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We conduct classical molecular dynamics simulations to investigate isobaric melting of defective
Cu solids with only one type of defect: intrinsic or extrinsic stacking faults. We characterize bulk
melting and nucleation of melt in terms of order parameters, liquid cluster analysis and the mean-
first-passage-time method. The stacking faults induces negligible reduction in the temperature at
melting, and the amount of superheating in these defective solids is the same as the perfect solids.
Both homogeneous and heterogeneous nucleation of melt are observed; the existence of the stacking
faults only slightly increases the nucleation rate and the probability of nucleation at heterogeneous
nucleation sites. Such observations can be attributed to the low energy of the stacking faults and
the extremely high heating rates in molecular dynamics simulations. These results underscore the
necessity of considering the effects of rate and defect when interpreting experimental and simulation

results as regards, e.g., phase boundaries.

I. INTRODUCTION

Defects are ubiquitous in real solids, and affect phase
transitions in various manners.! For example, defects
normally lower the melting temperature. Noticeable
progresses have been made recently on melting of per-
fect solids including superheating and homogeneous
nucleation.? * Nonetheless, melting of defective solids is
much more complicated; the related phenomena are ex-
tremely rich and remain to be revealed, and the physics
behind, to be understood.

Defects include vacancies, voids, dislocations, stack-
ing faults, grain/phase boundaries, and free surfaces. To
better understand melting of defective solids, it is desir-
able to study individual defects first since various defects
intact with each other during heating and melting pro-
cesses. Previous simulation eflorts along this line have
focused on the melting phenomena of solids with voids,
free surfaces (clusters) and grain boundaries.? ® Here, we
perform classical molecular dynamics (MD) simulations
on a representative solid (Cu) to examine a single defect
type in face-centered-cubic (fcc) solids, stacking faults.
This study is also motivated by previous experimental
works that claim the important role of the stacking faults
in melting.%19 Since first-order phase transitions such as
melting are rate dependent, MD simulations with accu-
rate interatomic potentials and high heating rates serve
as unique complements to low heating rate experiments
as well. Our work shows that stacking faults have only
limited effects on bulk melting and nucleation owing o
the extremely high heating rates in conventional MD sim-
ulations and the low energy of the stacking faults. Sec. II
describes the methodology in constructing the intrinsic
and extrinsic stacking faults, and MD simulations and
analyses. The results and discussion are presented in

Sec. 111, followed by summary and conclusion in Sec. IV.

II. METHODOLOGY

In fcc metals such as Cu, the regular sequencing
of the close-packed {111} planes is ABC... An in-
terruption to this sequencing, e.g., ABCABABC or
ABCABACABC..., results in either intrinsic or extrinsic
stacking fault, respectively (Fig. 1). An intrinsic stack-
ing fault (ISF) can be produced via a sliding process.
Sliding of one part of an fce crystal over another across
a {111} plane in the [211] direction yields a (general)
stacking fault.!! For a given slide distance, we relax the
defective crystal with the conjugate gradient method to
minimize its potential energy. A tabulated embedded
atom method (EAM) potential'? is adopted to describe
the atomic interactions in Cu and for energy minimiza-
tion. The extra energy per unit area of the stacking fault,
7, is then calculated as a function of fault translation
vector (d),!! and agrees with an independent calculation
using the same potential'> (Fig. 2). The nonzero local
minima of 7(d), e.g., at d = é[?ll] (1.475 A), represent
the intrinsic stacking faults (metastable) with an energy
s =~ 44 mJ/m>. For the extrinsic stacking fault, an
extra {111} layer is inserted into the regular sequencing;
similar energy minimization is applied to the defective
crystal and the extrinsic stacking fault energy is nearly
identical to ysp.

We characterize the relaxed configurations with the in-
trinsic (d = é[?ll]) and extrinsic stacking faults in terms
of order parameters (see below). While the atomic coor-
dination numbers remain unchanged, the order parame-
ters of the atoms in the four or five {111} layers around
the stacking faults (dotted lines, Fig. 1) are reduced from
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I'1G. 1: Atomic configurations of intrinsic and extrinsic stack-
ing faults in fcec Cu. Dashed lines refer to the stacking faults.
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FIG. 2: Stack fault energy 7 of Cu as a function of the transla-
tion vector d during sliding across {111}. The arrows indicate
the intrinsic stacking faults.

