pp. 17-35.

516 García-Ruiz, J. M., Valero-Garcés, B. L., Martí-Bono, C., González-Sempériz, P., 2003.
517 Asynchronicity of maximum glacier advances in the central Spanish Pyrenees. *J. Quat. Sci.*
518 18, 61-72.

519 Gile, L.H., Hawley, J.H., Grossman, R.B., 1981. Soils and Geomorphology in the Basin and
520 Range Area of Southern New Mexico - Guidebook to the Desert Project. *Memoir 39: New*
521 *Mexico Bureau of Mines and Mineral Resources, Socorro, NM.*

522 Giraudi, C., Frezzotti, M., 1997. Late Pleistocene glacial events in the Central Apennines, Italy.
523 Quat. Res. 48, 280-290.

524 Harden, J.W., 1982. A quantitative index of soil development from field descriptions: examples
525 from a soil chronosequence in central California. Geoderma 28, 1-28.

526 Harden, J.W., Taylor, E.M., 1983. A quantitative comparison of soil development in four
527 climatic regimes. Quat. Res. 20, 342-359.

528 Harvey, A.M., Wells, S.G., 1987. Response of Quaternary fluvial systems to differential
529 epeirogenic uplift: Aguas and Feos river systems, southeast Spain. Geology 15, 689-693.

530 Harvey, A.M., Miller, S.Y., Wells, S.G., 1995. Quaternary soil and river terrace sequences in the
531 Aguas-Feos river systems: Sorbas basin, southeast Spain. In: Lewin, J., Macklin, M.G.,
532 Woodward, J.C. (Eds.), Mediterranean Quaternary River Environments. A.A. Balkema,
533 Lisse, The Netherlands. pp. 263-281.

534 Héral, G., Hubschman, J., Jalut, G., 1986. Quaternary glaciation in the French Pyrenees. Quat.
535 Sci. Rev. 5, 397-402.

536 Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006a. Quaternary glacial history of the
537 Mediterranean mountains. Prog. Phys. Geog. 30, 334-364.

538 Hughes, P.D., Woodward, J.C., Gibbard, P.L., 2006b. Late Pleistocene glaciers and climate in
539 the Mediterranean. Global Planet. Change 50, 83-98.

540 Hurrell J.W., 1995. Decadal trends in the north-Atlantic oscillation – regional temperatures and
541 precipitation. Science 269, 676-679.

542 Jalut, G., Monserrat, J., Fontunge, M., Delibrias, G., Vilaplana J., Juliá R., 1992. Glacial to
543 interglacial vegetation changes in the northern and southern Pyrenees: deglaciation,
544 vegetation cover and chronology. Quat. Sci. Rev. 11, 449-480.

545 Jiménez, M., Farias, P., 2002. New radiometric and geomorphologic evidences of a last glacial
546 maximum older than 18 ka in SW European mountains: the example of Redes Natural Park
547 (Cantabrian Mountains, NW Spain). *Geodinámica Acta* 15, 93-101.

548 Knies J., Kleiber H.-P., Matthiessen J., Mueller C., Nowaczyk N.R., 2001. Marine ice-rafted
549 debris records constrain maximum extent of Saalian and Weichselian ice-sheets along the
550 northern Eurasian margin. *Global Planet. Change* 31, 45-64.

551 Kotarba, A., Hercman, H., Dramis, F., 2001. On the age of Campo Imperatore glaciations, Gran
552 Sasso Massif, Central Italy. *Geograf. Fís. Dinám. Quat.* 24, 65-69.

553 Liu, T., Ding, Z., Yu, Z., Rutter, N., 1993. Susceptibility time series of the Baoji section and the
554 bearings on paleoclimatic periodicities in the last 2.5 Ma. *Quat. Int.* 17, 33-38.

555 Luzón, A., Pérez, A., Soriano, M.A., Pocoví, A., 2008. Sedimentary record of Pleistocene
556 paleodoline evolution in the Ebro basin (NE Spain). *Sediment. Geol.* 205, 1-13.

557 Macklin, M.G., Fuller, I.C., Lewin, J., Maas, G.S., Passmore, D.G., Rose, J., Woodward, J.C.,
558 Black, S., Hamlin, R.H.B., Rowan, J.S., 2002. Correlation of fluvial sequences in the
559 Mediterranean basin over the last 200 ka and their relationship to climate change. *Quat. Sci.*
560 *Rev.* 21, 1633-1641.

561 Maley J., 2000. Last Glacial Maximum lacustrine and fluviatile formations in the Tibesti and
562 other Saharan mountains, and large-scale climatic teleconnections linked to the activity of
563 the Subtropical Jet Stream. *Global Planet. Change* 26, 121-136.

564 Martinson, D.G., Pisias, N., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., 1987. Age
565 dating and the orbital theory pf the Ice Ages: development of a high resolution 0 to 300,000-
566 year chronostratigraphy. *Quat. Res.* 27, 1-29.

567 Martrat, B., Grimalt, J.O., López-Martínez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R.,
568 Canals, M., Curtis, J.H., Hodell, D.A., 2004. Abrupt temperature changes in the Western
569 Mediterranean over the past 250,000 years. *Science* 306, 1762-1765.

570 McDonald, E.V., Reneau, S.L., Gardner, J.N., 1996. Soil-forming processes on the Pajarito
571 Plateau: Investigation of a soil chronosequence in Rendija Canyon. In: Goff, F., Kues, B.S.,
572 Rogers, M.A., McFadden, L.D., Gardner, J.N. (Eds.), *New Mexico Geological Society
573 Guidebook, 47th Conference*. Socorro, New Mexico, USA, pp. 375-382.

