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Instanton-based Techniques for Analysis and 

Reduction of Error Floor of LDPC Codes 


Shashi Kiran Chilappagari, Student Member, IEEE, Michael Chertkov, Member, IEEE, Mikhail G. Stepanov, 
and Bane Vasic, Senior Member, IEEE 

Abstract- We describe a family of instanton-based optimiza­
tion methods developed recently for the analysis of the error-floor 
of Low-Density Parity-Check (LDPC) Codes. Instantons are the 
most probable configurations of the channel noise which result in 
decoding failures. We show that the general idea and respective 
optimization technique is applicable broadly to a variety of 
channels, discrete or continuous, and variety of suboptimal 
decoders. Specifically, we consider: iterative Belief Propagation 
(BP) decoders, Gallager type decoders, and Linear Programming 
(LP) decoders performing over the Additive-White-Gaussian­
Noise and Binary-Symmetric channels. 

The instanton analysis suggests that the underlying topological 
structures of the most probable instanton of the same code 
but different channels and decoders are related to each other. 
Armed with this understanding of the graphical structure of the 
instanton and its relation to the decoding failures, we suggest a 
method to construct codes whose Tanner graph is free of these 
structures, and thus have superior error-floors. 

Index Terms- Low-density parity-check codes, Error-floor, 
Iterative Decoding, Linear Programming Decoding, Instantons, 
Pseudo-Codewords 

1. INTRODUCTION 

Low-density parity-check (LDPC) codes [1], [2], have been 
the focus of intense research over the past decade because 
they can approach theoretical limits of reliable transmission 
over various channels even when decoded by sub-optimal low 
complexity algorithms. 

Two important classes of such algorithms are (1) iterative 
decoding algorithms, which include message-passing algo­
rithms (variants of the belief propagation algorithm [3] and 
Gallager type algorithms [1]), and bit-flipping algorithms [4] 
(serial and parallel), as well as (ii) Linear Programming 
(LP) decoding algorithm [5]. Characterization of the error 
performance of sub-optimal algorithms (or simply decoders) 
is still an open problem, and has been addressed for both 
LDPC code ensembles, as well as for individual codes [6]. 
Error performance of LDPC codes in the asymptotic limit of 
the code length is well characterized for a large class of sub­
optimal decoders over different channels (the interested reader 
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is referred to [1], [7], [8], [9] for general theory of message 
passing algorithms, [4], [10], [11], [12] for analysis of bit 
flipping algorithms and expander based arguments and [13], 
[14], [15] for analysis of LP decoder). 

A common feature of all the analysis methods used in deriv­
ing the asymptotic results is that the underlying assumptions 
hold in the asymptotic limit of infinitely long code and/or 
are applicable to an ensemble of codes. Hence, they are of 
limited usc for analysis of a given finite length code. The 
perfonnance of a code under a particular decoding algorithm 
is characterized by the Bit-Error-Rate (BER) or the Frame­
Error-Rate (FER) curve plotted as a function of the Signal­
to-Noise Ratio (SNR). A typical BER/FER vs SNR curve 
consists of two distinct regions. At small SNR, the error 
probability decreases rapidly with SNR, with the curve looking 
like a water fall. The decrease slows down at moderate values 
turning into the error-:floor asymptotic at very large SNR [16]. 
This transient behavior and the error-floor asymptotic originate 
from the sub-optimality of decoder, i.e., the ideal maximum­
likelihood (ML) curve would not show such a dramatic change 
in the BER/FER with the SNR increase. While the slope of 
the BER/FER curve in thc waterfall region is the same for 
almost all the codes in the ensemble, there can be a huge 
variation in the slopes for different codes in the error floor 
region [6]. Since for sufficiently long codes the error floor 
phenomenon manifests itself in the domain umeachable by 
brute force Monte-Carlo (MC) simulations, analytical methods 
are necessary to characterize the FER perfonnance. 

Finite length analysis of LDPC codes is well .understood 
for decoding over the binary erasure channel (BEC). The 
decoder failures in the error floor domain are governed by 
combinatorial structures known as stopping sets [17]. Stopping 
set distributions of various LDPC ensembles have been studied 
by Orlitsky et al. (see [18] and references therein for related 
works). Unforrunately, such a level of understanding of the 
decoding failures has not been achieved for other important 
channels such as the binary symmetric channel (BSC) and the 
additive white Gaussian noise channel (AWGNC). 

In this paper, we focus on the decoding failures of LDPC 
codes for iterative as well as LP decoders over the BSC 
and AWGNC. Failures of iterative decoders for graph based 
codes were first studied by Wiberg [19] who introduced the 
notions of computation trees and pseudo-codewords. Subse­
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the so-called fimdamental polytope which are also known as 
pseudo-codewords [5]. Vontobel and Koetter [22] introduced 
a theoretical tool known as graph cover approach and used 
it to establish connections between LP and message passing 
decoders using the notion of the fundamental polytope. They 
showed that the pseudo-codewords arising from the Tanner 
graph covers are identical to the pseudo-codewords of the 
LP decoder. Vontobel and Koetter [23] also studied relation 
between the LP and min-sum decoders. 

