ya

s
i

L
o

@

LA-UR- waé?f; Y,

Approved for public release;
distribution is unlimited.

Title:

Author(s):

Intended for:

.
Los Alamos

INTERDICTION OF A MARKOVIAN EVADER

ARIC HAGBERG
ALEXANDER GUTFRAIND
DAVID IZRAELEVITZ
FENG PAN

PROCEEDINGS:
ALENEX 09 WORKSHOP ALGORITHM ENGINEERING
AND EXPERIMENTS

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.8. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not -
endorse the viewpoint of a publication or guarantee its technical correciness.

Form 836 (7/08)



Py

Interdiction of a Markovian Evader

Alexander Gutfraind* Aric Hagberg' David Izraelevitz Feng Pan®

Abstract

Network interdiction is a combinatorial optimization problem on an
activity network arising in a number of important security-related
applications. It is classically formulated as a bilevel maximin
problem representing an “interdictor” and an “evader”. The evader
tries to move from a source node to the target node along the
shortest or safest path while the interdictor attempts to frustrate
this motion by cutting edges or nodes. The interdiction objective
is to find the optimal set of edges to cut given that there is
a finite interdiction budget and the interdictor must move first.
We reformulate the interdiction problem for stochastic evaders by
introducing a model in which the evader follows a Markovian
random walk guided by the least-cost path to the target. This model
can represent incomplete knowledge about the evader and the graph
as well as partial interdiction. We formulate the optimization
problem for this model and show how, by exploiting topological
ordering of the nodes, one can achieve an order-of-magnitude
speedup in computing the objective function. We also introduce
an evader-motion-based heuristic that can significantly improve
solution quality by providing a global view of the network to
approximation methods.

1 Introduction

Mathematical modeling of network interdiction was origi-
nally introduced in the study of military supply chains and
interdiction of transportation networks [12, 16]. The prob-
lem is currently studied in different classes of networks and
in a variety of contexts, and finds applications in countering
of nuclear proliferation programs [17], control of infectious
diseases [20], and disruption of terrorist networks [10]. The
underlying networks may represent transportation networks,
but more generally may be social or activity networks.
Recent interest in the problem has been in part due to the
threat of smuggling of nuclear materials and devices [18]. In
the case of nuclear smuggling, interdiction might correspond
to the installation of special radiation-sensitive detectors
along the sefected transportation edges.

The problem is often posed in terms of two agents called
“interdictor” and “evader” where the evader attempts to min-
imize some objective function in the network, e.g. distance,
cost, or risk when traveling from network location s to
location ¢, while the interdictor atterapts to limit success
by removing network nodes or edges. The interdictor has
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limited resources and can thus only remove a finite set of
nodes or edges. In the simplest formulation, the interdictor
seeks to identify a set of edges (or nodes) on the network
whose removal maximizes the cost of the least-cost path
from a source to a destination node, while the evader seeks to
find and traverse the best unimpeded path. This interdiction
problem is known as the “most vital edges” (or “most vital
nodes”) problem [9] and it has been shown to be NP-hard [3]
and hard to approximate [6]. Methods for solving network
interdiction problems have included exact algorithms for
solving integer programs, such as branch-and-bound, as
well as decomposition methods to rebuild the network by
iteratively adding relevant paths to reduce the size of both
the underlying network and the number of binary decision
variables. A more recent approach, based on structure-
dependent cutting planes, exploits the relationship between
the ordered set of evading paths and binary interdiction
variables [19].

A common assumption in many studies is that there is
perfect knowledge about hard-to-compute network param-
eters, such as the cost to the evader to traverse a network
edge in terms of resource consumption or probability of
detection. However, it is clear that the evader, and, to a
lesser extent, the interdictor, have unreliable and incomplete
information about the network and edge weights. This
undermines the classical approach which assumes that the
evader follows just the optimal (e.g. least-cost) evasion
path because the constitution of this path can be highly
sensitive to network parameters. Indeed, under uncertainty
the evader can only be described in probabilistic terms. By
constructing such probabilistic evader models one can expect
to develop more robust interdiction solutions. Any type of
uncertainty places the interdiction problem within stochastic
optimization, where one seeks to find those edges that are
vital on average. This problem of stochastic interdiction has
been the focus of a number of recent studies [17, 1, 5, 14, 21].

