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Abstract: 

Los Alamos National Laboratory has developed a simulation model to understand 
infrastructure impacts of a pandemic influenza (PI) outbreak. Inputs to the model include 
parameters such as PI case mortality rate and disease spread rate. To investigate PI 
consequences and impacts with this model a distribution of values for these PI parameters 
is needed. Our objective is to explore ways to incorporate limited historical information 
to characterize possible distributions for these inputs, primarily using Bayesian statistical 
methods and analysis tools. We model historical PI data using a nested binomial model 
with beta priors that incorporate expert opinion and are consistent with a simplified 
epidemiological modeL A Bayesian inferential approach is used to obtain posterior 
distributions on case mortality rate and attack rate and we study the effect ofchoices of 
prior distributions on the results. 

Key Words: attack rate, Bayes' Theorem, case mortality rate, nested binomial model, 
pandemic influenza, probability distribution 

Introduction: 

Pandemic influenzas (PI), or pandemics of any kind, pose a greater risk as the 
infrastructures of society become more complex and intertwined. Additionally, as travel 
between countries becomes easier and faster, pandemics have the potential to rapidly 
spread, limiting response options to combat the disease. Computer simulations that 
model disease progression and consequences are useful for analyzing possible impacts of 
an outbreak. In such simulations, statistics plays a potentially significant role in 
understanding useful and applicable data for inputs, as well as in summarizing outputs 
from the simulations. A computer program which models the propagation of PI and 
consequences in terms of multiple metrics, such as economic costs, deaths, and illness 
requires as inputs likely values for case mortality (the probability of death) and 
transmission rate (the probability of infection). The goal of this paper is to investigate 
methods for using available historical data and developing reasonable distributions for 
these input parameters, as required for further study of PI impact via simulation models. 

1 



There have been three flu pandemics in the past century. They occurred in 1918­
1920, 1957-1960, and 1968-1972. For these pandemics, reliable data on the number of 
symptomatic and the number ofdeaths is difficult to obtain. The best data, kept by the 
military, suggests different ethnicities had varying responses to the viruses, mainly 
evidenced by differing death rates. Case mortality rate is a parameter that describes the 
probability that a person infected with the disease will die either directly from the disease 
or related complications. An equally important and related parameter is attack rate, a 
parameter that characterizes the ratio of the number infected to the initially susceptible 
population. An initial population is defmed as the population prior to the outbreak of the 
disease and is composed of those who are immune to the disease, and everyone else, the 
susceptible population. A disease model based on these two parameters provides a way to 
understand pandemic influenza and a basis for preparation for possible future pandemics. 
A simple model, illustrated in Figure 1, assumes that the initial population is composed of 
two groups: 'susceptible' and 'immune'. Those in the 'susceptible' group can get the 
disease and are then moved into the 'infected' category. Otherwise they remain 'not 
infected'. Persons in the 'infected' group either both get well and move into the 
'recovered' category or they die from the disease and are assigned to the 'dead' category. 
For PI, the 'recovered' become part of the 'immune' subset ofthe population. With this 
simplified model, focus is on the two main parameters: attack rate and case mortality 
rate. 

The Problem: 

Using data from the three historical pandemics, the goal is to obtain reasonable 
distributions for both case mortality rate and attack rate. Ideally for estimation of PI 
consequences, these distributions will capture the full range of possible case mortality 
rates and attack rates which when propagated thru a simulation model would provide 
possible low to high estimates of infection and death. Using these distributions in a 
simulation of PI can provide assessment of consequences while capturing uncertainties in 
the outputs. Our goal is to incorporate historical PI data and expert opinion to create 
reasonable distributions relevant to possible future pandemics. Using solely historical 
data has shortcomings associated with poor data collection, limited quantity, and 
uncertainty about the relevance of past PI occurrence to possible future pandemics. 