574 McManus, J.F., Oppo, D.W., Cullen, J.L., 1999. 0.5 Million years of millennial-scale climate
575 variability in the North Atlantic. *Science* 283, 971-975.

576 Meehl G.A., van Loon H., 1979. The seesaw in winter temperatures between Greenland and
577 Northern Europe. Part III: Teleconnections with lower latitudes. *Monthly Weather Review*
578 107, 1095-1106.

579 Moreno, A., Cacho, I., Canals, M., Grimalt, J.O., Sánchez-Goñi, M.F., Shackleton, N., Sierro,
580 F.J., 2005. Links between marine and atmospheric processes oscillating on a millennial
581 time-scale. A multiproxy study of the last 50,000 yr from the Alboran Sea. *Quat. Sci. Rev.*
582 24, 1623–1636.

583 Murray, A.S., Wintle, A.G., 2000. Luminiscence dating of quartz using an improved single-
584 aliquot regenerative-dose protocol. *Radiat. Meas.* 32, 57-73.

585 Pallás, R., Rodés, A., Braucher, R., Carcailler, J., Ortuño, M., Bordonau, J., Bourlés, D.,
586 Vilaplana, J.M., Masana, E., Santanach, P., 2006. Late Pleistocene and Holocene glaciation
587 in the Pyrenees: a critical review and new evidence from ¹⁰Be exposure ages, south-central
588 Pyrenees. *Quat. Sci. Rev.* 25, 2937-2963.

589 Pérez-González, A., Martín-Serrano, A., Pol, C., 1994. Depresión del Duero. In Gutiérrez, M.
590 (Ed.), *Geomorfología de España*. Editorial Rueda. Madrid, Spain, pp. 351-388.

591 Pérez-González, A., Silva, P.G., Roquero, E., Gallardo, J., 2004. Geomorfología fluvial y
592 edafología del sector meridional de la cuenca de Madrid (Toledo-Madrid). In: Benito, G.,
593 Díez Herrero, A. (Eds.), *Itinerarios geomorfológicos por Castilla-La Mancha*. Sociedad
594 Española de Geomorfología, Oviedo, Spain, pp. 12-48.

595 Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and
596 ESR dating: large depths and long term time variations. *Radiat. Meas.* 23, 497-500.

597 Reimer, P.J., and 28 others, 2004, INTCAL04 terrestrial radiocarbon age calibration, 0-26 cal kyr
598 BP. *Radiocarbon* 46, 1029-1058.

599 Rhodes, E.J., 1988. Methodological considerations in the optical dating of quartz. *Quat. Sci. Rev.*
600 7, 395-400.

601 Ruddiman, W.F., McIntyre, A., 1977. Late Quaternary surface ocean kinematics and climatic
602 change in the high-latitude North Atlantic. *J. Geophys. Res.* 82, 3877-3887.

603 Ruddiman, W.F., McIntyre, A., 1981. Oceanic mechanisms for amplification of the 23,000-year
604 ice-volume cycle. *Science* 212, 617-627.

605 Sánchez-Goñi, M.F., Cacho, I., Turon, J.L., Guiot, J., Sierro, F.J., Peypouquet, J.-P., Grimalt,
606 J.O., Shackleton, N., 2002. Synchronicity between marine and terrestrial responses to
607 millennial scale climatic variability during the last glacial period in the Mediterranean
608 region. *Clim. Dyn.* 19, 95–105.

609 Sancho, C., 1988. *Geomorfología de la cuenca baja del río Cinca*. PhD thesis, University of
610 Zaragoza. 743 p.

611 Sancho, C., Peña, J.L., Lewis, C., McDonald, E., Rhodes, E., 2003. Preliminary dating of glacial

612 and fluvial deposits in the Cinca River Valley (NE Spain): chronological evidences for the
613 Glacial Maximum in the Pyrenees? In: Ruiz, M.B., Dorado, M., Valdeolmillos, A., Gil,
614 M.J., Bardají, T., Bustamante, I., Martínez, I. (Eds.), Quaternary climatic changes and
615 environmental crises in the Mediterranean region. Universidad de Alcalá-Ministerio de
616 Ciencia y Tecnología-INQUA, Alcalá de Henares, Spain, pp. 169-173. ISBN 84-699-8798-
617 4.

618 Sancho, C., Peña, J.L., Lewis, C., McDonald, E., Rhodes, E., 2004. Registros fluviales y
619 glaciares cuaternarios en las cuencas de los ríos Cinca y Gállego (Pirineos y depresión del
620 Ebro). In: Colombo, F., Liesa, C.L., Meléndez, G., Pocoví, A., Sancho, C. Soria, A.R.,
621 (Eds.), Itinerarios Geológicos por Aragón. Sociedad Geológica de España, Geo-Guías 1.
622 Salamanca, Spain, pp. 181-205.

623 Santisteban, J.I., Schulte, L., 2007. Fluvial networks of the Iberian Peninsula: a chronological
624 framework. *Quat. Sci. Rev.* 26, 2738-2757.

625 Seret, G., Dricot, E., Wansard, G., 1990. Evidence for an early glacial maximum in the French
626 Vosges during the last glacial cycle. *Nature* 346, 453-456.

627 Serrano, E., 1998. Geomorfología del Alto Gállego (Pirineo aragonés). Institución Fernando el
628 Católico. Zaragoza, Spain, 501 p.

629 Shackleton, M.J., Opdyke, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of
630 equatorial Pacific core V28-238: oxygen isotope temperature and ice volumes on a 10^5 and
631 10^6 year scale. *Quat. Res.* 1, 39-55.

632 Siegert, M.J., Dowdeswell, J.A., 2004. Numerical reconstructions of the Eurasian ice sheet and
633 climate during the later Weichselian. *Quat. Sci. Rev.* 23, 1273-1283.