Failure to account for evader uncertainty can lead to sub-
optimal decisions, namely, solutions that do not maximize
the expected cost of the evader to reach the target. In the
network in Fig. 1 there are four paths from the source to
the target: through nodes 1,2,3 and the direct path {0,5)
with costs 9,8,8 and 8.01, respectively. If we can only
remove one edge the solution in the classical formulation is
to remove edge (4,5) which increases the path length from
8.0 to 8.01. Now suppose an evader would take, with equal
probability, any path whose cost is < 1.25 times the cost of
the least-cost path. In other words, the evader is unable to
determine exactly which one of those paths has the least-
cost. If so, interdiction at (4,5} would actually decrease the
expected cost from = 8.25 to 8.01. This is because it would
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Figure 1: Example network where the shortest path inter-
diction formulation produces a suboptimal solution when
interdicting a single edge. Interdicting that edge {(4,5)
decreases the expected path cost. Interdicting any one of
(0,2),(2,4),(0,3), or (3,4) increases the expected path cost.

cut off the costly path through node 1. The optimal choice is
actually to interdict any one of (0,2), (2,4), (0,3), or (3,4).
This choice would increase the expected cost from == 8.25 to
~ 8.33.

In this paper we propose a Markovian network interdiction
framework which can capture a wide range of network be-
haviors by the evader (Sec. 2). We then specialize the general
framework to a simple model based on low-level evader
decision-making processes (Sec. 3). Finally we develop
efficient heuristic algorithm for the interdiction problem
using predicted evader motion (Sec. 4).

2 The general interdiction model

Our formulation is a stochastic geperalization of the classical
max-min shortest path interdiction problem [12, 16]. In the
classical formulation an evader wants to traverse a network
from an origin s to a destination ¢. Let p be some path
between s and ¢ in a graph G(N,E) with the set of nodes
N and the set of weighted edges E. Let ¢(p) be the path cost
computed by summing the costs on each of the edges in p.!
The cost C;; of an edge (i, ) is used here interchangeably
with edge weight. The costs are assumed to be given in
the problem and may depend on direction (in the case that
G{N,E) is a digraph).

The network interdiction strategy is represented by choos-
ing elements r from the feasible interdiction set R which is

!"The additivity of costs is natural for resources such as money or time,
but it also holds for simple models of risk. Suppose cost ¢(p) measures the
probability of detection on p, which is { less the probability of evasion on p.
If g(p} is the probability of evasion on this path then set ¢(p} = —log(1l ~
g{p}). If the probabilities of detection on all edges of p are independent,
then the probability of detection on p, 1 —g{p}, is just an exponential of
negative the sum of the costs ;; along each edge on p.

typically a subset of the edge set E with a limited size B. We
set the value of r;; = 1 if edge (4, j) is interdicted, and r;; =0
otherwise. Let D;; > 0 be the added cost of traversing (i, j)
when it is interdicted. When the value of D;; is very large all
paths avoid the interdicted edge (i, /) (assuming that there is
an alternative path) which effectively removes the edge (i, j)
from the graph.

In the classical model, the evader only travels on least-cost
paths, and is fully aware of interdiction decisions. We denote
the increased cost of traversing path p given an interdiction
strategy r as ¢,{p). Thus if » intersects p, then typically
¢r(p) >=c(p). Given the set of edges E, on the path
p €PT, cr(p) =clp) + L jeg, Dijrij and we need to solve
the optimization problem

max min cr(p). (D
This formulation is for edge interdiction but a similar prob-
lem can be considered for node interdiction by introducing
node costs D;.

A stochastic version of the interdiction problem can be
constructed by supposing that an evader may take any path
from s to ¢, according to some probability distribution, rather
than always choosing the least-cost path. Randomness in
evader path decision could be caused by uncertainty about
interdiction decisions r or network costs, mistaken cost com-
putations, or possibly by intent to increase unpredictability.
The path p becomes a random variable distributed as Pr(p),
and the expected cost of traveling from s to ¢ is then

E(c)= Y Pr(p)c(p). )

peEPT

The interdiction problem becomes

max Y Pr(pir)c(p), (3)
TER pePT

where Pr(plr) is now the probability of traversing a path
given the interdiction set r and note that Pr(p|r} implicitly
contains the evader’s strategy. The classical optimization
problem (1) is clearly just a special instance of (3) when
the expectation is conditioned on traversal of only least-cost
paths.