Using a statistical model to obtain distributions on these parameters has the 
potential to mitigate the effect of little, and questionably reliable data, and focus on 
features of realistic distributions, possibly incorporating expert opinion. Some 
association of future influenza pandemics with influenza pandemics of the past is 
expected. Therefore, a relatively accurate characterization of a distribution for past case 
mortality data is relevant. We assume influenza pandemics can be modeled as a 
stochastic process where each pandemic is an instantiation of a joint distribution of 
factors that characterize the disease. One of the factors is the case mortality rate, which is 
of most direct interest. The attack rate is of secondary interest; it determines the 
'infected' population which is required to estimate deaths. Figure 1 illustrates how both 
attack rate and case mortality rate act on the total population and the infected population, 
and how they interact with each other. 
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Both attack rate and case mortality rate, as uncertain parameters in the simulation, 
require statistical distributions. Beta distributions seemed a reasonable form to assume 
for the distributions of these parameters because they naturally represent distributions of 
proportions. Below, the beta distributions assumed as initial candidates for distributions, 
or prior distributions, on these parameters were created using maximum and minimum 
values from expert opinion. 

A pandemic is often characterized by three quantities: 

a) attack rate = e= number people sick I total population, 

b) gross death rate = Kx(deaths I total population), where K is a constant (like 
1,000 or 100,000) so that gross death rate is per K unit population, and 

c) case mortality rate = ~ deaths I (attack rate x total population). 

A further simplification to the model sketched in Figure 1 is represented in Figure 
2. The assumption is that everyone in the initial population has the same probability of 
becoming 'infected' and all 'infected' have the same probability of dying. Although the 
flow chart of Figure 2 may look as though the entire popUlation gets infected and then 
dies, this is not the case; it merely illustrates the most important aspects of the model. In 
particular, it emphasizes the assumption ofbinomial distributions for the number of 
'infected' and 'dead', with respective parameters eand ~. 

Several assumptions are implicit in this simplification of the problem. These 
include that the population is known and equals the number of susceptible people; there 
are no immune people. Additionally, each person in the initial and infected popUlations 
has the same probability ofbeing infected or dying, and infection or death of one person 
does not influence infection or death of another, so the events of an individual becoming 
infected or dying are independent. Bayesian analysis requires assumption of prior 
distributions on the case mortality rate and attack rate parameters. In the following, beta 
distributions will be assumed as priors on attack rate and case mortality rate, the 
respective parameters of the binomial distributions assumed for number infected and 
dead. Many of these assumptions are imperfect, but based on discussions with subject 
matter experts, they are considered adequate for the current analyses. 

Also, there are issues related to limited available historical data. Reliable data on 
numbers of infected and dead is limited simply because it may not have been recorded. 
Many people do not receive treatment for flu-like symptoms, and deaths may occur prior 
to treatment or even record of infection. It is widely considered that for the three 
historical PI the best data were kept by the military. In this data, different ethnic groups 
were anecdotally observed to have varying responses to the virus. Specifically Native 
Americans in the U.S. and Indian militia in the British army in India were observed to 
suffer high losses. However, data on infections and deaths may have been mitigated by 
planned or ad hoc preventative measures, and uneven application of these measures in 
different ethnic groups may have resulted in the differential death rates among British 
troops versus India population. The actual data available is how many died, which is 
relevant to case mortality rate if number of infected is known, but how many were 
infected (relevant to attack rate) is not available. Glezen (1996) provided population data 
and the number of people who died from the virus. Although the data on the numbers of 
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illnesses and related deaths from the three historical pandemics is incomplete, subject 
matter experts familiar with the literature in this area provided information about 
accepted ranges of case mortality and attack rates for PI. These ranges included high and 
low estimates for attack rate and case mortality rate which would possibly lead to a 
pandemic. From Brundage (2006), the 20th century influenza pandemic attack rates 
ranged from 24.7% to 34.2% and overall case mortality rates ranged from 4.4 to 6.7 per 
1,000. 

