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ABSTRACT 

Monte Carlo criticality calculations have been performed for over 50 years for reactor physics and 
criticality safety applications . With today ' s faster computers , these calculations are being carried 
out to greater precision (smaller uncertainties) in keg; and detailed distributions of power and 
reaction rates are being computed routinely. This paper provides a review of the fundamental 
theory of Monte Carlo criticality calculations, with guidance on practical methods for: (1) assuring 
convergence of both keff and the source distribution, (2) minimizing the bias in keff and reaction rate 
distributions, and (3) dealing with the underprediction bias in uncertainties for keff and reaction rate 
distributions. 
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1. INTRODUCTION 

Monte Carlo methods have been used to compute k ef! and the fundamental mode eigenfunction of 
critical systems since the 1950s [1-4]. With the faster computers of the 1980s through the 
present, it has become routine to compute detailed power distributions in 2D or 3D Monte Carlo 
criticality calculations and to compute k ef! with uncertainties of a few pcm (rather than 10s or 
100s ofpcm as in earlier days). Most Monte Carlo codes use the standard power method for 
solving k-eigenvalue problems [5,6], where each (outer) iteration cycle corresponds to a single 
fission generation in the simulation. Given a fission neutron source distribution and an estimate 
of k ef!' single-generation random walks are carried out for a "batch" of neutrons to estimate a new 
k ef! and source distribution. Iterations continue until both k ef! and the source distribution have 
converged. After convergence of the power iterations, tallies of k ef! and spatial reaction rates are 
accumulated. While such calculations have become routine using standard codes (e.g., MCNP 
[7], SCALEIKENO [8]), there remain 3 principal limitations that must be addressed to perform 
calculations correctly: 

1. 	 Sufficient initial cycles must be discarded prior to beginning the tallies, so that 

contamination of the results by the initial source guess becomes negligible. 


2. 	 Sufficient numbers of neutrons must be followed in each cycle so that bias in k ef! and 
reaction rate tallies becomes negligible. 

3. 	 Bias in the uncertainties on k ef! and reaction rate tallies must be recognized and dealt with. 

This paper provides a review of the 3 fundamental problems inherent in Monte Carlo criticality 
calculations. A realistic 2D quarter-core PWR model is used to illustrate the effects of each and 
to provide guidance to practitioners. 
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2. THEORY FOR MONTE CARLO EIGENVALUE CALCULATIONS 

The k-eigenvalue transport equation in standard form 

[Q .V + LT(r,E)]qt(r,E,Q) = If qt(r,E',Q')Ls(r,E' -7 E,Q ·Q')dQ'dE' 

(1)
+_1 X(E) If vLF(r,E')qt(r,E',Q')dQ'dE' 

keff 4n 

can be written as 
1

(L+T)qt =Sqt +-Mqt (2) 
keff 

and then rearranged to 
1 1 1 

qt =-(L+T-Sr Mqt =-Fqt (3) 
k~ k~ 

Equation (3) may be solved numerically using the standard power iteration method [5,6] 

qtCn+ /) = _1_ Fqtcn), n = 0,1, .. . , uiven k CO) and qtCO) (4)k Cn) t:> eff 
ejJ 

2.1. Convergence of the Power Method 

When calculating keff and the power distribution for a reactor system, the dominance ratio is the 
key parameter for determining the convergence rate of the standard power method [9]. For 
systems with a high dominance ratio, 100s or 1000s of iterations may be required before the 
method achieves convergence, while systems with a low dominance ratio may require only lOs 
or 100s of iterations. 

Concerning the relative convergence of kef! and the fission source distribution during the power 
iteration process, if qt(O) is expanded in terms of the eigenvectors iiJ of Eq. (3), substituted into 

Eq. (4), and rearranged with some straightforward algebra, then 

qtCn+/)(f) =iio(f) + ~pn+l . u/f) + ... 
ao 

(5)
k~;+/) = ko .[1 - :~ pn(l- p)gl + ... J 

where p is the dominance ratio (k/ ko), ko and iioare the fundamental mode eigenvalue (exact kef!) 