2.1 Markovian evaders In order to compute Pr{p|r)
values it is necessary to develop stochastic evader models.
In the following we consider, for simplicity, the problem of
a Markovian evader. Complete information about such an
evader is encoded in a distribution of starting nodes, «, and
a Markovian transition probability matrix, P. An element F;;
of this matrix is the probability that an evader at node { will
move along edge (i, j). The distribution of starting nodes
is assumed to be given and independent of the interdiction
strategy r, while the P matrix is assumed to be determined
as soon as the graph and r are known. This Markovian
assumption simplifies cost computations as we show below



but, in general, the evader may have transition probabilities
node i to node j that depend not only on the current evader
location and target but also on the history of previous moves.

To compute the expected path cost E{p) with a given
a and P we first construct a list of paths that reach ¢ in
order of increasing length.? It is convenient in the following
calculations to introduce a new matrix M to be the same
as the transition matrix P, but with a single entry M, set
to 0. This M can be interpreted as an evader model where
the evader is removed from the network when reaching the
target . Suppose a path from s to ¢ is specified by the edge
sequence (s,a),(a,b),..., (z,1) (see for example Fig. 2). The
conditional probability that the evader will traverse this path
is My M_p,...M,,. The cost accumulated along this path is

Coa+Cap+ ... +Cy, €]

where C;; would include the cost of passing an interdicted
edge if (i, j) is interdicted. Let z, be the probability vector
whose j coordinate is the probability that a path of length
n begins at ¢ and ends at j. Thus, 7, is the sum of the
probabilities of all paths of length # that end at j. Since M
defines a Markov chain, m, = 7,1 M = mpM” = aM", where
a is the distribution over the starting nodes. If all paths must
begin at s, then a is just the unit vector in the s direction.

Figure 2: The evader’s goal is to travel from node s to node 7 and
the interdictor’s task is to remove edges {or nodes) to increase the
expected path traversal cost to the evader. The probability of the
evader crossing the marked edge (a,b) is My, with an associated
traversal cost of Cy,. The costs and probabilities are set by the
network structure and the evader model.

Let the vector A, represent the expected accumulated costs
for paths of length n. The j coordinate [&,]; is the expected

“The length of a path p is the number of edges in the path, while the cost
¢(p) of a path is the sum of the costs of the edges. These are equal only if
the cost of each edge is unity.

cost accumulated by a path with length » that terminates at j

() = 3 [Anet]iMij + [ |iMiCij - )

i
The entire vector can be written as
hn =hn-1M+nn~l(C®M): (6)

where CoM is the matrix formed by element-wise
“Hadamard” multiplication of C and M. The expected
accumulated cost of paths of any length is given by
k=37 oh,, when the sum converges. Noting that
S0 = Yo oM = a(I— M)~!, and summing Eq. (6)
over all n gives

h=a(I-M)" (CoM)(I-M)~ !, )

where I is the identity matrix. Equation 7 is key to our
approach: its £ element, [4];, expresses in closed form the
expected cost of paths starting at s and ending at ¢ given the
evader’s movement model. Each part of Eq. (7) formula has
an intuitive meaning: the vector a(I—M)~! is the expected
number of times that each of the nodes is visited by the
evader when starting at a distribution a [13, p.419]; the
vector a(I—M)~{(C®M) is the expected cost of reaching
each of the nodes from their immediate predecessor nodes;
and A gives the expected cost of reaching each of the nodes
from the starting distribution a.

The interdiction objective, according to our approach, is
to maximize [A];. Because the interdiction variable r affects
the costs and then the matrix M this results in the nonlinear
optimization problem

max [a@d-M)H(CoM)y(T-M)~'] . (8)

This expression can be generalized for the case of mul-
tiple evaders where evader & has certain probability w®)
of occurring (3, w* = 1), as well as a distinctive source
distribution a®), target node #*) and transition matrix M,
The generalized objective would be a weighted sum of
Eq. (7).

3 Least-cost-guided evader model

In order to solve interdiction problems, it is necessary to
develop a concrete model of evader behavior, namely, to
specify M, and this is our next task. In general, model design
for the Markovian evader is constrained by the requirement
that 3. o/, converges. Fortunately, it is sufficient to know
that any node is visited at most a finite number of times
(because ||| < ||a(T—M)~'||, max; ;egCij.) Hence, the
sum converges if under the model a(I—-M)~! is well-
defined. For a general source distribution a this corresponds
to the existence of (I—M)~!. This is guaranteed if the
target node is an absorbing state of the Markov chain defined
by P, namely if: (a) upon reaching the target the evader
never leaves and (b) for each source site, the target node is



reached with non-zero probability after finitely many steps
[13, Sec.11.2]>.