Basic Tools and Procedure: 

The model for this problem is a nested binomial model with priors for e and S. 
Bayes' Theorem is the method for obtaining posteriors for e and S. Bayes' Theorem 
demonstrates how 'probabilities change in light of the data', from Berry (1996). 
Bayesian analysis requires assumptions on data models and priors. Priors are 
distributions on the parameters which are not based on data but on prior opinion. 
Posteriors are distributions obtained by Bayes' Theorem from the data and the priors. 
Different priors may be tried to see how they affect the resulting posterior when data is 
incorporated. 

The data model for this problem is: Dead ~ Binomial(Infected, S). A binomial 
distribution seems a reasonable assumption since there are only two possible outcomes: 
'recovered' or 'dead' for each individual. This binomial distribution depends on the 
number infected (,Infected') as well as case mortality rate, S. 'Infected' and case 
mortality rate require distribution assumptions as well. 'Infected' is actually unobserved 
data and is assumed to be distributed as follows: Infected ~ Binomial(Population, e). 
'Infected' is also reasonably assumed modeled binomially because there are only two 
options for each individual: 'infected' or 'not infected'. This binomial distribution 
depends on the total population size ('Population') and attack rate, e. Population sizes 
for each historic pandemic were given in Glezen (1996) and are listed in Table 1 along 
with deaths for the three historical PI. The attack rate requires assumption ofanother 
prior. Attack rate, e - Beta(-,-), and case mortality rate, S - Beta(-, e), are both assumed 
to have Beta distribution forms for their priors. These seem reasonable forms for these 
prior distributions because they are defined for values between 0 and 1. 

Priors playa pivotal role in Bayesian statistical analysis because they capture how 
much expert opinion weighs in relative to how much the posterior will be determined by 
the data available. Here several different cases were tried including different 
combinations of priors. Both attack rate and case mortality rate were assigned two 
distributions. The subject matter experts initially proposed the prior for attack rate be 
e~Uniform(0.247, 0.342) based on the interval formed by the lowest and highest 
estimated attack rates from historical data in Brundage (2006). Prior information on case 
mortality rate suggests it lies in the interval (0.005, 0.15), which is considered a 
conservative estimate of the range ofPI case mortality rate. Seasonal flu has a case 
mortality rate ofabout 4xlO-5 unless the patient is over 65, in which case it is about 0.01, 
for an average case mortality rate of 1.6 x 10-3• However, seasonal flu is much milder 
than pandemic influenza, and is a lower bound on the case mortality rate. At the other 
extreme, for small isolated populations, the case mortality rate can be as high as 1.0. 
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However, when assessed as part oflarger regions, the rate rarely exceeds 0.20. Recently, 
the discovery ofH5NI in humans with an associated case mortality rate of 0.55 (although 
some estimates are as low as 0.33) raise concern that a pandemic could have an upper 
limit near 0.5. Many experts fear that H5Nl will be the viral basis for the next pandemic. 
Alternatively, uninformed attack rate and case mortality rate priors might have assumed 
Uniform(O,l) priors, or equivalently e-Beta(I,I) and o-Beta(1,I). The WinBUGS 
software tool was used for analyses (Spiegelhalter et aI., 2004). Since the initial uniform 
distributions proposed by subject matter experts did not work in the WinBUGS program, 
these uniform distributions were modified to beta distributions with parameter values 
chosen so that the proposed uniform intervals had high probability coverage with the beta 
distributions and the means of the beta distributions matched the means of the proposed 
uniform distributions. 

Table 1. Historical PI data from Glezen I 1996) 
Pandemic Years iNumber Died Population Size 