634 Stuiver, M., Reimer, P. J., 1993. Extended ^{14}C database and revised CALIB radiocarbon
635 calibration program. Radiocarbon 35, 215-230.

636 Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B.,
637 McCormac, F.G., v. d. Plicht, J., Spurk, M., 1998. INTCAL98 Radiocarbon age calibration
638 24,000 - 0 cal BP. Radiocarbon 40, 1041-1083.

639 Thorndycraft, V.R., Benito, G., 2006. The Holocene fluvial chronology of Spain: evidence from
640 a newly compiled radiocarbon database. Quat. Sci. Rev. 25, 223-234.

641 U.S. Soil Survey Staff, 1993. Examination and description of soils. In: Soil Conservation
642 Service. Soil survey manual. U.S. Department of Agriculture Handbook 18. Washington,
643 D.C., USA, Chapter 3.

644 Vilaplana, J.M., 1983. Quaternary glacial geology of the Alta Ribagorza basin (Central Southern
645 Pyrenees). Acta Geológica Hispánica 18, 217-233.

646 Woodward, J.C., Macklin, M.G., Smith, G.R., 2004. Pleistocene glaciaiton in the mountains of
647 Greece. In: Ehlers, J. Gibbard, P.L. (Eds.), Quaternary glaciations: extent and chronology,
648 Part I: Europe. Elsevier, Amsterdam, The Netherlands, pp. 155-173.

649 Zorita, E., Kharin, V., von Storch, H., 1992. The atmospheric circulation and sea surface
650 temperature in the North Atlantic area in winter: Their interaction and relevance for Iberian
651 precipitation. J. Clim. 5, 1097-1108.

652

653 **Tables**

654 **Table I.** OSL dates from moraines and terraces on the Cinca and Gállego Rivers (italic letters
655 indicate dates which are not in agreement with geomorphological context).

656 **Table II.** ^{14}C results from Cinca River terrace deposit.

657 **Table III.** Summary of soil PDI values and B horizon development.

658

659 **Figure Captions**

660 **Figure 1.** Location of the study area in the northeastern Iberian Peninsula. Digital elevation
661 model from SRTM data.

662 **Figure 2.** Glacial and fluvial deposits of the Cinca River: a) Distribution of glacial tills and
663 fluvial terrace deposits along the Cinca valley, b) Outcrop of moraine deposits near the
664 headwaters of the Cinca (at Salinas), c) Qt7 morphogenetic surface and related deposits at Ainsa
665 with the Internal Pyrenees in the background, d) Qt7 terrace deposits near Albalate, with sand
666 lens at base of outcrop used for OSL dating, e) Detailed geomorphological map of terrace
667 sequence in the Ebro basin reach of the Cinca River.

668 **Figure 3.** Profile Development Index (PDI) values plotted with mean radiometric (OSL) age
669 estimates for terraces along the Cinca and Gállego Rivers. Best fit line to linear regression uses
670 soil and OSL data for both rivers. Hatched bars are PDI age ranges (one-sigma).

671 **Figure 4.** Glacial and fluvial deposits on the Gállego River: a) Distribution of glacial and fluvial
672 deposits along the Gállego valley, b) Detailed geomorphological mapping of moraines and
673 terraces near the headwaters of the Gállego River, c) Senegüé terminal moraine, d) Gállego
674 middle terrace deposits near Hostal de Ipiés, showing abundant boulders, e) Gállego lower
675 terrace at Murillo with the External Pyrenees in the background.

676 **Figure 5.** Phases of glacial and fluvial activity on the Cinca and Gállego Rivers (northern Spain)
677 related to other paleoenvironmental records (adapted from Martrat et al., 2004): a) Weighted
678 mean ages with uncertainties of glacial, fluvial, and eolian (loess) morphosedimentary units, b)

679 Insolation at 65°N during summer (Berger and Loutre, 1991), c) SPECMAP standard isotope
680 curve (Martinson et al., 1987), d) Marine isotope stages (Martinson et al., 1987), e) Proportion of
681 detrital lithics (ice rafted debris; McManus et al. 1999) and Heinrich ice rafting events (Bond et
682 al., 1992, 1993) in North Atlantic marine sediments. Abbreviations: QtUp, Gállego upper terrace;
683 QtMid, Gállego middle terrace; QtLow, Gállego lower terrace. Vertical bars show correlations of
684 dated glacial and fluvial deposits with climate proxies (width of bars not scaled to reflect
685 uncertainties).

Table I. OSL dates from moraines and terraces on the Cinca and Gállego Rivers.

