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ABSTRACT

Monte Carlo criticality calculations have been performed for over 50 years for reactor physics and
criticality safety applications. With today’s faster computers, these calculations are being carried
out to greater precision (smaller uncertainties) in £,z and detailed distributions of power and
reaction rates are being computed routinely. This paper provides a review of the fundamental
theory of Monte Carlo criticality calculations, with guidance on practical methods for: (1) assuring
convergence of both k.;and the source distribution, (2) minimizing the bias in k. and reaction rate
distributions, and (3) dealing with the underprediction bias in uncertainties for k.;and reaction rate
distributions.
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1. INTRODUCTION

Monte Carlo methods have been used to compute k.5 and the fundamental mode eigenfunction of
critical systems since the 1950s [1-4]. With the faster computers of the 1980s through the
present, it has become routine to compute detailed power distributions in 2D or 3D Monte Carlo
criticality calculations and to compute k.4 with uncertainties of a few pcm (rather than 10s or
100s of pem as in earlier days). Most Monte Carlo codes use the standard power method for
solving k-eigenvalue problems [5,6], where each (outer) iteration cycle corresponds to a single
fission generation in the simulation. Given a fission neutron source distribution and an estimate
of k.z; single-generation random walks are carried out for a “batch” of neutrons to estimate a new
k.g and source distribution. Iterations continue until both k.4 and the source distribution have
converged. After convergence of the power iterations, tallies of k. and spatial reaction rates are
accumulated. While such calculations have become routine using standard codes (e.g., MCNP
[7], SCALE/KENO [8]), there remain 3 principal limitations that must be addressed to perform
calculations correctly:
1. Sufficient initial cycles must be discarded prior to beginning the tallies, so that
contamination of the results by the initial source guess becomes negligible.
2. Sufficient numbers of neutrons must be followed in each cycle so that bias in k.5 and
reaction rate tallies becomes negligible.
3. Bias in the uncertainties on k.5 and reaction rate tallies must be recognized and dealt with.

This paper provides a review of the 3 fundamental problems inherent in Monte Carlo criticality
calculations. A realistic 2D quarter-core PWR model is used to illustrate the effects of each and
to provide guidance to practitioners.
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2. THEORY FOR MONTE CARLO EIGENVALUE CALCULATIONS

The k-eigenvalue transport equation in standard form

[Q-V+3,(.B)YF.EQ = [[YF.E Q). E - EQ-Q)dQ dE’

(1
L 2E) [[ve, G EYPG B Q) dE?
ky 4r
can be written as
1
L+T)¥Y=S¥Y+—MY (2)
off
and then rearranged to
1
Yo (LTS MY = ——Fy 3)
kg k.
Equation (3) may be solved numerically using the standard power iteration method [5,6]
porD = LF\P("), n=0,1,.,  givenk” and ¥ (4)
kfj;) eff

2.1. Convergence of the Power Method

When calculating k.5 and the power distribution for a reactor system, the dominance ratio is the
key parameter for determining the convergence rate of the standard power method [9]. For
systems with a high dominance ratio, 100s or 1000s of iterations may be required before the
method achieves convergence, while systems with a low dominance ratio may require only 10s
or 100s of iterations.

Concerning the relative convergence of k.; and the fission source distribution during the power
iteration process, if W% is expanded in terms of the eigenvectors u, of Eq. (3), substituted into

Eq. (4), and rearranged with some straightforward algebra, then
YOO FY=a,(F) + 2p" 4, (F) + ...
Ko =k, [1 - Zp'(I-p)g, + -]

where p is the dominance ratio (k;/ko), ko and #,are the fundamental mode eigenvalue (exact )

&)

and eigenfunction, k; and ,are the first higher mode eigenvalue and eigenfunction, and ay, a,
and g, are constants determined by the expansion of the initial fission distribution. Eq. (5) shows
that higher-mode noise in the fission distribution dies off as p™*', while higher-mode noise in kegr
dies off as p"(1-p). When the dominance ratio is close to 1, k. will converge sooner than the
fission distribution due to the extra damping factor (1-p) which is close to 0. Thus, it is essential
to monitor the convergence of both the fission source distribution and &z not just that of k4.
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The Shannon entropy of the fission source distribution, Hy,. [10-12], has been shown to be an
effective diagnostic measure for characterizing convergence of the fission source distribution.
H,. is computed by tallying the fractions of fission sites in a cycle on a coarse mesh (P,) and
then evaluating

H_=-Y P In(P) 6)

Convergence of the power iteration process can be determined by éxamining plots of both k.
and the fission source distribution (using Shannon entropy) vs. cycle. Both should be converged
before tallies of k.4 and reaction rates are begun.

