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Instanton-based Techniques for Analysis and

Reduction of Error Floor of LDPC Codes

Shashi Kiran Chilappagari, Student Member, IEEE, Michael Chertkov, Member, IEEE, Mikhail G. Stepanov,
and Bane Vasic, Senior Member, IEEE

Abstract— We describe a family of instanton-based optimiza-
tion methods developed recently for the analysis of the error-floor
of Low-Density Parity-Check (LDPC) Codes. Instantons are the
most probable configurations of the channel noise which result in
decoding failures. We show that the general idea and respective
optimization technique is applicable broadly to a variety of
channels, discrete or continuous, and variety of suboptimal
decoders. Specifically, we consider: iterative Belief Propagation
(BP) decoders , Gallager type decoders, and Linear Programming
(LP) decoders performing over the Additive-White-Gaussian-
Noise and Binary-Symmetric channels.

The instanton analysis suggests that the underlying topological
structures of the most probable instanton of the same code
but different channels and decoders are related to each other.
Armed with this understanding of the graphical structure of the
instanton and its relation to the decoding failures, we suggest a
method to construet codes whose Tanner graph is free of these
structures, and thus have superior error-floors.

Index Terms—Low-density parity-check codes, Error-floor,
Iterative Decoding, Linear Programming Decoding, Instantons,
Pseudo-Codewords

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1], [2], have been
the focus of intense research over the past decade because
they can approach theoretical limits of reliable transmission
over various channels even when decoded by sub-optimal low
complexity algorithms.

Two important classes of such algorithms are (i) iterative
decoding algorithms, which include message-passing algo-
rithms (variants of the belief propagation algorithm [3] and
Gallager type algorithms [1]), and bit-flipping algorithms [4]
(serial and parallel), as well as (ii) Linear Programming
(LP) decoding algorithm [5]. Characterization of the error
performance of sub-optimal algorithms (or simply decoders)
is still an open problem, and has been addressed for both
LDPC code ensembles, as well as for individual codes [6].
Error performance of LDPC codes in the asymptotic limit of
the code length is well characterized for a large class of sub-
optimal decoders over different channels (the interested reader
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is referred to [1], [7], [8], [9] for general theory of message
passing algorithms, [4], {10], [11], [12] for analysis of bit
flipping algorithms and expander based arguments and [13],
{14], [15] for analysis of LP decoder).

A common feature of all the analysis methods used in deriv-
ing the asymptotic results is that the underlying assumptions
hold in the asymptotic limit of infinitely long code and/or
are applicable to an ensemble of codes. Hence, they are of
limited use for analysis of a given finite length code. The
performance of a code under a particular decoding algorithm
is characterized by the Bit-Error-Rate (BER) or the Frame-
Error-Rate (FER) curve plotted as a function of the Signal-
to-Noise Ratio (SNR). A typical BER/FER vs SNR curve
consists of two distinct regions. At small SNR, the error
probability decreases rapidly with SNR, with the curve looking
like a water fall. The decrease slows down at moderate values
turning into the error-floor asymptotic at very large SNR [16].
This transient behavior and the error-floor asymptotic originate
from the sub-optimality of decoder, i.¢., the ideal maximum-
likelihood (ML) curve would not show such a dramatic change
in the BER/FER with the SNR increase. While the slope of
the BER/FER curve in the waterfall region is the same for
almost all the codes in the ensemble, there can be a huge
variation in the slopes for different codes in the error floor
region [6]. Since for sufficiently long codes the error floor
phenomenon manifests itself in the domain unreachable by
brute force Monte-Carlo (MC) simulations, analytical methods
are necessary to characterize the FER performance.

Finite length analysis of LDPC codes is well understood
for decoding over the binary erasure channel (BEC). The
decoder failures in the error floor domain are governed by
combinatorial structures known as stopping sets [17]. Stopping
set distributions of various LDPC ensembles have been studied
by Orlitsky ¢r al. (see [18] and references therein for related
works). Unfortunately, such a level of understanding of the
decoding failures has not been achieved for other important
channels such as the binary symmetric channel (BSC) and the
additive white Gaussian noise channel (AWGNC).

In this paper, we focus on the decoding failures of LDPC
codes for iterative as well as LP decoders over the BSC
and AWGNC., Failures of iterative decoders for graph based
codes were first studied by Wiberg [19] who introduced the
notions of computation trees and pseudo-codewords. Subse-
quent analysis of the computation trees was carried out by
Frey et al. [20] and Fomey ef al[21]. The failures of the
LP decoder can be understood in terms of the vertices of
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the so-called fundamental polytope which are also known as
pseudo-codewords [5]. Vontobel and Koetter [22] introduced
a theoretical tool known as graph cover approach and used
it to establish connections between LP and message passing
decoders using the notion of the fundamental polytope. They
showed that the pseudo-codewords arising from the Tanner
graph covers are identical to the pseudo-codewords of the
LP decoder. Vontobel and Koetter [23] also studied relation
between the LP and min-sum decoders.