Recall that stochasticity in evader motion may have two
causes: first, the evader has limited information about the
network topology, interdiction decisions and the costs/risks
along alternative paths and second, the evader may be
intentionally trying to make unpredictable moves to make
the task of the interdictor harder. In order to capture the
former stochasticity, suppose that the errors of the evader
are random rather than systematic. This implies that the
network known to us gives an average of the networks that
the evader might perceive. If so, the probability Af; that
a cost- or risk-minimizing evader at node i would traverse
i — jincreases with the probability of (successful) evasion
on the shortest path to the target through this edge, gi;.
Suppose then that M;; is found by taking a monotonically
increasing function ¢ : ¢;; — R, and setting M;; o< ¢(gi;).
One choice is to assume that an evader would choose edge
(i, j) with probability proportional to g;;, or more generally,
proportional to a positive power of g;;

s 1
M;j o (Z—’) , )

where A > 0 is a parameter, g;, = max; g;; is the probability
of evasion if the shortest path from i to the target is followed,
and the constant of proportionality is found from 3,; M;; = 1
(for an illustration, see Fig.3.) When A — oo the evader
moves deterministically along the least-risk path and when
A = 0 the motion is perfectly random. The least-risk path
has the highest probability, but the difference with other
paths vanishes as A — 0. Hence, the model can be called the
“least-cost-guided evader”. The parameter A represents the
precision of the information the evader has about the graph
and interdiction decisions.

In many cases the values g;; and g, are not known directly
but are instead found by relating them to edge costs and
applying Dijkstra’s algorithm. One approach is to find the
cost of the path through j, z;;, and the cost of the least-cost
path from i, z;, (see Eq. 4.) Then the probabilities of evasion
may be computed from the cost by the relation g;; = 7%,
Substitution into Eq. 9 yields

Mij o e“A'(Zij‘“Zi*} . (1())

Notice that although M;; values depend on the cost of least-
cost paths, this dependence is smooth rather than a step
function of the classical evader model. This model is similar
to one developed for routing in ad-hoc wireless networks. In
that application M is used to determine where to transmit
a message when the final destination cannot be reached
directly [4].

3The M matrix here is the Q matrix in Grinstead and Snell’s formula-
tion [13] except for a small detail: Q includes only the transitions between
non-absorbing states, but here M does include the absorbing state - the farget
node 1. As a compensation, we impose My, = 0 implying that the evader is
removed from the graph upon reaching .

3.1 Model with no backtracking A useful variant of
this model is to make the reasonable assumption that evaders
never backtrack, that is, move away from the target node ¢
or move to an already-visited node. Hence, we assume that
there is zero probability of motion through (i, ) if i is at
least as close to the target as j as defined by ¢(i) < ¢(J),
where ¢(i) and ¢(j) are the smallest costs of paths to the
target from nodes { and j computed using Eq. (4). This
assumption implies that the evader would never cross a node
or an edge twice. Consequently the set of nodes becomes a
partially ordered set and as a result, there exists a relabeling
O (i.e. a basis) of the nodes such that if ¢(i) > ¢{j) then
o(i) > 6(j). A simple (non-unique) procedure is to take
the target node as &(t) = 0 and then rank the nodes in the
order of their distance i.e. cost along least-cost path to ¢,
breaking ties arbitrarily. Computationally, this is the same
as the order they are reached by Dijkstra’s algorithm that
starts at t. The transition probability becomes {where ¢ is
the normalization)

My = e M~z c(z:) > ¢ J:) .
0 c(@) < e())

Source

Target

Figure 3: Tlustration of the evader model in Eq.( 10) on a
50-node network. The probabilities that an evader would
pass any one of the edges are indicated by the width of the
(red) edges. The thin (gray) edges have probability zero and
thus not traversed at all. The evader has A = 0 and does not
backtrack.

