

LA-UR-09-6938

Approved for public release;
distribution is unlimited.

Title: Demonstration of Implosion Symmetry in NIF scale 0.7 Hohlraums

Author(s): A. Seifter, G. A. Kyrala, S. R. Goldman, N. M. Hoffman

Intended for: Lasers and Particle Beams

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Demonstration of Implosion Symmetry in NIF scale 0.7 Hohlraums

A. Seifert, G. A. Kyrala, S. R. Goldman, and N. M. Hoffman, J. L. Kline, S. H. Batha

Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

Abstract: Implosions using inertial confinement fusion must be highly symmetric to achieve ignition on the National Ignition Facility. This requires precise control of the drive symmetry from the radiation incident on the ignition capsule. For indirect drive implosions, low mode residual perturbations in the drive are generated by the laser-heated hohlraum geometry. To diagnose the drive symmetry, previous experiments used simulated capsules by which the self-emission x-rays from gas in the center of capsule during the implosion are used to infer the shape of the drive. However, those experiments used hohlraum radiation temperatures higher than 200 eV (Hauer *et al.*, 2007, Murphy *et al.*, 1998a, Murphy *et al.*, 1998b) with small NOVA scale hohlraums under which conditions the syncaps produced large x-ray signals. During the foot of the NIF ignition pulse where controlling the symmetry has been shown to be crucial for obtaining a symmetric implosion (Clark *et al.*, 2008), the radiation drive is much smaller, reducing the x-ray emission from the imploded capsule. For the first time, the feasibility of using syncaps to diagnose the radiation drive for low radiation temperatures, < 120 eV and large 0.7 linear scale NIF Rev3.1 (Haan *et al.*, 2008) vacuum hohlraums is demonstrated. Here we used experiments at the Omega laser facility to demonstrate and develop the syncap technique for tuning the symmetry of the NIF ignition capsule in the foot of the drive pulse.

Keywords: Inertial Confinement Fusion, Syncaps, drive temperature

1. Introduction

The first attempts to achieve Inertial Confinement Fusion (ICF) at the National Ignition Facility (NIF) will commence in 2010. These first experiments will use the indirect drive (Lindl, 1995) approach where laser beams heat a hohlraum that radiates soft x-rays which then implode a spherical capsule containing deuterium and tritium fuel. The x-rays emitted by the heated hohlraum walls are absorbed by the capsule, creating shocks and imploding the capsule that then ignites the compressed fuel. Although using a hohlraum to convert the laser energy into x-ray radiation introduces a loss in energy conversion, it has the advantage of reducing Rayleigh-Taylor instabilities by increasing the ablation velocity of the capsule and providing a more symmetric implosion. However, “hot” spots on the hohlraum wall created where the laser beams strike the hohlraum impose low-mode perturbations in the capsule radiation drive. Small nonuniformities in the drive radiation field can seed instabilities and cause non-spherical, less-efficient implosions. Therefore, it is important to control the symmetry of these low-mode perturbations. This can be done by varying the laser power in the three laser beam cones, by varying the pointing of the laser beam cones on the hohlraum wall, or by varying the hohlraum dimensions.

In preparation for experiments on the NIF, experiments at the Omega laser demonstrate control of the implosion symmetry during the foot of the NIF laser pulse in 0.7-NIF-scale hohlraums and capsules. These experiments use a symmetry capsule (Symcap) (Hoffmann *et al.*, 2008) to diagnose the hohlraum radiation drive. The symcap is a gas-filled surrogate capsule designed to create x-rays that show the shape of the imploding capsule. The time sensitivity of the experiment is changed by using different capsule wall thicknesses to implode at various desired times. Measurements of the size, shape, and brightness of these x-rays as a function of

time can then be used to deduce the time-integrated radiation drive. The experiments described in this manuscript are the first to demonstrate the feasibility of using syncaps to diagnose the symmetry of the drive for the relatively low radiation temperatures (100-120 eV) expected during the foot (first 2 ns) of the NIF laser pulse.