and eigenfunction, kJ and iii are the first higher mode eigenvalue and eigenfunction, and ao, aJ, 

and gJ are constants determined by the expansion of the initial fission distribution. Eq. (5) shows 
that higher-mode noise in the fission distribution dies off as pn+l, while higher-mode noise in keff 
dies off as pn(1 _p). When the dominance ratio is close to 1, keff will converge sooner than the 

fission distribution due to the extra damping factor (1-p) which is close to O. Thus, it is essential 
to monitor the convergence of both the fission source distribution and keff' not just that of kejf 
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The Shannon entropy of the fission source distribution, Hsrc [10-12], has been shown to be an 
effective diagnostic measure for characterizing convergence of the fission source distribution. 
Hsrc is computed by tallying the fractions of fission sites in a cycle on a coarse mesh (Pj ) and 
then evaluating 

(6) 

J 

Convergence of the power iteration process can be determined by examining plots of both kef! 
and the fission source distribution (using Shannon entropy) vs. cycle. Both should be converged 
before tallies of kef! and re~ction rates are begun. 

2.2. Bias in Results for keff and Reaction Rate Distributions 

In the power iteration process for Monte Carlo, if a fixed number of neutrons Mo start a cycle and 
are followed through a single fission generation, then the expected number of neutrons produced, 
M I , is E[Md = kef!Mo. Before beginning the next cycle, the number of neutrons (or alternatively 
the total neutron weight) must be adjusted by the factor (Mr/ MI) to provide the correct 
normalization. However, renormalizing each cycle by dividing by a stochastic quantity (MI ) has 
been shown to introduce a bias in both kef! and any local tallies or distributions [13,14]. The bias 
in kef! has been shown to be 

(5 2 ~ 1 
M = __k 'Ir - , (7)DC 

J

kef! J=1 Mo 


where (5~ = population variance in k (computed assuming uncorrelated values of k for each 

cycle), and rj = lag-J correlation coefficient between cycle values of k. (The rj are assumed to 
approach 0 for large J.) The biases in a tallied reaction rate or a component of a reaction rate 
distribution are more complicated, and may be positive or negative. 

The biases in kef! and local tally results are independent of the number of cycles, N, but are 

proportional to l iMo (due to the dependence on (52 ) . Thus, bias in kef! and local tallies can be 

reduced and effectively eliminated by running a sufficient number of neutrons in each individual 
cycle of the calculation. Section 3 provides a realistic example of the influence of the number of 
neutrons per cycle on the bias in kef! and local tallies. 

2.3. Bias in Uncertainties for keffand Reaction Rate Distributions 

The power iteration process used to solve Monte Carlo eigenvalue calculations is based on a 
generation model, where next-generation fission neutron sites produced in the current cycle are 
used as the starting locations for the next cycle. It is clear on physical grounds that there is 
always some spatial correlation between the fission neutron starting sites in successive cycles (or 
generations), and that this correlation will be positive. For problems with a small dominance 
ratio, the correlation effects may be significant for only a few cycles; for problems with a large 
dominance ratio, correlation effects may persist for dozens or hundreds of cycles [15]. While 
such correlation does not affect the average results for kef! and local tallies, it can produce 
significant errors in the computed uncertainties [13,14,16]. Monte Carlo codes such as MCNP 
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and SCALEIKENO ignore inter-cycle correlation when computing statistics. That is, the codes 
assume that the individual cycles are independent and ignore correlation. As a result, the codes 
calculate uncertainties that are too small. For N active cycles, the codes will compute for tally X 
(where X may be keff, a tallied reaction rate, or a component of a reaction rate distribution) a 
mean result and standard deviation given by: 

- 1 IN 1 1 IN 2 - 2X=_· X cr - =-. -. X-X (8)
n' x N N nN n=l n=l 

The true standard deviation, accounting for inter-cycle correlation, is then given for large N by: 

dt = cr x ' 1 + 2 . I 
~ 

rJ 
(9) 

J=l 

where rj = lag-J correlation coefficient between cycle values, Xj. (The rj are assumed to 
approach 0 for large J.) Due to the positive inter-cycle correlation, the significant values of rj are 

positive, and the bias in the computed value of cr x is negative: cr x < cr;,e .It will be 

demonstrated in Section 3 that the computed uncertainties can be too small by factors of 2-5 for 
local tallies in fission rates in realistic problems. It must be emphasized that the underprediction 
errors in uncertainties are present regardless of the number of neutrons per cycle (Mo) or the 
number of active cycles run (N); the errors in uncertainties are not reduced by running more 
cycles or more neutrons per cycle. 