For iterative decoding on the AWGNC, MacKay and Postol 
[24] were first to discover that certain "near codewords" are 
to be blamed for the high error floor in the Margulis code. 
Richardson [16] reproduced their results and developed a 
computation technique to predict the performance of a given 
LDPC code in the error floor domain. He characterized the 
troublesome noise configurations leading to error floor using 
combinatorial objects termed trapping sets and described a 
technique (of a Monte-Carlo importance sampling type) to 
evaluate the error rate associated with a particular class of 
trapping sets. The method from [16] was further refined for 
the AWGN channel by Stepanov et al. [25] who introduced the 
notion of instantons. In a nutshell, an instanton is a configu­
ration of the noise which is positioned in between a codeword 
(say zero codeword) and another pseudo-codeword (which is 
not necessarily a codeword). Incremental shift (allowed by the 
channel) from this configuration towards the zero codeword 
leads to correct decoding (into the zero-codeword) while 
incremental shift in an opposite direction leads to a failure. 
In principle, one can find this dangerous configuration of the 
noise by exploring the domain ofcorrect decoding surrounding 
the zero codeword, and finding borders of this domain - the 
so-called error-surface. If the channel is continuous, the error­
surface consists of continuous patches while configuration of 
the noise maximizing the error-probability over a patch is 
called an instanton. The term instanton introduced initially in 
the context of disordered systems is also known nnder the 
names of saddle-point or optimal fluctuation, and is common 
in modem theoretical physics (see [25] and references therein 
). 

As stated above, the instantons that affect the decoder 
performance in the error floor region are extremely rare, and 
hence identifYing and enumerating them is a challenging task. 
However once this difficulty is overcome, the knowledge of 
the trapping set/pseudo-codeword distribution can be used to 
evaluate performance of the code. It can also be used to guide 
optimization of the code and design of improved decoding 
strategies. In this paper, we focus on the methods used to 
identifY the most relevant noise configurations for various 
decoders and channel models. 

Previous investigation of the problem include the work 
by Kelley and Sridhara [26] who studied pseudo-codewords 
arising from graph covers and derived bonnds on the minimum 
pseudo-codeword weight in terms of the girth and the mini­
mum left-degree of the underlying Tanner graph. The bounds 
were further investigated by Xia and Fu [27]. Smarandache 
and Vontobel [28] fonnd pseudo-codeword distributions for 
the special cases of codes from Euclidean and projective 

planes. Pseudo-codeword analysis has also been extended to 
the convolutional LDPC codes by Smarandache et al. [29]. 
Milenkovic et al. [30] studied the asymptotic distribution of 
trapping sets in regular and irregular ensembles. Wang et al. 
[31] proposed an algorithm to exhaustively enumerate certain 
trapping sets. 

Chernyak et al. [32] and Stepanov et al. [25] suggested 
to pose this problem of finding the instantons as a special 
optimization problem. This optimization method was built in 
the spirit of the general methodology, borrowed from statistical 
physics, guiding exploration of rare events which contribute 
most to BERIFER. The optimization method allowed to dis­
cover in [25J, the set of most probable instantons for AWGN 
channel and iterative decoder. The operational utility of the 
method was illustrated on some number of moderate size 
examples and strong dependence of the instanton structure 
on the number of iterations was observed. The general op­
timization method was substantially improved and refined in 
[33] for LP decoder over continuous channels (with main 
enabling example chosen to be the A WGNC). The pseudo­
codeword-search algorithm of [33] was essentially exploring 
in an iterative way the Wiberg formula treating an instanton 
configuration as a median between a pseudo-codeword and the 
zero-codeword. 

It was shown empirically that, initiated with a sufficiently 
noisy configuration, the algorithm converges to an instanton in 
sufficiently small number of steps, independent or weakly de­
pendent on the code size. Repeated multiple times the method 
outputs the set of instanton configurations which can further be 
used to estimate BERIFER performance in the transient and 
error-floor domain. The definition of the instantons and the 
instanton-search method were extended in [34] to the BSC. In 
this special case, the instanton-search algorithm is provably 
efficient in the sense that it outputs an instanton in small 
number of steps, and that the weight of the pseudo-codeword 
found in the intermediate steps is monotonically decreasing. 
(See also [35] for an exhaustive list of references for this and 
related subjects.) 