2. Experimental Setup

The experiments used vacuum-filled gold hohlraums surrounding capsules filled with deuterium (D_2) gas. The gold hohlraums were cylindrical and had dimensions of 6.8 mm in length, 3.56 mm in diameter, a laser entrance hole (LEH) diameter of 1.90 mm, and 0.1 mm thick walls. These dimensions were selected to produce a 110 eV radiation drive at Omega using 15 kJ of laser energy. Furthermore, they are a scale 0.7 NIF Rev3.1 point design hohlraum, but without the gas fill and without the gas windows. The hohlraum axis is aligned along the Omega P6-P7 axis. Two 750 micron diameter x-ray diagnostic holes were drilled on the side of the hohlraum and filled with beryllium or aluminum plugs. These holes allowed viewing of the capsule implosion with x-ray framing cameras at directions perpendicular to the hohlraum axis. The plastic polystyrene (CH) capsule was placed in the center of the hohlraum using a stalk to maintain exact centering and had a 1.387 ± 0.003 mm inside diameter and a shell thickness of 19.6 ± 0.2 microns. The capsule was filled with 1 atm of D_2 gas at 300 K. The capsules were centered within 35 μm of the hohlraum center. Figure 1 shows a photograph of one of the targets. In this figure one can see the LEH, the stalk to mount the hohlraum in the experimental chamber, the window with the beryllium plug and shields to block unwanted x-rays from diagnostics.

Three cones of laser beams enter the hohlraum from each end at angles of 21, 42, and 59 degrees with respect to the hohlraum axis (Figure 2). The 42 degree cone consists of 10 beams

while the 21 and 59 degree cones consist of 5 beams each. The cones are pointed in a configuration that creates two rings in the hohlraum, with the beams distributed uniformly in azimuth. This is done by pointing the 21 degree beams to the same axial point on the hohlraum wall as the 44 degree beams from the opposite side of the hohlraum. The laser is fired with a 2 ns square pulse with ~ 375 J in each beam. The 21 degree cone had an elliptic phase plate (EIDI-300) that was designed to have a circular cross section at the LEH. The other cones did not use phase plates. The pointing and defocusing of the laser beams for each of the 3 cones as well as the irradiant power on the walls of the hohlraum is given in table I.

The hohlraums were vacuum hohlraums, in contrast with the gas-filled hohlraums to be used at NIF. The short laser pulse eliminated the effect of wall on capsule uniformity and obviated the need for a gas fill. This simplified the experiment, minimized the effects of laser-plasma instabilities, and eliminated the presence of the LEH windows that can affect laser beam propagation. We used up to 16 fast filtered x-ray diodes (the DANTE spectrometer) to measure the time-resolved brightness temperature between 0 and 5000 eV (Kornblum *et al.*, 1986, Seifter *et al.*, 2008) emitted through the LEH at 37 degrees with respect to the axis.

3. Experimental Results

The measured peak radiation drive at the end of the laser pulse is ~ 118 eV (see figure 3), consistent with the scaling of the drive with laser energy and hohlraum dimensions and matches the point design NIF foot. Processed images of the x-ray measurements, made by the x-ray framing camera at different times are shown in figure 4. The images show the x-ray emission at different times during the implosion (the intensity for each image is normalized to its peak). The signal levels are clearly strong enough to diagnose the implosion symmetry under NIF foot

radiation drive conditions. The time dependence of the shape of the core can be determined, for each image, along with the peak emission time for the implosion (6.03 ns). These quantities will be compared with simulations to benchmark their predictive accuracy.

To quantify each of the image shapes, a Legendre polynomial is fit to a brightness contour of the x-ray emission. The fitting algorithm uses singular value decomposition (SVD) to determine the best Legendre fit. Figure 5 shows a sample fit to the 30% brightness contour of the implosion image at 6.03 ns (peak emission time). In this case, the implosion has a positive 20% P2 asymmetry meaning the radiation drive is larger near the ends of the hohlraum than at the center or equator. The analysis also shows a small P4 asymmetry of 8% as well.

4. Conclusions

The present work demonstrates the ability to use specially designed syncaps to diagnose the low radiation temperature drive symmetry during the foot of the NIF laser pulse. This is the first time this technique has been applied to large hohlraums with relatively low radiation drive. Under these conditions, the core x-ray emission is of sufficient brightness to measure the size and shape of the core in addition to the x-ray peak emission time. Future experiments will use this technique and similar syncaps made of Be at the Omega laser to verify the ability to tune experimentally the symmetry of the implosion and validate the predictive capability of simulations.

