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12 Abstract 

13 Laser-induced Breakdown Spectroscopy (LIBS) is an emerging technology that has the 

14 potential to provide rapid, accurate and precise elemental analysis of soil constituents, such as 

15 carbon, in situ across landscapes. In this study, we evaluated the accuracy of simulated in situ 

16 LIBS proximal sensing for measuring soil profile carbon. We interrogated 78 intact soil cores 

17 (3.8 cm x 50 cm) from three north central Montana, USA wheat fields with four soil samples 

18 from each core analyzed for soil total carbon (TC), inorganic carbon (lC), and soil organic 

19 carbon (SOC). Partial least squares (PLSR) calibration models were built using 58 cores (227 

20 samples) and independently validated with the remaining 20 cores (79 samples). We obtained 

21 the best LIBS predictions for total carbon (r2 = 0.68, SEP = 5.8 g kg-!, RPD = 1.6 g kg-I) 

22 followed by inorganic carbon (IC) (r2 0.60, SEP 5.8 g kg-!, RPD 1.5 g kg-I) and SOC (r2 

23 =0.19, RPD=1.0 g kg-I, SEP = 3.4 g kg"l). Soil organic carbon r2, RPD, as expected, were lower 

24 than those for total and inorganic C; however SEP was also lower. These findings were due, in 

25 part, to 1) the narrow LIBS spectral range that did not capture elements related to SOC (i.e. 0, H, 

26 and N), and 2) low SOC variability (cr = 3.47 g kg-\ with laboratory reference measurement 

27 error (SEL 1.37 g kg-I) estimated at - 40% of cr soc. Partial least squares regression 

28 coefficients suggested stoichiometric relationships between C (247.8 nrn) and other elements 

29 related to total and inorganic carbon [Mg (279.55-280.4 nrn, 285.26 nrn) and Si (251.6 nrn, 288.1 

30 nrn)]. These results show great promise for deploying LIBS for in situ soil carbon determination. 

31 To our knowledge, this is the first rigorous independent validation of LIBS predictions reported 

32 for a significant number of intact soil cores. 

33 

34 Keywords: proximal soil sensing, laser-induced breakdown spectroscopy, soil matrix effects, 

35 partial least squares regression, soil carbon 
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36 1. Introduction 

37 There is growing need for rapid, accurate, and inexpensive methods to measure and 

38 verify soil organic carbon (SOC) sequestration for national greenhouse gas accounting and the 

39 development of a soil carbon trading market (Council, 1999; Gehl and Rice, 2007). In particular, 

40 techniques for the rapid measurement of SOC in situ are required (Christy, 2008; Gehl and Rice, 

41 2007). Laser-induced breakdown spectroscopy (UBS) is an emerging spectroscopic technique 

42 for rapid quantification of soil carbon and other soil constituents (Cremers et aI., 2001; Ebinger 

43 et aI., 2003; Martin et aI., 2007; Martin et aI., 2003; Martin et a1., 2004). Moreover, the LIBS 

44 instrument is capable of being mounted in a soil penetrometer (Mosier-Boss et a1., 2002) which 

45 could be deployed for rapid soil profile characterization and mapping at field and landscape 

46 scales. 

47 Laser-induced breakdown spectroscopy (UBS) is based on atomic emission spectroscopy 

48 and involves directing a focused Nd: Y AG laser onto the surface of a target material (Radziemski 

49 and Cremers, 1989). The focused laser ablates a small amount of surface material producing 

50 expanding plasma containing electronically excited ions, atoms, and small molecules. As these 

51 excited species relax to lower electronic states they emit light at wavelengths indicative of the 

52 elemental composition of the ablated sample. Some of the emission is captured by a fiber optic 

53 cable and directed into a dispersive spectrometer and charge coupled detector (CCD) (Clegg et 

54 aI., in press; Cremers et a1., 2001; Ebinger et aI., 2003; Martin et aI., 2003; Radziemski and 

55 Cremers, 1989; Thompson et aI., 2006). The resulting data are spectrally rich with distinct 

56 emission lines for most atoms and ions present in the ablated material. 