For iterative decoding on the AWGNC, MacKay and Postol
[24] were first to discover that certain “near codewords™ are
to be blamed for the high error floor in the Margulis code.
Richardson [16] reproduced their results and developed a
computation technique to predict the performance of a given
LDPC code in the error floor domain. He characterized the
troublesome noise configurations leading to error floor using
combinatorial objects termed trapping sets and described a
technique (of a Monte-Carlo importance sampling type) to
evaluate the error rate associated with a particular class of
trapping sets. The method from [16] was further refined for
the AWGN channel by Stepanov et ai. [25] who introduced the
notion of instantons. In a nutshell, an instanton is a configu-
ration of the noise which is positioned in between a codeword
(say zero codeword) and another pseudo-codeword (which is
not necessarily a codeword). Incremental shift (allowed by the
channel) from this configuration towards the zero codeword
leads to correct decoding (into the zero-codeword) while
incremental shift in an opposite direction leads to a failure.
In principle, one can find this dangerous configuration of the
noise by exploring the domain of correct decoding surrounding
the zero codeword, and finding borders of this domain — the
so-called error-surface. If the channel is continuous, the error-
surface consists of continuous patches while configuration of
the noise maximizing the error-probability over a patch is
called an instanton. The term instanton introduced initially in
the context of disordered systems is also known under the
names of saddle-pcint or optimal fluctuatior, and is common
in modem theoretical physics (see [25] and references therein
)- ‘

As stated above, the instantons that affect the decoder
performance in the error fioor region are extremely rare, and
hence identifying and enumerating them is a challenging task.
However once this difficulty is overcome, the knowledge of
the trapping set/pseudo-codeword distribution can be used to
evaluate performance of the code. It can also be used to guide
optimization of the code and design of improved decoding
strategies. In this paper, we focus on the methods used to
identify the most relevant noise configurations for various
decoders and channel models.

Previous investigation of the problem include the work
by Kelley and Sridhara [26] who studied pseudo-codewords
arising from graph covers and derived bounds on the minimum
pseudo-codeword weight in terms of the girth and the mini-
mum left-degree of the underlying Tanner graph. The bounds
were further investigated by Xia and Fu {27]. Smarandache
and Vontobel [28] found pseudo-codeword distributions for
the special cases of codes from Euclidean and projective

planes. Pseudo-codeword analysis has also been extended to
the convolutional LDPC codes by Smarandache er al. [29].
Milenkovic et al. [30] studied the asymptotic distribution of
trapping sets in regular and irregular ensembles. Wang ef al.
[31] proposed an algorithm to exhaustively enumerate certain
trapping sets.

Chernyak et al. [32] and Stepanov ef al. [25] suggested
to pose this problem of finding the instantons as a special
optimization problem. This optimization method was built in
the spirit of the general methodology, borrowed from statistical
physies, guiding exploration of rare events which contribute
most to BER/FER. The optimization method allowed to dis-
cover in [25], the set of most probable instantons for AWGN
channel and iterative decoder. The operational wutility of the
method was illustrated on some number of moderate size
examples and strong dependence of the instanton structure
on the number of iterations was observed. The general op-
timization method was substantially improved and refined in
[33] for LP decoder over continuous channels (with main
enabling example chosen to be the AWGNC). The pseudo-
codeword-search algorithm of {33] was essentially exploring
in an iterative way the Wiberg formula treating an instanton
configuration as a median between a pseudo-codeword and the
zero-codeword.

It was shown empirically that, initiated with a sufficiently
noisy configuration, the algorithm converges to an instanton in
sufficiently small number of steps, independent or weakly de-
pendent on the code size. Repeated multiple times the method
outputs the set of instanton configurations which can further be
used to estimate BER/FER performance in the transient and
error-floor domain. The definition of the instantons and the
instanton-search method were extended in [34] to the BSC. In
this special case, the instanton-search algorithm is provably
efficient in the sense that it outputs an instanton in small
number of steps, and that the weight of the pseudo-codeword
found in the intermediate steps is monotonically decreasing.
(8ee also [35] for an exhaustive list of references for this and
related subjects.)