1918-1920 ki75,000 103,262,929 

1957-1960 115,700 173,723,700 

1968-1972 111,927 203,211,926 

More precisely, expert opinion derived prior beta distributions parameters were 
set so that they have high probability oflying in the intervals (0.247, 0.342), for attack 
rate, and (0.005, 0.15), for case mortality rate, and so that the mean of the Beta 
distributions was .2945 for attack rate and .0775 for case mortality rate. Here is the 
reasoning that went into choosing prior beta distributions. The illustration is for attack 
rate, e, but the same method was applied to case mortality rate, O. For a distribution 
Beta(a, b), a and b are wanted such that the mean is the same as the mean of the uniform 
distribution Uniform(0.247,0.342), or 0.2945, and the probability ofbeing in interval 
(0.247,0.342) is a high value accepted by the subject matter experts. The approach takes 
a=nxO.2945 and b=nxO.7055 so that the mean of the beta distribution is fixed at 0.2945. 
Then n is selected so that the subject matter experts' probability condition is met as 
nearly as possible. So 

B- Beta(a,b) = Beta(n x O.2945,nxO.7055) 

a nxO.2945
E(B)=-. = = 

a+b nxO.2945+nxO.7055 

n*0.2945 = 0.2945 
n 
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The prior distribution assumed for attack rate is mapped to Beta(70.09l,167.909) which 
assigns nearly 90% probability to the interval (0.247,0.342). The expert opinion-derived 
prior distribution for case mortality rate is mapped to Beta(1.0075,11.9925) which has a 
mean of 0.0775 and assigns almost 80% probability to the interval (0.005,0.15). 

Three different combinations of prior cases are investigated. Case one uses the 
expert-informed attack rate prior and a uniform case mortalitY rate prior. This allowed us 
to see the effect of data on the case mortality rate prior. Case two had uniform priors on 
both the attack and case mortality rates; thus assuming completely uninformed 
knowledge of the possible values of these parameters. Case three had expert-informed 
attack and case mortality rate priors. 

With these model assumptions for the data and prior distributions, Bayes' 
Theorem allows us to update prior distributions with the available historical PI data to get 
posterior distributions on these inputs to be used with the simulation model. Bayes' 
Theorem derives a posterior distribution from the multiplication of the likelihood and 
priors. The likelihood is from our data model and is the likelihood of the number of 
'dead' in the three historical PI. The 'infected' data is not directly observed but also 
occurs three times, once for every pandemic. The attack rate and case mortality rate are 
both beta distributions. Bayes' Theorem allows us to multiply these likelihood and 
probability density functions together to obtain a posterior distribution: 

posterior oc likehood(data) x prior. 

From the data Deadi - Binomial(Infectedi, 3), we have the likelihood 

n ISDead, (l_(j)I'!{ecled;-Dead, • 

i 

The prior based on Infectedi - Binomial(Populationi, 9), {} - Beta(ao,bo), and 

IS - Beta(a8 ,b.. ) is 

WinBUGS was used to perform the Bayesian statistical analysis. WinBUGS 
implements Bayes' Theorem and makes draws from the posteriors using a Markov chain 
Monte Carlo (MCMC) algorithm. These draws can then be used to characterize the 
posterior. R was used to create the graphs in the following results section (R Core 
Development Team, 2004). 

Results: 

Case I used uniform case mortality rate prior 3 - Beta(1,I) and expert-informed 
attack rate prior 9 - beta(70.091,167.909). We use the kernel density function 'densityO' 
in R to smooth the histogram of the draws from the posterior distributions generated by 
WinBUGS, and plot a graphical representation of the distributions. In Figure 3, the case 
mortality rate posterior distribution is the solid line and the uniform case mortality rate 
prior is the dashed line. The data significantly alters the prior distribution with the 
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posterior distribution exhibiting a pronounced peak:. In Figure 4 the attack rate posterior 
and prior distributions are again respectively the solid and dashed line. The data had a 
more modest effect on the attack rate posterior as changed from the expert-informed prior 
distribution. Table 2 gives several quantile values for the case mortality and attack rate 
posteriors. Quantiles are the x-axis values for 6, attack rate, or 0, case mortality rate at 
positions along the graph corresponding to cumulative probability values (such as 0.50 
quantile, which is also called the median). 