57 Univariate calibration of UBS spectra are generally complicated by the chemical matrix 

58 effects. Chemical matrix effects have been defined as chemical properties of the interrogated 

59 sample that impact the relationship between emission line intensity or area and the element in the 
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60 sample responsible for producing that line (Cremers and Radziemski, 2006; Eppler et al., 1996; 

61 Gomushkin et al., 2002; Hakkanen and Korppi-Tommola, 1998). More specifically, matrix 

62 effects are related to elemental and molecular composition ofthe sample, plasma composition, 

63 within plasma interactions, and laser-sample coupling efficiency. Previously published studies 

64 have attempted to compensate for these matrix effects and increase predictive accuracy using 

65 several approaches. For example, peak height or peak area of standards with known composition 

66 have been used to calibrate models; normalization of LIBS spectra to total emission intensity; 

67 normalization of peak height or area to another spectral feature; employing a plasma physics 

68 model without the use of calibration curves (i.e. calibration-free LIBS); using multiple 

69 interrogations per sample, and spectral averaging for calibration and and/or validation (Clegg et 

70 al., in press; Cremers and Radziemski, 2006; Ebinger et al., 2003; Martin et al., 2007; Martin et 

71 al., 2003; Salle et al., 2006; Thompson et al., 2006; Yaroshchyk et al., 2006). 

72 With proper calibration, LIBS produces a precise and selective method for measuring 

73 metal ions such as Pb, Be, Cr, and Sr in paint and soils (Sirven et al., 2006; Yamamoto et al., 

74 1996), nitrogen, Pb, and Ba in sand (Eppler et al., 1996; Harris et al., 2004), and Cu, Zn, and As 

75 in wood preservatives (Martin et al., 2005). Though there have been relatively few applications 

76 of LIBS for soil carbon determination, published calibrations show LIBS spectra to be well 

77 correlated with standard dry combustion measurements of soil carbon with reported r2 values of 

78 0.56 to 0.99 (Cremers et al., 2001; Ebinger et al., 2003; Martin et al., 2007; Martin et al., 2003). 

79 This study is the first known attempt to differentiate inorganic soil C from SOC for soil samples 

80 without pre-treatments 

81 There has been little independent validation of published LIBS calibrations on a large 

82 number of soil samples. Cremers et al. (2001) used a subset of 12 Colorado agricultural soil 

83 samples from conventionally tilled farms to calibrate a LIBS model (? = 0.96) and verified the 
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84 model with a different subset (N=8) of the same Colorado soils as well as soils from Los 

85 Alamos, NM (N=10) that formed in different parent materials. Ebinger et aI.(2003) used 6 

86 randomly chosen soil samples from a dataset of 18 samples collected from three Colorado farm 

87 fields to calibrate a model (r2= 0.99) then used the model to predict the remaining 12 samples (r2 

88 = 0.95). It is not yet standard practice in LIBS spectroscopy to 'hold-out' independent samples 

89 for validation (Martin et aI., 2007; Martin et aI., 2003; Martin et aI., 2004). While published 

90 research shows the potential ofLIBS for SOC determination, further work is required with larger 

91 sample sets and more rigorous model validation. 

92 The soil samples employed in these published studies were also pre-treated prior to LIBS 

93 interrogation. Pre-treatments included: air-drying, sieving and packing in quartz tubes (Cremers 

94 et aI., 2001); pelletizing under pressure (Martin et aI., 2007; Martin et aI., 2004); and treating 

95 with acid to remove carbonates, pelletizing in a tube, and air-drying (Martin et aI., 2003). 

96 Though LIBS has been proposed as an in situ SOC measurement tool (Gehl and Rice, 2007), it 

97 remains to be demonstrated that in situ results will match those obtained with prepared samples. 