In this paper, we discuss failures of iterative decoders
(specifically the BP algorithm and Gallager A/B algorithms)
as well as LP decoding over the BSC and the AWGN. We
explain the notion of instanton and elaborate on the connec-
tions between instantons and trapping sets as well as pseudo-
codewords. We then describe algorithms searching for instan-
tons. By using the [155, 64, 20] Tanner code [36] as enabling
example, we illustrate performance of the instanton-search
technique outputing the set of of most probable instantons. By
identifying that all decoding failures can be attributed to the
presence of certain subgraphs, we construct a code avoiding
this subgraph and show that this code cutperforms the original
code. Through the paper, we use BSC and the AWGNC as en-
abling examples. While the underlying approach is similar for
both channels, rigorous statements can be made for BSC [34],
while respective AWGNC statements come from experiments
only.
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1I. PRELIMINARIES

A. LDPC Codes

LDPC codes belong to the class of linear block codes which
can be defined by sparse bipartite graphs [37]. The Tanner
graph [37] G of an LDPC code C is a bipartite graph with
two sets of nodes: the set of variable nodes V' = {1,2,...,n}
and the set of check nodes C' = {1,2,...,m}. The check
nodes (variable nodes resp.) comnected to a variable node
{check node resp.) are referred to as its neighbors. The degree
of a node is the number of its neighbors. A vector v =
(v1,v2,...,v,) is a codeword if and only if for each check
node, the modulo two sum of its neighbors is zero. An (n, 7, p)
regular LDPC code has a Tanner graph with n variable nodes
each of degree v and nvy/p check nodes cach of degree p.
This code has length n and rate r > 1 — ~/p [37]. It should
be noted that the Tanner graph is not uniquely defined by the
code and when we say the Tanner graph of an LDPC code,
we only mean one possible graphical representation.

B. Channel Assumptions

We assume that a binary codeword y is transmitted over a
noisy channel and is received as ¥. The support of a vector

= (Y1, Y2, - - - , Yn)» denoted by supp(y), is defined as the set
of all positions ¢ such that y; # 0. In this paper, we consider
binary input memoryless channels with discrete or continuous
output alphabet. Since, the channel is memoryless, we have

I Pr(dsiv)

i€V

Pr{yly) =

and hence can be characterized by Pr(9;ly;), the probability
that 9; is received given that y; was sent. The negative log-
likelihood ratio (LLR} corresponding to the variable node ¢ €

V is given by
Pr(gily: = 0))

vi = log | =—/————=}.

e (Pf(yiiyi =1)
Two binary input memoryless channels of interest are the
BSC with output alphabet {0, 1} and the AWGNC with output
alphabet R. On the BSC with transition probability p, every
transmitted bit y; € {0,1} is flipped ! with probability p and
is received as §; € {0, 1}. Hence, we have

log (=2} ifg; =0
Vi = ? _
log —1-% ifg; =1

For the AWGN channel, we assume that each bity; € {0,1}
is modulated using binary phase shift keying (BPSK) and
transmitted as 7, = 1 — 2y, and is received as §; = ¥, + n,
where {n;} are iid. N(0,0?) random variables. Hence, we
have
23
a?’

Vi =

IThe event of a bit changing from 0 to 1 and vice-versa is known as
flipping.

C. Decoding Algorithms

1) Message Passing Decoders: Message passing decoders
operate by passing messages along the edges of the Tanner
graph representation of the code. Gallager in [1] proposed
two simple binary message passing algorithms for decoding
over the BSC; Gallager A and Gallager B. There exist a
large number of message passing algorithms (sum-product
algorithm, min-sum algorithm, quantized decoding algorithms,
decoders with erasures to name a few) [7] in which the
messages belong to a larger alphabet.

Let ¥ = (§1,92,-..,0n), an n-tuple be the input to the
decoder. Let Vaz(__, . denote the message passed by a variable
node i € V to 1ts nmghbormg check node o € C in the k%
iteration and wa_,z denote the message passed by a check
node « to its neighboring variable node ¢. Additionally, let
wi’f},z denote thc set of all incoming messages to variable

denote the set of all incoming messages to
(&)

*\ qrt

node ¢ and w*\ .
variable node i except from check node ¢. The term w

is defined similarly.

A decoding algorithm with a specific choice of how the
messages are calculated from the channel output (the best
possible one if messages are calculated locally in the Tanner’s
graph of the code) is called the sum-product algorithm, With a
moderate abuse of notation, the messages passed in the sum-
product algorithm are described below:

WO

Wita — T
=® . = tanh™? (H tanh (wi’{z_{a )
k k
wg—za = YT Z Wi\?x—ré

The result of decoding after k: iterations, denoted by x (*), is
determined by the sign of m; *) = s + Zw:ﬂz If m(k} >0
then $§k) = (), otherwise wgk) = 1.

In the limit of high SNR, when the absolute value of the
messages is large, the sum-product becomes the min-sum
algorithm, where the message from the check o to the bit
1 looks like:

wéﬁ% = min Iw*\:—-)o: HSlgn

The min-sum algorithm has a property that the Gallager

A/B and LP decoders also possess — if we multiply all the

likelyhoods 7y; by a factor, all the decoding would proceed as

before and would produce the same result. Note that we don’t
have this “scaling” in the sum-product algorithm.

