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Abstract

Laser-induced Breakdown Spectroscopy (LIBS) is an emerging technology that has the
potential to provide rapid, accurate and precise elemental analysis of soil constituents, such as
carbon, in situ across landscapes. In this study, we evaluated the accuracy of simulated in situ
LIBS proximal sensing for measuring soil profile carbon. We interrogated 78 intact soil cores
(3.8 cm x 50 c¢cm) from three north central Montana, USA wheat fields with four soil samples
from each core analyzed for soil total carbon (TC), inorganic carbon (IC), and soil organic
carbon (SOC). Partial least squares (PLSR) calibration models were built using 58 cores (227
samples) and independently validated with the remaining 20 cores (79 samples). We obtained
the best LIBS predictions for total carbon (+* = 0.68, SEP =58 gkg’,RPD=16g kg'l)
followed by inorganic carbon (IC) (#* = 0.60, SEP = 5.8 g kg, RPD = 1.5 g kg™") and SOC (**
=0.19, RPD=1.0 g kg', SEP =3.4 g kg'). Soil organic carbon %, RPD, as expected, were lower
than those for total and inorganic C; however SEP was also lower. These findings were due, in
part, to 1) the narrow LIBS spectral range that did not capture elements related to SOC (i.e. O, H,
and N), and 2) low SOC variability (c = 3.47 g kg™"), with laboratory reference measurement
error (SEL = 1.37 gkg™) estimated at ~ 40% of 6 soc. Partial least squares regression
coefficients suggested stoichiometric relationships between C (247.8 nm) and other elements
related to total and inorganic carbon [Mg (279.55-280.4 nm, 285.26 nm) and Si (251.6 nm, 288.1
nm)]. These results show great promise for deploying LIBS for in situ soil carbon determination.
To our knowledge, this is the first rigorous independent validation of LIBS predictions reported

for a significant number of intact soil cores.

Keywords: proximal soil sensing, laser-induced breakdown spectroscopy, soil matrix effects,

partial least squares regression, soil carbon
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1. Introduction

There is growing need for rapid, accurate, and inexpensive methods to measure and
verify soil organic carbon (SOC) sequestration for national greenhouse gas accounting and the
development of a soil carbon trading market (Council, 1999; Gehl and Rice, 2007). In particular,
techniques for the rapid measurement of SOC in situ are required (Christy, 2008; Gehl and Rice,
2007). Laser-induced breakdown spectroscopy (LIBS) is an emerging spectroscopic technique
for rapid quantification of soil carbon and other soil constituents (Cremers et al., 2001; Ebinger
et al., 2003; Martin et al., 2007; Martin et al., 2003; Martin et al., 2004). Moreover, the LIBS
instrument is capable of being mounted in a soil penetrometer (Mosier-Boss et al., 2002) which
could be deployed for rapid soil profile characterization and mapping at field and landscape
scales. |

Laser-induced breakdown spectroscopy (LIBS) is based on atomic emission spectroscopy
and involves directing a focused Nd: YAG laser onto the surface of a target material (Radziemski
and Cremers, 1989). The focused laser ablates a small amount of surface material producing
expanding plasma containing electronically excited ions, atoms, and small molecules. As these
excited species relax to lower electronic states they emit light at wavelengths indicative of the
elemental composition of the ablated sample. Some of the emission is captured by a fiber optic
cable and directed into a dispersive spectrometer and charge coupled detector (CCD) (Clegg et
al., in press; Cremers et al., 2001; Ebinger et al., 2003; Martin et al., 2003; Radziemski and
Cremers, 1989; Thompson et al., 2006). The resulting data are spectrally rich with distinct
emission lines for most atoms and ions present in the ablated material.

