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A Test Methodology for Determining
Space-Readiness of Xilinx SRAM-based FPGA
Devices and Designs

Heather Quinn, Paul Graham, Michael Wirthlin, Brian Pratt, Keith Morgan, Michael Caffrey, and Jim Krone

Abstract

Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based
computation has been an very active area of research for the past decade. Since these devices are commercially-available,
radiation-tolerant devices, the device must be qualified for spacecraft usage. Furthermore, mission requirements often dictate
the need to do radiation experiments on the FPGA user circuit. Because both the circuit and the circuit’s state are stored in
radiation-tolerant memory, both could be altered by the harsh space radiation environment. Both the circuit and the circuit’s
state can be protected by triple-modular redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone
process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe both
device-level static testing and user circuit dynamic testing, including a three-tiered methodology for testing FPGA user designs
for space-readiness.

Index Terms

Field programmable gate arrays, Reliability testing, Reliability estimation, Failure analysis, Space technology

I. Introduction

Field-programmable gate array (FPGA) technology, such as the Xilinx Virtex family of devices, has made inroads into
space-based platforms over the past decade [1], [2]. These devices have programmable logic and routing that are used to
implement user circuits and are well-suited for the digital signal processing algorithms that are often used in space. Unlike
radiation-hardened anti-fuse FPGAs that can only be programmed once, radiation-tolerant devices can be programmed an
unlimited number of times. The ability to reconfigure the device to implement new circuits makes SRAM FPGAs interesting
to the space community. Unlike other hardware devices that have the circuit fabricated into the silicon, new circuits can be
implemented on an FPGA while on orbit. Therefore, reconfiguration can extend the usable lifetime of the system by changing
the FPGA’s user circuit to meet changing mission and science goals. We have also found that reconfiguration opens up many
avenues for pre-launch testing of the user circuits.

Unfortunately, the SRAM technology used in these FPGAs to implement the user circuit is susceptible to radiation-induced
faults, called single-event upsets (SEUs), that can affect the programmable logic and routing or affect the entire device. To
adequately qualify an SRAM-based FPGA for space, the device is tested both statically and dynamically in a cyclotron so that
radiation-induced faults can be identified, characterized and quantified. Static radiation tests involve testing the entire device
to determine the sensitivity of the device to radiation-induced faults, which is called the cross-section. As the sensitivity of the
device is affected by the source, energy and incident angle of the ionizing particles, static testing tends to be a lengthy process.
In many cases, static testing often indicates that the device is not being clocked, but in our case static testing indicates that we
are not concerned with either input test vectors or output errors. Dynamic testing measures the sensitivity of a FPGA design
to radiation-induced faults and uses both input and output test vectors to test the design’s output data for errors. While there
have been occasions where dynamic testing has revealed problems that did not present in static tests, most times the dynamic
testing of SRAM-based FPGA user circuits indicates that the design is less sensitive than the device’s static cross-section.

In this paper we will present methodologies for both static and dynamic testing. In Section II we provide information that
affects both static and dynamic testing that needs to be factored into testing. In Section III we will present a methodology for
testing SRAM-based FPGA devices statically that will allow the tester to determine the sensitivity of the device to radiation-
induced upsets. In Section IV we will present a three-tiered methodology that uses all of these technologies for discovering
design flaws in the system before launch. In both Section III and IV we will present results from using these methodologies
on Xilinx Virtex family devices. Given the disparate nature of these topics, the related work for these topics will be covered
in the individual sections.
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II. Background on Radiation Testing

All electronic devices that will be used in spacecrafts need to be qualified for the space environment, which includes
radiation, thermal, and mechanical testing. There are a variety of references and standards for qualifying devices for space
usage. The papers [3], [4] will be useful for a discussion of thermal design and testing. For radiation testing, readers will find the
“Handbook of Radiation Effects” [5], EIA/JJEDEC standards 57 and 89 helpful. Given the scope of the paper we will focus only
on radiation testing. The space environment has a very rich radiation environment of electrons, protons and heavy ions. Each
orbit is characterized by an ion spectrum, where each ion has a corresponding energy spectrum. Unfortunately, all commercial
SRAM devices are affected by these radiation environments, and SRAM-based FPGAs are no exception. Radiation-induced
faults are particularly difficult with FPGAs since both the circuit and the circuit’s state are stored in radiation-tolerant SRAM.

Radiation testing covers many different phenomena, including dose rate effects and single-event effects (SEE). To date, no
dose-related effects have been shown to affect the Xilinx SRAM-based FPGAs and this topic will not be covered in this paper.
SEEs is an umbrella term that covers several different types of radiation effects caused by proton and heavy ion radiation. Most
commonly, spacecraft designers are concerned with single-event latchup (SEL), single-event transients (SETs), single-event
upsets (SEUs), and single-event functional interrupts (SEFIs). While there are a handful of SEE types that can damage a
device, SEL is the predominant concern in this category. The remaining three SEE mechanisms discussed in this paper are not
destructive, but can make fault-tolerant computation challenging. These phenomena are discussed below.

Radiation-induced faults from SEUs, which are also known as bitflips or upsets, cause memory bits to change value from
either 0 to 1 or 1 to 0. SEUs are the primary concern for SRAM-based FPGAs in space. SEUs in FPGAs have been shown to
cause problems in the programmable logic, the programmable routing, and even device control [6], [7]. SEUs that affect the
device control are considered single-event functional interrupts (SEFIs). SEFIs on orbit can have serious consequences, as the
device usually needs to be completely reprogrammed and the calculation restarted to recover from many SEFIs. In practice,
as discussed in Section IIL.D, SEFI error rates are very low.

Due to the destructive effects of SEL or latchup, spacecraft designers often disqualify devices that latchup from spacecrafts.
SEL is a radiation-induced version of latchup that plagues complementary metal-oxide-semiconductor (CMOS) devices and
can be destructive to SEL-sensitive devices. Unlike most SRAM-based FPGAs, Xilinx has published several reports verifying
latchup-immunity [8], [9], which have made them the preferred choice for space usage.

In comparison, SETs (or transients) are less troublesome. Transients are common in many semiconductor circuits. With
this phenomena the ionizing particle causes a transient current state. If this transient state can propagate to a register during
the setup and hold time (called the window of vulnerability), the transient will be latched (called a latched SET) and the
intermediate data value could be corrupted. For modern CMOS devices with fast clock speeds, latched SETs have become
increasingly more common and distinguishing transients from legitimate signals is challenging. Unlike SEUs, latched SETs
have a radiation-induced error rate that is dependent on the circuit’s operating speed as faster clock speeds are more likely to
latch SETs than slower clock speeds. For SRAM-based FPGAs, where the user flip-flops are outnumbered by several orders
of magnitude by the configuration memory, the current understanding is that SETs are possible, but observability of SETs is
hindered by the sheer number of SEUs in the configuration memory.