To decode the message in complicated cases (when the
message distortion is large) we may need a large number
of iterations, although typically a few iterations would be
sufficient. To speed up the decoding process one may check
after each iterations whether the output of the decoder is a
valid codeword, and if yes to terminate the iterations.

(k= 1}

*\z—»a

2) Linear Programming Decoder: The ML decoding of the
code C allows a convenient LP formulation in terms of the
codeword polytope poly(C) whose vertices correspond to the
codewords in C. The ML-LP decoder finds f = (f1,..., fa)
minimizing the cost function 3. v f; subject to the £ €
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poly(C) constraint. The formulation is compact but impractical
because of the number of constraints exponential in the code
length.

Hence a relaved polytope is defined as the intersection of
all the polytopes associated with the local codes introduced for
all the checks of the original code. Associating (f1,..., fn)
with bits of the code we require

0<figl, VieV H

For every check node «, let N () denote the set of variable
nodes which are neighbors of o. Let E, = {T C Nla) :
|T'| is even}. The polytope @, associated with the check node
« is defined as the set of points (f, w) for which the following
constraints hold

0 <war <1, YT € B, )
ZTEEQ Wo,r =1 3)
fi=Yre BT Wa,r, Vi€ N(a) 4

Now, let Q = N,Q, be the set of points (f, w) such that (1)-
(4) hold for all o € C. (Note that (), which is also referred
to as the fundamental polytope [38], [22], is a function of the
Tanner graph 7 and consequently the parity-check matrix H
representing the code C.) The Linear Code Linear Program
(LLCLP) can be stated as
min ZEZ; Yife, st (f,w) € Q.

For the sake of brevity, the decoder based on the LCLP is
referred to in the following as the LP decoder. A solution
(£, w) to the LCLP such that all f;s and w,, s are integers is
known as an integer solution. The integer solution represents
a codeword [5]. It was also shown in [5] that the LP decoder
has the ML certificate, i.e., if the output of the decoder is a
codeword, then the ML decoder would decode into the same
codeword. The LCLP can fail, generating an output which is
not a codeword.

It is appropriate to mention here that the LCLP can be
viewed as the zero temperature version of BP-decoder looking
for the global minimum of the so-called Bethe free energy
functional [39]. ‘

III. DECODING FAILURES AND INSTANTONS

To characterize performance of a coding/decoding scheme
over any output symmmetric channel, one can assume, without
loss of generality, the transmission of the all-zero-codeword,
ie. y = 0. We make this assumption throughout the paper.
A decoding failure is said to have occurred if the output of
the decoder is not equal to the transmitted codeword (zero-
codeword). Probability of a decoder failure, or frame error
rate as a function of the SNR s can be expressed as:

FER(s) = Zps )0(D), (3)

where the sum goes over all the possible outputs of the
channel for the zero-codeword input. In case of a continuous
output channel, the sum becomes an integral: >~ — [ dg, and

the channel probability mass function becomes a probability
density function: [ dgp,(9) = 1). 8(9) in Eq. (5) is defined
to be zero, in the case of successful decoding, and is unity in
the case of failure. p,{g) i3 the probability of observing ¢ at
the output of a channel characterized by the SNR s.

Calculating the above sum/integral exactly is not feasible,
and the instanton-based approach consists of approximating
the sum/integral by a finite number of terms corresponding to
the most probable failures — the instantons. This approximation
becomes asymptotically exact in the limit of large SNR,
while at smaller SNRs, more terms are needed to obtain
accurate approximation for the FER. Note that the details
of the approximate evaluations are different for discrete and
continuous channels. In the discrete case, the number of
terms is finite. We account for k-most probable configurations,
and FER(s) &= Y5 .., Ngps(9s), where the multiplicity
factor N3 counts the number of instantons equivalent under
bit permutations. For continuous channels an instanton is a
stationary point of the respective integrand, and the approx-
imation should also include, in addition to the multiplicities,
the curvature corrections around the stationary point (e.g.
within Gaussian approximation) [32], [40]. In other words,
FER(s) = Y5, NoC(5)ps(95), where C(g5) is the
curvature factor. Intuitively, since in the case of the AWGNC
and s — o0, C(g3) = O(1/+/s), the decay of the noise
correlations is exponential along one direction (orthogonal to
the error surface) and quadratic along the remaining NV — 1
components of the noise vector (see Fig. 1 for an illustration
of the error surface).