Oxford Lab Code	Northing (m)	Easting (m)	Elevation (m)	Location	Terrace No.	Soil No.	De (Gy)	Dose rate (mGy/a)	OSL date (ka)
Cinca River									
Fluvioglacial deposits									
X814*	4718674	271870	789	Salinas de Sin	NA		127 ± 7	2.77 ± 0.17	46 ± 4
X815*	4718674	271870	789	Salinas de Sin	NA		161 ± 13	2.60 ± 0.15	63 ± 6
X829*	4718674	271870	789	Mesón de Salinas	NA		161 ± 33	2.28 ± 0.15	71 ± 15
X831*	4718480	270710	760	San Marcial	NA		141 ± 22	1.85 ± 0.12	76 ± 13
X818	4619704 ^A	268358	247	Belver	Qt4-loess	RCT7-3	58 ± 7	2.96 ± 0.19	20 ± 3
Qt5 fluvial terrace									
X399	4619473	266357	217 ^A	Belver	Qt5	RCT6-2	209 ± 7	1.16 ± 0.7	180 ± 12
X398	4618380	266866	215 ^A	Belver	Qt5	RCT6-1	237 ± 26	1.39 ± 0.09	171 ± 22
Qt6 fluvial terrace									
X397	4618085	266253	200	Belver	Qt6	RCT5-1	157 ± 23	1.62 ± 0.11	97 ± 16
Qt7 fluvial terrace									
X396	4700762	265624	585 ^A	Pueyo de Araguas	Qt7		156 ± 26	2.46 ± 0.18	63 ± 12
X1122*	4700762	265624	585 ^A	Pueyo de Araguas	Qt8		128 ± 27	2.16 ± 0.12	59 ± 13
X395	4700762	265624	575 ^A	Pueyo de Araguas	Qt7		84 ± 15	3.00 ± 0.21	28 ± 6
X825	4692548	268289	534	Ainsa	Qt7		241 ± 22	1.88 ± 0.12	128 ± 14
X824	4684406	269987	487	Ligüerre de Cinca	Qt7		161 ± 6	1.85 ± 0.12	87 ± 7
X823	4678877	270913	461	Moscarazos	Qt7		82 ± 15	1.28 ± 0.08	64 ± 13
X827	4669786	270753	404 ^A	El Grado	Qt7		94 ± 14	1.75 ± 0.11	54 ± 9
X822	4634387	263310	247	Alfántega	Qt7		128 ± 26	2.44 ± 0.16	52 ± 11
X820	4633077	263267	243	Alfántega	Qt7		117 ± 16	1.40 ± 0.09	83 ± 13
X811*	4633077	263267	243	Alfántega	Qt7		196 ± 10	1.46 ± 0.07	134 ± 9
X197	4618846	265647	262 ^{**}	Albalate-Belver	Qt7	RCT4-1	150 ± 3	2.45 ± 0.12	61 ± 3
X199	4613809	267775	173	Almudáfar	Qt7		101 ± 5	1.80 ± 0.09	56 ± 4
X198	4613809	267775	173	Almudáfar	Qt7		118 ± 5	1.82 ± 0.10	65 ± 5
X810*	4613809	267775	173	Almudáfar	Qt7		223 ± 5	1.84 ± 0.10	121 ± 7
Qt8 fluvial terrace									

X817	4624970^	262087	184 [#]	Albalate	Qt8	RCT3-1	89 ± 10	2.26 ± 0.14	39 ± 5
X821	4614698	267127	154	Almudáfar	Qt8		83 ± 10	1.96 ± 0.13	42 ± 6
X833*	4598786	279236	112	Fraga	Qt8		117 ± 6	2.50 ± 0.16	47 ± 4
X834	4598802	279195	109	Fraga	Qt8		150 ± 5	1.89 ± 0.13	79 ± 6
X808*	4598765	278848	109	Fraga	Qt8		88 ± 4	1.75 ± 0.10	50 ± 4
X809*	4598765	278848	109	Fraga	Qt8		90 ± 2	1.79 ± 0.11	50 ± 3
Qt9 fluvial terrace									
X828	4667581	270671	358	El Grado	Qt9		18 ± 1	1.86 ± 0.12	10 ± 1
X826*	4648906	266149	271	Castejón	Qt9		22 ± 1	1.89 ± 0.13	12 ± 1
X812*	4648906	266149	271	Castejón	Qt9		18 ± 8	1.46 ± 0.07	9 ± 4
X813*	4648906	266149	271	Castejón	Qt9		27 ± 4	1.91 ± 0.10	14 ± 2
X816	4625045^	261783	178 [#]	Albalate	Qt9	RCT2-1	27 ± 2	2.15 ± 0.14	12 ± 1
X806*	4618197	263357	160	Chalamera	Qt9		23 ± 2	2.03 ± 0.11	11 ± 1
X807*	4618197	263357	160	Chalamera	Qt9		22 ± 1	1.96 ± 0.10	11 ± 1
X832	4605683	275009	117	Zaidín	Qt9		18 ± 4	1.81 ± 0.12	10 ± 2
Gallego River									
Glacial deposits									
X1143*	4713769	718320	822	Senegüe	moraine		84 ± 7	2.35 ± 0.10	36 ± 3
X1144*	4713769	718320	822	Senegüe	moraine	SMOR-1	69 ± 2	1.94 ± 0.07	36 ± 2
X1127*	4711957	717750	785	Aurin	moraine		56 ± 6	1.48 ± 0.07	38 ± 4
X1128*	4711957	717750	785	Aurin	moraine	AMOR-1	118 ± 4	1.39 ± 0.06	85 ± 5
Upper terrace									
X1112*	4687422	685514	509	Concilio	upper		280 ± 36	1.80 ± 0.10	156 ± 22
X1114*	4656724	685892	360	Gurrea	upper		173 ± 4	1.17 ± 0.05	148 ± 8
X1115*	4656724	685892	360	Gurrea	upper		168 ± 20	1.20 ± 0.06	140 ± 18
Fluvioglacial deposits									
X1137*	4709862	716641	801 [#]	Sabiñanigo Alto	upper	RGA2-2	165 ± 16	1.67 ± 0.07	99 ± 11
X1138*	4709862	716641	801 [#]	Sabiñanigo Alto	upper	RGA3-2	145 ± 14	1.72 ± 0.08	84 ± 9
X1139*	4709862	716641	801 [#]	Sabiñanigo Alto	upper	RGA4-2	255 ± 38	1.64 ± 0.08	155 ± 24
X1140*	4709862	716641	801 [#]	Sabiñanigo Alto	upper	RGA5-2	252 ± 12	1.61 ± 0.07	156 ± 10
Fluvioglacial deposits									
X1141*	4709321	717174	770	Sabiñanigo	middle	RGAT7-2	151 ± 8	1.47 ± 0.07	103 ± 7
X1142*	4709321	717174	770	Sabiñanigo	middle	RGAT7-2	125 ± 13	1.81 ± 0.09	69 ± 8
X1126*	4701910	712613	704	Hostal de Ipies	middle	RGIT7-1	91 ± 4	1.38 ± 0.06	66 ± 4
X1106*	4694454	690726	553 [#]	Llano de Yeste	middle	RGLA9-1	104 ± 13	1.41 ± 0.05	74 ± 10
Lower terrace									
X1116*	4694492	690682	553	La Peña	lower		40 ± 4	1.27 ± 0.05	32 ± 4
X1124*	4677559	684914	462	Biscarrués	lower		51 ± 3	1.13 ± 0.04	45 ± 3

A value of $10 \pm 5\%$ water content was assumed for all samples.