There are also a number of compound reliability effects that could affect the sensitivity of the device to radiation, including
temperature and voltage. In particular, lowering voltages has been shown to increase the device’s dynamic or static cross-section
[10], [11]. Temperature-related reliability problems can easily be misinterpreted as radiation-induced faults as well, which can
further increase the device’s dynamic cross-section. We test all devices at nominal temperature and voltages so that we have
a consistent basis of comparison over the different devices.

ITI. Static Testing

In this section we describe how we have done static testing of the Xilinx Virtex devices. This section covers our methodology
toward testing, our analysis methods, and highlights of our results. This section concludes with a short discussion of how these
results are used in determining the error rate for these devices in space.

III.A Methodology

To achieve our goals of understanding the frequency and effects of radiation-induced faults, we must first identify the proton
and heavy ion static saturation cross-sections. The basic methodology for static radiation experiments of electronic devices
involves irradiating the device and counting the number of radiation-induced faults. The amount of ions that irradiate the device
and the number of events counted are used to calculate the cross-section using this equation:

o ___events
Odevice = Fluencexcos(8) b7

where fluence is the measure of the number of ions that irradiated the device in a set a time,  is the angle of the test fixture
to the beam, and events is the count of the radiation-induced faults.
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HI.A.1 Test Fixtures

For static testing of SRAM-based FPGA, the basic methodology is often implemented in one of two forms: complete capture
systems, and continuous capture systems. In a complete capture system, the test follows the methodology shown in Figure
1. Often times the hardware test fixture uses commercially-available development boards from Xilinx and the software test
fixture uses a Xilinx design flow tool, called iMPACT [12]. The advantage of a complete capture system is that each radiation
experiment aligns with one run of the accelerator. Therefore, determining the amount of fluence per radiation experiment is
simply the entire fluence that the beam control software has measured for that run. The disadvantage is that starting and
stopping both the beam and the test fixture can be time-consuming. As iMPACT uses the slowest (JTAG) configuration port
for configuring and reading back the programming data, there is a significant overhead to using this software.

The methodology for continuous capture systems is shown in Figure 2. While this methodology removes the overhead of
starting and stopping the beam, a custom hardware and software test fixture is often needed. There is a strong advantage in
creating a custom test fixture, because the designer can choose to use the faster (SelectMAP) configuration port for configuring
and reading back the programming data. While the authors of this paper use a continuous capture test fixture, the Xilinx
Radiation Test Consortium (XRTC) use one as well [9].

Our test fixture is a combination of commercial hardware and custom software. One hardware test fixture we use, shown in
Fig. 3, is two Xilinx AFX series development boards (one Virtex-II and one Virtex-5) biased nominally. The Virtex-II board
communicates to the host computer through a USB card and controls the Virtex-5 board during irradiation. Custom software
performs a readback of the programming data (or bitstream), differences the reference bitstream and the readback data, and
immediately reconfigures the device with the reference bitstream. The FPGA is completely reprogrammed and the differential
bitstream saved to hard drive every second in this scheme, which allows us to test at high fluences without accumulating too
many upsets per readback. We can collect approximately 3,600 differential readbacks per hour. Minimal statistics are taken in
real time while irradiating the part as a state of health check.

Th test fixture show in Figure 3 was used to statically test the Virtex-5 device. A similar test fixture was built for the Virtex-4
devices by using the Xilinx AFX series development boards for the Virtex-4. The Virtex-II device can be tested by using only
the one Virtex-II AFX development board.

There is a slight disadvantage for this test fixture in determining the overall fluence for a radiation experiment, though, since
each loop through the algorithm is an independent radiation experiment. It’s possible that during readback that the programming
data that has already been read could be upset. Likewise, during configuration it’s possible that the part of the programming
data that has not been configured could be upset. In both of these cases, the upsets collected in these areas will not be recorded
either by not being read in the first case or being overwritten in the second case. These unrecorded upsets means that not all
of the ions were used and that the measurement of the fluence for the entire run could be high. We have found, though, that
the amount of fluence actually used can be determined using the power logs from the hardware test fixture. As configuring and
reading back the device cause spikes in the amount of current the device draws, we can approximately determine the amount
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Fig. 3. Hardware Test Fixture for the Xilinx Virtex-5 Device

of used fluence as 1/2 of the configuration time, 1/2 of the readback time, and the wait time. Since we are concerned about
keeping the number of events per readback (or sample) low, often times the wait time is insignificant. Using this calculation,
in the older, smaller devices we used approximately 1/2 of the fluence and in the newer, larger devices we use approximately
1/8 of the fluence. While this might seem wasteful, we are able to collect data much faster with this methodology, and the
overall amount of time needed to test is greatly reduced by being able to test at significantly higher fluxes.

III.A.2 Angular Testing

Often times, testers will angle the text fixture to the beam during testing. For older electronic devices, angular testing was
done as a way to artificially increase the beam energy. Paradoxically, as ions move through Silicon the energy of the ion will
increase until the stopping range is met at the Bragg’s peak. The deposited energy beyond the Bragg’s peak of the ion is zero.
Therefore, one way to increase the ion’s energy is to increase the ion’s path through the device, which can easily be done by
angling the device to the beam. With angular testing, the ions’ paths between the surface of the device and the active volume
of the semiconductor will be:




Fig. 4. 0 and ¢ Angles Relative to Device

distancecf fective = distancenormat X cos(f) (2)

where distance,ormar is the length between the surface of the device and the active volume of the device, and 6 is the angle
of the test fixture to the beam. This increase in energy is:

EneTgyeffective = Ene"‘gynormal X COS(&) (3)

where Energynormar is the energy of the beam at a normal incidence and 6 is the angle of the test fixture to the beam.
Because the beam’s available ions and energies dictate the number of data points that can be taken, angular testing is used as
a way to increase the number of data points. Care needs to be taken with angular testing to make certain that ions are not
shadowed by the device’s socket or that the distance,nqie does not exceed the ion’s range. In both cases, the data will not be
consistent with the rest of the data set.

We have found with Xilinx SRAM-based FPGAs that rotating the device in the beam provides an interesting data set. Unlike
traditional electronics devices, these devices are laid out heterogeneously with many different types of memory cells. Therefore,
rotating the device creates an effect that cannot be explained by only the increase in effective energy. To study these effects,
we rotated the device in two different directions, as shown in Fig. 4, to change the beam’s angle of incidence. Since the device
is columnar in nature, we tested the response when the columns were upright (¢ = 0) and when the columns were on their side
(60 = 90). Next the beam’s angle of incidence (¢) was changed by slanting the device relative to the beam. Several different
¢’s were tested for both €’s, to get an idea of how the angular effects changed the radiation characteristics.