1 to 0.74-0.92. The number of {111} layers affected by
a stacking fault, or its thickness, is thus four and five for
the intrinsic and extrinsic stacking faults, respectively.
The reduced ordering and elevated free energy associated
with the stacking faults may enhance the probability of
melt nucleation around them.

MD simulations are performed on the relaxed defec-
tive crystals with the same EAM potential for energy
minimization. A constant-pressure-temerature ensemble
and three-dimensional periodic boundary conditions are
applied. Temperature (7') is controlled with a Hoover
thermostat,'® and the isotropic pressure, with isotropic
volume scaling.'* The solids undergo incremental heating
into liquid regime at ambient pressure, and the temper-
ature increment is 20 K at high temperatures. The time
step for integrating the equation of motion is 1 fs. At
each temperature, the run duration is 50 ps. For simu-
lations with intrinsic stacking faults, the system size is
mostly 90240 atoms, and a large system with over 10°
atoms is also explored. The system size is 95000 atoms
in the case of extrinsic stacking fault.

To quantify local and global structure disordering, we
calculate the local order parameters of individual atoms
and the global order parameter of the whole system.!®
We choose a set of Ng = 6 direction vectors {q} satisfy-

ing exp(iq - r) = 1, for vectors {r} connecting an atom
and its neighbors in a perfect fce solid. The local order
parameter of a specific atom is defined as

, 11 . )
Y = N—qﬁzgexp@q-r) , (1)

where N, is the coordination number, and vector r refers
to the atom and its nearest neighbors in an (defective)
fee solid or its melt under consideration. The first mini-
mum distance in the radial distribution function (RDF)
is taken as the nearest-neighbor distance. v is essen-
tially a local static structure factor. Averaging v» among
an atom and its N, nearest neighbors yields an averaged
local order parameter of this atom, 1, which is used for
characterizing local disordering. The global order pa-
rameter (V) is the average of ¥ over all the atoms in the
system.

III. RESULTS AND DISCUSSION

A heated solid melts with sharp changes in such physi-
cal properties as enthalpy, density and global ordering as
expected for first order phase transitions. Fig. 3 is an ex-
ample of the evolution of the global order parameter as a
function of temperature. In the case of intrinsic stacking
fault. ¥ decreases gradually from ~0.94 at 300 K to 0.44
at 1600 K, and then drops rapidly to 0.066 upon melting
at 1620 K; ¥ evolves in a nearly identical manner in the
case of ex(rinsic stacking [ault. Melting is also identified
at 1620 K from the evolutions of enthalpy and density
during heating of the defective solids with intrinsic or
extrinsic stacking faults. However, the equilibrium (ther-
modynamic) melting temperature for Cu as predicted by
this EAM potential is about 1325 K.? Appreciable super-
heating (22%) still occurs even in the presence of these
stacking faults.

We examined previously in detail the melting process
of perfect Cu single crystals described by the same EAM
potential, and found that the solids melt at the maximum
superheating temperature of 1620 K. This superheating
temperature is identical to that for the defective solids
with intrinsic or extrinsic stacking faults (the uncertainty
is approximately an temperature increment, 20 K). Con-
trary to conventional wisdom, the defective solids with
the stacking faults melt at a superheated state rather
than near the equilibrium melting temperature; the re-
duction of superheating due to these defects is not de-
tectable within simulation uncertainties and premelting
is certainly absent.

We also compute the global order parameters as a func-
tion of time (¢) during melting of the defective solids at
1620 K. W(!) is similar in the cases of the intrinsic and
extrinsic stacking faults (Fig. 4), and the perfect solid
melted at the same temperature? (not shown): ¥ de-
creases from about 0.4 at solid state to 0.115 at liquid
state within about 10 ps. However, the onset of melting
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FIG. 3: Global order parameter as a function of temperature
for the defective Cu solids and their melts. SF: stacking fault.
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FIG. 4: Temporal evolution of the global order parameter
during melting at 1620 K, for the defective solids with stacking

faults (SF).