Univariate calibration of LIBS spectra are generally complicated by the chemical matrix
effects. Chemical matrix effects have been defined as chemical properties of the interrogated

sample that impact the relationship between emission line intensity or area and the element in the
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sample responsible for producing that line (Cremers and Radziemski, 2006; Eppler et al., 1996;
Gornushkin et al., 2002; Hékkénen and Korppi-Tommola, 1998). More specifically, matrix
effects are related to elemental and molecular composition of the sample, plasma composition,
within plasma interactions, and laser-sample coupling efficiency. Previously published studies
have attempted to compensate for these matrix effects and increase predictive accuracy using
several approaches. For example, peak height or peak area of standards with known composition
have been used to calibrate models; normalization of LIBS spectra to total emission intensity;
normalization of peak height or area to another spectral feature; employing a plasma physics
model without the use of calibration curves (i.e. calibration-free LIBS); using multiple
interrogations per sample, and spectral averaging for calibration and and/or validation (Clegg et
al., in press; Cremers and Radziemski, 2006; Ebinger et al., 2003; Martin et al., i007; Martin et
al., 2003; Salle et al., 2006; Thompson et al., 2006; Yaroshchyk et al., 2006).

With proper calibration, LIBS produces a precise and selective method for measuring
metal ions such as Pb, Be, Cr, and Sr in paint and soils (Sirven et al., 2006; Yamamoto et al.,
1996), nitrogen, Pb, and Ba in sand (Eppler et al., 1996; Harris et al., 2004), and Cu, Zn, and As
in wood preservatives (Martin et al., 2005). Though there have been relatively few applications
of LIBS for soil carbon determination, published calibrations show LIBS spectra to be well
correlated with standard dry combustion measurements of soil carbon with reported r* values of
0.56 to 0.99 (Cremers et al., 2001; Ebinger et al., 2003; Martin et al., 2007; Martin et al., 2003).
This study is the first known attempt to differentiate inorganic soil C from SOC for soil samples
without pre-treatments

There has been little independent validation of published LIBS calibrations on a large
number of soil samples. Cremers et al. (2001) used a subset of 12 Colorado agricultural soil

samples from conventionally tilled farms to calibrate a LIBS model (r* = 0.96) and verified the
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model with a different subset (N=8) of the same Colorado soils as well as soils from Los
Alamos, NM (N=10) that formed in different parent materials. Ebinger et al.(2003) used 6
randomly chosen soil samples from a dataset of 18 samples collected from three Colorado farm
fields to calibrate a model (r2 = (.99) then used the model to predict the remaining 12 samples (r2
=0.95). Itis not yet standard practice in LIBS spectroscopy to ‘hold-out’ independent samples
for validation (Martin et al., 2007; Martin et al., 2003; Martin et al., 2004). While published
research shows the potential of LIBS for SOC determination, further work is required with larger
sample sets and more rigorous model validation.

The soil samples employed in these published studies were also pre-treated prior to LIBS
interrogation. Pre-treatments included: air-drying, sieving and packing in quartz tubes (Cremers
et al., 2001); pelletizing under pressure (Martin et al., 2007; Martin et al., 2004); and treating
with acid to remove carbonates, pelletizing in a tube, and air—drying (Martin et al., 2003).
Though LIBS has been proposed as an in situ SOC measurement tool (Gehl and Rice, 2007), it
remains to be demonstrated that in sifu results will match those obtained with prepared samples.

In this study we evaluated the accuracy of simulated in situ LIBS proximal sensing for
soil profile carbon measurement. We employed various methods and tools for LIBS evaluation
including 1) model calibration with large numbers of samples, 2) partial least squares regression
(PLSR) modeling of spectrally averaged LIBS interrogation points, 3) independent validation of
soil total, inorganic and organic carbon PLSR models, and 4) examination of PLSR regression
coefficients.

2. Material and Methods
2.1 Study Area
We chose the “Golden Triangle” region of north central Montana, USA as our research

study area. This region is characterized by soils formed in glacial till on gently rolling



108  topography. Soils were not highly weathered and were typically calcareous within 0.5 m of the
109  surface. Aridic intergrades of frigid, ustic, Mollisols, Entisols, and Inceptisols predominated.
110 Cropping systems in the study areca were generally reduced tillage small grain-fallow rotations
111 with a significant acreage managed by direct-seeding or no-till. All three sampling sites had a
112 general cropping history of cultivation beginning in the 1920°s progressing to wheat-fallow
113 rotations with multiple tillage operations per year and finally conversion to a direct-seeded

114 wheat-fallow rotation between 2004 and 2005.