III.A.3 Multiple-bit Upset Testing

We are particularly interested in the role of multiple-bit upsets (MBUs) in these devices. MBUs are caused when a single
ionizing particle causes multiple bits to change their values. For TMR-protected designs, MBUs often violate the assumption
that only one error exists in the system at a time and have been proven to cause TMR defeats in the Virtex-II [13]. Therefore,
we often analyze our static data for MBUs.

We have found that it is possible to create MBUs from coincident single-bit upsets (SBUs) if the fluence per sample is
too high. As coincident SBUs are indistinguishable from MBUs, limiting their ability to contaminate a data set is necessary
for MBU analysis. To determine the quality of our data collection procedures, we have looked at three ways to determine
the rate of coincident SBUs in the data set: shape analysis, statistical analysis, and monte carlo analysis. The first attempt at
determining and potentially removing coincident SBUs from our data sets focused on analyzing the MBU shapes under the
assumption that coincident SBUs were more likely to create “irregularly” shaped MBUs. Analysis of data sets with a low
likelihood of having coincident SBUs showed that some of the “irregularly” shaped MBUs were, in fact, common. Therefore,
we have not found it possible to remove coincident SBUs from data sets by shape.

To this end, we try to bound the amount of coincident SBUs through statistical and monte carlo analysis. Rigorous statistical
analysis of coincident SBUs is difficult given the prevalence of naturally created MBUs and the complexity of the problem. As
a worst case analysis, we assume that all of the upsets in a readback are SBUs. While each SBU has an adjacency neighborhood
of eight bits, as shown in Figure 9(a), a 2-bit MBU has an adjacency neighborhood of 10-12 bits depending on the shape.
Despite the fact that a 2-bit MBU has a larger adjacency neighborhood than a SBU, two SBUs have more adjacent bits total
than a 2-bit MBU. Therefore, as a worst case analysis, non-coincident SBUs are used. If the first ion upsets location Ly, the
probability that the second ion upsets a bit in the adjacency neighborhood of Ly is

P(CS1|UL,) =%+ 4)

As there are N combinations of Ly on an N-bit device, the probability of a coincident SBU on the second upset is:



P(CS) =N(jw) = ®)

Similar reasoning is possible until the general equation for m upsets is arrived upon:

P(CS,) =8¢ (6)

Clearly, from this equation, as the number of upsets m per readback increases, the percentage of coincident SBU increases.

We have tested these equations through the use of monte carlo simulations. For these simulations, we generate m random
upsets for the bitstream, then analyze the random upsets using our analysis software described in Section III.B.2 to determine
whether co-incident SBUs have created MBUs. We generate and analyze millions of samples in this manner for each device.
These simulations have shown that the worst case statistical analysis was approximately a factor of two higher, but still quite
reasonable.

IlI.A.4 Micro-SEFIs

One final methodology concern is a not-completely understood phenomenon that affects the Xilinx Virtex Family parts,
which we call the micro-SEFI for lack of better terminology. What appears to be happening in the micro-SEFI is that some
number of programming bits are locally reconfigured as if the configuration control logic has been upset. The bits that are
upset present in the analysis as unusually large MBUs and can wreck havoc on analysis, which will be discussed in greater
detail in the next section. Since this phenomena is certainly not an actual MBU and likely not caused by an SEU in the
programming data, we eliminate these samples from the data set. To simplify data cleansing, we test either with many more
or many less upsets per readback than present in the micro-SEFI so that the micro-SEFI-contaminated data samples can be
easily eliminated. For example, if the micro-SEFI presents with approximately 300 upsets per sample, then we test at either
greater than 500 upsets per sample or less than 100 upset per readback. To minimize problems with both the micro-SEFIs and
coincident SBUs, we recommend testing at less than 100 upsets per readback.

III.LB Analysis

The analysis of our data sets takes three distinct phases. First of all, data sets must be cleansed from micro-SEFIs and SEFIs.
Second, analysis of the data correlates upsets to physical locations to determine the percentage of MBUs and distribution of
upsets by memory cell type. Finally, all of the data sets are combined to create plots of the sensitivity by energy.

IIL.B.1 Data Cleansing
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Fig. 5. Entire Set of Samples for One Run on the TAMU 15 MeV/u Argon Beam

Once the data was collected, the data needs to be cleansed to remove both the micro-SEFI-contaminated data samples and
the SEFI-contaminated data sets. An entire run of data taken on our continuous capture test system for the Xilinx Virtex-5
device at Texas A&M University’s cyclotron for 15 MeV/u Argon is shown in Figure 5. Eliminating SEFI-contaminated data
samples is simple, because the number of upsets is greater than 9,000 upsets for a sample. In Figure 6, the SEFIs have been
removed from the data set, but the micro-SEFIs remain in the data set. In this figure, it is fairly easy to see the micro-SEFI
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data points as they have far more upsets per sample than the rest of the samples. In Figure 6 these data points are boxed in
dark gray. The data in the lighter gray box are suspect data that could either be eliminated or kept based on the testers’ desires.

Removing the micro-SEFI-contaminated samples statistically is very difficult, though. On any given run, the micro-SEFIs
are either above or below the average number of upsets per sample. If the testers were not careful, though, the micro-SEFIs
could be very close statistically to the data that you do not want to eliminate and eliminating too much of the data is possible.
Furthermore, as one can see in the data, the average number of upsets per sample fluctuates. These fluctuations are caused by
both Poisson statistics that determine the number of ions per sample and the uniformity of the beam. Some times it is possible
that beam could be less uniform, causing the beam’s flux to drift during the run.

While originally a running average was used to determine whether samples should be eliminated, we found that a custom
jackknifing algorithm was more useful. Jackknifing algorithms look at small, contiguous windows of data to determine whether
a statistical outlier exists in the window [14]. Since the outliers in our case could either be too high or too low, we designed
our jackknifing algorithm to not assume any knowledge about the location of the outlier. We found that that within some
windows, the data can be so uniform that the standard deviation for an entire window is less than one upset. We have found
that when the standard deviation is very small that much of the data can be eliminated erroneously. Therefore, our algorithm
prefers to eliminate data where the standard deviation is larger than 10 upsets. In those cases, any sample that is larger than
two sigmas from the jackknifed average is removed from the data set.