is different, since crossing the energy barrier [or melting is
caused by fluctuations and thus stochastic in nature.>16
Although negligible (or small) effects of the stacking
faults are detected on the bulk melting behavior, it would
still be interesting to examine nucleation of melt, e.g.,
homogeneous versus heterogeneous nucleation. To char-
acterize the melt nucleation and growth process at atom-
istic scales, we conduct time-resolved cluster analysis of
the liquid atoms® based on the atomic confignrations ob-
tained at 1620 K, taking the intrinsic stacking faults as
example. (The liquid atoms refer to the atoms with
) < 0.115; see Figs. 3 and 4.) Two atoms belong to the
same cluster or nucleus if they are within the nearest-
neighbor distance (obtained from RDF) of each other.
Liquid cluster distributions at different instants during
melting at 1620 K are illustrated in Fig. 5 for a single
run. (Visualization adopted AtomEye.'”) Nucleation of
liquid nuclei occurs near and off the stacking fault. indi-
cating both heterogeneous and homogeneous nucleation.
A nucleus may disappear and its size Huctuates drasti-
cally until it is stabilized in location and grows rapidly.
In this particular case shown in Fig. 5, the largest, sta-
bilized cluster is located within the stacking fault.

‘e

.r-rr,-.

15.0 ps 250 ps
FIG. 5: Configurations of liquid atoms during melting at 1620
K. Color coding refers to the liquid cluster size. Atoms in
the first, second and third largest clusters are colored yellow,
black and gray, respectively; the rest are colored red. The
dashed line (2.5 ps) denotes the nominal position of the in-
trinsic stacking faults.

The largest cluster is key to melting since its growth
after stabilization in location dominates smaller nuclei,
and the bulk melting can only be observed after this
point. (A stabilized nucleus is actually supercritical in
size, i.e., larger than the critical size.?) We thus follow
its location (center of mass, CM) during the course of
melting, as shown illustratively in Fig. 6 for two runs (A
and B). We only plot the z-component since the z-axis
is normal to the stacking fault. The location evolves in
two stages, pronounced fluctuation (stage I) and stabi-
lization (stage II). In stage I, the largest nucleus appears
either near or off the stacking faults since the maximized
chemical driving force at the extreme superheating al-
lows both heterogeneous and homogeneous nucleation to
be observed in MD time scales. Run A shows pronounced
fluctuations and the cluster becomes stabilized near the
stacking fault, and the opposite occurs for run B.

In order to investigate the probability, p;, that the
largest nucleus becomes stabilized near the stacking fault,
we conduct 50 independent runs on a system of 90240
atoms (47 {111} layers) with intrinsic stacking faults
at 1620 K. Each run is started with a different random
number seed for velocity assignment but with the same
initial configuration, and pressure and temperature con-
trols. Using the same liquid cluster analysis as shown
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FIG. 6: Temporal evolutions of the center of mass of the
largest liquid cluster for melting of defective solids with in-
trinsic stacking faults at 1620 K. Two separate runs are shown
for homogeneous and heterogeneous nucleation. The dashed
line denotes the nominal position of the stacking faults. The
arrows define stages I and II (see text).
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FIG. 7: Center of mass of the largest stabilized liquid cluster
for 50 independent runs. Also see Fig. 6.

above, we obtain the location of the largetst cluster in
each run (Fig. 7). The thickness of stacking fault is 4
(1.04 nm), and its volume fraction in the whole system is
about 0.09. A run is counted for p; if the largest cluster
in stabilized within this thickness. The apparent value
of p; is thus about 18/50=0.36. After correction for the
volume fraction, p; ~ 0.86.

The nucleation rate of the critical nuclei can be
characterized with the mean-first-passage-time (MI'PT')
method!%!® as detailed in Refs.®!0. The MFPT (1) is
defined as the instant when the size of the largest nu-
cleus reaches or exceeds a given size nyax for the first
time, and its value is obtained by averaging 50 statisti-
cal runs (Fig. 8). The nucleation rate .J and the critical
nucleation size n* can be deduced via fitting to 7(nyax)
with

TJ ;
T(Nmax) = ?{1 + erf [(nme\x - n*)c] }1 (2)
where 77, n* and c¢ are fitting parameters. Then, .J =
1/(7,V) where V denotes the solid volume under consid-
cration. The 714, curve is sigmoidal but does not reach
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I'IG. 8: The mean-first-passage-time (7) versus the largest lig-
uid cluster size (nmax) in the case of intrinsic stacking faults,
compared to melting of a perfect Cu solid. Fitting refers to
Eq. (2).

