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1. Introduction

The Terascale Simulation Tools and Technologies (TSTT) SciDAC center focused on the
development and application on SciDAC applications of advanced technologies to
support unstructured grid simulations. As part of the TSTT team the RPI group focused
on developing automated adaptive mesh control tools and working with SciDAC
accelerator and fusion applications on the use of these technologies to execute their
simulations. The remainder of this report provides a brief summary of the efforts carried
out by the RPI team to support SciDAC applications (Section 2) and to develop the TSTT
technologies needed for those automated adaptive simulations (Section 3). More
complete information on the technical developments can be found in the cited references
and previous progress reports.

2. Applications Developments:
2.1 Accelerator Modeling with SLAC National Accelerator Laboratory

In order to perform the analyses needed in the design of next generation accelerators,
researchers at the SLAC National Accelerator Laboratory have been developing higher
order parallel finite element methods. High-order methods are well known to provide
higher rates of convergence, which can provide SciDAC applications with an effective
means to address critical applications with dramatically reduced levels of computational
effort. Two areas where the RPI TSTT team bas contributed to SLAC efforts are the
development of parallel adaptive mesh control loops and tool to produce curved finite
element mesh entities as needed to properly apply high order methods on domains
defined as CAD models.

The combination of high required accuracy and geometric complexity of full accelerator
cavity assemblies requires the execution of automated mesh adaptation that operates in
parallel. The RPI TSTT team developed parallel adaptive tools to integrate with the
parallel version of OMEGAJ3P. The key tools/developments included a parallel mesh
database [25-27,29], parallel dynamic load balancing [29], and parallelization of mesh
adaptation procedures [1,24], solution transfer functions and error estimation modules.
These procedures effectively supported simulations providing accurate solution results
[11,15,18].



A complexity that arises when applying higher order finite elements to complex 3-D
domains is the need to have curved finite elements. The common approach to the
construction of such meshes is to take advantage of available mesh generators that
perform straight-sided mesh generation and then curve the mesh edges and faces adjacent
to curved domain boundaries to conform to the boundaries. However, the resulting
meshes often contain invalid elements because curving the mesh entities to conform to
boundaries can lead to negative Jacobian determinants in the closures of elements. To
address this problem, the RPI TSTT team has been developing mesh curving techniques
that to be able to produce and control curved meshes [19,20,37]

2.2 Fusion Modeling with PPPL

The RPI TSTT team has been working with the Steve Jardin’s group at PPPL to create
accurate MHD simulation technologies. Initial efforts looked into extending adaptive
discontinuous Galerkin formulations to solve MHD problems [14]. As the PPPL group
moved more heavily to the use of high order finite element methods we investigated the
potential advantages of stabilized high-order finite element formulations [9]. As the PPPL
group began to develop their new high-order code M3D-C1, the RPI TSTT became
directly involved with developing the structures needed to support parallel mesh
adaptation and to construct the 2-D parallel adaptive mesh control tools needed [2,12].

3. TSTT Technology Development
3.1 Mesh Interface

The TSTT team has defined a mesh interface to support unstructured meshes based on
entities and their adjacencies [5]. The RPI team was involved in its design and
implementation [8,22]. The RPI implementation of the TSTT mesh interface builds on its
research and development of flexible mesh databases that can store the desired mesh
adjacencies [26]. The RPI implementation was fully implemented to support parallel
distributed meshes [25,27,29,33].

3.2 Geometry Interface

The geometric domain is a central part of the high level definition of a simulation
problem. In today’s environments the key sources of these domain definitions are CAD
models, meshes (simulation meshes and STL files) and image data. To effectively
support general simulation capabilities, including automated adaptive analysis and
evolving geometry problems, it is necessary that a high level understanding of the domain
definition be used. The concept of geometric model topological entities and their
adjacencies provide a natural abstraction for supporting these needs. A set of functions
have been defined and implemented to support the interactions of the simulation process
with general non-manifold geometric domains [3,4,31].

3.3 Mesh Adaptation Service



Adaptive methods are central to ensuring the reliability of the simulations used for
SciDAC applications. An area of emphasis of the RPI TSTT team has been the
development a service to that can be directly integrated with SciDAC analysis procedures
to provide adaptive simulations that can greatly increase the reliability of the results
obtained. The service that has been developed to support generalized mesh adaptation by
controlling the mesh size through the domain of interest [16]. To ensure the ability to deal
with general curved geometries that can come from CAD systems, the procedures build
on a generalized interaction with the geometric model and ensure the mesh can properly
represent the domain of interest [17,19,20,30]. The mesh adaptation service, which fully
operates in parallel [1,29,32], has been used to develop adaptive simulations for
accelerator and fusion simulations as discussed in Section 2. It has also been uesd to
support several other applications including ones with evolving geometries [35,36], and
ones requiring anisotropic mesh adaptation [6,21,28]. Some of methods and ideas used in
the development of the mesh adaptation service are being used to support adaptive
multiscale simulations [7,34].
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