* Dose rate is based on in-situ gamma spectroscopy. For all other samples, dose rate values are calculated from NAA.

[^] Northing and Easting coordinates from handheld GPS receiver; elevation from 1:50,000-scale topographic map. Otherwise, all measurements were made with a differentially corrected GPS receiver.

[#] Elevation of top of pit.

Table II. ^{14}C results from Cinca River terrace deposit.

UA sample number	Project sample number	^{14}C yr BP	delta $^{13}\text{C}\%$	Intercept s	CALIB 5.0 ¹ Preferred age (cal yr BP) ²
AA53683	RCTA2-1-C2	15 177 \pm 94	-5.52	18 109- 18 386, 18 432-	18 772
AA53684	RCTA2-1-C4	22 100 \pm 160	-3.86		18 620

¹Calibrated using CALIB 5.0 as in Reimer et al., 2004.

Samples from soil pit RCTA2-1 at Ainsa (UTM N 4699550, UTM E 265500, elevation 529 m).

²Peak of intercept with higher relative area under probability distribution.687
688
689
690

Table III: Summary of PDI values and B horizon development.

Soil Number	Location	Terrace ¹	PDI Value	B Horizon ² Type	Carbonate Stage Morphology ³
<i>Cinca River</i>					
RCT6-1	Belver	Qt5	59.9	Bk-Bkm	III ⁺
RCT6-2	Belver	Qt5	45.1	Bk-Bkm	IV ⁺
RCT6-3	Belver	Qt5	51.5	Bk-Bkm	IV ⁺
RCT5-1	Belver	Qt6	43.2	Btk	III ⁺
RCTM4-1	Monzón	Qt7	27.0	Btk	II
RCTM4-2	Monzón	Qt7	29.6	Btk	II
RCT4-1	Albalate	Qt7	31.5	Btk	II ⁺
RCT4-2	Albalate	Qt7	29.9	Btk-Bkm	III
RCTZ4-1	Almudafar	Qt7	33.3	Btk	II
RCT3-1	Albalate	Qt8	24.7	Btk-Bk	I ⁺
RCT3-2	Albalate	Qt8	23.2	Btk-Bk	I ⁺
RCTM2-1	Castejón	Qt9	14.7	Bwk-Bk	II ⁺
RCT2-1	Albalate	Qt9	18.1	Bwk	I
RCT1-1	Albalate	Qt10	5.6	Bw	0
<i>Gállego River</i>					
RGAT7-1	Sabiñánigo Alto	Qt5	58.2	Bt-Btk-Bk	I
RGAT7-2	Sabiñánigo Alto	Qt5	68.7	Btk-Bkm-Bk	III ⁺
RGIT7-1	Hostal de Ipiés	Qt7	28.1	Btk-Bk	II ⁺
RGAT9-1	Sabiñánigo	Qt7	33.1	Bt-Btk	II
RGLA9-1	Llano de Yeste	Qt7	30.9	Btk-Bk	II
RGM7-2	Murillo	Qt5	45.3	Btk-Bkm-Bk	III ⁺
RGAT2-1	Marracos	Qt8	22.3	Bwk-Bk	II
RGALA-11	La Peña	Qt9	13.0	Bk	I
SMOR-1	Senegüe		11.3	Bw	I
AMOR-1	Aurín		21.6	Btk-Bk	III

¹Cinca River terrace number. For Gállego River, correlations with Cinca terraces are based on soil development.²B horizons: w: color or structure B, k: accumulation of carbonates, t: accumulation of clay, m: cemented.³Carbonate stage morphology from Gile et al. (1981), Birkeland (1999).

691

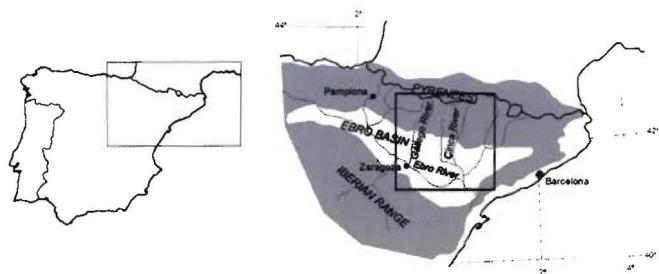


Figure 1.