2.2. Bias in Results for k. and Reaction Rate Distributions

In the power iteration process for Monte Carlo, if a fixed number of neutrons M, start a cycle and
are followed through a single fission generation, then the expected number of neutrons produced,
M,, is E[M;] = k. M,. Before beginning the next cycle, the number of neutrons (or alternatively
the total neutron weight) must be adjusted by the factor (My/ M) to provide the correct
normalization. However, renormalizing each cycle by dividing by a stochastic quantity (M) has
been shown to introduce a bias in both k. and any local tallies or distributions [13,14]. The bias
in k.4 has been shown to be
o, < 1 :
i = =TS ot )
kg 521 M

0

where G = population variance in k (computed assuming uncorrelated values of k for each

cycle), and r; = lag-J correlation coefficient between cycle values of k. (The r, are assumed to
approach O for large J.) The biases in a tallied reaction rate or a component of a reaction rate
distribution are more complicated, and may be positive or negative.

The biases in k.5 and local tally results are independent of the number of cycles, N, but are
proportional to /M, (due to the dependence on 6’ ). Thus, bias in kesand local tallies can be

reduced and effectively eliminated by running a sufficient number of neutrons in each individual
cycle of the calculation. Section 3 provides a realistic example of the influence of the number of
neutrons per cycle on the bias in 4.4 and local tallies.

2.3. Bias in Uncertainties for k. and Reaction Rate Distributions

The power iteration process used to solve Monte Carlo eigenvalue calculations is based on a
generation model, where next-generation fission neutron sites produced in the current cycle are
used as the starting locations for the next cycle. It is clear on physical grounds that there is
always some spatial correlation between the fission neutron starting sites in successive cycles (or
generations), and that this correlation will be positive. For problems with a small dominance
ratio, the correlation effects may be significant for only a few cycles; for problems with a large
dominance ratio, correlation effects may persist for dozens or hundreds of cycles [15]. While
such correlation does not affect the average results for k. and local tallies, it can produce
significant errors in the computed uncertainties [13,14,16]. Monte Carlo codes such as MCNP
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and SCALE/KENO ignore inter-cycle correlation when computing statistics. That is, the codes
assume that the individual cycles are independent and ignore correlation. As a result, the codes
calculate uncertainties that are too small. For N active cycles, the codes will compute for tally X
(where X may be k.4, a tallied reaction rate, or a component of a reaction rate distribution) a
mean result and standard deviation given by:

)?_i.i)( o _i. i.zv“X2_jz (8)
N = ¥ NN b

n=1

The true standard deviation, accounting for inter-cycle correlation, is then given for large N by:

07" =0, -,/1+2-2r., )
J=l

where r; = lag-J correlation coefficient between cycle values, X;. (The r, are assumed to
approach 0 for large J.) Due to the positive inter-cycle correlation, the significant values of r; are

positive, and the bias in the computed value of G is negative: ¢, <o7“. It will be

demonstrated in Section 3 that the computed uncertainties can be too small by factors of 2-5 for
local tallies in fission rates in realistic problems. It must be emphasized that the underprediction
errors in uncertainties are present regardless of the number of neutrons per cycle (M)) or the
number of active cycles run (V); the errors in uncertainties are not reduced by running more
cycles or more neutrons per cycle.

3. NUMERICAL RESULTS

To provide numerical evidence supporting the theory described in Section 2, calculations were
run for a realistic and practical example: a 2D quarter-core PWR model with explicit
representation of every fuel pin and water tube. This example is based on the specifications given
by Nakagawa and Mori [17] for a 3D whole-core model. In the current 2D quarter-core example,
there are 48 " fuel assemblies (each with a 17x17 lattice arrangement), 12,738 fuel pins with
cladding, and 1206 4 water tubes for control rods or detectors. The assemblies have enrichments
of 2.1%, 2.6%, and 3.1%. The dominance ratio for this problem was determined to be p=.96. The
geometry for the MCNP5 Monte Carlo calculations is shown in Figure 1.

All of the calculations discussed below were performed with MCNPS5 (version 1.50) using the
new ENDF/B-VII continuous-energy data libraries on a Mac Pro (dual quad-core Xeons, 8 cpus
total). Each calculation used an initial source guess that was uniform over the core region;
discarded the first 50 cycles; and included 125 M neutrons in the active cycles used for tallies.
The MCNP5 mesh tallies were used to calculate the fission rates in each quarter-assembly.
(Individual pin-wise fission rates could have been easily calculated, but that would have led to
too many results to display reasonably in tables for this paper.)
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2.1% enrichment
2.6% enrichment

Figure 1. Geometry for MCNPS calculations of 2D quarter-core PWR
model, with detail for the center quarter-assembly