This no-backtracking assumption implies that all paths
must reach the target after at most [N|— 1 steps, where |N|
is the number nodes in G, and hence M becomes nilpotent
of power |[N| — 1. Moreover, by labeling the nodes from 0
up in order of increasing cost, M can be written as a lower-
triangular matrix with zero diagonal. For example, if the
evader traverses a 2x3 grid graph with the target in any corner



node then one possible o gives the matrix

0
I

M= 1

= O
h @ O
h oo

0
50

This special structure of M facilitates an order-of mag-
nitude speedup in the computation of Eq. 7. For a general
M, computing a{I— M)“1 involves Gaussian elimination at
a cost of |N|>. For a nilpotent lower-triangular M the cost
falls to |N|? since we can use backward-forward substitutions
instead of Gaussian elimination. The cost of computing the
objective function Eq. 7 is also expected to drop to O(|N|?)

despite the need to reorder the matrix C when the nodes are
relabeled.

4 Solving the Markovian interdiction problem

The challenge of network interdiction consists of developing
both realistic models and {ractable algorithms. The above
evader model adds realism to interdiction but does not reduce
the computational complexity of interdiction. The general
model is computational hard because in the limit of A —
0, the model reduces to the least-cost interdiction problem
which is NP-Hard [2, 3] and also hard to approximate
[6]. Therefore, in this section we discuss approximation
algorithms. We consider general purpose algorithms such
as simulated annealing, as well as heuristics based on evader
motion and network structure.

4.1 Local search algorithms Local search algorithms
have been successfully used to solve many combinatorial
optimization problems. In general, local search algorithms
take a random solution (or a population thereof) and improve
it by a series of incremental changes. Some of the the most
frequently used local search algorithms are simulated an-
nealing (SA), genetic algorithm (GA), Tabu search (TS) [15].
In addition to those we consider here a randomized greedy
algorithm (RGA) which constructs a solution incrementally,
(one edge at a time). At each increment in the RGA an edge
is added to the interdiction set which is the best of a random
sample of edges (see Alg. 1). The sample size L is typically
much smaller than the graph size because of the high cost
of computing the change Ag in the objective function. By
running the local algorithms several times it is possible to
improve the likelihood of finding the optimal set.

We compared the local search algorithms on a set of 50
network interdiction problems. In each problem the under-
lying network siructure was constructed randomly using a
100-node Geographical Threshold Graph (GTG) model. The
GTG mode! has been used as a model for wireless networks
and may be appropriate as a model for random transportation
networks [7]. We set the threshold parameter in the GTG

Algorithm 1 RGA construction of the interdiction set § with
budget B and sample size L
S« @
while B > Odo
W « {L random elements from E ~. S}
for alle; ¢ W do
As(e) :=h(SU{ei}) —h(S)
S8y {argmax cew As(er) }, resolving ties arbitrarily.
B~B—1
Output(S)

model at 8 = 30 to produce sparse graphs but connected
graphs; resuiting in graphs of around 800 edges.

To make the comparison fair, all algorithms were allowed
to perform the same number of cost evaluations and all had
their parameters tuned. To compare solutions across several
different networks with different interdiction complexities,
the solution on each network was normalized by the solution
found on this network with a benchmark algorithm. For the
benchmark, we used a variant of RGA, namely RGA with
L = |E| so the “sample” contains all of the network’s edges.
This exhaustive search allows this algorithm to find solutions
superior to anything the four algorithms can find (at a vast
increase in computational cost.)

As can be seen in Fig. 4, the four algorithms gave
comparable performance. In another experiment with a
small sample of other types of graphs, it was found that
only SA, RG, and RGA gave comparable performance, while
the performance of the genetic algorithm was significantly
inferior in percentage and statistical senses to the other three
algorithms (data not shown). The relatively high variance
in all heuristics is likely due to sensitivity of the solution
quality to randomness in sample choice. In absolute sense,
the performance of all four algorithms was relatively poor.
The average solution was 83% of the benchmark algorithm,
which itself likely falls short of the optimum (possibly by a
large gap).

In general local search algorithms are not a promising
approach for large problems. Given the exponential size of
the solution space it is unlikely that they would be able to
explore even a small fraction of it in a reasonable number
of optimization runs. Moreover, the solution space is quite
rugged: there are synergies (non-linear gainsy when multiple
edges are interdicted on paths going to a single target.