Consistent with the above statements, instantons 3, can be
also defined as special configurations of the noise resulting
in decoding failures such that any incremental (and channel
specific) shift of the noise towards the zero-codeword results in
correct decoding. It is thus useful to also introduce a respective
output, g, = dec(g;), called a pseudo-codeword. It should be
noted that this informal definition of the pseudo-codewords is
generic and applicable to any channels and decoders. While
the output for the LP decoder is well defined and does not
suffer from numerical issues, the iterative decoder can exhibit
oscillations i.e., the bits which are decoded wrongly can
differ from one iteration to another. As a way to streamline
the description of decoding failures in in the presence of
rounding and iterative uncertainties, Richardson [16] suggested
a proxy notion of the trapping set, which is a combinatorial
object that accounts for the decoder ouput over iterations. In
the subsequent discussion we formally define trapping sets
and pseudo-codewords and also provide some BSC-specific
definitions. If an instantoen of a channel/decoder is known,
the respective pseudo-codeword can be easily found, and
conversely if a pseudo-codeword is given {i.e. we know for
sure that there exists a configuration of the noise which is
sandwiched in between the pseudo-codeword and the zero-
codeword) the respective instanton can be restored. In fact,
this inversion is in the core of the pseudo-codeword/instanton
search algorithms discussed in Section IV. We illustrate this
point for the BSC case.

Trapping sets for iterative decoders: In practice, we as-
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sume that the iterative decoder performs a finite number D of
iterations. Let § = ({1, %2, - - - » n ) be a vector which is the in-
put to the iterative decoder and let x %) = (x:(lk}, mgk), o mﬁf’))
k < D be the output binary vector at the k** iteration. A
variable node 7 is said to be eventually correct if there exists
a positive integer K such that for all £ > K, mgk) =0 [16].
Formally, a decoder failure is said to have occurred if there
does not exits k such that supp(x(®)) = @ [16].

Definition 1: [16] For an input ¥, let T(¥) denote the set
of variable nodes that are not eventually correct. If T{F) # 8,
then T(¥) is a trapping set. If ¢ = [T(§)| and b is the number
of odd degree check nodes in the sub-graph induced by T(¥),
we say T(§) is an (o, b) trapping set.

For the BSC, since the input to the decoder as well as the
messages passed are discrete, it is casier to define instantons
in terms of number of bits flipped in the input to the decoder.
The instantons with least number of flips will be the most
dominant in the error floor region. We formalize this intuition
below.

Definition 2: Let T be a trapping and let ¥ € GF(2)™.
Let Y(T) = {§|T(¥) = T}. The critical number m(7) of
trapping set 7 for the Gallager A algorithm is the minimum
number of variable nodes that have to be initially in error for
the decoder to ead up in the trapping set 7, i.e.,

>

m(T) = {,I%i,}}) |supp(3)'.

The most relevant trapping set in the error floor region is
the trapping set with the least critical number.

Definition 3: An instanton is a binary vector ¢ such that
T(i) = T for some trapping set 7 and for any binary vector
7 such that supp(r) C supp(z), T(¢) = @. The size of an
instanton is the cardinality of its support.

Given a trapping set, one can consider vectors whose sup-
port is a subset of the trapping set as input to the decoder and
see if such vectors are instantons. While rigorous statements
cannot be made about finding smallest size instantons, the
above method gives instantons in most of the cases (see [41]
for some illustrations). Intuitively, this seems reasonable as we
do not expect inputs to the decoder which do not have errors
in variable nodes involved in a trapping set to end up in a
trapping set.

Pseudo-codewords for LP decoders: In contrast to the
iterative decoders, the output of the LP decoder is well defined
in terms of pseudo-codewords.

Definition 4. [5] Integer psendo-codeword is a vector p =

{p1,...,pn) of non-negative integers such that, for every
parity check a € C, the neighborhood {p; : i € N(a)} is
a sum of local codewords.
Alternatively, one may choose to define a re-scaled pseudo-
codeword, p = (p1,...,pn) Where 0 < p; < 1,Vi € V,
simply equal to the output of the LCLP. In the following, we
adopt the re-scaled definition. The cost associated with LP
decoding of a vector r to a pseudo-codeword p is given by

Clr,p) = Z YiPi-

i€V

A given code C may have different Tanner graph repre-
sentations and consequently potentially different fundamental
polytopes. Hence, we refer to the pseudo-codewords as corre-
sponding to a particular Tanner graph G of C.

Definition 5: {26, Definition 2.10] Let p = (p1,...,Pn)
be a pseudo-codeword distinct from the all-zero-codeword of
the code C represented by Tanner graph (G . Let e be the
smallest number such that the sum of the e largest p;s is at
least (3¢ pi) /2. Then, the pseudo-codeword weight of p
is defined as follows:

« wpso{p) for the BSC is

2e,
2e—1,

if 3 epi= gzz‘évpi) /%
if Yepi > (Lievpi) /2

. wA‘MIGN(p) for the AWGNC is

wpsc(p) = {

(pr +p2+...pn)?
(pf+pi+...P3)
The minimum pseudo-codeword weight of ¢ denoted by
BSC/AWGN . ..
in is the minimum over all the non-zero pseudo-
codewords of G.

wAWGN(p) =

We now give definitions specific to the BSC.