3.1. Convergence

As shown in Section 2.1, the number of cycles required for convergence of k.5 and the fission
source distribution depends on the dominance ratio for the problem and the selection of the
initial guess for the fission source distribution. Problems with dominance ratios close to 1 require
more cycles to converge. For a given problem, choosing the initial fission source distribution
closer to the actual fundamental mode distribution reduces the number of cycles required for
convergence. For the 2D quarter-core PWR example problem, Figure 2 shows the convergence
behavior of both k. and Hy,. for several initial source guesses: (A) a single point at the center of
the center quarter-assembly, (B) points at the center of each quarter assembly along the problem
diagonal, and (C) a uniform source throughout the core region. These problems were run with
20,000 neutrons/cycle, and a 5 x 5 mesh covering the core region was used for computing H;,.. It
can be seen in Figure 2 that plots of k.4 vs cycle are not useful in assessing convergence for this
problem; k.4 converges in only a few cycles. For Hj,., source guess (A) is the poorest choice and
requires about 100 cycles to converge; source guess (B) is better, but still not representative of
the converged source, and requires about 50 cycles to converge; source guess (C) is reasonably
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keff oyole number

Figure 2. Convergence plots of H;,. and k.4 for 2D quarter-core PWR problem

close to the converged source and requires about 40 cycles to converge. Note that this behavior -
ks converging sooner than Hi,., is consistent with Egs. (5) and the discussion in Section 2.1.

It should also be noted that the convergence behavior of k.5 and Hy,. does not depend on the
number of cycles run (N) or on the number of neutrons per cycle (M)). That is, running a
problem with more neutrons per cycle does not cause a problem to converge faster.

For all subsequent calculations for this example problem, the initial source guess is taken to be

uniform throughout the core region (source C), and the initial 50 cycles are discarded before
beginning tallies.

3.2. Bias in Results for k. and Reaction Rate Distributions

As discussed in Section 2.2, results for k.zand reaction rate tally distributions exhibit a bias if the
number of neutrons per cycle is chosen too small. The “rule-of-thumb” for experienced Monte
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Figure 3. Keff vs M for 2D quarter-core PWR problem
(M = neutrons/cycle)

Carlo practitioners has been that 10s or 100s of neutrons per cycle would result in noticeable
bias, while several 1000s of neutrons per cycle would be adequate. For the 2D quarter-core PWR
example, Figure 3 shows the computed values for k.5 using 500, 1000, 5000, 1000, and 20000
neutrons per cycle. For this problem it can be seen that using 500 neutrons per cycle results in a
bias of about 30 pcm, and that using 5000 or more neutrons per cycle effectively eliminates the
bias in Az

Table 1 shows the percent errors in the fission distribution tallies for each of the quarter-
assemblies in the problem for the MCNPS5 calculation with 500 neutrons per cycle. The bias in
the distribution shows a significant tilt, with the inner quarter-assembly fission rates low by up to
1.6% and the outer quarter-assembly fission rates high by up to 3.2%. (The reference for
determining the errors in the quarter-assembly fission rates was the ensemble-average of the
mesh tallies for 25 independent MCNPS5 calculations using 25 M active neutrons each and
20,000 neutrons per cycle.) The bias is significantly larger than the uncertainties on the quarter-
assembly fission rates.
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Table 1. Percent errors in quarter-assembly fission rates for MCNP
calculation for PWR-2D problem using 500 neutrons/cycle

001]1-05 -064-02 -03}05 0.8
-021-0.7 -0.8§0.1 03]0.7 0.6

-0.51-07 07400 03}07 10§13 12}1.6 20
-0.14-0.7 -08402 03108 1112 1213 24

-041-06 05400 -0.1102 0706 14]20 19127 32
-0.74-0.9 -08§-04 02305 0410 1216 2016 2.6

-0.64-03 -0.70-06 -06403 08}f1.1 1215 1117 18
-054-08 -1.0)-08 -05402 08§09 1212 1413 19
-0.51-09 -08)-1.0 -06402 02306 09¢f1.1 08§07 1.1109 15
-091-09 -1.1]-1.0 -09}-0.1 0206 0806 06]06 1312 1.1

-1.2}§-13 -1.29-1.0 -06}-05 -03§02 09407 11409 1312 1.1
-1.3¢-1.5 -1.04-09 -0.7]-05 06403 04§05 13114 21|19 1.6

-1.7¢-1.5 -1.1f-1.1 -06}-0.5 -024-0.1 0306 10}1.7 2021 19
-1.51-1.5 -14}-10 -1.1]-08 0001 03104 10110 15|31 23

-1.6)-1.6 -124-1.2 -06}-0.7 -041-02 01§02 05])16 21})24 23

RMS error = 1.1 %
MCNP std deviations: .1% -.3%
True std deviations: .3% - .8%

The biases in the fission distribution are smaller when 1000 neutrons per cycle are used, and
smaller still with 5,000 or 10,000 neutrons per cycle. Figure 4 is a plot of the fission tallies in the
quarter-assemblies along the diagonal of the problem, showing how the biases in the fission
tallies are reduced as the number of neutrons per cycle is increased.