98 In this study we evaluated the accuracy of simulated in situ LIBS proximal sensing for 

99 soil profile carbon measurement. We employed various methods and tools for LIBS evaluation 

100 including 1) model calibration with large numbers of samples, 2) partial least squares regression 

101 (PLSR) modeling of spectrally averaged LIBS interrogation points, 3) independent validation of 

102 soil total, inorganic and organic carbon PLSR models, and 4) examination ofPLSR regression 

103 coefficients. 

104 2. Material and Methods 

105 2.1 Study Area 

106 We chose the "Golden Triangle" region of north central Montana, USA as our research 

107 study area. This region is characterized by soils formed in glacial till on gently rolling 
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108 topography. Soils were not highly weathered and were typically calcareous within 0.5 m of the 

109 surface. Aridic intergrades of frigid, ustic, Mollisols, Entisols, and Inceptisols predominated. 

110 Cropping systems in the study area were generally reduced tillage small grain-fallow rotations 

111 with a significant acreage managed by direct-seeding or no-till. All three sampling sites had a 

112 general cropping history of cultivation beginning in the 1920's progressing to wheat-fallow 

113 rotations with multiple tillage operations per year and finally conversion to a direct-seeded 

114 wheat-fallow rotation between 2004 and 2005. 

115 2.2 Soil Sampling 

116 The selection of soil coring locations was based upon surface soil Visible and Near­

117 Infrared (VisNIR) reflectance acquired for a parallel study focused on that technology. In 2006, 

118 78 intact cores were obtained from three 16.2 ha sub-fields in north central Montana with 

119 locations show in Figure 1. Intact, 4.45 cm diameter by 50 cm deep soil cores were extracted 

120 using a truck-mounted hydraulic soil sampling tube fitted with removable plastic sleeves 

121 (Giddings Machine Co., Windsor, CO). The field-moist intact cores were transported back to the 

122 laboratory and stored under refrigeration prior to interrogation. 

123 2.3 Core Interrogation and PLSR Analysis 

124 We interrogated intact soil cores to simulate in situ soil characterization following the 

125 general protocol ofWaiser et al. (2007). Each field moist core was interrogated at 8 depths 

126 through ~ 3 x 3 cm windows cut in the plastic core sleeve (Fig. 2). A prototype LANL LIBS 

127 Core Scanning (LIBS-CS) instrument was used to probe the samples in an argon purged 

128 environment at 2.5, 7.5, 12.5, 17.5,22.5,27.5, 35, and 45 cm (+/- 1.5 cm) along each intact soil 

129 core with 9 interrogation spots per depth. The LIBS-CS instrument employed a Big Sky Laser 

130 operating at 10Hz at approximately 80mJ/pulse. The LIBS spectra were collected with an 

131 optical fiber and directed into an Ocean Optics HR2000 spectrometer (200-300 nm, 0.1 nm 
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132 spectral resolution). These spectrometers are readout noise limited and signal-to-noise ratios 

133 improve if emissions from multiple laser shots are used (Clegg et aI., in press). For this 

134 experiment, we set the spectrometers to a 1 second integration time with 5 averages so that each 

135 spectrum represented 50 laser shots. An argon purge was used to reduce the plasma 

136 interferences from oxygen and water vapor. A similar argon purge would be operationally 

137 feasible for an in situ application, a LIBS instrument mounted in a soil penetrometer for 

138 example, given the small gas volume needed to purge a 200 f.lm interrogation point along a soil 

139 profile. The LIBS data were normalized prior to spectral model building by dividing each 

140 wavelength value by the sum of all wavelength values for each spectrum as detailed by 

141 Thompson et al. (2006) and Clegg et al. (in press) and then averaged by depth. Normalization 

142 reduces the shot-to-shot variability in LIBS data that has been attributed to soil and chemical 

143 matrix effects (Mosier-Boss et aI., 2002). 