3. NUMERICAL RESULTS 

To provide numerical evidence supporting the theory described in Section 2, calculations were 
run for a realistic and practical example: a 2D quarter-core PWR model with explicit 
representation of every fuel pin and water tube. This example is based on the specifications given 
by Nakagawa and Mori [17] for a 3D whole-core model. In the current 2D quarter-core example, 
there are 48 'l4 fuel assemblies (each with a 17x17 lattice arrangement), 12,738 fuel pins with 
cladding, and 1206 Y4 water tubes for control rods or detectors. The assemblies have enrichments 
of 2.1 %, 2.6%, and 3.1 %. The dominance ratio for this problem was determined to be p=.96. The 
geometry for the MCNP5 Monte Carlo calculations is shown in Figure 1. 

All of the calculations discussed below were performed with MCNP5 (version 1.50) using the 
new ENDFIB-VII continuous-energy data libraries on a Mac Pro (dual quad-core Xeons, 8 cpus 
total). Each calculation used an initial source guess that was uniform over the core region; 
discarded the first 50 cycles; and included 125 M neutrons in the active cycles used for tallies. 
The MCNP5 mesh tallies were used to calculate the fission rates in each quarter-assembly. 
(Individual pin-wise fission rates could have been easily calculated, but that would have led to 
too many results to display reasonably in tables for this paper.) 
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2.1 % enrichment 
2.6% enrichment 

Figure 1. Geometry for MCNP5 calculations of2D quarter-core PWR 
model, with detail for the center quarter-assembly 

3.1. Convergence 

As shown in Section 2.1 , the number of cycles required for convergence of kejJ and the fission 
source distribution depends on the dominance ratio for the problem and the selection of the 
initial guess for the fission source distribution. Problems with dominance ratios close to 1 require 
more cycles to converge. For a given problem, choosing the initial fission source distribution 
closer to the actual fundamental mode distribution reduces the number of cycles required for 
convergence. For the 2D quarter-core PWR example problem, Figure 2 shows the convergence 
behavior of both kejJ and Hsrc for several initial source guesses: (A) a single point at the center of 
the center quarter-assembly, (B) points at the center of each quarter assembly along the problem 
diagonal, and (C) a uniform source throughout the core region. These problems were run with 
20,000 neutrons/cycle, and a 5 x 5 mesh covering the core region was used for computing Hsrc . It 
can be seen in Figure 2 that plots of kejJ vs cycle are not useful in assessing convergence for this 
problem; kejJ converges in only a few cycles. For Hsrc, source guess (A) is the poorest choice and 
requires about 100 cycles to converge; source guess (B) is better, but still not representative of 
the converged source, and requires about 50 cycles to converge; source guess (C) is reasonably 
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keff oycle number 

Figure 2. Convergence plots of H src and kejffor 2D quarter-core PWR problem 

close to the converged source and requires about 40 cycles to converge. Note that this behavior ­
k eff converging sooner than H src, is consistent with Eqs. (5) and the discussion in Section 2.1. 
It should also be noted that the convergence behavior of k eff and H src does not depend on the 
number of cycles run (N) or on the number of neutrons per cycle (Mo). That is, running a 
problem with more neutrons per cycle does not cause a problem to converge faster. 

For all subsequent calculations for this example problem, the initial source guess is taken to be 
uniform throughout the core region (source C), and the initial 50 cycles are discarded before 
beginning tallies. 

3.2. Bias in Results for kejf and Reaction Rate Distributions 

As discussed in Section 2.2, results for k eff and reaction rate tally distributions exhibit a bias if the 
number of neutrons per cycle is chosen too small. The "rule-of-thumb" for experienced Monte 
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-core PWR problem 

Carlo practitioners has been that lOs or 100s of neutrons per cycle would result in noticeable 
bias, while severall000s of neutrons per cycle would be adequate. For the 2D quarter-core PWR 
example, Figure 3 shows the computed values for keff using 500, 1000, 5000, 1000, and 20000 
neutrons per cycle. For this problem it can be seen that using 500 neutrons per cycle results in a 
bias of about 30 pcm, and that using 5000 or more neutrons per cycle effectively eliminates the 
bias in keff. 