The jackknifed data set is shown in Figure 7. One can see that all of the micro-SEFIs have been removed. Some of the
data in the middle group was accepted. In particular, the samples from the beam variation around the 800th sample were
kept. Since that cluster of potentially bad data would be processed in the same window, removing the potentially bad data
through jackknifing is impossible. Since there is no way to prove from just the number of upsets that the data is bad, the
data is accepted. If the data turns out to have other characteristics indicating data corruption, the samples will be removed by
the second phase of analysis. As it stands, the initial run had 1264 samples, 32 samples were removed through jackknifing,
and 1232 samples remained. Therefore, jackknifing removed only 2.5% of the total data set and removed 100% of all of the
micro-SEFIs.
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Fig. 8. Physical Layout for Virtex-II

I1.B.2 Physical Correlation and Analysis

After jackknifing the data, the data set can be analyzed. We analyze each sample separately and then aggregate the samples
for one beam run into one data point. Combining data from separate beam runs is not recommended, unless the same source,
energy, 6, and ¢ were used. Data from separate sources, energies or angles should be analyzed as separate data points. In the
next section, there is a discussion of how to combine data points into graphs.

The first step of analyzing the data is to translate the upset patterns from the readback data to the physical layout of the
programming data to determine the adjacency of upset bits. Figure 8 shows a block diagram of the Virtex-II Family. This
layout is similar to the layout for the other families tested. The exterior layout is devoted to the input/output blocks (IOBs)
that connect the reconfigurable fabric to the device’s pads. The interior region of the device is predominantly configurable
logic blocks (CLBs) where the circuit functionality is deployed. The CLBs are laid out in columns with several columns of
CLBs laid out.contiguously. Occasional columns of clocking and BlockRAM (BRAM) resources are interspersed between
the CLB columns. The Virtex-4 and Virtex-5 are a slightly different architecture, and the IOB resources are now located in
columns in the reconfigurable fabric, instead of perimeter. The Virtex-4 and Virtex-5 parts that we tested also included Digital
Signal Processing (DSP) resources. We use the physical layout to classify adjacent upset bits and their affected resources. We
classify a bit as adjacent to another if it lies within one of the eight neighboring memory cells surrounding that bit. Figure 9(a)
illustrates the adjacency neighborhood used. Adjacent upsets are classified as MBUs. In Figure 9(b) three upset bits are grouped
together in a single MBU. In this way, maximally sized MBUs are found to give an understanding of the size of MBU events.
The location of each SBU and MBU is recorded to determine what FPGA resources are affected and the frequency of SBUs

and MBUs by resource type.

<~ - ‘
.
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Fig. 9. Upset Adjacencies and MBUs

For each data point, it is also necessary to determine the amount of error in the data point. For cross-section data the error
is often expressed as:

(events)'/2

fluence x cos(6)

)

Oerror =

where fluence is the measure of the number of ions that irradiated the device in a set a time, 6 is the angle of the test fixture
to the beam, and events is the count of the radiation-induced faults. There can be significant error introduced by a number of
sources — bad beam dosimetry, contaminants in the beam line and systematic test fixture error. Therefore, within the radiation
effects field, even meticulously collected data can be off by a factor of two.



II1.B.3 Combining Test Results

After each data set is analyzed, the data is combined to give a view of how energy effects the sensitivity of the device to
SEUs. Often times, proton-based results and heavy-ion-based results are separated into different graphs. We have also found
that separating angular data from normal-incidence data is often helpful, as angular data can often be confusing when only
represented as an increase in effective energy. By standard, data sets are plotted in log-normal graphs.

When plotted together, cross-sections have two interesting characteristics: an onset threshold and a saturation cross-section.
The onset threshold indicates the lowest energy or energy equivalent needed to cause an SEU or a SEFI, which can be less
than 1 MeV-cm?/mg for heavy ions. The saturation cross-section indicates the maximum sensitivity to the radiation source and
often does not saturate in modern devices due to the presence of multiple-bit upsets [15]. The data is traditionally fitted to a
Weibull curve. This fitting can be done either through Matlab or by hand tuning using a least-squared fit.

III.C Static Test Results

Table 1. Xilinx Parts Tested

Family Part Config. CLBs | Block | IOB
Bits RAM | Pads

(Kb)
Virtex XCV300 1,751,808 1,536 64 316

XCV1000 6,127,744 6,144 128 512
Virtex-II | XC2V250 1,593,632 384 432 200
XC2V1000 4,082,592 1,280 720 432
Virtex-1I | XC2VP40 15,868,192 | 19,392 | 3,456 804
Pro
Virtex-4 | XC4VLX25 7,819,520 24,192 | 1,296 448
Virtex-5 | XCS5VLXS50 | 13,579,200 | 7,200 480 560

In this section, we will present data from a number of tests that we have performed using this methodology. The parts we
have tested are listed in Table 1. Los Alamos National Laboratory and the Xilinx Radiation Testing Consortium (XRTC) have
tested these parts extensively in both proton and heavy ion radiation. Information regarding energies, angles and fluence can
be found in [15], [16]. To determine the quality of our data collection procedures, we estimated the probability of a coincident
two-bit upsets in our data sets using the monte carlo technique described in Section III.A.3. Table 2 shows the worst case
probability that the readback data will have coincident SBUs based on the worst case number of upset bits per device in each
device’s data set. The proton data sets indicate that coincident SBUs in the data are very unlikely and the probability of real
MBU events are 40-80 times larger than the coincident SBUs rate. In the case of the heavy ion data sets much more of the
configuration bitstream is upset, which leads to a higher probability of coincident SBUs in the data. Despite this, the probability
of a true heavy ion radiation-induced MBU is seven to 105 times larger than the probability of a coincident SBUs. We have
used this analysis in the past to determine whether to retest parts, which lead to the re-qualification of the Virtex-II part.

Table 2. Worst Case Percentage of Coincident SBUs in the Data

Family Worst Case Worst Case
Coincident SBUs | upsets/device
Proton Test Data
Virtex 0.0006% 0.0002%
Virtex-II 0.0298% 0.0075%
Virtex-II Pro 0.0277% 0.0069%
Virtex-4 0.0379% 0.0095%
Virtex-5 0.0005% 0.0001%
Heavy Ion Test Data
Virtex 5.4077% 1.283%
Virtex-II 5.8943% 1.577%
Virtex-1I Pro 1.1697% 0.289%
Virtex-4 0.0472% 0.0098%
Virtex-5 0.0110% 0.0022%

Table 3 has a list of SEU bit cross-sections and SEFI device cross-sections for 63.3 or 65 MeV protons and Figure 10
shows the SEU bit cross-sections for heavy ions for Virtex family devices. Note that in proton the SEFI device cross-sections
from Table 3 appear to be on the same scale as the SEU bit cross-sections, which is consistent with our understanding that
the control logic is controlled by tens to hundreds of configuration bits. It should also be noted that the sensitivity to heavy
ions is five to seven orders of magnitude larger than protons.