Table 2. Quantiles for Case 1 Posteriors of 0 and 6 

Probability 0.025 0.05 Median, 0.50 0.95 0.975 

0 0.01697 0.01762 0.0212 0.02604 0.02716 

6 0.2324 0.2426 0.2916 0.3416 0.3519 

Case 2 assumes the uninformed priors so both 0 and 6 are Uniform(O,I) or 
equivalently Beta(1, 1). Figure 5 shows 0 posterior with a solid line and 0 uniform prior 
as a dashed line. Again, the data has a large influence on the uninformed prior. In Figure 
6 the data also exhibit a pronounced effect on the uninformed 6 prior. The posterior 
distribution is irregular and perhaps could be better smoothed by the kernel density 
function. Table 3 lists quantiles values for 0 and 6 posteriors. 

Table 3. Quantiles for Case 2 Posteriors of 0 and 6 

Probability 0.025 0.05 Median, 0.50 0.95 
1 

0 . 975 

0 0.01096 0.01177 0.05078 0.6452 : 0.7867 

6 0.00779 0.009542 l0.1224 0.52081 0.5542 

Case 3 has expert-informed priors for both attack rate and case mortality rate, 
9-Beta(70.091,167.909) and o-Beta(1.0075,11.0025). Figure 7 shows 0 posterior as a 
solid line with the informed 0 prior dashed. The data has a large influence on the case 
mortality rate prior. Figure 8 shows 6 posterior with informed 6 prior, solid and dashed 
respectively. The data has little influence on the expert-informed attack rate prior with the 
posterior barely different from the prior. We observe this is similar to case 1 where the 
expert-informed attack rate prior exhibits little effect from the available historical PI data. 
Table 4 lists quantiles values for 0 and 6 posteriors. 

Table 4. Quantiles for Case 3 Posteriors of 0 and 6 

Probability 0.025 10.05 Median, 0.50 0.95 0.975 

0 

6 

0.01696 

0.2332 

0.01762 

0.2432 

0.02115 

0.2923 

0.02591 

0.342 

0.027 

0.3523 

Table 5 gives a summary of the results across cases. Observe that the attack rate 
posteriors for the cases with expert-informed priors (highlighted in blue) are little 
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changed from the priors. For both expert-informed and Uniform(O,!) case mortality rate 
priors with expert-informed attach rate priors, the posteriors on case mortality rate were 
almost the same and substantially differ from the priors with the inclusion of the PI 
historical data. 

For case 2, with both attack rate and case mortality rate priors completely 
uninformed, the attack rate posterior is rather low, much lower than suggested by expert 
opinion, although at the same time the 0.95 probability interval is much wider than that 
suggested by expert opinion. In this case, the effect on case mortality rate seems to be 
that, so to have the number ofdeaths observed in the PI historical data, the case mortality 
rate has to be higher as evidenced by the median of the posterior of case mortality rate. It 
is interesting to observe that in this case, assuming little knowledge of case mortality, the 
median of the posterior of case mortality is close to the median of the expert-informed 
prior, although again the 0.95 probability interval for the posterior of case mortality is 
much higher and broader than what might be expected by subject matter experts. 

Table 5. Medians and 0.95 probability intervals for the priors and posteriors calculated 
from 3 cases of prior assumptions for PI attack rate, e and case mortality rate, 6. 

8, PI attack rate :6, PI case mortality rate 

Median 10.95 probability Median t~5 probability 
iinterval 'nterval 

I 

!priors Beta(1,I) 0.5 1(0.025,0.975) 0.5 1(0.025,0.975) 

,Beta(70.091, 167.909) 0.2939 (0.2384, 0.3539) 

lBeta(1.0075,11.9925) 0.0567 (0.0022,0.2657) 

~osteriors Case 1 priors 0.2916 ,,0.2324,0.3519) 0.0212 !,0.0170, 0.0272) 

8~Beta(70.091,167.909) 

~Beta(1,l) I 

Case 2 priors 0.1224 (0.0078, 0.5542) 0.05078 :(0.0110,0.7867) 

8~Beta(1,1) 

~Beta(1,I) I 

Case 3 priors 0.2923 (0.2332, 0.3523) 0.0212 (0.0170, 0.0270) 

e~Beta(70.091,167.909) 