Table 1 shows the percent errors in the fission distribution tallies for each of the quarter­
assemblies in the problem for the MCNP5 calculation with 500 neutrons per cycle. The bias in 
the distribution shows a significant tilt, with the inner quarter-assembly fission rates low by up to 
1.6% and the outer quarter-assembly fission rates high by up to 3.2%. (The reference for 
determining the errors in the quarter-assembly fission rates was the ensemble-average of the 
mesh tallies for 25 independent MCNP5 calculations using 25 M active neutrons each and 
20,000 neutrons per cycle.) The bias is significantly larger than the uncertainties on the quarter­
assembly fission rates. 
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Table 1. 	 Percent errors in quarter-assembly fission rates for MCNP 
calculation for PWR-2D problem using 500 neutrons/cycle 

0.0 -0.5 -0.6 -0.2 -0.3 0.5 0.8 

-0.2 -0.7 -0.8 0.1 OJ 0.7 0.6 

-0.5 -0.7 -0.7 0.0 OJ 0.7 1.0 1.3 1.2 1.6 2.0 

-0.1 -0.7 -0.8 0.2 OJ 0.8 1.1 1.2 1.2 1.3 2.4 

-0.4 -0.6 -0.5 0.0 -0.1 0.2 0.7 0.6 1.4 2.0 1.9 2.7 3.2 

-0.7 -0.9 -0.8 -0.4 0.2 0.5 0.4 1.0 1.2 1.6 2.0 1.6 2.6 

-0.6 -OJ -0.7 -0.6 -0.6 OJ 0.8 l.l 1.2 1.5 l.l 1.7 1.8 

-0.5 -0.8 -1.0 -0.8 -0.5 0.2 0.8 0.9 1.2 1.2 1.4 1.3 1.9 

-0.5 -0.9 -0.8 -1.0 -0.6 0.2 0.2 0.6 0.9 \.1 0.8 0.7 1.1 0.9 1.5 

-0.9 -0.9 -1.1 -1.0 -0.9 -0.1 0.2 0.6 0.8 0.6 0.6 0.6 1.3 1.2 1.1 

-1.2 -1.3 -1.2 -1.0 -0.6 -0.5 -0.3 0.2 0.9 0.7 1.1 0.9 1.3 1.2 1.1 

-1.3 -1.5 -1.0 -0.9 -0.7 -0.5 -0.6 OJ 0.4 0.5 1.3 1.4 2.1 1.9 1.6 

-1.7 -1.5 -1.1 -1.1 -0.6 -0.5 -0.2 -0.1 OJ 0.6 1.0 1.7 2.0 2.1 1.9 

-1.5 -1.5 -1.4 -\.O -1.1 -0.8 0.0 0.1 OJ 0.4 1.0 1.0 1.5 3.1 203 

-1.6 -1.6 -1.2 -1.2 -0.6 -0.7 -0.4 -0.2 0.1 0.2 0.5 1.6 2.1 2.4 203 

RMS error = 1.1 % 

MCNP std deviations: .1 % - 03% 

True std deviations: .3 % - .8% 


The biases in the fission distribution are smaller when 1000 neutrons per cycle are used, and 
smaller still with 5,000 .or 10,000 neutrons per cycle. Figure 4 is a plot of the fission tallies in the 
quarter-assemblies along the diagonal of the problem, showing how the biases in the fission 
tallies are reduced as the number of neutrons per cycle is increased. 

3.3. Bias in Uncertainties for keffand Reaction Rate Distributions 

As discussed in Section 2.3, the uncertainties computed for keff and reaction rate tally 
distributions exhibit a bias due to inter-cycle correlation effects that are neglected when 
performing the Monte Carlo code tallies. The computed uncertainties are always smaller than the 
true uncertainties for a tally, regardless of the number of cycles run or the number of neutrons 
per cycle. For the 2D quarter-core PWR problem, Table 2 gives the ratios of the true uncertainty 
to the MCNP5-calculated uncertainty for each of the quarter-assembly fission rate tallies. For 
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M=10000 

-2 .00 

Figure 4. 	 Percent error in fission rates along diagonal, 
for 2D quarter-core PWR problem (M =neutrons/cycle) 

this problem, the true uncertainties were calculated by running 25 independent MCNP5 
calculations, and then computing the statistics directly from the ensemble of results [16]. 

It can be seen from Table 2 that the MCNP5-calculated uncertainties are 1.7 to 4.7 times smaller 
than the true uncertainties, and 3.1 times smaller than the true uncertainties on average. This is a 
very significant underprediction bias - in order to reduce the true uncertainties to a specified 
value, about 10 times as many neutrons must be run as indicated by the MCNP5-computed 
uncertainties. For problems with dominance ratios even closer to 1, the underprediction bias in 
uncertainties may be much larger; for problems with smaller dominance ratios, the bias should 
be smaller. 