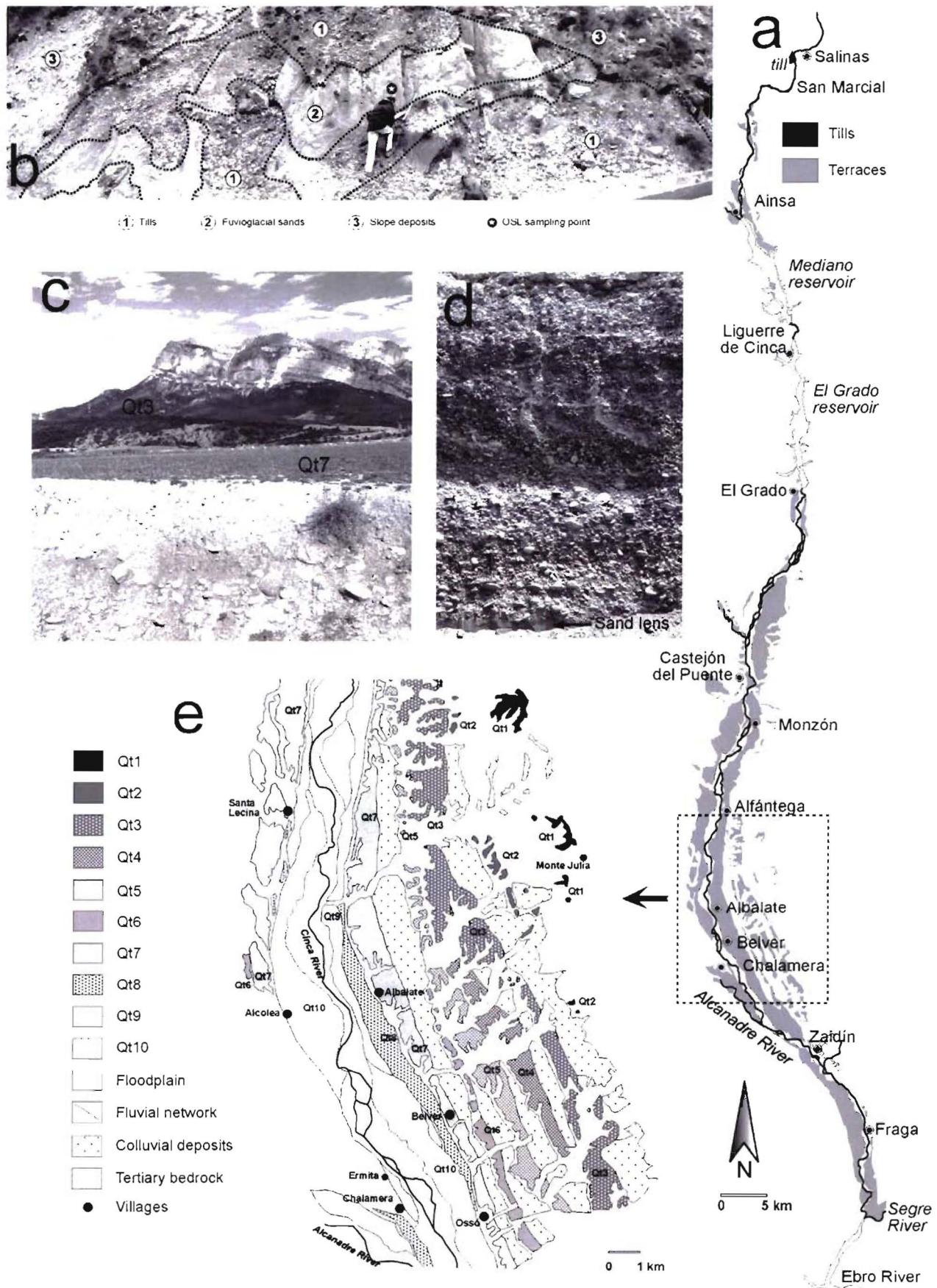


Figure 2.

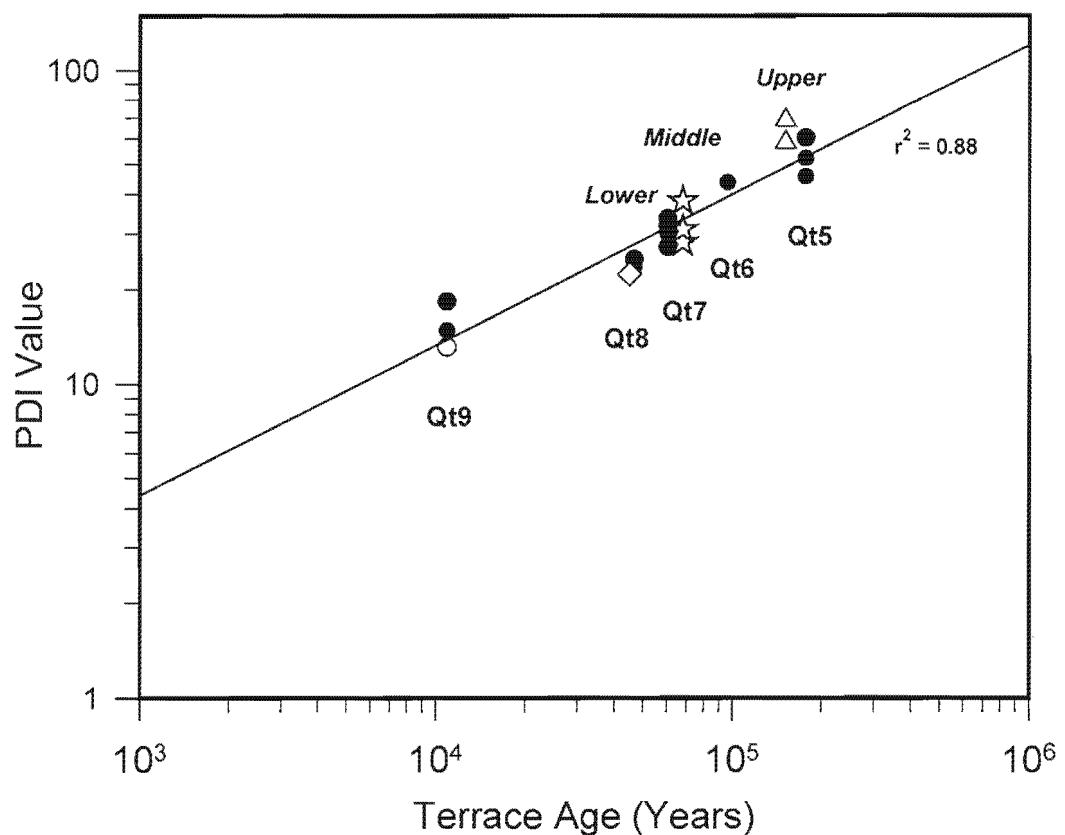


Figure 3.