6-Beta(1.0075,11.9925) 
I 

Future Work 

There are several steps that could be taken to improve this work. First is the 
replacement of the very simple disease model with a more appropriate model framework, 
such as an SIR or SEIR (Susceptible, Exposed, Infected, Recovered) model. In this 
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approach we modeled the attack rate, a value that was not used by the customer, but 
needed for the simple disease model used in the analysis. An SEIR model requires the 
input of the reproductive number (often called Ro). This parameter describes the average 
number of people who will be infected by a person who is already infected with the 
disease. The customer actually desired distributions for both case mortality rate and Ro, 
Thus using the SEIR model would have been more appropriate from the beginning, but 
time constraints did not allow this approach initially. 

The customer found the distributions on case mortality rate very valuable, 
particularly the distributions based on uninformed priors. The customers felt that the case 
2 posterior distribution best captured the likelihood ofa deadly H5Nl based pandemic 
and reflected an upper limit on the regime ofplausible distributions. Ultimately the 
customers chose to use a Beta(1.2,58.8) to model the case mortality rate. They assessed 
this distribution to be more conservative than the case 2 result, but more plausible than 
cases 1 and 3. 
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Epidemiological Model Case Mortality Rate 

~Dead 
Infected 

AttackY ~ 

./Susceptible Recovered 

/ \. 
POPulat\ Not Infected 


Immune 


Figure 1. Simple flow chart of typical disease progression in pandemic influenza 
simulation with emphasis on roles ofattack rate and case mortality rate. 

Population _____....... Infered _____~.. Derd 


Infected - Binomial(population, 6) Dead ~ Binomial(Infected, 0) 


Figure 2. Simplified influenza progression model. Infected and Dead are assumed to 
have binomial distributions. 
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Delta Posterior with Beta(1.1) Prior 
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Figure 3. Case 1 posterior distribution ofcase mortality rate, 0, (solid line) plotted with 
case mortality rate prior (dashed line, uniform on (0,1)). ('Delta'= 0) 

Theta Posterior, Uniform Delta and Theta Beta(70.091.167.909), with Theta Prior Beta(70.091.167.909) 

/: 
/,
/ 

: ______________________________ ___ J/
l 

0,10 0,15 0.20 0.25 0,30 0.35 0.40 

Theta 

Figure 4. Case 1 posterior distribution ofattack rate, e, (solid line) plotted with expert­
informed attack rate prior (dashed line). ('Theta'= e, 'Delta'= 0) 
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Delta Posterior. Uniform Delta and Theta, with Uniform Delta Prior 

0.0 0.2 0.4 0.6 0.8 1.0 

Delta 

Figure 5. Case 2 posterior distribution ofcase mortality rate, 0, (solid line) plotted with 
case mortality rate prior (dashed line, uniform on (0,1». ('Delta'= 0) 

Theta Posterior, Uniform Delta and Theta, with Uniform Theta Prior 

0.2 	 0.4 0.6 0.8 

Theta 

0.0 

Figure 6. Case 2 posterior distribution of attack rate, e, (solid line) plotted with expert­
informed attack rate prior (dashed line). ('Theta'= e, 'Delta'= 0) 
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---------

Delta Posterior, client Specified Priors, with Delta Prior Beta(1.0075,11.9925) 

~----------------

0.02 0.03 0.04 0.05 0.06 

Delta 

Figure 7. Case 3 posterior distribution of case mortality rate, 0, (solid line) plotted with 
case mortality rate prior (dashed line, uniform on (0,1)). ('Delta'= 0) 

Theta Posterior,client Specified Priors, with Theta Prior Beta(70.091,167.909) 

a 

a 

0.10 0.15 0.20 0.25 0.30 0.35 040 

Theta 

Figure 8. Case 3 posterior distribution of attack rate, e, (solid line) plotted with expert­
informed attack rate prior (dashed line). ('Theta'= e) 
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