115 2.2 Soil Sampling

116 The selection of soil coring locations was based upon surface soil Visible and Near-
117  Infrared (VisNIR) reflectance acquired for a parallel study focused on that technology. In 2006,
118 78 intact cores were obtained from three 16.2 ha sub-fields in north central Montana with

119  locations show in Figure 1. Intact, 4.45 cm diameter by 50 cm deep soil cores were extracted
120  using a truck-mounted hydraulic soil sampling tube fitted with removable plastic sleeves

121  (Giddings Machine Co., Windsor, CO). The field-moist intact cores were transported back to the
122 laboratory and stored under refrigeration prior to interrogation.

123 2.3 Core Interrogation and PLSR Analysis

124 We interrogated intact soil cores to simulate in situ soil characterization following the
125  general protocol of Waiser et al. (2007). Each field moist core was interrogated at 8 depths

126  through ~ 3 x 3 cm windows cut in the plastic core sleeve (Fig. 2). A prototype LANL LIBS
127  Core Scanning (LIBS-CS) instrument was used to probe the samples in an argon purged

128  environment at 2.5, 7.5, 12.5,17.5, 22.5, 27.5, 35, and 45 cm (+/- 1.5 cm) along each intact soil
129  core with 9 interrogation spots per depth. The LIBS-CS instrument employed a Big Sky Laser
130  operating at 10 Hz at approximately 80mJ/pulse. The LIBS spectra were collected with an

131  optical fiber and directed into an Ocean Optics HR2000 spectrometer (200-300 nm, 0.1 nm
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spectral resolution). These spectrometers are readout noise limited and signal-to-noise ratios
improve if emissions from multiple laser shots are used (Clegg et al., in press). For this
experiment, we set the spectrometers to a 1 second integration time with 5 averages so that each
spectrum represented 50 laser shots. An argon purge was used to reduce the plasma
interferences from oxygen and water vapor. A similar argon purge would be operationally
feasible for an in situ application, a LIBS instrument mounted in a soil penetrometer for
example, given the small gas volume needed to purge a 200 pm interrogation point along a soil
profile. The LIBS data were normalized prior to spectral model building by dividing each
wavelength value by the sum of all wavelength values for each spectrum as detailed by
Thompson et al. (2006) and Clegg et al. (in press) and then averaged by depth. Normalization
reduces the shot-to-shot variability in LIBS data that has been attributed to soil and chemical
matrix effects (Mosier-Boss et al., 2002).

Small subsamples of soil (~ 4 g) were taken from all interrogation depths for standard
carbon analysis. Using VisNIR spectra for each core, acquired concurrently with LIBS
interrogations, samples from the 8 interrogation depths were clustered into 4 spectrally similar
groups using Partitioning Around Mediods (Kaufman and Rousseeuw, 1990). One interrogation
depth was randomly chosen from each group (78 cores x 4 samples per core = 312 possible) for
standard soil carbon analysis using procedures described in Bricklemyer et al. (2005). Total
carbon was measured by dry combustion using a LECO TruSpec (LECO Corp., St. Joseph, MI,
USA). Inorganic carbon was measured by modified pressure calcimeter method as developed by
Sherrod et al. (2002). Soil organic carbon (SOC) was calculated by difference: SOC = TC-IC

where TC = total carbon and IC = soil inorganic carbon. Standard carbon measurements were
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used for LIBS calibration and validation. The final dataset included 306 samples from 78 cores
due to incomplete LIBS spectra for samples (Table 1).

We randomly selected 58 cores (227 soil samples) to construct LIBS partial least squares
regression (PLSR) calibrations for TC, IC and SOC using the R statistical software package
“pls” {R, 2008 #19; Wehrens, 2007 #121}. While most previous studies have used carbon peak
intensities at either 247.8 nm or 193 nm and univariate statistics to calibrate, recently published
results suggest that multivariate statistical approaches such as partial least squares (PLS)
regression can yield markedly better calibrations (Clegg et al., in press; Martin et al., 2007). We
independently validated these calibrations with the remaining 20 cores (79 samples). With cores
from only three fields, we were not able to construct a regional calibration with whole-field
cross-validation, so results of this study indicate what is possible with local within-field
calibration (Brown et al., 2005).