In this paper, we discuss failures of iterative decoders 
(specifically the BP algorithm and Gallager AlB algorithms) 
as well as LP decoding over the BSC and the AWGN. We 
explain the notion of instanton and elaborate on the connec­
tions between instantons and trapping sets as well as pseudo­
codewords. We then describe algorithms searching for instan­
tons. By using the [155,64, 20J Tanner code [36] as enabling 
example, we illustrate performance of the instanton-search 
technique outputing the set of of most probable instantons. By 
identifYing that all decoding failures can be attributed to the 
presence of certain subgraphs, we construct a code avoiding 
this subgraph and show that this code outperforms the original 
code. Through the paper, we use BSC and the AWGNC as en­
abling examples. While the nnderlying approach is similar for 
both channels, rigorous statements can be made for BSC [34], 
while respective AWGNC statements come from experiments 
only. 
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II. PRELIMINARIES 

A. LDPC Codes 

LDPC codes belong to the class of linear block codes which 
can be defined by sparse bipartite graphs [37]. The Tanner 
graph [37] G of an LDPC code C is a bipartite graph with 
two sets of nodes: the set of variable nodes V = {I, 2, ... , n} 
and the set of check nodes C = {I, 2, ... , m}. The check 
nodes (variable nodes resp.) connected to a variable node 
(check node resp.) are referred to as its neighbors. The degree 
of a node is the number of its neighbors. A vector v = 

(VI , Vz, ... , v n ) is a codeword if and only if for each check 
node, the modulo two sum ofits neighbors is zero. An (n, 'Y, p) 
regular LDPC code has a Tanner graph with n variable nodes 
each of degree I and n,/p check nodes each of degree p. 
This code has length n and rate r 2:: 1 - 'Y / p [37]. It should 
be noted that the Tanner graph is not uniquely defined by the 
code and when we say the Tanner graph of an LDPC code, 
we only mean one possible graphical representation. 

B. Channel Assumptions 

We assume that a binary codeword y is transmitted over a 
noisy channel and is received as y. The support of a vector 
y = (YI, yz,···, Yn), denoted by supp(y), is defined as the set 
of all positions i such that Yi f 0. In this paper, we consider 
binary input memoryless channels with discrete or continuous 
output alphabet. Since, the channel is memoryless, we have 

Pr(yly) = II Pr(YiIYi) 
iEV 

and hence can be characterized by Pr(YiIYi), the probability 
that Yi is received given that Yi was sent. The negative log­
likelihood ratio (LLR) corresponding to the variable node i E 

V is given by 

pr(YiIYi 0))
'Y' = Iog .(" Pr(:ihlYi = 1) 

Two binary input memoryless channels of interest are the 
BSC with output alphabet {a, I} and the AWGNC with output 
alphabet lR. On the BSC with transition probability p, every 
transmitted bit Yi E {a, I} is flipped 1 with probability p and 
is received as Yi {O, I}. Hence, we have 

log il?j if Yi ° 
'Yi 

{ log ..L if ih = 1I-p 

For the AWGN channel, we assume that each bitYi {a, I} 
is modulated using binary phase shift keying (BPSK) and 
transmitted as Yi = 1 - 2Yi and is received as Yi Yi T ni, 
where {nil are i.i.d. N(O, (]'2) random variables. Hence, we 
have 

2Yi 
1;=-'(]'2 

11be event of a bit changing from 0 to 1 and vice-versa is known as 
flipping. 

C. Decoding Algorithms 

1) Message Passing Decoders: Message passing decoders 
operate by passing messages along the edges of the Tanner 
graph representation of the code. Gallager in [1] proposed 
two simple binary message passing algorithms for decoding 
over the BSC; Gallager A and Gallager B. There exist a 
large number of message passing algorithms (sum-product 
algorithm, min-sum algorithm, quantized decoding algorithms, 
decoders with erasures to name a few) [7] in which the 
messages belong to a larger alphabet. 

Let y = (Yl, Y2, ... ,Yn), an n-tuple be the input to the 
decoder. Let w~~Q denote the message passed by a variable 
node i E V to its neighboring check node 0: E C in the k th 

iteration and W~k~; denote the message passed by a check 
node 0: to its neighboring variable node i. Additionally, let 
W:~i denote the set of all incoming messages to variable 
node i and w (k\) denote the set of all incoming messages to * 'l--l-Q: 

variable node i except from check node 0:. The tenn 
is defined similarly. 

A decoding algorithm with a specific choice of how the 
messages are calculated from the channel output (the best 
possible one if messages are calculated locally in the Tanner's 
graph of the code) is called the sum-product algorithm. With a 
moderate abuse of notation, the messages passed in the sum­
product algorithm are described below: 

Ii 

tanh- I (II tanh (W:~~~a)) 
W,(~~ 'Y,; ~ w(k\)
~~ L...., * a->; 

The result of decoding after k iterations, denoted by x (k), is 
detennined by the sign of m (k) = 'Y '" w(k). If m (k) > ° 

1.. ,2 D *-t~. 1, 

then x(k) = 0, otherwise x(k) = 1. 
2 • 

In the limit of high SNR, when the absolute value of the 
messages is large, the sum-product becomes the min-sum 
algorithm, where the message from the check 0: to the bit 
i looks like: 

(k) 

wa-+i 


The min-sum algorithm has a property that the Gallager 
AlB and LP decoders also possess if we multiply all the 
likelyhoods Ii by a factor, all the decoding would proceed as 
before and would produce the same result. Note that we don't 
have this "scaling" in the sum-product algorithm. 