Definition 6: The median noise vector {or simply the me-
dian) M (p) of a pseudo-codeword p distinet from the all-zero-
codeword is a binary vector with support S = {i1,42,...,7:},
such that p;,,...,p;, are the e(= [(wnsc(p)+1)/2])
largest components of p.

The median noise vector of any pseudo-codeword leads to
a decoding failure (the ouput of the decoder, however, need
not be the pseudo-codeword we start with).

Definition 7: The BSC instanton 1 is a binary vector with
the following properties: (1) There exists a pseudo-codeword
p such that C(i, p) < C(i, 0) = 0; (2) For any binary vector r
such that supp(r) C supp(i), there exists no pseudo-codeword
with C(r,p) < 0. The size of an instanton is the cardinality
of its support.

An attractive feature of LP decoding over the BSC is
that any input whose support contains an instanton leads to
a decoding failure (which is not the case for Gallager A
decoding over the BSC) [34]. This important property is in
fact used in searching for instantons.

To summarize, evaluating FER vs SNR approximately re-
duces to finding the set of most probable instantons and eval-
vating their probabilities, multiplicities and, in the continuous
case, also respective curvatures. Specifically, for LP decoding
over the BSC and the Gallager algorithm, the slope of the FER
curve in the error floor region is equal to the cardinality of
the smallest size instanton (see [42] for a formal description).
Understanding that the knowledge of the instantons allows
efficient approximation of FER vs SNR dependence (which
is our main task), we now discuss approaches to finding the
set of instantons for a given error-correction setting in Section
v
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IV. SEARCHING FOR INSTANTONS

As explained above in Section I instantons that control the
large SNR asymptotics of the FER are the most probable noise
configurations corresponding to decoder failures. Stated this
way the problem of finding an instanton becomes an optimiza-
tion problem, and all the remaining details of this Section are
related to efficient implementation of this, generally difficult,
optimization problem.

A straightforward optimization method for finding instanton
in the case of a continuous channel is based on the standard
{amoeba) optimization [Ref to numerical recepies] was dis-
cussed in Stepanov et @/ [40]. The main idea of the direct
technique is as follows. One draws randomly a unit length
configuration of the noise and finds re-scaling which positions

the re-scaled configuration of the noise exactly at the error--

surface. Thus incremental increase/decrease of the rescaling
factor leads to decoding failure or recovery. Such configuration
and its probability is recorded, and this operation is repeated
(N — 2) times, thus generating N — 1 vertexes of a simplex
with respective probabilities assigned. Then, aiming to find a
more probable peoint in the interior of the simplex, the current
point is transformed according to the standard amoeba rules.
The process is repeated until the size of the simplex becomes
smaller than a preset accuracy, and the resulting most probable
configuration outputs an instanton. The whole optimization
is repeated multiple number of times, each time generating
an instanton. The main advantage of the method is in its
generality (it can be used for any continuous channel) and
simplicity. However, implementing this method is costly.

The instanton-amoeba method easily finds the instantons
for a code if number of iterations in decoding is not large
(less than 20). Increase of the number of iterations, ny,
simply means longer computations. The other more important
effect is associated with enhancement of irregular, stochastic
component in decoding observed with ny, increase. One finds
that already a slight variation in the noise can drastically
change results. That makes the function that we have to
optimize very irregular, which dramatically slows down the
optimization process.

If the number of iterations in belief propagation decoder
is large, the irregular geometry of the error surface makes the
application of the instanton-amoeba scheme difficult. The most
time taking stage is to come up with not necessarily lowest
but reasonably low weight noise configuration that gives a
decoding error. So far the following two ways to achieve that
based on numerical experiment observations were developed:

1} If one inputs an instanton for LP decoder to the min-
sum iterative decoder, then is “survives” (the decoder does
not output a codeword) for infinite number of iterations.

2) Limit the noise configuration on bits where the instanton
for low number of iterations is supported. Work then with an
optimization problem with a lot fewer number of variables
(number of bits in the support).

In contrast to iterative decoding with continous alphabet,

the trapping sets and instantons for the Gallager A/B decoder
can be found using certain combinatorial considerations which

were first pointed out by Richardson [16] and later investigated
in detail in {41], [43], [44], [45]. The trapping sets for Gallager
type decoders are closely related to trapping sets for the bit
flipping decoders.