To quantify the effects of fine scale (e.g. mm) soil variability and estimate the minimum
number of focused LIBS interrogations required to characterize a 1-2 cm diameter heterogeneous
soil material, we randomly selected and averaged 1, 2, 3, 5 and 7 interrogations from the 9
acquired at each depth. The previously described processing, modeling and validation
procedures were then repeated for each of these “reduced” LIBS interrogation scenarios.

The quality of PLSR model fit was evaluated using regression of PLSR predicted vs.
reference measurement, squared bias (SB), non-unity of the regression line (NU), and lack of
correlation (L.C) where mean squared deviation (MSD) = SB+NU+LC (Brown et al., 2005;
Gauch et al., 2003). Standard chemometric modeling statistics were calculated for each model,
including validation standard error of prediction (SEP) and residual product differential (RPD)

(Islam et al., 2003). Standard error of laboratory measurement (SEL) was estimated using
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replicate TC and IC laboratory measurements as described by Workman (2001) and SOC SEL

was calculated using propagation of error estimation following Andraos (1996).

3. Results

Summary statistics for TC, IC, and SOC are presented in Table 1. For the samples in this
study, TC values did not exceed 57 g kg™, IC values were less than 46 g kg, and SOC values
never exceeded 20 g kg'. Concentrations of IC were most variable in the dataset (¢ = 10.18, CV
= 107%) follow by TC and SOC (¢ = 9.53 and 3.47; CV = 59.6% and 44.4%, respectively). The
SEL for reference measurements were estimated at 0.90, 1.03, and 1.37 g kg™ for TC, IC, and
SOC, respectively. Reference SOC was least variable where osoc was just 2.5 times SELgoc.
Variability in IC was a function of pedogenesis where IC was not present or present in low
concentrations in A horizons (top 20 cm) and increased sharply in B horizons, the majority of
which occurred below 20 cm. The sharp boundary between the A and B horizons are evident in
Figure 2. Variability in SOC was substantially less than IC with highest concentrations of SOC
occurring in A horizons and diminished with depth.

Full-cross validated calibration model statistics are presented in Table 2. Calibration
models for TC and IC achieved quantitative accuracy (RPD=2.1 and 2.3, #* = 0.76 and 0.81,
respectiv‘ely); whereas, semi-quantitative results were achieved for SOC (RPD = 1.5, r* = 0.55).
Calibration SEP values were 5.1 g TC kg™ soil, 4.3 g IC kg™ soil, and 2.5 g SOC kg™ soil.

Applying PLSR to LIBS spectra resulted in three distinct calibration models. Regression
coefficients from TC, IC, and SOC PLSR calibration models are presented in Figure 3. We
found that although TC and IC were strongly related (Fig. 4), the importance of specific
elemental emissions in PLSR models were markedly different (Fig. 3). For example, the major

C emission at 247.8 nm was an important predictor for TC and SOC (relatively), but was not
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important for IC. Additionally, several Mg emissions were useful in predicting IC and TC, but,
as expected, not for predicting SOC, and Si was important for IC but not TC and SOC. Results
suggest that PLSR found meaningful stoichiometric relationships between elements related to
various naturally occurring forms of carbon in the soil matrix.