To decode the message in complicated cases (when the 
message distortion is large) we may need a large number 
of iterations, although typically a few iterations would be 
sufficient. To speed up the decoding process one may check 
after each iterations whether the output of the decoder is a 
valid codeword, and if yes to terminate the iterations. 

2) Linear Programming Decoder: The ML decoding of the 
code C allows a convenient LP fonnulation in tenns of the 
codeword polytope poly(C) whose vertices correspond to the 
codewords in C. The ML-LP decoder finds f = (h,·.·) in) 
minimizing the cost function L~I ~fdi subject to the f E 
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poly(C) constraint. The fonnulation is eompact but impractical 
because of the number of constraints exponential in the code 
length. 

Hence a relaxed polytope is defined as the intersection of 
all the polytopes associated with the local codes introduced for 
all the checks of the original code. Associating (h,···, in) 
with bits of the code we require 

o::; ii ::; 1, 'ii E V (I) 

For every check node 0:', let N (0:') denote the set of variable 
nodes which are neighbors of 0:'. Let Ea: {T :;:; N(O:') : 
ITI is even}. The polytope Qa: associated with the check node 
0:' is defined as the set of points (f, w) for which the following 
constraints hold 

ii 

o::; Wa,T ::; 1, 

I:TEE", Wa:,T = 1 

I:TEE",T3i Wa:,T, 

'iT E Ea 

'ii E N(O:') 

(2) 

(3) 

(4) 

Now, let Q = naQa be the set of points (f, w) such that (1)­
(4) hold for all 0:' E C. (Note that Q, which is also referred 
to as the fundamental polytope [38], [22], is a function of the 
Tanner graph G and consequently the parity-check matrix H 
representing the code C.) The Linear Code Linear Program 
(LCLP) can be stated as 

min 2.: ,iJi, S.t. (f, w) E Q. 
(f,w) iEV 

For the sake of brevity, the decoder based on the LCLP is 
referred to in the following as the LP decoder. A solution 
(f, w) to the LCLP such that all .f.;s and Wa:,TS are integers is 
known as an integer solution. The integer solution represents 
a codeword [5]. It was also shown in [5] that the LP decoder 
has the ML certificate, i.e., if the output of the decoder is a 
codeword, then the ML decoder would decode into the same 
codeword. The LCLP can fail, generating an output which is 
not a codeword. 

It is appropriate to mention here that the LCLP can be 
viewed as the zero temperature version ofBP-decoder looking 
for the global minimum of the so-called Bethe free energy 
functional [39]. 

III. DECODING FAILURES AND INSTANTONS 

To characterize perfonnance of a coding/decoding scheme 
over any output symmetric channel, one can assume, without 
loss of generality, the transmission of the all-zero-codeword, 
i.e. y = O. We make this assumption throughout the paper. 
A decoding failure is said to have occurred if the output of 
the decoder is not equal to the transmitted codeword (zero­
codeword). Probability of a decoder failure, or frame error 
rate as a function of the SNR s can be expressed as: 

FER(s) 2.:PsU))O(Y), (5) 
y 

where the sum goes over all the possible outputs of the 
channel for the zero-codeword input. In case of a continuous 
output channel, the sum becomes an integral: I: -? Jdf), and 

the channel probability mass function becomes a probability 
density function: Jdf)Ps(f) = 1). O(fi) in Eq. (5) is defined 
to be zero, in the case of successful decoding, and is unity in 
the case of failure. Ps(Y) is the probability of observing f) at 
the output of a channel characterized by the SNR s. 

Calculating the above surnlintegral exactly is not feasible, 
and the instanton-based approach consists of approximating 
the surnlintegral by a finite number of terms corresponding to 
the most probable failures the instantons. This approximation 
becomes asymptotically exact in the limit of large SNR, 
while at smaller SNRs, more tenns are needed to obtain 
accurate approximation for the FER. Note that the details 
of the approximate evaluations are different for discrete and 
continuous channels. In the discrete case, the number of 
terms is finite. We account for k-most probable configurations, 
and FER(s) ~ I:/J=l, ...kNpPs(f)P), where the multiplicity 
factor N/3 counts the number of instantons equivalent under 
bit pennutations. For continuous channels an instanton is a 
stationary point of the respective integrand, and the approx­
imation should also include, in addition to the multiplicities, 
the curvature corrections around the stationary point (e.g. 
within Gaussian approximation) [32], [40]. In other words, 
FER(s) ~ I:B=l,. .. k NpC(f)p)ps (f)/3), where C(f)p) is the 
curvature factor. Intuitively, since in the case of the AWGNC 
and s -? 00, C(f)/3) = O(l/y'S), the decay of the noise 
correlations is exponential along one direction (orthogonal to 
the error surface) and quadratic along the remaining N 1 
components of the noise vector (see Fig. I for an illustration 
of the error surface). 