144 Small subsamples of soil (- 4 g) were taken from all interrogation depths for standard 

145 carbon analysis. Using VisNIR spectra for each core, acquired concurrently with LIBS 

146 interrogations, samples from the 8 interrogation depths were clustered into 4 spectrally similar 

147 groups using Partitioning Around Mediods (Kaufman and Rousseeuw, 1990). One interrogation 

148 depth was randomly chosen from each group (78 cores x 4 samples per core 312 possible) for 

149 standard soil carbon analysis using procedures described in Bricklemyer et al. (2005). Total 

150 carbon was measured by dry combustion using a LECO TruSpec (LECO Corp., St. Joseph, MI, 

151 USA). Inorganic carbon was measured by modified pressure calcimeter method as developed by 

152 Sherrod et al. (2002). Soil organic carbon (SOC) was calculated by difference: SOC = TC-IC 

153 where TC = total carbon and IC soil inorganic carbon. Standard carbon measurements were 
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154 used for LIBS calibration and validation. The final dataset included 306 samples from 78 cores 

155 due to incomplete LIBS spectra for samples (Table 1). 

156 We randomly selected 58 cores (227 soil samples) to construct LIBS partial least squares 

157 regression (PLSR) calibrations for TC, IC and SOC using the R statistical software package 

158 "pIs" {R, 2008 # 19; Wehrens, 2007 #121 }. While most previous studies have used carbon peak 

159 intensities at either 247.8 nm or 193 nm and univariate statistics to calibrate, recently published 

160 results suggest that multivariate statistical approaches such as partial least squares (PLS) 

161 regression can yield markedly better calibrations (Clegg et aI., in press; Martin et al., 2007). We 

162 independently validated these calibrations with the remaining 20 cores (79 samples). With cores 

163 from only three fields, we were not able to construct a regional calibration with whole-field 

164 cross-validation, so results of this study indicate what is possible with local ¥.-;thin-field 

165 calibration (Brown et aI., 2005). 

166 To quantify the effects of fine scale (e.g. mm) soil variability and estimate the minimum 

167 number of focused LIBS interrogations required to characterize a 1-2 cm diameter heterogeneous 

168 soil material, we randomly selected and averaged I, 2, 3, 5 and 7 interrogations from the 9 

169 acquired at each depth. The previously described processing, modeling and validation 

170 procedures were then repeated for each of these "reduced" LIBS interrogation scenarios. 

171 The quality ofPLSR model fit was evaluated using regression ofPLSR predicted vs. 

172 reference measurement, squared bias (SB), non-unity of the regression line (NU), and lack of 

173 correlation (LC) where mean squared deviation (MSD) = SB+NU+LC (Brown et aI., 2005; 

174 Gauch et aI., 2003). Standard chemometric modeling statistics were calculated for each model, 

175 including validation standard error ofprediction (SEP) and residual product differential (RPD) 

176 (Islam et aI., 2003). Standard error of laboratory measurement (SEL) was estimated using 
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177 replicate TC and IC laboratory measurements as described by Workman (2001) and SOC SEL 

178 was calculated using propagation of error estimation following Andraos (1996). 

179 

180 3. Results 

181 Summary statistics for TC, IC, and SOC are presented in Table 1. For the samples in this 

182 study, TC values did not exceed 57 g kg-I, IC values were less than 46 g kg-I, and SOC values 

183 never exceeded 20 g kg'!. Concentrations ofIC were most variable in the dataset (cr = 10.18, CV 

184 107%) follow by TC and SOC (cr = 9.53 and 3.47; CV = 59.6% and 44.4%, respectively). The 

185 SEL for reference measurements were estimated at 0.90, 1.03, and 1.37 g kg'! for TC, IC, and 

186 SOC, respectively. Reference SOC was least variable where crsoc was just 2.5 times SELsoc. 

187 Variability in IC was a function of pedogenesis where IC was not present or present in low 

188 concentrations in A horizons (top 20 cm) and increased sharply in B horizons, the majority of 

189 which occurred below 20 cm. The sharp boundary between the A and B horizons are evident in 

190 Figure 2. Variability in SOC was substantially less than IC with highest concentrations of SOC 

191 occurring in A horizons and diminished with depth. 