Heavy Ion Bit Cross-Sections

T

10*

Bit Cross-Section (cm2/bit)

L

1 . 1

Virtex-1

Virtex-IT
Vinex-4
Virtex-S

*000

is sl

60

40
Eflective Lincar Fnergy Transfer (MeV-cm2/mg)

80

Fig. 10. Heavy Ion Bit Cross Sections for Virtex Family Devices [13].

Table 3. Bit Cross-Section for SEUs and Device Saturation Cross-section for SEFIs for Protons for Several Xilinx FPGAs [15]

Device Energy Thit OSEFI
(MeV) (em?/bit) (em?2/device)
XCV1000 63.3 132 % 10— % "= .1 105
(config SEFI)
XC2V1000 63.3 2:10x 1012 9.46 x 10~ 13
XC4VLX25 63.3 1.08 x 10~ 6.43'xX'10—*2
XC5VLX50 65.0 7.56:x 10™12 Unknown

Table 4. Frequency of Upset Events and Percent of Total Events Induced by Proton Radiation (63.3 and 65 MeV) for Five Xilinx FPGAs

Family Total 1-Bit 2-Bit 3-Bit 4-Bit
Events Events Events Events Events
Virtex 241,166 | 241,070 96 0 0
(99.96%) | (0.04%) (0%) (0%)
Virtex-1I | 541,823 | 523,280 6,293 56 3
(98.42%) | (1.16%) | (0.01%) | (0.001%)
Virtex-II 10,430 10,292 136 2 0
Pro (98.68%) | (1.30%) | (0.02%) (0%)
Virtex-4 | 152,577 147,902 4,567 78 8
(96.44%) | (2.99%) | (0.05%) | (0.005%)
Virtex-5 2,963 2,792 161 9 1
(94.23%) | (5.43%) | (0.30%) | (0.03%)
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IIL.D Error Rates in Space

Essentially every orbital scenario is different with regards to radiation effects. Therefore, it is generally helpful to perform
mission analysis and planning to make orbital SEU rate estimations. A complete discussion of on-orbit SEU rate estimation is
beyond the scope of this design guide, but we will provide a few references for further information and study in the following
paragraphs.

Two of the more accessible tools that are commonly used for on-orbit SEU rate estimation are the Cosmic Ray Effects
on Micro-Electronics Rev. 96 (CREME96) tool suite developed by the Cosmic Ray Physics Section at the Naval Research
Laboratory (NRL) and the commercial tool suite SpaceRad developed by Space Radiation Associates. SpaceRad provides a
nice GUI around the older NRL CREME and other models. Both tools use the AP8 trapped proton model which was developed
by Drs. J. I Vette and D.M. Sawyer, first at the Aerospace Corporation and later at NASA’s National Space Science Data
Center (NSSDC) under the Space Environment and Effects program. Like most models, the AP8 models have some limitations
which preclude them from being particularly accurate [17] [18] [19] . If a designer needs more accurate results there are a
few tools and models that the CREME96 website.
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Fig. 12. CREME96 SEU calculations for a design on the XQVR300 platform using various forms of mitigation [20].

IV. Dynamic Testing

The best practices for FPGA-based spacecraft design encourages the use of triple-modular redundancy (TMR) in the user
circuit to mask SEU-induced errors on the FPGA, in addition to error detection and correction of data stored in the device’s
programming memory. Not only is applying TMR an error-prone process, but sometimes the designers are unable to apply
“full” TMR to the user circuit due to device size constraints. The user circuit needs to be tested pre-launch to determine whether
it is working as expected, including whether TMR has been applied effectively, and whether the availability requirements are
met.

The current “gold standard” for pre-launch testing of user circuits is validation through radiation experiments at a particle
accelerator. For these tests the designer has the choice of using either a proton or a heavy ion accelerator, the most likely
ionized particles to cause SEUs while on orbit. Fully space-qualifying a design could take days worth of time and tens of
thousands of dollars at an accelerator to exercise all of the possible radiation-induced failure modes and find all of the problems
with a user design. Since radiation-induced faults are statistical in nature, it may be too expensive to get good test coverage
and difficult to understand how the output errors correlate to design flaws in the user design. We have found that fault injection
and modeling tools are much better at providing feedback about specific design flaws to the designer. We have both a fault
injection tool — the SEU Emulator — and a modeling tool — the Scalable Tool for the Analysis of Reliable Circuits (STARC)
— that can be used by FPGA designers to augment radiation experiments. By using these tools, the accelerator testing is only
needed for final, pre-launch validation of the user design.

IV.A Dynamic Testing Background

SEUs affect the user circuit usually in one of two ways: by changing circuit functionality or by changing the flow of data
through the circuit. SRAM bits that cause output errors when affected by an SEU are called sensitive programming data



bits or more simply sensitive bits. Good testing should help designers quantify and locate sensitive bits that are the result of
untriplicated logic, placement-related issues, and the application of TMR. In a fully TMR-protected circuit SEUs in the user
logic should not affect the output data in the system, with the exception of some occasional placement-related issues that
depend on how the circuit is implemented on the device [13]. In a design that has only had TMR partially applied to the
design (Partially TMR-Protected), there will also be untriplicated logic and routing that will have some sensitive bits. In the
remaining portion of this section will discuss how SEUs affect partially and fully TMR-protected user circuits.

IV.A.1 Fully TMR-Protected User Circuits

In fully TMR-protected user circuits, no single-bit SEUs should cause output errors unless TMR was not applied properly
or problems with logical constants exist. We have found that TMR-protected systems can be vulnerable to SEUs if the
implementation of the logical constants is not carefully controlled. These logical constants are frequently used to tie off unused
resource inputs, such as the “carry in” to ripple carry logic or unused address lines to a memory. With newer devices multiple
bit upsets (MBUs), where a single SEU causes multiple bits to fail, have become more common [15], especially with heavy
ions. We have observed MBU-induced TMR defeats [13]. These TMR defeats appear to be strongly influenced by placement
issues.

IV.A.2 Partially TMR-Protected User Circuits

When TMR is only applied to a portion of a circuit due to resource constraints, SEUs can affect two different areas of the
circuit: untriplicated logic and untriplicated routing. Partially TMR-protected designs could also have all of the placement-
related issues that affect fully TMR-protected designs as described above.

First of all, any untriplicated logic could cause output errors to manifest when the logic is corrupted with an SEU. For
example, Figure 13(a) shows a programmable logic element, called a lookup table (LUT), that is implementing a 4-input AND
function. If the one bit that defines the “true” condition has an SEU, the result is a constant-zero function. Sometimes SEUs
in untriplicated logic can be logically masked by the data the circuit is executing. For our example above, most of the possible
input combinations will return the correct output. If the data in the system never exercises the one input combination that
causes the error to manifest, the error will be logically masked. Output errors that manifest from untriplicated logic can only
be fixed by changing the design. Therefore, the number of sensitive bits due to unprotected logic are immutable to how the
user circuit is placed on the device by the design flow tools, although the location of these bits might change by rerunning the
tools.