Consistent with the above statements, instantons f)s can be 
also defined as special configurations of the noise resulting 
in decoding failures such that any incremental (and channel 
specific) shift of the noise towards the zero-codeword results in 
correct decoding. It is thus useful to also introduce a respective 
output, Ys = dec(f)s), called a pseudo-codeword. It should be 
noted that this infonnal definition of the pseudo-codewords is 
generic and applicable to any channels and decoders. While 
the output for the LP decoder is well defined and does not 
suffer from numerical issues, the iterative decoder can exhibit 
oscillations i.e., the bits which are decoded wrongly can 
differ from one iteration to another. As a way to streamline 
the description of decoding failures in in the presence of 
rounding and iterative uncertainties, Richardson [16] suggested 
a proxy notion of the trapping set, which is a combinatorial 
object that accounts for the decoder ouput over iterations. In 
the subsequent discussion we fonnaUy define trapping sets 
and pseudo-codewords and also provide some BSC-specific 
definitions. If an instanton of a channel/decoder is known, 
the respective pseudo-codeword can be easily found, and 
conversely if a pseudo-codeword is given (i.e. we know for 
sure that there exists a configuration of the noise which is 
sandwiched in between the pseudo-codeword and the zero­
codeword) the respective instanton can be restored. In fact, 
this inversion is in the core of the pseudo-codewordlinstanton 
search algorithms discussed in Section IV. We illustrate this 
point for the BSC case. 

Trapping sets for iterative decoders: In practice, we as­
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sume that the iterative decoder performs a finite number D of 
iterations. Let y = (iiI, ih, ... , fin) be a vector which is the in­
put to the iterative decoder and let X(k) (xlk), x~k), ... x~l), 
k :::; D be the output binary vector at the k th iteration. A 
variable node i is said to be eventually correct if there exists 
a positive integer K such that for all k 2:: K, x~kl 0 [16]. 
Formally, a decoder failure is said to have occurred if there 
does not exits k such that supp(xCkl) 0 [16]. 

Definition 1: [16] For an input y, let T(y) denote the set 
of variable nodes that are not eventually correct. IfT(y) i= 0, 
then T(y) is a trapping set. If a IT(y)! and b is the number 
of odd degree check nodes in the sub-graph induced by T(y), 
we say T(y) is an (a, b) trapping set. 

For the BSC, since the input to the decoder as well as the 
messages passed are discrete, it is easier to define instantons 
in terms of number of bits flipped in the input to the decoder. 
The instantons with least number of flips will be the most 
dominant in the error floor region. We formalize this intuition 
below. 

Definition 2: Let T be a trapping and let y E GF(2)n. 
Let Y(T) {YIT(y) T}. The critical number m(T) of 
trapping set T for the Gallager A algorithm is the minimum 
number of variable nodes that have to be initially in error for 
the decoder to end up in the trapping set T, i.e., 

m(T) min Isupp(y) ! • 
YeT) 

The most relevant trapping set in the error floor region is 
the trapping set with the least critical number. 

Definition 3: An instanton is a binary vector i such that 
T(i) T for some trapping set T and for any binary vector 
r such that supp(r) C supp(i), T(i) = 0. The size of an 
instanton is the cardinality of its support. 

Given a trapping set, one can consider vectors whose sup­
port is a subset of the trapping set as input to the decoder and 
see if such vectors are instantons. While rigorous statements 
cannot be made about finding smallest size instantons, the 
above method gives instantons in most of the cases (see [41] 
for some illustrations). Intuitively, this seems reasonable as we 
do not expect inputs to the decoder which do not have errors 
in variable nodes involved in a trapping set to end up in a 
trapping set. 

Pseudo-codewords for LP decoders: In contrast to the 
iterative decoders, the output of the LP decoder is well defined 
in terms of pseudo-codewords. 

Definition 4: [5] Integer pseudo-codeword is a vector p 
(PI, ... ,Pn) of non-negative integers such that, for every 
parity check 0' E C, the neighborhood {Pi: i E N(O')} is 
a sum of local codewords. 

Alternatively, one may choose to define are-scaled pseudo­
codeword, p (PI, ... ,Pn) where 0 :::; Pi :::; 1,l:/i E V, 
simply equal to the output of the LCLP. In the following, we 
adopt the re-scaled definition. The cost associated with LP 
decoding of a vector r to a pseudo-codeword p is given by 

C(r, p) = 2.: 'YiPi' 
iEV 

A given code C may have difierent Tanner graph repre­
sentations and consequently potentially different fundamental 
polytopes. Hence, we refer to the pseudo-codewords as corre­
sponding to a particular Tanner graph G of C. 

Definition 5: [26, Definition 2.10] Let p = (PI,." ,Pn) 
be a pseudo-codeword distinct from the all-zero-codeword of 
the code C represented by Tanner graph G . Let e be the 
smallest number such that the sum of the e largest PiS is at 
least (E iEV Pi) /2. Then, the pseudo-codeword weight of p 
is defined as follows: 

• WBSc(p) for the BSC is 

• WAWGN(p) for the AWGNC is 

(PI + P2 + .. ·Pn)2 
(Pi + p~ + .. .p;,) 

The minimum pseudo-codeword weight of G denoted by 
BSCjAWGN . . . 11 th d

Wmin IS the mimmum over a e non-zero pseu 0­

codewords of G. 