192 Full-cross validated calibration model statistics are presented in Table 2. Calibration 

193 models for TC and IC achieved quantitative accuracy (RPD=2.1 and 2.3, r2= 0.76 and 0.81, 

194 respectively); whereas, semi-quantitative results were achieved for SOC (RPD = 1.5, r2 = 0.55). 

195 Calibration SEP values were 5.1 g TC kg'l soil, 4.3 g IC kg'! soil, and 2.5 g SOC kg'l soil. 

196 Applying PLSR to LIBS spectra resulted in three distinct calibration models. Regression 

197 coefficients from rc, IC, and SOC PLSR calibration models are presented in Figure 3. We 

198 found that although TC and IC were strongly related (Fig. 4), the importance of specific 

199 elemental emissions in PLSR models were markedly different (Fig. 3). For example, the major 

200 C emission at 247.8 nm was an important predictor for TC and SOC (relatively), but was not 
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201 important for IC. Additionally, several Mg emissions were useful in predicting IC and TC, but, 

202 as expected, not for predicting SOC, and Si was important for IC but not TC and SOC. Results 

203 suggest that PLSR found meaningful stoichiometric relationships between elements related to 

204 various naturally occurring forms of carbon in the soil matrix. 

205 For the hold-out validation dataset, the LIBS-CS instrument best predicted total carbon 

206 (r2 0.68, RPD 1.6; Table 3, Fig. 5). Inorganic carbon predictions were nearly as accurate (r2 

207 = 0.60, RPD = 1.5; Table 3, Fig. 5). Predicting SOC appeared unacceptable, as expected (r2 
= 

208 0.19, RPD 1.0; Table 3, Fig. 5); however, r2 and RPD will both increase with greater 

209 variability in the target variable, given a fixed prediction error. Validation SEP values were 5.8 

210 g TC kg- l soil, 5.8 g IC kg- l soil, and 3.4 g SOC kg-I soil which were greater than the respective 

211 SEL, and lower than standard deviation (0') of measured TC and IC. Validation SEP and 0' were 

212 equivalent for SOC and approached SELsoc (1.37 g kg,I). Partitioning MSD into three 

213 components, we found the LIBS TC model had low bias (SB=3.3%) and non-unity (NU=5.6%) 

214 (Table 3). The LIBS IC model also had low bias (SB=O.l %); however, non-unity was much 

215 greater (NU=19.2%). Bias remained low for the LIBS SOC model (SB=3.7%), but non-unity 

216 greatly increased (NU=46.5%; Table 3, Fig. 5). Lack of correlation accounted for the majority 

217 ofMSD for the LIBS TC and IC models (91.1 % and 80.7%, respectively) and nearly half of 

218 MSD for the SOC model (49.8%) (Table 3). All RPD values were less than 2.0, which is 

219 commonly considered the division between quantitative (RPD~2) and semi-quantitative (RPD < 

220 2) calibrations (Islam et aI., 2003). 

221 Figure 6 shows the effect of spectrally averaging multiple LIBS interrogation points per 

222 sample on TC, IC, and SOC predictions. Spectrally averaging up to 9 interrogation points 

223 decreased TC SEP by 18.5% and IC SEP by 8.0%; however SEP was unchanged for SOC. 

224 Values for SEP ranged from 5.8 -7.1 g C kg,1 soil for TC, 5.5 6.4 g C kg- l soil for IC and 3.4 
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225 3.7 g C kg-1 soil for SOC. Similarly, TC and IC RPD values increased by 23.1% and 7%, 

226 respectively, whereas RPD was unchanged for SOC. Values for RPD ranged from 1.3 1.6 for 

227 total C, 1.4 -1.6 for inorganic C, and 0.9 - 1.0 for soil organic C. No appreciable accuracy 

228 improvement was observed for spectrally averaging more than 5 LIBS interrogation points per 

229 sample (Fig.7). 