For the hold-out validation dataset, the LIBS-CS instrument best predicted total carbon
(**=0.68, RPD = 1.6; Table 3, Fig. 5). Inorganic carbon predictions were nearly as accurate (+*
= (.60, RPD = 1.5; Table 3, Fig. 5). Predicting SOC appeared unacceptable, as expected (+* =
0.19, RPD = 1.0; Table 3, Fig. 5); however, #* and RPD will both increase with greater
variability in the target variable, given a fixed prediction error. Validation SEP values were 5.8
g TC kg™ soil, 5.8 g IC kg™ soil, and 3.4 g SOC kg™ soil which were greater than the respective
SEL, and lower than standard deviation (¢) of measured TC and IC. Validation SEP and o were
equivalent for SOC and approached SELsoc (1.37 g kg™h. Partitioning MSD into three
components, we found the LIBS TC model had low bias (SB=3.3%) and non-unity (NU=5.6%)
(Table 3). The LIBS IC model also had low bias (SB=0.1%); however, non-unity was much
greater (NU=19.2%). Bias remained low for the LIBS SOC model (SB=3.7%), but non-unity
greatly increased (NU=46.5%; Table 3, Fig. 5). Lack of correlation accounted for the majority
of MSD for the LIBS TC and IC models (91.1% and 80.7%, respectively) and nearly half of
MSD for the SOC model (49.8%) (Table 3). All RPD values were less than 2.0, which is
commonly considered the division between quantitative (RPD>2) and semi-quantitative (RPD <
2) calibrations (Islam et al., 2003).

Figure 6 shows the effect of spectrally averaging multiple LIBS interrogation points per
sample on TC, IC, and SOC predictions. Spectrally averaging up to 9 interrogation points
decreased TC SEP by 18.5% and IC SEP by 8.0%; however SEP was unchanged for SOC.

Values for SEP ranged from 5.8 — 7.1 g C kg™ soil for TC, 5.5~ 6.4 g C kg™ soil for IC and 3.4 —

10
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3.7 g C kg™ soil for SOC. Similarly, TC and IC RPD values increased by 23.1% and 7%,
respectively, whereas RPD was unchanged for SOC. Values for RPD ranged from 1.3 — 1.6 for
total C, 1.4 —1.6 for inorganic C, and 0.9 — 1.0 for soil organic C. No appreciable accuracy
improvement was observed for spectrally averaging more than 5 LIBS interrogation points per
sample (Fig.7).
4. Discussion

The LIBS validation accuracies reported here for TC, IC, and SOC failed to match results
from previously referenced studies. We attribute part of the reduction in accuracy to evaluating
PLSR models with validation cores (Brown et al., 2005). Calibration model accuracies achieved
quantitative (RPD > 2) levels for TC and IC, and semi-quantitative (RPD > 1.5) results for SOC;
however testing these models with independent validation samples noticeably degraded
predictive accuracy. Semi-quantitative status was barely achieved for TC and IC; whereas SOC
was not predicted with useful accuracy. These findings underscore the importance of
independent validation for accurate reporting of predictive accuracy for LIBS and other proximal
sensing methods.

Fine-scale (i.e. sub-cm) variability in carbon content was lower than anticipated. Qur
results from spectrally averaging 1 — 9 interrogation spots suggest that no more than 5
interrogations per sample are required for representative in situ measurements of small
interrogation volumes (~3 ¢cm?). This finding also implies that interrogation areas were relatively
homogenous with respect carbon content. Each LIBS interrogation was a spectral avérage of 50
laser shots and probed volume of ~ 8x1 07 em®. Averaging 5 interrogation points equated to
~0.02% of the total interrogation volume, a very small proportion; however it is common for a
500+ g field soil sample to be representatively subsampled and then 0.02 — 0.2 g (0.004 - 0.04%

of total sample) analyzed for C by dry combustion. Five LIBS interrogations may have been

11
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representative of the interrogation volume; however, how representative that volume was of the
associated core increment has yet to be determined and will be examined in further analysis of
core sections.

It appeared that our PLSR models identified stoichiometric relationships between carbon
and elements associated with carbon within the soil matrix. Regression coefficients important to
total C included the strong carbon emission line at 247.8 nm, a silicon emission line at 251.6 nm,
and several Mg emission lines (no strong Ca emissions found between 200 -300 nm). Total soil
carbon, as measured by dry combustion, includes carbon associated with organic compounds as
well as inorganic Ca and Mg carbonates (CaCO; and MgCO;). The Mg emissions were also
strong predictors for IC; however, PLSR did not find an important relationship between the
247.8 nm C emission and IC. Instead, a silicon emission at 251.6 nm was strikingly more
important for predicting IC compared to TC. The importance of the Si emission was attributed
to chemical matrix effects associated with the LIBS method for no stoichiometeric relationship
exists between IC and Si.