We now give definitions specific to the BSC. 

Definition 6: The median noise vector (or simply the me­
dian) M(p) ofa pseudo-codeword p distinct from the all-zero­
codeword is a binary vector with support S = {i 1, i2, ... , ie }, 

such that Pill''' ,Pie are the i(WBSc(P) + 1) /21) 
largest components of p. 

The median noise vector of any pseudo-codeword leads to 
a decoding failure (the ouput of the decoder, however, need 
not be the pseudo-codeword we start with). 

Definition 7: The BSC instanton i is a binary vector with 
the following properties: (1) There exists a pseudo-codeword 
p such that C(i, p) :::; C(i, 0) 0; (2) For any binary vector r 
such that supp(r) C supp(i), there exists no pseudo-codeword 
with C (r, p) ~ O. The size of an instanton is the cardinality 
of its support. 

An attractive feature of LP decoding over the BSC is 
that any input whose support contains an instanton leads to 
a decoding failure (which is not the case for Gallager A 
decoding over the BSC) [34]. This important property is in 
fact used in searching for instantons. 

To summarize, evaluating FER vs SNR approximately re­
duces to finding the set of most probable instantons and eval­
uating their probabilities, multiplicities and, in the continuous 
case, also respective curvatures. Specifically, for LP decoding 
over the BSC and the Gallager algorithm, the slope of the FER 
curve in the error floor region is equal to the cardinality of 
the smallest size instanton (see [42] for a formal description). 
Understanding that the knowledge of the instantons allows 
efficient approximation of FER vs SNR dependence (which 
is our main task), we now discuss approaches to finding the 
set of instantons for a given error-correction setting in Section 
IV 
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IV. SEARCHING FOR INSTANTONS 

As explained above in Section III instantons that control the 
large SNR asymptotics of the FER are the most probable noise 
configurations corresponding to decoder failures. Stated this 
way the problem of finding an instanton becomes an optimiza­
tion problem, and all the remaining details of this Section are 
related to efficient implementation of this, generally difficult, 
optimization problem. 

A straightforward optimization method for finding instanton 
in the case of a continuous channel is based on the standard 
(amoeba) optimization [Ref to numerical recepies] was dis­
cussed in Stepanov et al [40]. The main idea of the direct 
technique is as follows. One draws randomly a unit length 
configuration of the noise and finds re-sealing which positions 
the re-sealed configuration of the noise exactly at the error­
surface. Thus incremental increase/decrease of the rescaling 
factor leads to decoding failure or recovery. Such configuration 
and its probability is recorded, and this operation is repeated 
(N 2) times, thus generating N - 1 vertexes of a simplex 
with respective probabilities assigned. Then, aiming to find a 
more probable point in the interior of the simplex, the current 
point is transformed according to the standard amoeba rules. 
The process is repeated until the size of the simplex becomes 
smaller than a preset accuracy, and the resulting most probable 
configuration outputs an instanton. The whole optimization 
is repeated multiple number of times, each time generating 
an instanton. The main advantage of the method is in its 
generality (it can be used for any continuous channel) and 
simplicity. However, implementing this method is costly. 

The instanton-amoeba method easily finds the instantons 
for a code if number of iterations in decoding is not large 
(less than 20). Increase of the number of iterations, nit, 

simply means longer computations. The other more important 
effect is associated with enhancement of irregular, stochastic 
component in decoding observed with n it increase. One finds 
that already a slight variation in the noise can drastically 
change results. That makes the function that we have to 
optimize very irregular, which dramatically slows down the 
optimization process. 

If the number of iterations in belief propagation decoder 
is large, the irregular geometry of the error surface makes the 
application of the instanton-amoeba scheme difficult. The most 
time taking stage is to come up with not necessarily lowest 
but reasonably low weight noise configuration that gives a 
decoding error. So far the following two ways to achieve that 
based on numerical experiment observations were developed: 

1) If one inputs an instanton for LP decoder to the min­
sum iterative decoder, then is "survives" (the decoder does 
not output a codeword) for infinite number of iterations. 

2) Limit the noise configuration on bits where the instant on 
for low number of iterations is supported. Work then with an 
optimization problem with a lot fewer number of variables 
(number of bits in the support). 

In contrast to iterative decoding with continous alphabet, 
the trapping sets and instantons for the Gallager AlB decoder 
can be found using certain combinatorial considerations which 

were first pointed out by Richardson [16] and later investigated 
in detail in [41], [43], [44], [45]. The trapping sets for Gallager 
type decoders are closely related to trapping sets for the bit 
flipping decoders. 

For LP decoding over the AWGN channel, another sugges­
tion for solving the difficult optimization problem faster was 
formulated in [33] by Chertkov and Stepanov . This pseudo­
codeword search algorithm (PCS), originally stated for the 
continuous channel model, is based on the aforementioned 
relation between instantons and respective pseudo-codewords. 
Specifically, if a pseudo-codeword, y corresponding to an 
instanton, is known, then reconstructing the respective instan­
ton is equivalent to maximizing the probability of the noise 
under condition that the probabilities of the noise configura­
tion counted from the zero-codeword and :from the pseudo­
codeword, y, are identical, i.e. 