230 4. Discussion 

231 The LIBS validation accuracies reported here for TC, IC, and SOC failed to match results 

232 from previously referenced studies. We attribute part of the reduction in accuracy to evaluating 

233 PLSR models with validation cores (Brown et aI., 2005). Calibration model accuracies achieved 

234 quantitative (RPD > 2) levels for TC and IC, and semi-quantitative (RPD > 1.5) results for SOC; 

235 however testing these models with independent validation samples noticeably degraded 

236 predictive accuracy. Semi-quantitative status was barely achieved for TC and IC; whereas SOC 

237 was not predicted with useful accuracy. These findings underscore the importance of 

238 independent validation for accurate reporting of predictive accuracy for LIBS and other proximal 

239 sensing methods. 

240 Fine-scale (Le. sub-cm) variability in carbon content was lower than anticipated. Our 

241 results from spectrally averaging 1 9 interrogation spots suggest that no more than 5 

242 interrogations per sample are required for representative in situ measurements of small 

243 interrogation volumes (~3 cm\ This finding also implies that interrogation areas were relatively 

244 homogenous with respect carbon content. Each LIBS interrogation was a spectral average of 50 

245 laser shots and probed volume of ~ 8xl0-5 cm3
. Averaging 5 interrogation points equated to 

246 ~0.02% of the total interrogation volume, a very small proportion; however it is common for a 

247 500+ g field soil sample to be representatively subsampled and then 0.02 0.2 g (0.004 - 0.04% 

248 oftotal sample) analyzed for C by dry combustion. Five LIBS interrogations may have been 
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249 representative of the interrogation volume; however, how representative that volume was of the 

250 associated core increment has yet to be determined and will be examined in further analysis of 

251 core sections. 

252 It appeared that our PLSR models identified stoichiometric relationships between carbon 

253 and elements associated with carbon within the soil matrix. Regression coefficients important to 

254 total C included the strong carbon emission line at 247.8 nm, a silicon emission line at 251.6 nm, 

255 and several Mg emission lines (no strong Ca emissions found between 200 -300 nm). Total soil 

256 carbon, as measured by dry combustion, includes carbon associated with organic compounds as 

257 well as inorganic Ca and Mg carbonates (CaC03 and MgC03). The Mg emissions were also 

258 strong predictors for IC; however, PLSR did not find an important relationship between the 

259 247.8 nm C emission and IC. Instead, a silicon emission at 251.6 nm was strikingly more 

260 important for predicting IC compared to TC. The importance of the Si emission was attributed 

261 to chemical matrix effects associated with the LIBS method for no stoichiometeric relationship 

262 exists between IC and Si. 

263 The relatively narrow spectral range (200-300 nm) ofLIBS emissions recorded with the 

264 Ocean Optics HR2000 spectrometer also contributed to less precise MV A calibration and 

265 validation results. Prior to using PLSR, univariate techniques were used to relate sample carbon 

266 content to peak height (or area) ofthe carbon emission at 247.8 nm, justifYing using the 200 

267 300 nm spectral range. As discussed above, PLSR found relationships between C and other 

268 elements associated with soil C. The narrow spectral range did not capture emissions from 

269 several other elements associated with soil inorganic C such as Ca (315.89,317.93, and 534.95 

270 nm), and organic C such as H (656.27 and 656.29 nm), N (742.3, 744.2, and 746.8nm) and 0 

271 (777.4nm) that occur at wavelengths greater than 300 nm. Consequently, correlations between C 

272 and elements associated with SOC could not be generated with a PLSR model and likely reduced 
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273 the predictive accuracy for SOC. Clegg et al.(in press) observed that the best calibration models 

274 for predicting elemental composition of igneous rocks were generated when the entire LIBS 

275 spectrum (200 900 nm) was used in PLSR. We anticipate PLSR predictive accuracies for both 

276 inorganic and organic carbon will improve when including the entire LIBS spectrum in future 

277 soil carbon measurements. 

278 Finally, we attribute the remaining accuracy reduction to challenges surrounding in situ 

279 interrogations of intact cores rather than pressed or prepared samples. Prepared samples have the 

280 primary benefit of providing a smooth soil surface for interrogation compared to undisturbed and 

281 uneven intact soil core surfaces. Uneven surfaces can cause the distance from the laser focal 

282 point to the sample to vary among and within interrogation areas. Naturally occurring fractures 

283 and macropores also tend to obstruct the collection optics from observing the plasma emission. 