The relatively narrow spectral range (200-300 nm) of LIBS emissions recorded with the
Ocean Optics HR2000 spectrometer also contributed to less precise MV A calibration and
validation results. Prior to using PLSR, univariate techniques were used to relate sample carbon
content to peak height (or area) of the carbon emission at 247.8 nm, justifying using the 200 —
300 nm spectral range. As discussed above, PLLSR found relationships between C and other
elements associated with soil C. The narrow spectral range did not capture emissions from
several other elements associated with soil inorganic C such as Ca (315.89, 317.93, and 534.95
nm), and organic C such as H (656.27 and 656.29 nm), N (742.3, 744.2, and 746.8nm) and O
(777 .4nm) that occur at wavelengths greater than 300 nm. Consequently, correlations between C

and elements associated with SOC could not be generated with a PLSR model and likely reduced
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the predictive accuracy for SOC. Clegg et al.(in press) observed that the best calibration models
for predicting elemental composition of igneous rocks were generated when the entire LIBS
spectrum (200 — 900 nm) was used in PLSR. We anticipate PLSR predictive accuracies for both
inorganic and organic carbon will improve when including the entire LIBS spectrum in future
soil carbon measurements.

Finally, we attribute the remaining accuracy reduction to challenges surrounding in situ
interrogations of intact cores rather than pressed or prepared samples. Prepared samples have the
primary benefit of providing a smooth soil surface for interrogation compared to undisturbed and
uneven intact soil core surfaces. Uneven surfaces can cause the distance from the laser focal
point to the sample to v\aty among and within interrogation areas. Naturally occurring fractures
and macropores also tend to obstruct the collection bptics from observing the plasma emission.
Normalization was used to partially compensate for these fluctuations.

4. Conclusions

To the best of our knowledge, this study represents the first rigorous validation of LIBS
calibrations using a significant number (78) of intact soil cores without pre-treatment. Using
LIBS with a spectral range of 200-300 nm and employing partial least squares regression (PLSR)
modeling, we achieved semi-quantitative validation accuracies for total carbon (TC) (»*= 0.68,
RPD = 1.6, SEP = 5.8 gkg™', SEL = 0.9 g kg'") and inorganic carbon (IC) (#* = 0.60, RPD=1.5,
SEP=5.8 gkg”, SEL =1.03 gkg™). Soil organic carbon (SOC) predictions appeared
unacceptable (#*=0.19, RPD=1.0, SEP = 3.4 g kg™"); however the low validation * and RPD
values were primarily due to 1) the incomplete LIBS spectral record covering 200-300 nm, and
2) low SOC variability (¢ = 3.47 g kg™") with laboratory reference measurement error (SEL)

estimated at 1.37 g kg'1 or 40% of 0.
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296 Regression coefficients from PLSR models suggested that calibrations utilized

297  stoichiometric relationships between C and elements related to C in the soil matrix. Emissions
298  from carbon (247.8 nm), Mg (279.55-280.4 nm, 285.26 nm), and Si (251.6 nm, 288.1 nm) were
299  important predictors for estimating total and inorganic carbon. The relatively narrow spectral
300  range (200 — 300 nm) of the LIBS spectrum recorded in this study; however, omitted emissions
301  from elements related to soil carbon, including Ca, O, H, and N. Increasing the spectral range to
302 the full LIBS spectrum (200 — 900 nm) could increase predictive accuracies for in situ

303  measurement of both inorganic and organic C.