Acknowledgments

The authors would like to thank the LANL personnel who supported these experiments, T. N. Archuleta, J. S. Cowan, S. C. Evans and T. J. Sedillo in the Physics Division, as well as the

target fabrication team of E. Breden, D. Capelli, R. D. Day, K. A. Defriend Obrey, D. J. Hatch, R. V. Lucero, B. M. Patterson, R. B. Randolph, D. W. Schmidt and A. C. Valdez. We also thank J. Schein and C. Sorce of LLNL for operating the Dante Spectrometer and the Omega operations crew for their efforts during the experiments, especially S. Regan for help with the EIDI phase plate use. We would like to recognize S. H. Batha and J. L. Kline for useful discussions concerning this manuscript. This work was performed by Los Alamos National Laboratory under the auspices of University of California and later the Los Alamos National Security, LLC, for the Department of Energy under contract number DOE-AC52-06NA25396.

References

Clark D. S., Haan S. W., Salmonson J. D. (2008). Robustness studies of ignition targets for the National Ignition Facility in two dimensions, *Phys. Plasmas*, **15**, 056305

Haan S. W., Callahan D.A., Edwards M. J., Hammel B. A., Ho D. D., Jones O. S., Lindl J. D., MacGowan B. J., Marinak M. M., Munro D. H., Pollaine S. M., Salmonson J. D., Spears B. K., and Suter L. J. (2008). Rev3 Update of Requirements for NIF ignition targets, accepted in *Fusion Science & Technology*

Hauer A. A. Suter L., Delamater N., Ress D., Powers L., Magelssen G., Harris D., Landen O., et. al. (1995). The role of symmetry in indirect-drive laser fusion, *Phys. Plasmas*, **2**, 2488

Hoffman N. M., Wilson D. C., Edwards M. J., Kalantar D. H., Kyrala G. A., Goldman S. R., Weber S. V., Izumi N., Callahan D. A., Meezan N., Delamater N. D., Tregillis I. L., Schmitt M.

J., Bradley P. A., Seifter A., Jones O. S., Milovitch J. L., Thomas C. A. (2008). Tuning NIF drive symmetry with symmetry capsules. *Journ. of Phys.: Conference Series* **112**, 022075

Kornblum H. N., Kauffman R.L., and Smith J. A. (1986). Measurement of 0.1–3-keV x rays from laser plasmas. *Rev. Sci. Instrum.* **57**, 2179

Lindl J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. *Phys. Plasmas*, **2**, 3933

Murphy T. J., Wallace J. M., Delamater N. D., Barnes C. W., Gobby P., Hauer A. A., Lindman E., Magelssen G., Moore J. B., Oertel J. A., Watt R., et. al. (1998a), Hohlraum Symmetry Experiments with Multiple Beam Cones on the Omega Laser Facility. *Phys. Rev. Lett.*, **81**, 108

Murphy T. J., Wallace J. M., Delamater N. D., Barnes C. W., Gobby P., Hauer A. A., Lindman E. L., Magelssen G., Moore J. B., Oertel J. A., Watt R., Landen O. L., Amendt P., Cable M., Decker C., et al. (1998b). Indirect drive experiments utilizing multiple beam cones in cylindrical hohlraums on OMEGA. *Phys. Plasmas*, **5**, 1960

Seifter A., Kyrala G. A. (2008). Different Methods of Reconstructing Spectra from Filtered X-Ray Diode Measurements. accepted in *Rev. Sci. Instrum.*

Table I: Pointing, focusing and irradiation of the laser beams of the three cones for shot #45797.

Cone #	Pointing (μm)	Focusing (μm)	Energy (J)	Irradiation (W/cm^2)
1	350	3500	376	0.75×10^{14}
2	500	0	370	1.5×10^{14}
3	0	0	373	1.6×10^{14}

Figure 1: Photograph of one of the targets. One can see the LEH, the stalk to mount the hohlraum in the experimental chamber, the window with the beryllium plug and shields to block unwanted x-rays from diagnostics.

Figure 2: Sketch of the pointing of the three different cones from each side of the hohlraum. Blue, Cone 3 (59 degrees with respect to hohlraum axis); red, cone 2 (42 degrees); green, cone 1 (21 degrees). F is the distance of defocusing, x is the distance where the beam intersects the axis with respect to the laser entrance hole.