284 Normalization was used to partially compensate for these fluctuations. 

285 4. Conclusions 

286 To the best of our knowledge, this study represents the first rigorous validation ofLIBS 

287 calibrations using a significant number (78) of intact soil cores without pre-treatment. Using 

288 LIBS with a spectral range of 200-300 nm and employing partial least squares regression (PLSR) 

289 modeling, we achieved semi-quantitative validation accuracies for total carbon (TC) (r2 = 0.68, 

290 RPD 1.6, SEP 5.8 g kg-I, SEL 0.9 g kg-I) and inorganic carbon (IC) (r2 = 0.60, RPD=1.5, 

291 SEP 5.8 g kg-I, SEL 1.03 g kg-I). Soil organic carbon (SOC) predictions appeared 

292 unacceptable (r2=0.19, RPD=1.0, SEP = 3.4 g kg-I); however the low validation r2 and RPD 

293 values were primarily due to 1) the incomplete LIBS spectral record covering 200-300 nm, and 

294 2) low SOC variability (a = 3.47 g kg-I) with laboratory reference measurement error (SEL) 

295 estimated at 1.37 g kil or 40% of asoc• 
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296 Regression coefficients from PLSR models suggested that calibrations utilized 

297 stoichiometric relationships between C and elements related to C in the soil matrix. Emissions 

298 from carbon (247.8 nm), Mg (279.55-280.4 nm, 285.26 nm), and Si (251.6 nm, 288.1 nm) were 

299 important predictors for estimating total and inorganic carbon. The relatively narrow spectral 

300 range (200 - 300 nm) of the LIBS spectrum recorded in this study; however, omitted emissions 

301 from elements related to soil carbon, including Ca, 0, H, and N. Increasing the spectral range to 

302 the full LIBS spectrum (200 - 900 nm) could increase predictive accuracies for in situ 

303 measurement of both inorganic and organic C. 

304 In addition to expanding the spectral range, we identified three key strategies for 

305 improved LIBS in situ soil measurements. First, improve the LANL-CS LIBS instrument design 

306 to compensate for uneven soil core surfaces. Second, evaluating the ability of LIBS to capture 

307 SOC variability will require the acquisition of calibration soil cores with greater SOC variability. 

308 Finally, we need to acquire soil cores from a more diverse set of locations to evaluate the 

309 potential ofdeveloping regional LIBS calibrations. Continued LIBS development and evaluation 

310 will assist in realizing the full potential of this emerging spectroscopic technique for in situ soil 

311 characterization. 

312 
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414 

412 
413 

Table 1. Soil total, inorganic, and organic carbon summary statistics for 78 
intact soil cores from three wheat fields in north central 2007. 

Soil Total C Soil Inorganic C Soil Organic C 
_____________________________ g leg -1 _____________________________ _ 

Median 15.74 7.95 7.82 

Min 1.43 0.00 0.85 

Max 56.56 45.27 19.32 

Mean 17.09 8.88 8.21 

cr 10.18 9.53 3.47 

CV 59.6% 107.4% 44.4% 

n 306 306 306 

cr = standard deviation; CV = coefficient of variation 
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415 

Table 2. Laser-induced breakdown spectroscopy (UBS) partial least squares regression (PLSR) 
calibration statistics for soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC). 

LCtRPD SEP SBt NUt 
Model n 

(g/kg soil) (g/kg soil) (%) (%) (%) 
UBSTC 79 0.76 2.1 5.1 0.0 24.6 75.4 

UBS IC 79 0.81 2.3 4.3 0.5 28.2 71.3 


UBSSOC 79 0.55 1.5 2.5 0.0 45.0 55.0 


416 

RPD = residual product differential, SEP = standard error ofprediction, SB = squared bias, 
NU = non-unity, LC = lack of correlation 
t percent of mean squared deviation (MSD) 

417 
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418 

Table 3. Laser-induced breakdown spectroscopy (LIBS) partial least squares regression (PLSR) 
validation statistics for soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC). 