At present, there is no easy means of overcoming the underprediction bias in the computed 
uncertainties from Monte Carlo criticality calculations. While there is evidence that 
modifications to the iteration procedure, such as the superhistory method in MONK [14] and 
Wielandt's method under development for MCNP5 [18,19] can reduce or eliminate the 
underprediction bias in uncertainties, these methods are not available yet to general MCNP5 or 
SCALEIKENO users. A brute-force method for assessing the true uncertainties can be carried 
out: Make 25 or so independent Monte Carlo criticality calculations, discarding the uncertainties 
from the individual calculations, and compute the true uncertainties from the ensemble of results 
from the 25 runs. 
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Table 2. 	 True relative errors in quarter-assembly fission rates 
for MCNP calculation for PWR-2D problem, as multiples 
of MCNP-calculated relative errors, GTRUE / GMCNP 

3.4 3.1 2.7 2.7 2.6 2.3 2.7 

3.3 3.7 3.6 3.7 3.7 2.7 2.9 

3.8 3.8 3.9 4.0 3.6 3.3 3.0 2.9 2.5 2.5 2.2 

3.8 3.9 4.2 3.3 3.5 3.4 3.2 3.6 3.0 3.0 2.8 

3.9 3.6 3.5 3.3 3.4 3.4 4.0 3.9 3.5 3.2 3.1 2.5 1.7 

4.1 3.8 3.5 3.2 2.9 2.6 2.9 3.2 3.1 2.8 2.7 1.9 1.7 

3.4 3.4 3.2 3.5 2.6 2.4 2.6 3.0 2.9 2.9 2.8 2.3 2.1 

4.2 3.5 3.4 3.1 2.7 2.3 2.0 2.4 2.5 2.5 2.1 2.3 2.3 

3.9 3.6 3.1 2.9 2.3 1.9 1:9 2.3 2.4 2.9 2.7 2.7 2.2 2.8 2.3 

3.7 3.3 3.6 2.4 2.2 2.2 2.5 1.8 2.2 2.6 2.7 2.9 2.5 2.4 2.5 

3.0 3.1 3.0 2.2 2.2 2.1 2.4 2.5 2.4 2.6 2.7 2.6 2.7 3.0 2.6 

2.9 3.7 3.3 2.6 2.5 2.8 3.0 2.9 3.5 3.2 3.3 3.1 3.1 3.2 3.3 

3.2 3.1 2.9 3.1 3.2 3.3 3.5 3.5 3.6 3.9 3.7 3.9 3.5 3.4 2.9 

3.4 3.0 3.1 3.6 3.4 3.5 3.9 3.7 4.0 4.3 4.0 4.3 3.8 4.2 3.5 

3.5 3.2 2.8 3.5 3.8 3.9 3.9 3.9 4.1 4.1 4.6 4.4 4.7 4.5 3.8 

Average factor = 3.1 

4. CONCLUSIONS 

Section 2 reviewed the theory and limitations of Monte Carlo criticality calculations. Section 3 
provided a realistic example of the effects of convergence, bias in keff and reaction rate 
distributions due to the number of neutrons per cycle, and underprediction of uncertainties due to 
the neglect of correlation effects. From the theory in Section 2 and the numerical evidence in 
Section 3, the following recommendations may be made to practitioners: 

• 	 Before performing long-running Monte Carlo criticality calculations, always review the 
code input thoroughly and view the problem geometry in a plotter to be sure it is correct. 
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• 	 To determine the number of cycles needed for convergence of the power iteration 
method, always make a trial run using - 100 cycles and a moderate number of neutrons 
per cycle (e,g., 1000). Examine plots of both keff and Hsrc vs cycle to determine the 
number of cycles to be discarded before beginning tallies. 

• 	 To prevent bias in keffand reaction rate tallies, at least 5000 or more neutrons per cycle 
should be used for long production runs. It is preferable to use 10,000, 20,000, 50,000, or 
more neutrons per cycle, as long as a few hundred active cycles are computed. 

• 	 In assessing the uncertainties on computed results, be aware that the true uncertainties 
may be higher by factors of 5 or more, especially if the dominance ratio is close to 1. It 
may be helpful to make independent Monte Carlo runs and compare the results and 
uncertainties from each. It can also be useful to compare the results and uncertainties for 
different tallies in symmetric locations of a problem, as an indication of how good the 
computed uncertainties are. 
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