Figure 3: Hohlraum brightness temperature as measured by DANTE show reproducibility of the laser drive as the desired peak temperature of 118 eV was achieved.

Figure 4: Processed images of the capsule x-ray self emission of shot #45797, where the intensity for each image is normalized to its peak. The implosion occurs at $t = 6.03$ ns (peak x-ray emission time), the hohlraum axis is horizontal. The brightest emission is shown by the darkest colors.

Figure 5: Detailed image of the capsule implosion of shot #45797 at peak emission time, integrated over 35 ps (FWHM). The hohlraum axis is horizontal. The parameters $a(0)$ to $a(4)$ are the fractional amplitudes of the Legendre-fit parameters normalized to the fitted zero order amplitude ($a(0)$; measured to be $53.7 \mu\text{m}$) at the 30% brightness contour.

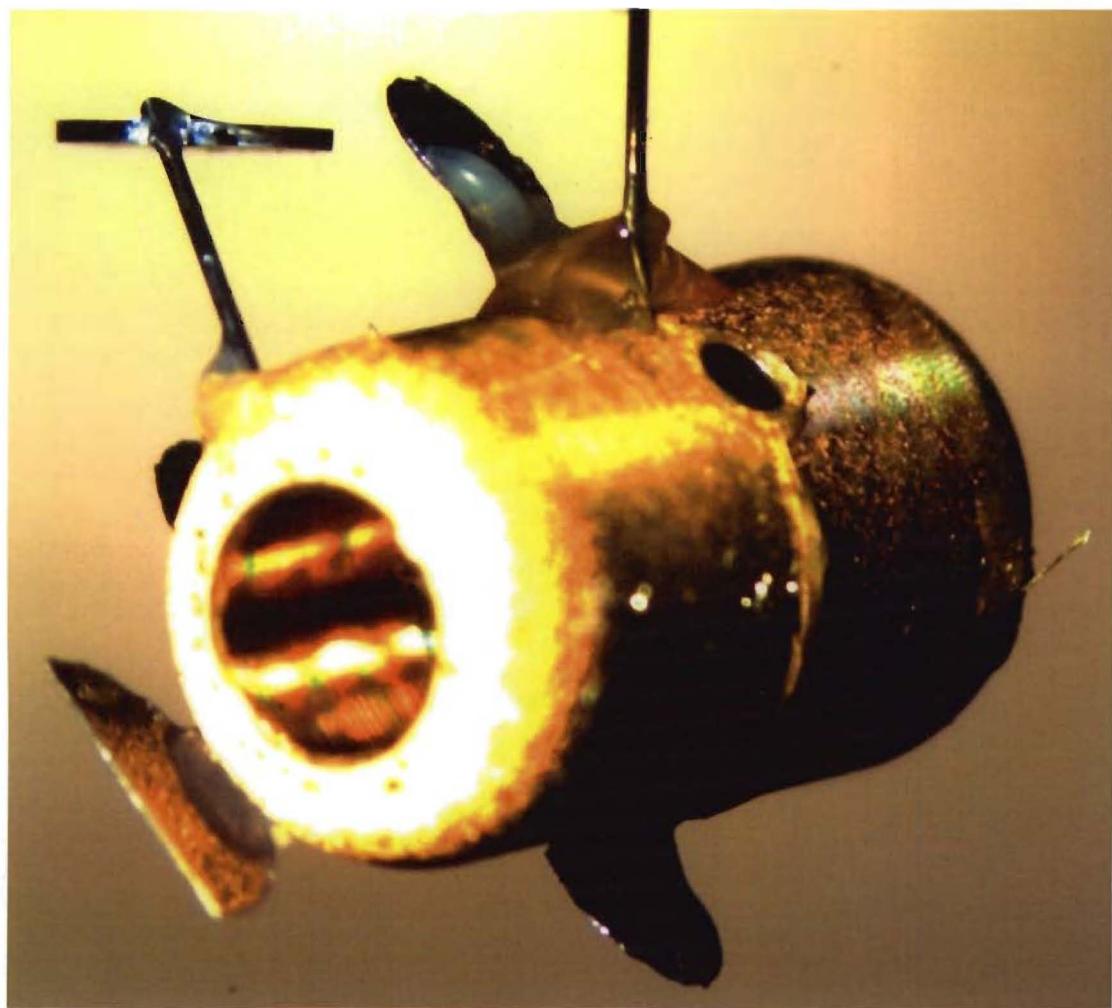


Figure 1

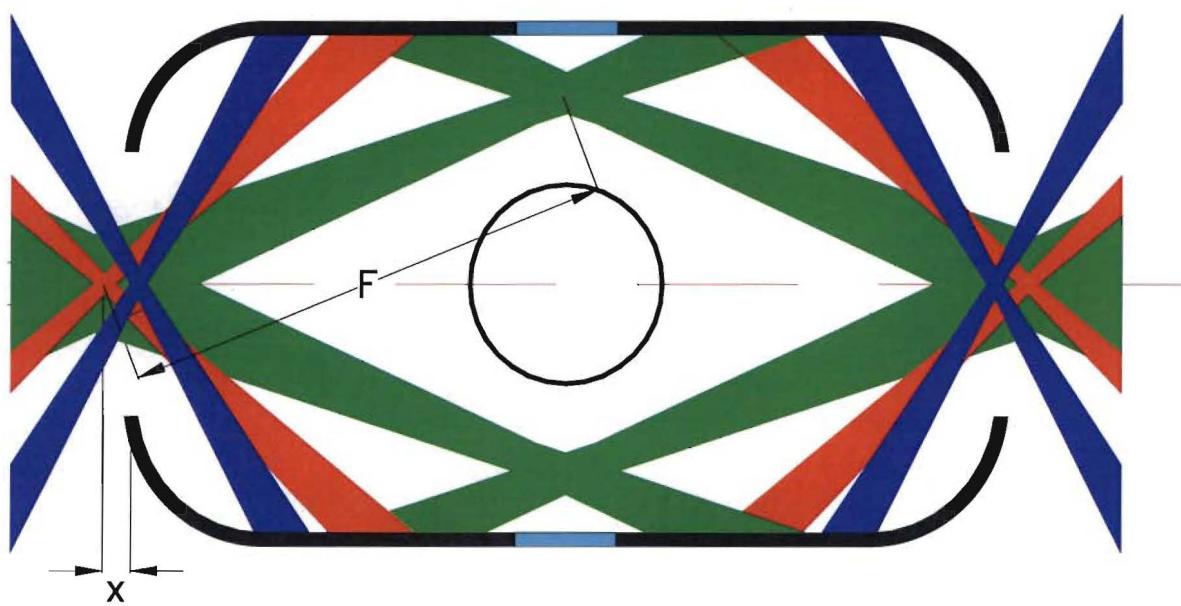


Figure 2

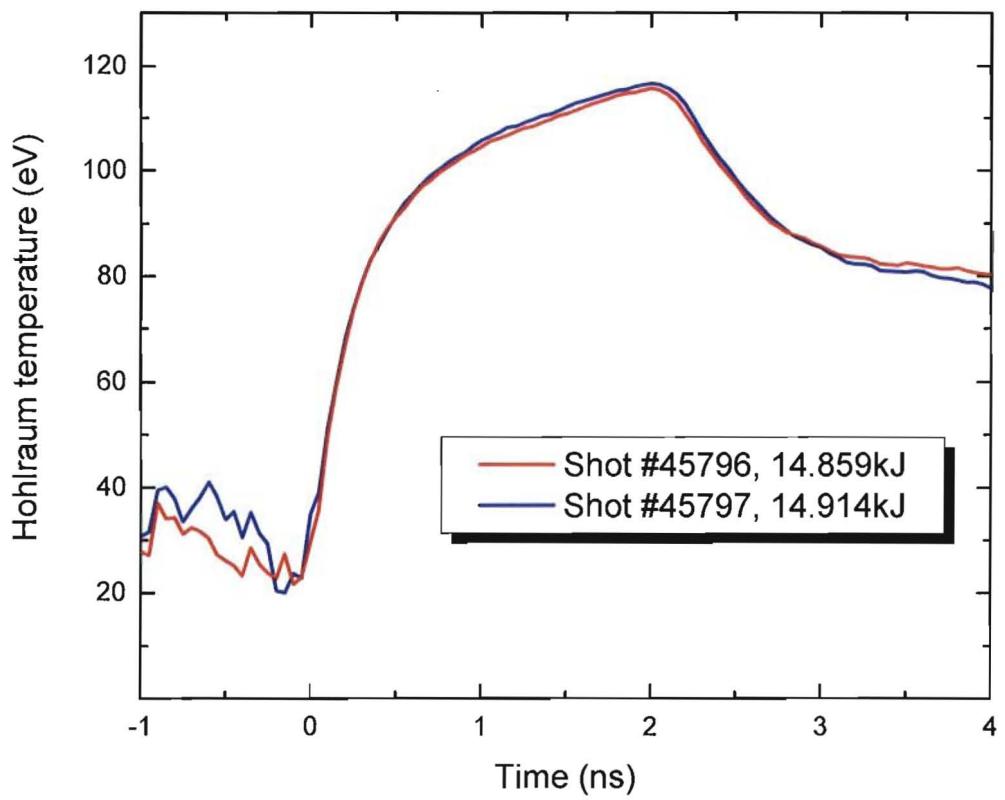


Figure 3

Figure 4

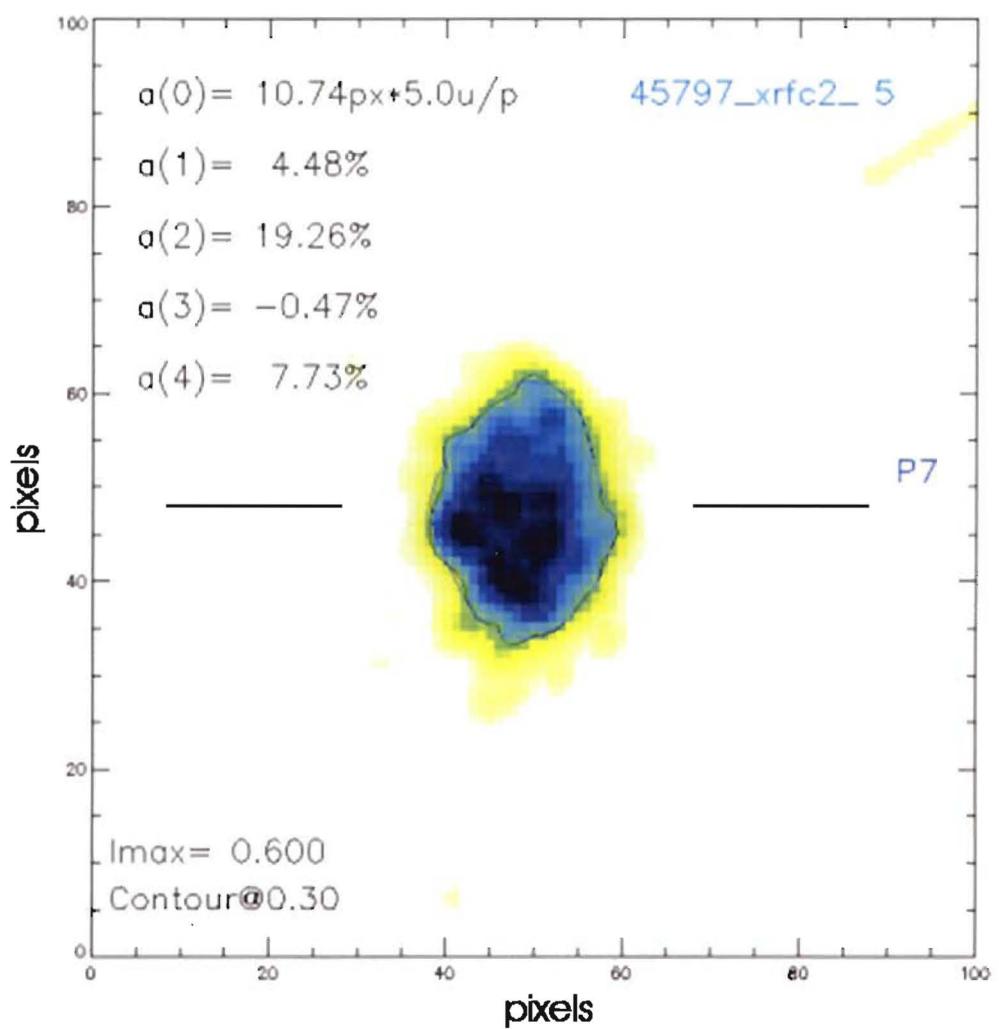


Figure 5