(6)argmaxyps(Y) Ips (y )=Ps (Y+ii); 

The idea of the method of [33] consists in to throw a 
sufficiently strong configuration of the noise (so that the 
resulting decoding would be erroneous), decode it into a 
pseudo-codewords, and then pretend that the pseudo-codeword 
shares an error-surface with the zero-codeword. Then the 
projective instanton is reconstructed using Eq. (6), even though 
the noise configuration, especially after the first iteration, is not 
an actual instanton. This procedure is repeated until input and 
output for an iteration give the same result. It was empirically 
shown in [33] that such scheme formulated for the LP decoder 
outputs the sequence of noise configurations with probabilities 
monotonically increasing with the number of iterations and 
converging in a small number of iterations to an instanton. 
The PCS was generalised to the case of LP decoding over the 
BSC by Chilappagari et al. in [34]. The algorithm proposed in 
[34] termed as the instanton search algorith (ISA) is provably 
efficient and outputs an instanton in bounded number of steps. 
We summarize the algorithm below as it illustrates the various 
concepts discussed in this section. 

ISA for LP Decoding over the BSC 
Initialization (1=0) step: Initialize to a binary input vector r 

containing sufficient number of flips so that the LP decoder 

decodes it into a pseudo-codeword different from the all-zero­

codeword. Apply the LP decoder to r and denote the pseudo­

codeword output of LP by pl. 

I > 1 step: Take the pseudo-codeword pi (output of the (l- 1) 

step) and calculate its median M(pl). Apply the LP decoder 

to 1'vI(pi) and denote the output by p MI' Only two cases arise: 


• 	 WBSc(PMI ) < WBSC(pl). Then pl+l = PMI becomes 
the l-th step output/(l + 1) step input. 

• 	WBSc(PMI) WBSc(pl). Let the support of M(pl) be 
S {i l , ... , ikl}' Let Sit = S\{it} for some it E S. 
Let rit be a binary vector with support Sit' Apply the 
LP decoder to all ri l and denote the it-output by Pit' 
If Pit = 0, 'rJit , then AI(pl) is the desired instanton and 
the algorithm halts. Else, Pi, -I 0 becomes the l-th step 
output/(l + 1) step input. 
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V. NUMERICAL RESULTS 

This section summarizes statistics of instantons found for 
the [155,64, 20J Tanner code [36] perfonning over the BSC 
and AWGNC and decoded by iterative and LP decoders. The 
Tanner code is a (3,5) regular code whose Tanner graph has 
girth 8 [36]. 

A. Instanton Statistics for the Tanner Code 

Gallager A algorithm: The most dominant trapping set in 
the error floor domain is the (5,3) trapping set which has 
critical number 3. There are a total of 155(5,3) trapping sets 
each ofwhich has an instanton ofweight 3 [41] (see Fig. 2(a)). 
There are 465 (4,4) trapping sets each with critical number 
4. Hence, the slope of the FER curve in the error floor region 
is dominated by the (5,3) trapping sets and it is equal to 3. 
The trapping sets for the Gallager A algorithm are found by a 
combination of simulations and combinatorial considerations 
(see [16], [41] for more details.) 

Iterative BP: The instantons for 4 iterations decoder were 
analyzed by the instanton-amoeba method in [25]. The 3 
lowest instantons each of which consists of 12 bits were found 
and their topological structure was investigated. It turns out 
that this bit structure is what is responsible for errors even 
for very large number of iterations. MC simulations show that 
the error floor asymptotics for Tanner's code under iterative 
decoder with large number of iterations is detennined by these 
structures (resulting in effective disatnce of 12.45 [25]). All 
the trapping sets corresponding to the lowest weight instantons 
contain an (8,2) trapping set which is shown in Fig. 2(b). 

LP decoder over BSC: The ISA described in Section IV 
found 155 distinct instantons of size 5 (the corresponding 
pseudo-codewords have BSC weight 9). The support of each 
of these instantons is a (5,3) trapping set shown in Fig. 2(c). 
The ISA also discovered higher weight instantons (see [34] 
for more details), but the instantons of size 5 are the most 
dominant ones in the error floor region. 

LP decoder over AWGNC: The PCS algorithm of [33] 
found many low-weight pseudo-codewords (16.4037 being the 
least weight pseudo-codeword as found by the PCS). The 
weighted-median noise configurations (instantons) (see [33]) 
corresponding to various low-weight pseudo-codewords have 
high noise at 5 variable nodes corresponding to the (5,3) 
trapping sets. In fact, the respective BSC weight 9 pseudo­
codewords have low AWGN weight also (but not the absolute 
lowest! I). The support of each of the lowest weight pseudo­
codeword is large but the components in the variable nodes 
corresponding to the (5,3) trapping set have maximum value 
(illustrated in Fig. 2( d)). 