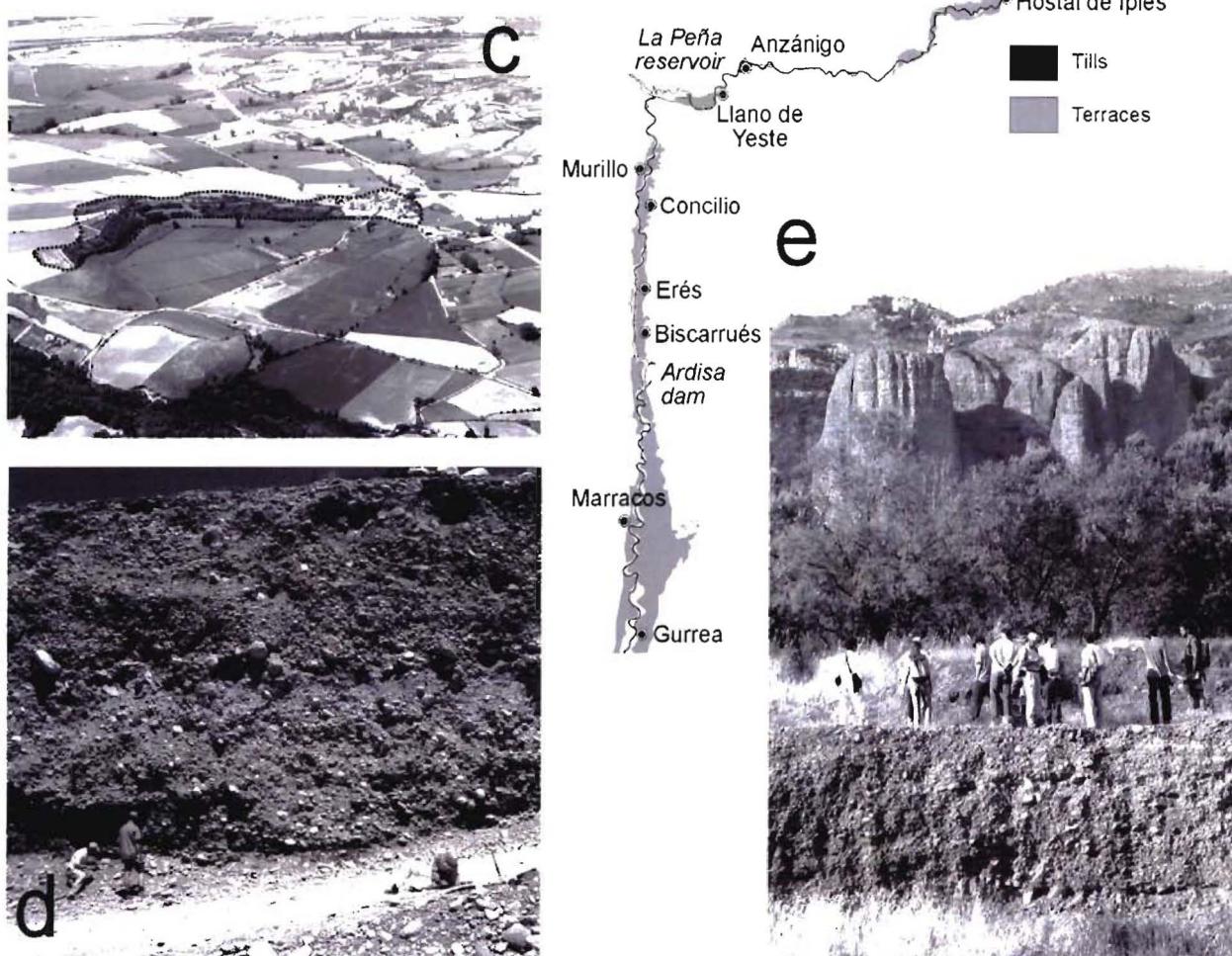
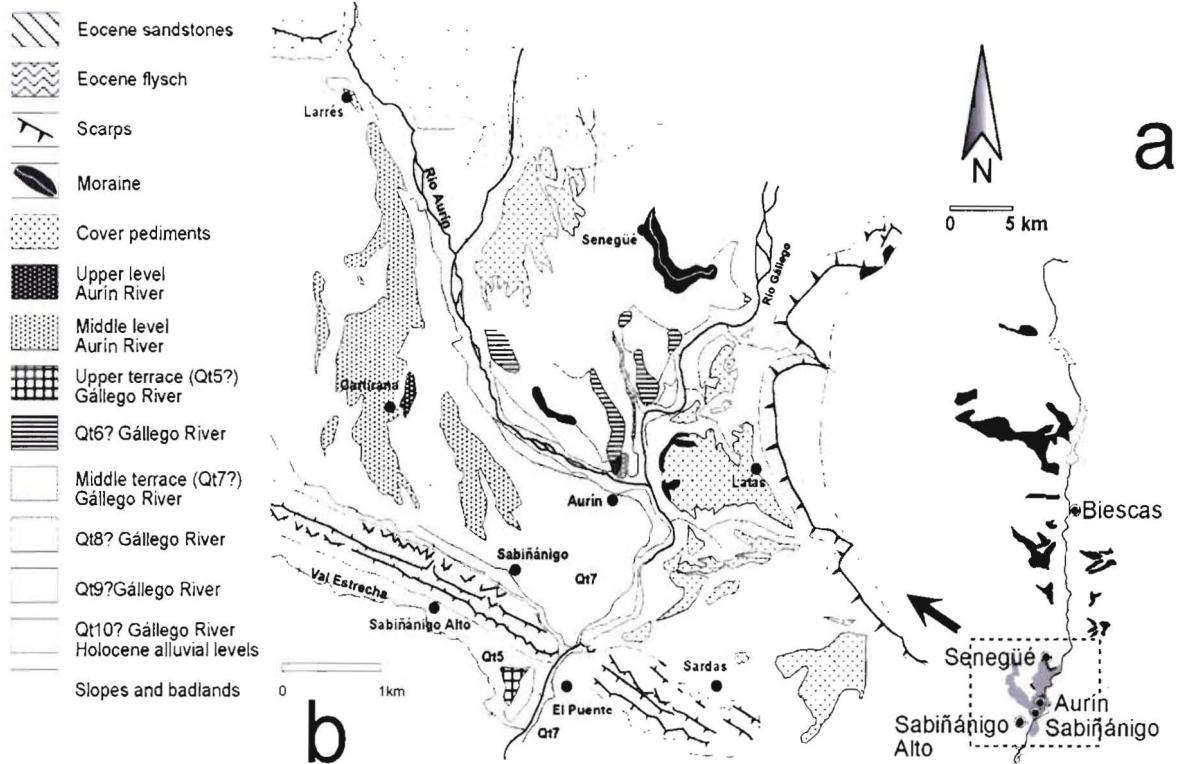