304 In addition to expanding the spectral range, we identified three key strategies for

305 improved LIBS in situ soil measurements. First, improve the LANL-CS LIBS instrument design
306  to compensate for uneven soil core surfaces. Second, evaluating the ability of LIBS to capture
307  SOC variability will require the acquisition of calibration soil cores with greater SOC variability.
308 Finally, we need to acquire soil cores from a more diverse set of locations to evaluate the

309  potential of developing regional LIBS calibrations. Continued LIBS development and evaluation
310  will assist in realizing the full potential of this emerging spectroscopic technique for in sifu soil
311  characterization.
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412

413
Table 1. Soil total, inorganic, and organic carbon summary statistics for 78
intact soil cores from three wheat fields in north central MT, 2007.
Soil Total C Soil Inorganic C Soil Organic C
gkg™
Median 15.74 7.95 7.82
Min 1.43 0.00 0.85
Max 56.56 45.27 19.32
Mean 17.09 8.88 8.21
o 10.18 9.53 3.47
cv 59.6% 107.4% 44.4%
n 306 306 306
o = standard deviation; CV = coefficient of variation
414
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Table 2. Laser-induced breakdown spectroscopy (LIBS) partial least squares regression (PLSR)
calibration statistics for soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC).

Model j 2 RPD SEP SB' NU' LC
(gkgsoil) (gkgsol) (%) (%) (%)

LIBS TC 79 0.76 2.1 5.1 0.0 24.6 75.4
LIBS IC 79 0.81 2.3 43 0.5 28.2 71.3
LIBS SOC 79 0.55 1.5 2.5 0.0 45.0 55.0

RPD = residual product differential, SEP = standard error of prediction, SB = squared bias,

NU = non-unity, LC = lack of correlation
t percent of mean squared deviation (MSD)
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Table 3. Laser-induced breakdown spectroscopy (LIBS) partial least squares regression (PLSR)
validation statistics for soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC).

Model , 2 RPD SEP SBT NU' LCT
(g/kgsoil) (g/kgsoil) (%) (%) (%)

LIBS TC 79 0.68 1.6 58 3.3 5.6 91.1
LIBS IC 79 0.60 1.5 5.8 0.1 19.2 80.7
LIBS SOC 79 0.19 1.0 3.4 3.7 46.5 49.8

RPD = residual product differential, SEP = standard error of prediction, SB = squared bias,

NU = non-unity, LC = lack of correlation
+ percent of mean squared deviation (MSD)
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Figure Captions

Figure 1. Geographical location of the study area with three selected farm fields (a), and
randomly selected calibration (triangles) and validation (circles) core locations at the LYD (b),

HOR {(c), and MAT (c) sites.

Figure 2. LIBS sampling depths on a representative intact soil core and LIBS interrogation point

configuration within a depth sample (inset).

Figure 3. Partial least squares regression (PLSR) coeftficients for soil total, inorganic, and
organic carbon. The magnitude of the coefficients indicates the relative importance of each
emission line. Dashed vertical lines indicate important elemental emission lines for predicting

the various forms of soil carbon.

Figure 4. Regression of soil total carbon for predicting soil inorganic carbon. Soil IC represents

a large portion of total C in these semi-arid glacial till soils.

Figure 5. Independent validation of predicted soil total carbon (TC), inorganic carbon (IC), and

organic carbon (SOC) using LIBS and partial least squares regression models. Nine

interrogation spectra were averaged for PLSR analysis.

Figure 6. The effect of spectrally averaging multiple LIBS interrogation points on the predictive

accuracy of soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC).
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Figure 1. Geographical location of the study area with three selected farm fields (A), and

randomly selected calibration (triangles) and validation (circles) core locations at the LYD (B),

HOR (C), and MAT (D) sites.
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511  Figure 2. LIBS sampling depths on a representative intact soil core and LIBS interrogation point
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557  Figure 3. Partial least squares regression (PLSR) coefticients for soil total, inorganic, and
558  organic carbon. The magnitude of the coefficients indicates the relative importance of each
559  emission line. Dashed vertical lines indicate important elemental emission lines for predicting
560  the various forms of soil carbon.
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565  Figure 4. Regression of soil total carbon for predicting soil inorganic carbon. Soil IC represents
566  alarge portion of total C in these semi-arid glacial till soils.
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Figure 5. Independent validation of predicted soil total carbon (TC), inorganic carbon (IC), and

organic carbon (SOC) using LIBS and partial least squares regression models. Nine

interrogation spectra were averaged for PLSR analysis.
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