For LP decoding over the AWGN channel, another sugges-
tion for solving the difficult optimization problem faster was
formulated in [33] by Chertkov and Stepanov . This pseudo-
codeword search algorithm (PCS), originally stated for the
continuous channel model, is based on the aforementioned
relation between instantons and respective pseudo-codewords.
Specifically, if a pseudo-codeword, ¢ corresponding to an
instanton, is known, then reconstructing the respective instan-
ton is equivalent to maximizing the probability of the noise
under condition that the probabilities of the noise configura-
tion counted from the zero-codeword and from the pseudo-
codeword, g, are identical, i.e.

Y = argmaX,p S(y}]pa(y)=ps(y+z?); F#0 " ©)
The idea of the method of [33] consists in to throw a
sufficiently strong configuration of the noise (so that the
resulting decoding would be erroneous), decode it into a
pseudo-codewords, and then pretend that the pseudo-codeword
shares an error-surface with the zero-codeword. Then the
projective instanton is reconstructed using Eq. (6), even though
the noise configuration, especially after the first iteration, is not
an actual instanton. This procedure is repeated until input and
output for an iteration give the same result. It was empirically
shown in [33] that such scheme formulated for the LP decoder
outputs the sequence of noise configurations with probabilities
monotonically increasing with the number of iterations and
converging in a small number of iterations to an instanton.
The PCS was generalised to the case of LP decoding over the
BSC by Chilappagari ef al. in {34]. The algorithm proposed in
[34] termed as the instanton search algorith (ISA) is provably
efficient and outputs an instanton in bounded number of steps.
‘We summarize the algorithm below as it illustrates the various
concepts discussed in this section.

ISA for LP Decoding over the BSC

Initialization (I={) step: Initialize to a binary input vector r
containing sufficient number of flips so that the LP decoder
decodes it into a pseudo-codeword different from the all-zero-
codeword. Apply the LP decoder to r and denote the pseudo
codeword output of LP by p'. '

! > 1 step: Take the pseudo-codeword p’ (output of the (I —1)
step) and calculate its median M (p'). Apply the LP decoder
to M (p') and denote the output by p z,. Only two cases arise:

o wpsc(pPa,) < wese(p'). Then p*! = pyy, becomes
the I-th step output/(l + 1) step input.

» wpsc(Pu;) = wasc(p'). Let the support of M(p') be
S = {i1,...,in . Let S;, = S\{i;} for some i; € S.
Let r;, be a binary vector with support S;,. Apply the
LP decoder to all r;, and denote the is-output by p;,.
If p;, = 0, Vi, then M(p') is the desired instanton and
the algorithm halis. Else, p;, # 0 becomes the {-th step
output/(l + 1) step input.
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V. NUMERICAL RESULTS

This section summarizes statistics of instantons found for
the {155, 64, 20] Tanner code {36] performing over the BSC
and AWGNC and decoded by iterative and LP decoders. The
Tanner code is a (3,5) regular code whose Tanner graph has
girth 8 [36].

A. Instanton Statistics for the Tanner Code

Gallager A algorithm: The most dominant trapping set in
the error floor domain is the (5,3) trapping set which has
critical number 3. There are a total of 155(5, 3} trapping sets
each of which has an instanton of weight 3 [41] (see Fig. 2(a)).
There are 465 (4,4) trapping sets each with critical number
4. Hence, the slope of the FER curve in the error floor region
is dominated by the (5,3) trapping sets and it is equal to 3.
The trapping sets for the Gallager A algorithm are found by a
combination of simulations and combinatorial considerations
(see [16], [41] for more details.)

Iterative BP: The instantons for 4 iterations decoder were
analyzed by the instanton-amoeba method in [25]. The 3
lowest instantons each of which consists of 12 bits were found
and their topological structure was investigated. It turns out
that this bit structure is what is responsible for errors even
for very large number of iterations. MC simulations show that
the error floor asymptotics for Tanner’s code under iterative
decoder with large number of iterations is determined by these
structures {resulting in cffective disatnce of 12.45 [25]). All
the trapping sets corresponding to the lowest weight instantons
contain an (8,2) trapping set which is shown in Fig. 2(b).

LP decoder over BSC: The ISA described in Section IV
found 155 distinct instantons of size 5 (the corresponding
pseudo-codewords have BSC weight 9). The support of each
of these instantons is a (5, 3) trapping set shown in Fig. 2(c).
The ISA also discovered higher weight instantons (see [34]
for more details), but the instantons of size 5 are the most
dominant ones in the error floor region.

LP decoder over AWGNC: The PCS algonthm of [33]
found many low-weight pseudo-codewords (16.4037 being the
least weight pseudo-codeword as found by the PCS). The
weighted-median noise configurations (instantons) (see [33])
corresponding to various low-weight pseudo-codewords have
high noise at 5 variable nodes corresponding to the (5,3)
trapping sets. In fact, the respective BSC weight 9 pseudo-
codewords have low AWGN weight also (but not the absolute
lowest!!). The support of each of the lowest weight pseudo-
codeword is large but the components in the variable nodes
corresponding to the (5,3) trapping set have maximum value
(illustrated in Fig. 2(d)).