a well delined plateau. This indicates that the growth
of a critical nucleus occurs at similar time scales as its
nucleation,'® i.e., nucleation is coupled with growth due
to the low energy barrier at the extreme of superheating.
In such cases, Eq. (2) is still valid.'® The fitting yields
77, = 9.1 ps and n* = 11.7. In the case of the stacking
faults, 7y and n* are smaller than 13.9 ps and 21.6, re-
spectively, obtained in melting of a perfect solid? (Fig. 8);
however, J =~ 9.2 x 10** s~ 'm 3, slightly higher than (or
similar to) that in the latter case (9 x 103* s71m=3).2

The run with the larger system (>10% atoms) shows
similar behavior in bulking melting and nucleation, ex-
cept that a stabilized nucleus forms at 1600 K rather
than 1620 K. The largest nucleus is stabilized outside
the stacking fault thickness. Statistical runs are not per-
formed because of current computational limitations but
we expect that the runs on the smaller system (~10°
atoms) are sufficiently representative.

The stacking faults by themselves appear to have small
or negligible effect in reducing the melting temperature,
and the related bulk melting is similar to that in the per-
fect solid. This is consistent with the observation that
the shapes of the growing, stabilized (supercritical) lig-
uid nuclei are similar in homogeneous and heterogeneous
nucleation sites, i.e., the nuclei centered within the stack-
ing fault do not take its shape (Fig. 5). Superheating is
largely dictated by the heating rate (time scale) and the
effective energy barrier to melting.!**'9 The latter can
be lowered by the existence of defects; thus defects act to
offset the effect of heating rate on superheating. At the
extreme heating rate as in conventional MD simulations,
the heating rate effect outruns the reduction in the en-
crgy barrier by the low energy stacking faults. As a first
order comparison, yisr (46 mJ/m?) is only about 25%
of the solid-liquid interfacial energy (177 mJ/m?).2 The
volume fraction of the stacking faults (~0.1) is already
much higher than those in normal solids, but we expect
that increasing the volume fraction of the stacking faults
may induce a noticeable reduction in the temperature at
melting.
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The low energy stacking faults enhances the (normal-
ized) probability of the nuclei stabilized within the stack-
ing faults from 0.5 to 0.85 in our simulations. Such an
increase is actually very limited since the nucleation rate
is an exponential function of the energy barrier,! thus
consistent with stacking fault’s small effect on the bulk
melting behavior. Another consistent observation is that,
the nucleation rate of the critical nuclei in the case of the
stacking faults is only slightly higher than that in melt-
ing of a perfect Cu solid. The low energy of the stack-
ing faults and the extremely high heating rates are the
causes.

Stacking faults were invoked as the main cause of the
appreciable lowering in the slope of the high pressure
melting curve (d7/dP; P denotes pressure) in diamond
anvil cell experiment on Xe.!' However, the effects of
stacking faults are small in our simulations. One expla-
nation is the possible existence of nonhydrostaitcity dur-
ing compression-heating which may have increased the
density of stacking faults by several orders of magnitude,
thus reducing the apparent (not necessarily thermody-
namic) melting temperature. Another is the slow heat-
ing rate in such experiments compared to MD simula-
tions (~1 K/s versus 10'" K/s); heterogeneous nucle-
ation plays a more important, possibly dominant, role
at low heating rates and its effect decreases with increas-
ing heating rate and chemical driving force.!® Thus, when
comparing simulation and experimental results as regards
first-order phase transitions and thermodynamic phase
boundaries, it is important to consider the rate effect
and low energy defects such as stacking faults.

o

IV. CONCLUSION

We have performed MD simulations to examine iso-
baric melting of defective Cu solids with intrinsic or ex-
trinsic stacking faults, including bulk melting and nucle-
ation. The defective solids show similar bulk melting to
the perfect solids, i.e., the stacking faults have small or
negligible effects on the bulk melting at such high heating
rates. Both homogeneous and heterogeneous nucleation
occur; the stacking faults only slightly increase the nucle-
ation rate and the probability of the largest liquid nucleus
being stabilized at heterogeneous nucleation sites. These
results can be explained by the extremely high heating
rates in the conventional MD simulations and the lower
energies of the stacking faults. The effects of heating
rate and defects should be considered for a meaningful
comparison as regards phase boundaries among various
experiments and simulations.
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