LUT LUT
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Fig. 13.  LUT Upset Example

A second set of output errors in partially TMR-protected designs stem from the programmable routing network in the
untriplicated parts of the design. SEUs in the routing network changes the flow of data through the circuit. For example, an
SEU in the routing network could cause an input to a LUT to float. Unlike untriplicated logic, some of the SEUs in the routing
network can be influenced by the design flow tools that determine how the user circuit is placed and routed on the device.
Within blocks of untriplicated logic, the design flow tools could affect the the number and location of sensitive bits in the
routing network by lengthening/shortening routes or changing their location on the device.

Sometimes the logic in a design might be completely triplicated, but some or all of the input signals might not be due to
the lack of I/O resources. While the input data signals will be triplicated once the data is registered the first time, the clock
and reset trees will remain untriplicated. SEUs in the programmable routing along the main trunks of the clock and reset trees
are very likely to affect the entire circuit, but SEUs in the leaves of these trees will often be masked if only one module in
the TMR-protected design is affected. The number and location of sensitive bits can be affected by placement, but cannot be
eliminated through rerunning the placement tools.

IV.B Modeling Tools

Reliability analysis is traditionally done with modeling tools. For designers of many types of systems, these tools allow the
designers to focus on creating accurate models of their systems, instead of focusing on how to calculate the reliability. Since
FPGA user circuits already have accurate functional models in terms of hardware descriptions and netlists, the right modeling



Fig. 14. Hierarchical Exploration of Circuit Design

tool can leverage these descriptions directly for reliability analysis, enabling the detection and correction of design flaws in
the design phase where fixing flaws is significantly cheaper.

Traditionally, circuit reliability has been determined using purely analytical approaches [21] or techniques that model Boolean
networks as probabilistic systems [22]-[25]. These modeling techniques represent circuits as probabilistic transfer matrices,
stochastic Petri-nets, Markov chains or Bayesian networks. These analytical approaches have been found to be error-prone and
computationally complex for the analysis of large designs. Similarly, a number of limitations have been identified for many
modeling-based approaches. First of all, model and input data set creation greatly increase the time commitment of using these
tools. Transforming circuits into intermediate probabilistic system models is an additional, computationally complex task. The
complexity of calculating the circuit reliability also grows exponentially with circuit size and the number of input vector sets
and the computation can take a prohibitively long time to finish. The exception to these problems is the SETRA tool [26] that
directly addresses the state space issues as well as automated model generation.

For these reasons, traditional tools are not well-suited for the size of designs used in most FPGA systems. All of these
limitations have led to the development of the Scalable Tool for the Analysis of Reliable Circuits (STARC) tool, which
specifically addresses the limitations of model creation, input data sets and computational complexity with these solutions:

« industry-standard Electronic Design Interchange Format (EDIF) representation of a circuit as the input model,

e nO input vector sets,

« memoization to reduce the computational complexity, and

o combinatorial reliability calculations.

By using the EDIF circuit representation, the designer can assess the reliability of a circuit during the design process, even if
the design is not complete, the design does not work, or the hardware is not available. Without the use of input vector sets
reliability is determined through the probability of device or input failure and is not dependent on specific input data sets.
Without input data sets, the reliability of sub-circuits are determined by type, such as a two-bit adder, and memoized for reuse.
In this manner, large-scale circuits are analyzed in a fraction of the time required by traditional approaches, making design
exploration more worthwhile.

There are a few disadvantages to this approach. First, since EDIF does not contain information about the routing and
the placement on the device, routing reliability is currently statistically estimated from case studies of routing placement.
Furthermore, currently there is no way to assess placement-related issues, such as MBU-induced TMR defeats. We are currently
working on a solution for this limitation for designs that have gone all the way through the design flow. Second, without input
vector sets logic masking cannot be taken into account, and STARC estimates the worst case failure rate. While this value
may be lower than the value determined by other tools [27], STARC provides a useful lower bound on the circuit’s reliability.

By using the EDIF circuit representation the hierarchy in the circuit should be preserved. Since designers tend to create
complex circuits by creating less complex sub-circuits, maintaining this structure can be very useful in calculating the reliability.
In particular, STARC can readily exploit memoization by memoizing the reliability of sub-circuits and reusing the reliability
values for sub-circuits of the same type. This reuse allows the computation to grow polynomially instead of exponentially.
This hierarchical nature allows circuits to be examined at the highest level of abstraction or the most minute level of detail.
STARC automatically determines the appropriate level of the hierarchy that needs to be explored. An example of this hierarchy
is shown in figure 14. In this example, the reliability of components 1-4 are determine first, memoized, and then used to
determine the reliability of the entire circuit. .

During hierarchical exploration, dependency graphs for each primary output at each level of the hierarchy are determined.
The dependency graph has all of the sub-circuits between the output and the reachable inputs. Since not all logic or inputs
are reachable from every output, this technique removes unrelated logic from the reliability calculation. Once the dependency
graph for an output is determined, the reliability can be calculated. In unmitigated designs, the quantity of sensitive bits is the
total area of the dependency graph:



A(0) = Z A(Cy), (8)

where A(X) is the sensitive area of X (where X is either a wire or a cell) and C' = {Cy, ...,Cy,} is the set of cells that
can be reached from output wire O. The reliability of basic architectural elements, such as LUTs and user flip-flops, are
pre-determined and are statically loaded when STARC starts.

STARC was designed to help designers find problems in the application of TMR. For mitigated circuits, the sensitive area
is confined to the part of the design that is not triplicated, as triplication will mask errors as long as there is one voter for each
redundant module. There are cases where the design flow tools, in particular synthesis tools, will alter the circuit so that the
TMR modules are no longer functionally equivalent or independent. In these cases two modules will share a partial calculation
with the third module and the shared partial calculation becomes a single point of failure. Feedback loops in TMR-protected
systems are also sensitive to persistent errors [28], and need to use triplication and voters to break the feedback loops. If the
feedback loops are not handled in this manner, the feedback loop’s state will not be able to autonomously resynchronize after
the SEU is removed. In this scenario, while the first SEU in the feedback loop will be masked, another SEU in the feedback
loop is not guaranteed to be masked.