An important insight gained from this comparison is that the 
decoding failures for various algorithms on different channels 
are closely related and are dependent of only a few topological 
structures. These relations can be exploited to find instantons 
for a given decoder on a given channel based on the knowledge 
of instantons for another already analyzed decoder, which can 
even be perfonning over another channel. This relation is also 

suggestive for design of a better code, the idea substantiated 
in the next Subsection. 

B. Code Design Increases the Smallest Instanton Size 

The minimum pseudo-codeword weight (as well as the trap­
ping set size) increase with increase of the Tanner graph girth 
(see [26], [44]). While girth optimized codes are known to per­
fonn better in general, the code length and degree distribution 
place a fundamental restriction on the best achievable girth. 
Observing that the instantons for different decoding algorithms 
performing over different channels have a common underlying 
topological structure (e.g. the (5,3) trapping set in the case 
of the [155,64, 20J code), it is natural to discuss design of 
a similar but new code which excludes these troublesome 
structures. In fact, this suggests a natural code optimization 
technique with an improved instanton distribution. Starting 
with a reasonably good code (constructed either algebraically 
or by the progressive edge growth (PEG) method [46]), 
we find the most damaging instantons and their underlying 
topological structure. We then construct a new code avoiding 
such subgraphs (either by swapping edges, by increasing code 
length, or utilizing a combination of both). We iterate this 
procedure till the code can no longer be optimized or reaching 
a computation unbearable complexity. 

For Gallager A decoding, it has been proved in [47] that 
codes with Tanner graphs of girth 8 which avoid the (5,3) 
trapping set and weight 8 codewords can correct all the error 
patterns of weight 3 or less. While proving a similar result 
might be difficult for the iterative decoder over the AWGN 
channel and LP decoder, such considerations nonetheless play 
a role in our code design strategy. An algorithm, suggesting 
construction of a code meeting the Gallager A-related con­
ditions, was provided in [47]. This algorithm can be seen as 
a generalization of the PEG algorithm [46]. Given a list of 
forbidden subgraphs, at every step of the algorithm, an edge 
is established such that the resulting graph at that stage does 
not consist of any of the forbidden sub graphs. ( The PEG 
algorithm is a special case forbidding cycles shorter than a 
given threshold.) 

Using the algorithm proposed in [47], we constructed a new 
code of length 155 with unifonn left degree 3 and with most 
check nodes with degree 5. By construction, this code avoids 
(5,3) trapping sets. This results in a steeper FER slope of 
4 in the error floor domain under the Gallager A decoder, 
as shown in Fig. 3. The minimum weight instantOD for LP 
decoder over the BSC found by the ISA is 6. Fig. 3 shows 
FER perfonnance of the Tanner code and the new code under 
Gallager A and LP decoders. The instanton distribution for LP 
decoding over the BSC for the Tanner code and the new code 
found by running the ISA for 2000 times is shown in Fig. 
4. The pseudo-codeword weight distribution for LP decoding 
over the AWGNC for the two codes is shown in Fig. 5. All 
the above statistics illustarte the superiority of the new code. 

VI. CONCLUSION 

In this paper, we presented a comprehensive description 
of various instanton based techniques for the analysis and 
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reduction of error floors of LDPC codes. The most powerful 
method discussed is the pseudo-codewordlinstanton search 
algorithm, designed specifically for the LP decoder. Using the 
instanton-based technique for analysis of sample (intermediate 
size) codes, e.g. [155,64,20] Tanner code, we conclude that 
the underlying topological structures of the most probable 
instanton, found for the same code but different channels 
and decoders, are related to each other. Armed with this 
understanding of the graphical structure of the instanton and 
its relation to the decoding failures, we suggested a method 
to construct codes whose Tanner graph is free of these struc­
tures. The instanton technique, applied to this code and also 
complemented by the direct Monte Carlo simulations, confirm 
the success of the new code improvement strategy. 

Future work includes (1) adopting the above techniques for 
longer codes (2) design a technique combining instantons and 
MC - so that the entire FER curve would be given in efficient 
simulations at once (3) optimization of decoders to reduce 
error floors and (4) find other combinatorial strategy for for 
design of a code free from the error-floor. 
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Fig. 2. Illustration of the topological structure of instanton for different channels and decoders (a) A (5 ,3) trapping set with critical number 3 for Gallager A 
algorithm. Here 0 denotes a correct variable and. denotes a corrupt variable node. (b) An (8,2) trapping set for iterative decoding over the AWGNe. (c) The 
support of an instanton of size 5 for LP decoding over the SSe. (d) The support of the lowest weight pseudo-codeword for LP decoding over the AWGN. 
Note that the figure illustrates only the variable nodes with the largest components. 
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Fig. 3. FER perfonnance of the Tanner code and the new code. 
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Fig. 4. Instanton weight distribution for the Tanner code and the new code for LP decoding over the BSC as found by running the ISA 2000 times. 
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Fig. 5. Instanton weight distribution for the Tanner code and the new code on the AWGN channel as found by running the PCS algorithm 2000 times. 