RPD SEP SBT NUT LCt 
Model n 

(g/kg soil) (g/kg soil) (%) (%) (%) 
LIBS TC 79 0.68 1.6 5.8 3.3 5.6 91.1 

LIBS IC 79 0.60 1.5 5.8 0.1 19.2 80.7 


LIBSSOC 79 0.19 1.0 3.4 3.7 46.5 49.8 


419 

RPD residual product differential, SEP standard error of prediction, SB = squared bias, 
NU = non-unity, LC lack of correlation 
t percent of mean squared deviation (MSD) 

420 
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421 Figure Captions 

422 

423 Figure 1. Geographical location of the study area with three selected farm fields (a), and 

424 randomly selected calibration (triangles) and validation (circles) core locations at the L YD (b), 

425 HOR (c), and MAT (c) sites. 

426 

427 Figure 2. LIBS sampling depths on a representative intact soil core and LIBS interrogation point 

428 configuration within a depth sample (inset). 

429 

430 Figure 3. Partial least squares regression (PLSR) coefficients for soil total, inorganic, and 

431 organic carbon. The magnitude ofthe coefficients indicates the relative importance of each 

432 emission line. Dashed vertical lines indicate important elemental emission lines for predicting 

433 the various forms of soil carbon. 

434 

435 Figure 4. Regression of soil total carbon for predicting soil inorganic carbon. Soil IC represents 

436 a large portion of total C in these semi-arid glacial till soils. 

437 

438 Figure 5. Independent validation of predicted soil total carbon (TC), inorganic carbon (IC), and 

439 organic carbon (SOC) using LIBS and partial least squares regression models. Nine 

440 interrogation spectra were averaged for PLSR analysis. 

441 

442 Figure 6. The effect of spectrally averaging multiple LIBS interrogation points on the predictive 

443 accuracy of soil total carbon (TC), inorganic carbon (IC), and organic carbon (SOC). 

444 
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477 Figure 1. Geographical location of the study area with three selected farm fields (A), and 

478 randomly selected calibration (triangles) and validation (circles) core locations at the LYD (B), 

479 HOR (C), and MAT (D) sites. 
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510 


511 Figure 2. LIBS sampling depths on a representative intact soil core and LIBS interrogation point 


512 configuration within a depth sample (inset). 
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562 Figure 4. 
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564 

565 Figure 4. Regression of soil total carbon for predicting soil inorganic carbon. Soil IC represents 

566 a large portion of total C in these semi-arid glacial till soils. 
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603 Figure 5. Independent validation of predicted soil total carbon (TC), inorganic carbon (IC), and 

604 organic carbon (SOC) using LIBS and partial least squares regression models. Nine 

605 interrogation spectra were averaged for PLSR analysis. 

606 
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608 Figure 6 

609 
LIBS Interrogation Density Effect on RPD 

610 
1.8611 

612 
613 1.6 j:::::­614 '0 1.4 
615 II) 

tn..:.: .616 1.2-0617 tn 
618 	 0- 1.0 J-


W619 	 U) 
0.8[X;620 

U)
621 	 -I 0.60­
622 U) 

m623 
:J 0.4 J

624 
0.2 .625 

626 

I"IIL___ - ~ - - --0 
O - - -;-- -.",..- ---....".-- --. --0

0'·- .. .:"'" ..... 	 ­0: ...... 0- ..8: ­

0.0
627 

0 1 2 3 4 5 6 7 8 9 10628 
629 # of interrogations spectrally averaged 
630 
631 -0- TC • IC -.-SOC
632 -- ------------ ­

633 
634 
635 
636 Figure 6. Predictive accuracy response, as indicated by the Residual Product Differential (RPD), 

637 to spectrally averaging multiple LIBS interrogation points for soil total carbon (TC), inorganic 

638 carbon (IC), and organic carbon (SOC) detennination. 
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