In all of these cases, STARC provides warnings and information about the design to the designer. The output of the tool
provides the designer a list of sub-circuits that are untriplicated, and warnings about potential single points of failures from
functionally nonequivalent modules and logical constants. Since EDIF is tightly coupled to the circuit design, the designer
should be able to directly use STARC’s output to find and fix the design flaws in the user circuit.

IV.C Fault Injection Testing

Once a design is completed and hardware is available, it is possible to move on to fault injection. Unlike modeling tools,
fault injection works with the actual hardware implementation of the user circuit, allowing placement-related issues to be
assessed. If designed well, a fault injection tool should have good fidelity to accelerator testing and on-orbit behavior, since
the hardware and the operational behavior mimic actual usage. Finally, we would like to note that fault injection on the actual
“flight” hardware is highly desirable since it is more likely to mimic or illustrate the consequences of individual upsets.

Fault injection is possible, because the interfaces that control device programming (or configuration) are accessible to
the designer. These interfaces can be used by the designer to purposefully corrupt the programming data to mimic SEUs
in programming data. While LANL designed one of the first fault injection testbeds for FPGAs with the SLAAC1-V SEU
Emulator [29], since then many other organizations have created them [30]-[32]. We have also gone on to make other versions
of our fault injection tool to support newer hardware devices and support MBU testing.

Fault injection tools for FPGAs all have the same basic algorithm, as shown in Figure 15. With this algorithm, faults can be
injected throughout the entire programming data. It is important to run a large number of input vectors through the system after
the fault is injected to avoid logical error masking. Since running a complete set of test vectors is often infeasible, our SEU
emulator generates input vectors randomly so that better coverage is possible by running multiple tests on the same design.
Each test provides coverage for 250,000-500,000 test vectors. It is also feasible to run a complete set of test vectors for limited
portions of the circuit. Resetting and resynchronizing the user circuit after the SEU is removed is also important so that the
effects of each emulated SEU is kept independent from others. Independent trials ensures that errors are properly attributed to
the right programming data bit and that latent bad state from one fault injection iteration does not affect the next one.

There are usually two types of fault injection systems based on whether one or two FPGAs are used. In our SEU Emulator
tool two FPGAs are used, each one hosting the same user design. Faults are injected into the design under test (DUT) FPGA
and then run in lockstep with the same input vectors with the golden FPGA, which receives the same input vectors. The
advantage of this system is that sharing input vectors, detecting output errors, and testing the system for resynchronization is
very easy. The disadvantage is the complexity of designing the lockstep system.

In the single FPGA fault injection systems, the input vectors are run through the system twice: once without fault injection
and once with fault injection. The advantage of this system is that it takes less hardware and is easier to design than a lockstep
system, but the disadvantage is that the input vectors and correct output vectors need to be saved in the system. Furthermore,
determining miscompares in the output data is not simple.

In general, a good fault injection system should be able to handle different types of user circuits. With many fault injection
systems, the number of clock and reset pins, the width of input and output buses, and the pin locations are often set. Due to
these restrictions, sometimes the user design has to be changed to fit the fault injection system, which can reduce the usefulness
of fault injection. On occasion, we have found some cases that do not lend themselves to fault injection. In these cases, the
use of modeling tools is even more important.

Once fault injection is completed, the SEU locations need to be tied back to the design. If fault injection only reports a
handful of errors, the designers can decide that the user circuit meets the availability requirements for the system and that
further design exploration to fix design flaws is unnecessary. Unlike when using STARC, tying design problems found through
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fault injection to the design can be quite difficult and time consuming. While the fault injection tool returns the locations of
sensitive bits, most designers do not know how to translate that location into a physical location on the device. If the physical
location is determined, it is possible to use a Xilinx design flow tool, called FPGA Editor, to determine what part of the user
circuit is in that location. There are times, though, that even knowing the part of the design that is causing the problem does
not help. Since many errors manifest in the routing network of TMR-protected designs, it is possible the fault is caused by a
signal that is passing through a routing switch, rather than an error in the user logic.

IV.D Accelerator Testing

One of the advantages of doing accelerator testing after the use of fault injection and modeling tools is that the designers
should be better prepared for accelerator testing. To this end, the designers should know the areas of the circuit design that
should cause output errors from the modeling tools and know the locations of these faulty areas through fault injection.
Furthermore, if the designer has been using a lockstep fault injection tool, the fault injection hardware can be used as the test
fixture for the accelerator tests. Even the lockstep fault injection software can be used as part of the accelerator test fixture
with minor modifications. If a lockstep system was not used for fault injection, a test fixture that can easily detect output
errors is highly desirable so that real-time feedback is available during the test to ensure that the test is functioning properly.
A number of FPGAs will be needed for the test, since the parts are only guaranteed to operate properly up to 100 KRads of
ionizing dose.

The algorithm for the software aspect of the test fixture is very similar to the fault injection tool’s algorithm. Instead of
injecting faults artificially, though, the particle accelerator will be injecting radiation-induced SEUs. Unlike fault injection,
controlling the number of upsets that occur during one loop of the algorithm is more difficult. SEU removal and SEU-induced
single-event functional interrupts (SEFIs) that affect the functionality of the entire device complicate testing. These three
problems will be discussed below.

The arrival time of radiation-induced faults are a Poisson random processes. As the designer will want to reduce the
probability of multiple independent upsets (MIUs) causing an output error, the beam’s flux is tuned so that on average only
one SEU occurs per algorithm loop. Even still, Poisson statistics tell us that, even if the beam’s flux is tuned to one SEU
per algorithm loop, there is a 37% chance that no SEUs occur, a 37% chance that one SEU occurs, and a 26% chance that
two or more SEUs occur during the given time period. Since not all SEUs cause output errors and only a few sensitive bits
might exist, it can take some time for errors to manifest. The formula for determining the time interval for one output error
to manifest is:

Nop = ()™ ©

Ndevice

Tor = Nog xTj, (10)



where Nog is the number of samples until an output error, Np;s is the number of sensitive bits, Nyeyice is the total number
of bits in the device, T is the time length for each sample, and Tog is the average time span until an output error.

Removing SEUs quickly is important so that the user circuit can recover before the next SEU occurs. There are two ways
to remove an SEU during an accelerator test. First, the SRAM FPGA can be completely reprogrammed through off-line
programming, where the FPGA is taken off line for the express purpose of reconfiguring the device. Taking the device off
line tends to be costly in terms of time, but often needed in the case of SEFIs, where a full reprogramming of the device is
the only reliable method for restoring the FPGA to a known, functional state. A second approach available to Xilinx SRAM
FPGAs is to use on-line programming capabilities. In this case, the FPGA remains operational while its programming data is
repaired. Using on-line reprogramming, it is possible to either completely rewrite all of the programming data or to only fix
the portions that have SEUs. This later case is safer since it affects the least amount of programming data at a time and since
the FPGA’s programming circuitry can be affected by SEUs. To reduce the time required to identify an SEU and fix it, we
recommend the use of external SEU detection hardware as opposed to software.