An important insight gained from this comparison is that the
decoding failures for various algorithms on different channels
are closely related and are dependent of only a few topological
structures. These relations can be exploited to find instantons
for a given decoder on a given channel based on the knowledge
of instantons for another already analyzed decoder, which can
even be performing over another channel. This relation is also

suggestive for design of a better code, the idea substantiated
in the next Subsection.

B. Code Design Increases the Smallest Instanton Size

The minimum pseudo-codeword weight (as well as the trap-
ping set size) increase with increase of the Tanner graph girth
(see [26], [44]). While girth optimized codes are known to per-
form better in general, the code length and degree distribution
place a fundamental restriction on the best achievable girth.
Observing that the instantons for different decoding algorithms
performing over different channels have a common underlying
topological structure (e.g. the (5,3) trapping set in the case
of the [155,64,20] code), it is natural to discuss design of
a similar but new code which excludes these troublesome
structures. In fact, this suggests a natural code optimization
technique with an improved instanton distribution. Starting
with a reasonably good code (constructed either algebraically
or by the progressive edge growth (PEG) method [46]),
we - find the most damaging instantons and their underlying
topological structure. We then construct a new code avoiding
such subgraphs (either by swapping edges, by increasing code
length, or utilizing a combination of both). We iterate this
procedure till the code can no longer be optimized or reaching
a computation unbearable complexity.

For Gallager A decoding, it has been proved in [47] that
codes with Tanner graphs of girth 8 which avoid the (5, 3)
trapping set and weight 8 codewords can correct all the error
patterns of weight 3 or less. While proving a similar result
might be difficult for the iterative decoder over the AWGN
channel and LP decoder, such considerations nonetheless play
a role in our code design strategy. An algorithm, suggesting
construction of a code meeting the Gallager A-related con-
ditions, was provided in [47]. This algorithm can be scen as
a generalization of the PEG algorithm [46]. Given a list of
forbidden subgraphs, at every step of the algorithm, an edge
is established such that the resulting graph at that stage does
not consist of any of the forbidden subgraphs. ( The PEG
algorithm is a special case forbidding cycles shorter than a
given threshold.)

Using the algorithm proposed in [47], we constructed a new
code of length 155 with uniform left degree 3 and with most
check nodes with degree 5. By construction, this code avoids
{5,3) trapping sets. This results in a steeper FER slope of
4 in the error floor domain under the Gallager A decoder,
as shown in Fig. 3. The minimum weight instanton for LP
decoder over the BSC found by the ISA is 6. Fig. 3 shows
FER performance of the Tanner code and the new code under
Gallager A and LP decoders. The instanton distribution for LP
decoding over the BSC for the Tanner code and the new code
found by running the ISA for 2000 times is shown in Fig,
4. The pseudo-codeword weight distribution for LP decoding
over the AWGNC for the two codes is shown in Fig. 5. All
the above statistics illustarte the superiority of the new code.

VI. CONCLUSION

In this paper, we presented a comprehensive description
of various instanton based techniques for the analysis and
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reduction of error floors of LDPC codes. The most powerful
method discussed is the pseudo-codeword/instanton search
algorithm, designed specifically for the LP decoder. Using the
instanton-based technique for analysis of sample (intermediate
size) codes, e.g. [155,64,20] Tanner code, we conclude that
the underlying topological structures of the most probable
instanton, found for the same code but different channels
and decoders, are related to each other. Armed with this
understanding of the graphical structure of the instanton and
its relation to the decoding failures, we suggested a method
to construct codes whose Tanner graph is free of these struc-
tures. The instanton technique, applied to this code and also
complemented by the direct Monte Carlo simulations, confirm
the success of the new code improvement strategy.

Future work includes (1) adopting the above techniques for
longer codes (2) design a technique combining instantons and
MC ~ so that the entire FER curve would be given in efficient
simulations at once (3) optimization of decoders to reduce
error floors and (4) find other combinatorial strategy for for
design of a code free from the error-floor.
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Fig. 1. lllustration of error surface.
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Fig. 2. lustration of the topological structure of instanton for different channels and decoders (a) A (5,3) trapping set with critical number 3 for Gallager A
algorithm. Here o denotes a correct variable and e denotes a corrupt variable node. (b) An (8,2) trapping set for iterative decoding over the AWGNC. (c) The
support of an instanton of size 5 for LP decoding over the BSC. (d) The support of the lowest weight pseudo-codeword for LP decoding over the AWGN.

Note that the figure illustrates only the variable nodes with the largest components.
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Fig. 4. Instanton weight distribution for the Tanner code and the new code for LP decoding over the BSC as found by running the ISA 2000 times.
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