Figure 4.

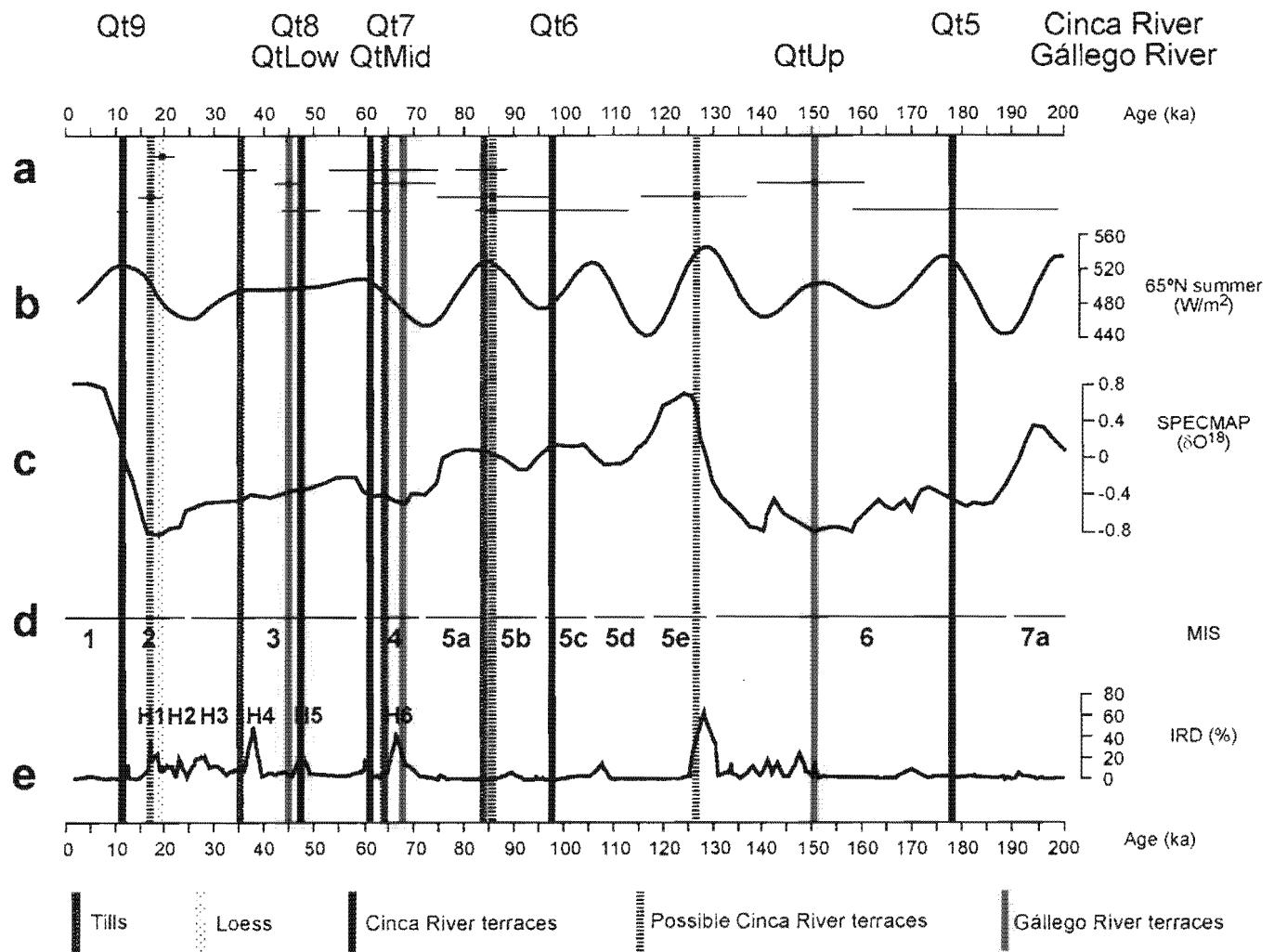


Figure 5.