After the accelerator test is completed, the results need to be examined so that correlations between output errors and known
sensitive bits can be determined. Since the SEUs in accelerator testing do not present themselves in the system uniformly or
at specified time intervals, correlating output errors to specific SEU locations can be a challenge. In some cases, the output
error follows the SEU by several algorithm loops and other times the reporting software will output the existence of the output
error before the SEU location. On other occasions, some output errors need to be dropped from the data set, such as when the
incidence of multiple independent upsets are the cause of the output error. Often times all of the results around a SEFI event
will need to be ignored, since removing the SEFI is time consuming and the system will likely report output errors for several
iterations until the circuit state resynchronizes.

As long as the user circuit that is being tested is the same one tested in fault injection, the results from fault injection can
be used to disambiguate the accelerator test results. Due to the problems described with attributing SEUs to output errors, the
most effective approach for analyzing accelerator results is to look at several SEU locations before and after the output error
in the log. This “window” of SEU locations can then be compared to fault injection results to determine if any of these SEU
locations caused an output error in fault injection. While this method can usually help a designer correlate output errors with
fault injection results, some output errors cannot be completely correlated. In some cases, the errors are due to SEUs in user
memory, such as flip-flops, and not due to programming data upsets. The number of these types of errors can be predicted
based on the amount of user memory used in the design and the susceptibility of these memory elements to SEUs. In other
cases, sometimes the accumulation of errors in the circuit state caused the output error. For these cases, sometimes part of an
accelerator test can be “played back” using the fault injection tool, where the tool uses the accelerator log to inject faults in
specific locations in a particular order. Through this attribution process, the designer can determine whether the output error
can be explained and whether further design exploration is needed to address potential design flaws.

For fully or mostly mitigated designs, accelerator testing should be uneventful and the user circuit should be able to operate
for minutes or longer without any output errors. For example, using Equation 10, if fault injection only found 100 sensitive bits
in a device with 75 million bits, at one algorithm loop per second the first output error is only guaranteed to occur randomly
within a 208 hour time span. Some designers will do multiple rounds of tests with different flux levels and different durations.
In particular, one test might be very low flux over several hours, mimicking average operation on orbit, and another test might
have a very high flux over a couple of minutes, mimicking solar flare conditions or to otherwise reduce test time. If, at the end
of these tests, the design is able to operate either error-free or within the availability requirements, the design is considered
space ready.

If the error rate is much higher than indicated by the fault injection tool, either the flux could be too high or there might
be problems with either the fault injection or accelerator test fixture. When designing new fault injection and accelerator
test fixtures it is important to test the setup by correlating output errors to the source of the errors to ensure fault injection
works, as well as correlating the results of fault injection and the accelerator tests. If the results cannot be correlated, then the
methodologies for both systems need to be examined.

IV.E Dynamic Testing Results

In this section, we will compare the use of these three methodologies on a circuit. The circuit, an adder tree, is fully triplicated
and was designed originally to test for placement-related issues due to both MBUs and logical constants. This design was
implemented for a Xilinx Virtex-II FPGA (XC2V1000). All three methodologies were used on this design. In the following
paragraphs, we will describe the amount of time, the quality of the results, and the cost of using these methodologies.

In terms of time, STARC is comparatively much faster than the other two methods. Within a minute, the tool returned
the result that the design was triplicated properly and with warnings that placement-related issues could exist from logical
constants. As STARC cannot currently estimate the placement-related issues, it is unable to estimate how many bits in the
design could cause output errors. In terms of cost, STARC is free to government users.

In terms of test coverage, the SEU Emulator was much more complete than the other two methods. With fault injection, we
were able to find 285 single-bit SEU locations, 18,733 2-bit SEU locations, 11,264 3-bit SEU locations, and 19,464 4-bit SEU



locations that cause the design to output bad data. Each pass through the fault injection test takes two hours per run and each
MBU test is a separate test. As the MBU tests are run with specific MBU shapes based on our analysis of how MBUs affect
the Virtex-II, we were able to constrain the MBU tests to the six most common shapes. In all, fault injection tests took 14
hours for the seven tests. In terms of cost, the fault injection hardware is about $6,000 and the software is free to government
users.

As validation for both of these tests, we did a two hour long test at at the University of Indiana Cyclotron Facility’s proton
accelerator. During this test we were able to observe 50 output errors, of which 21 were attributed to SEFIs, 13 were attributed
to MIUs, and 16 were attributed to the two phenomenas that we were looking for. Of the 16 output errors, 88% we were able
to later correlate to known fault injection error locations. At three algorithm iterations a second, we would have been able to
test all of the single bit errors in no less than 16 days, assuming that no single-bit fault location was exercised multiple times.
As is, we were able to test at a higher flux to be able to shorten the time frame of the test considerably. Since the MBU-related
issues have only a 2% chance of occuring due to proton radiation, completing the 2-bit test would have taken over two years.
In terms of cost, we were able to use the hardware and software from fault injection and only had to pay the accelerator fees
of $1,200 for two hours of test time and $500 for the FPGA. Had we completed the single-bit test, we would have to pay for
at least 385 hours of testing and 192 FPGAs for a total cost of $288,000.

Since we shortened our accelerator test considerably, the initial cost of the hardware for the fault injection tool is the highest
of the three test methodologies. Had we done a complete validation of the user circuit, though, the accelerator test would have
been the most expensive. Also, it should be noted that the cost of the fault injection tool is amortized across all of the fault
injection tests and the accelerator testing. Since the hardware infrastructure can be reused an unlimited number of times, if
the FPGA is not irradiated, the cost is reasonable. When the test coverage is factored in, the amount of time and cost invested
in the fault injection tool is the best option. While fault injection should never replace accelerator testing, the accelerator test
was shortened when we were able to confirm our fault injection results. We also believe that using STARC decreased the
overall time commitment and iteration that takes place in fault injection and accelerator testing. Finally, since the design had
TMR properly applied to the circuit from the beginning, which was confirmed throughout the testing, there was no need to
determine what was wrong with our design.

V. Conclusions

In this paper we presented a three-tiered methodology that finds design flaws in FPGA user circuits and locates the source
of the faults on the FPGA. One methodology used the circuit representation to find design flaws through modeling. The second
methodology used fault injection to locate how the design flaws translated to physical locations on the FPGA. The final method
was an accelerator test to validate the previous results. We also showed how these three methodologies compared in terms of
test coverage, time, and cost. While the modeling tool was the fastest, fault injection was the best methodology in terms of
cost and test coverage.
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