3.3. Bias in Uncertainties for k.; and Reaction Rate Distributions

As discussed in Section 2.3, the uncertainties computed for k.5 and reaction rate tally
distributions exhibit a bias due to inter-cycle correlation effects that are neglected when
performing the Monte Carlo code tallies. The computed uncertainties are always smaller than the
true uncertainties for a tally, regardless of the number of cycles run or the number of neutrons
per cycle. For the 2D quarter-core PWR problem, Table 2 gives the ratios of the true uncertainty
to the MCNP5-calculated uncertainty for each of the quarter-assembly fission rate tallies. For
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2.00
M=500
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1.00 M=5000
2 o.50
u M=10000
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a

-0.50
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Figure 4. Percent error in fission rates along diagonal,
for 2D quarter-core PWR problem (M = neutrons/cycle)

this problem, the true uncertainties were calculated by running 25 independent MCNPS5
calculations, and then computing the statistics directly from the ensemble of results [16].

It can be seen from Table 2 that the MCNPS5-calculated uncertainties are 1.7 to 4.7 times smaller
than the true uncertainties, and 3.1 times smaller than the true uncertainties on average. This is a
very significant underprediction bias — in order to reduce the true uncertainties to a specified
value, about 10 times as many neutrons must be run as indicated by the MCNP5-computed
uncertainties. For problems with dominance ratios even closer to 1, the underprediction bias in
uncertainties may be much larger; for problems with smaller dominance ratios, the bias should
be smaller.

At present, there is no easy means of overcoming the underprediction bias in the computed
uncertainties from Monte Carlo criticality calculations. While there is evidence that
modifications to the iteration procedure, such as the superhistory method in MONK [14] and
Wielandt’s method under development for MCNPS5 [18,19] can reduce or eliminate the
underprediction bias in uncertainties, these methods are not available yet to general MCNPS5 or
SCALE/KENO users. A brute-force method for assessing the true uncertainties can be carried
out: Make 25 or so independent Monte Carlo criticality calculations, discarding the uncertainties
from the individual calculations, and compute the true uncertainties from the ensemble of results
from the 25 runs.
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Table 2. True relative errors in quarter-assembly fission rates
for MCNP calculation for PWR-2D problem, as multiples
of MCNP-calculated relative errors, G1rug/ GMcNe

34131 270127 26|23 27
3.3 13.2.3.6 |37 3.7 2.7 2.9

38138 39140 36|33 3.0129 2525 22
38139 42|33 3534 32136 3.0}30 28

39136 35133 34134 40139 35132 31)25 1.7
41138 35332 294326 29132 3.1]28 2901981,
34134 32|35 26124 26130 29129 28|23 21
42135 349131 27123 20§24 25125 21123 23
39136 310129 23|19 1923 24129 27127 22|28 23
37133 36(24 22122 25118 22126 27|29 25]24 25

3.0 300122 22]21 24§25 24126 27126 27]30 26
2.9 137 3.3 )26425,12.8: 3.0:82.9] 3:5.]) 3:2 33|31 3.1 | 3.2 33

%)
—_

32131 29]3.1 32133 35135 36139 37139 35|34 29
3413.0 31136 3435 39|37 40143 4043 3842 35

350132 28135 38)139 39139 41141 4644 47)45 38

Average factor = 3.1

4. CONCLUSIONS

Section 2 reviewed the theory and limitations of Monte Carlo criticality calculations. Section 3
provided a realistic example of the effects of convergence, bias in keff and reaction rate
distributions due to the number of neutrons per cycle, and underprediction of uncertainties due to
the neglect of correlation effects. From the theory in Section 2 and the numerical evidence in
Section 3, the following recommendations may be made to practitioners:

e Before performing long-running Monte Carlo criticality calculations, always review the
code input thoroughly and view the problem geometry in a plotter to be sure it is correct.
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e To determine the number of cycles needed for convergence of the power iteration
method, always make a trial run using ~100 cycles and a moderate number of neutrons
per cycle (e.g., 1000). Examine plots of both k.5 and H,. vs cycle to determine the
number of cycles to be discarded before beginning tallies.

e To prevent bias in k.5 and reaction rate tallies, at least 5000 or more neutrons per cycle
should be used for long production runs. It is preferable to use 10,000, 20,000, 50,000, or
more neutrons per cycle, as long as a few hundred active cycles are computed.

e In assessing the uncertainties on computed results, be aware that the true uncertainties
may be higher by factors of 5 or more, especially if the dominance ratio is close to 1. It
may be helpful to make independent Monte Carlo runs and compare the results and
uncertainties from each. It can also be useful to compare the results and uncertainties for
different tallies in symmetric locations of a problem, as an indication of how good the
computed uncertainties are.
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