4.2 Graph heuristics The poor performance of the local
search algorithms suggests that fast high-quality approxi-
mation algorithms can only come from more specialized
solvers that exploit the structure of the interdiction problem,
We now discuss two heuristics, RGAH-flow and RGAH-
betweenness, that build on top of the RGA algorithm above.
The idea in both is to make the RGA algorithm above
more efficient; instead of randomly sampling from E < §
we choose edges from that set that are ranked highly by a
heuristic as described in Alg.2. In Alg.2, Hg(e;) is the value
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Figure 4: A comparison of of local search algorithms on
sample interdiction problems. (top) The cumulative distri-
bution function of the highest evader cost for 50 runs of each
algorithm. The overlap between the data series indicates
that no algorithm stochastically dominates the other three.
(bottom) The distribution of best evader costs. The box
contains runs from the lower to upper quartile values of the
data. The high overlap between the boxes indicates that all of
the algorithms have comparable performance. In all runs, the
edge costs were C;; = 1 and interdiction doubled them to 2
(D;; = 1.) There were two evaders with uniformly distributed
probability of starting from the set of source nodes. For half
the problems we used A = 1 and the other A == 1000. The
interdictor budget was B = 6 and the sample size was L = 20.
The evader cost in both graphs was scaled by the solution of
a benchmark algorithm (see text).

of the heuristic (e.g. edge betweenness of ¢;) on the network
G modified by interdicting the set S. We give two examples
below of heuristics that hold promises for our interdiction
problem.

Algorithm 2 RGAH with budget B and sample size L

S—@

while B > 0 do :
W «{|%| random elements from E \. S}
W —RU{e; |e; € top | 51| elements ranked by Hy(e;) }
foralle; c Wdo

As(e:) == h(SU{e}) —h(S)

S SU {argmaxeiéw As(e;) }, resolving ties arbitrarily.
B—B-1

Output(S)

Notice that Alg.2 selects some but not all of the edges
using the heuristic. Allowing some edges to be selected
randomly ensures that the algorithm is not deterministic:
determinism would have prevented it from exploring the
entire set of feasible solutions even in principle (for complete
exploration replace argmax with stochastic selection). Also,
the reason RGAH is allowed only L — 1 edges rather than L
in the sample was to keep the comparison of the algorithms
fair, namely, to ensure that the basic algorithm (RGA) and
its heuristic-modified versions (RGAH) have about the same
asymptotic computational cost (more on the cost of the
heuristic below.) Thus, if the solutions found by RGAH
have better quality than those of RGA then it is because the
heuristics are able to identify interdiction locations that are
better than random.

The RGA does not provide performance guarantees. In-
deed, on some graphs its solution is arbitrarily poor as
a fraction of the optimal sclution. Nevertheless, RGA
performed as well as the other local search algorithms and
it is probably the simplest of them all s0 it is a logical

foundation for building heuristic algorithms. It would be

interesting to incorporate heuristics into algorithms other
than RGA.

4.2.1 Evader flow One heuristic approach is to exploit
the fact that edges likely to be traversed by the evader are
also likely to be good interdiction locations. Interdiction
of such edges will compel the evader to take alternative
paths which might be considerably more costly. Another
argument in support of this heuristic is from the reverse: it
would be wasteful to interdict a low-likelihood edge i.e. an
edge not likely to be traversed by the evader because such
an interdiction is not going to increase the evader’s cost.
Naturally any heuristic based on evader motion in the current
graph has limited ability to predict evader motion on the
graph after edges have been interdicted; it may be possible
for the evader to take an alternative path with little or no
cost penalty. Fortunately, this is not a serious problem since
within RGAH, the heuristic is only the first computational



step. After selection of the top likelihood edges (and the
random sample), we compute the gain from interdicting each
one of them, and then take the one with the best gain (that is,
greatest increase in evader cost.)

For the flow heuristic, we rank each edge (i, j} based on
the the expected number of times the evader is likely to
traverse it, a(I—M)™'M; ;. These values can be computed
for all edges in the network simultaneously at a cost of
O(|IN?) . In contrast, to compute the evader cost in Eq. (7)
for all edges would cost O(|E| - |N|?). The A value in the
heuristic was set to be the same as of the evader itself. In
general, it is possible that at least on some graphs setting A to
be lower than the evader’s own would give better exploration
of the solution space and hence better resuits.

4.2.2 Betweenness centrality Another  heuristic
approach is to use network betweenness centrality, originally
introduced to measure the importance of nodes in a social
networks [11], to rank the edges. Betweenness centrality is
the fraction of shortest paths (or least-cost paths in weighted
networks) between all pairs of nodes in a network that cross
a given node (or edge). This metric identifies those edges
that are critical to connectivity within a network because
they participate in a large number of least-cost paths linking
nodes on a network, such as a bridge edge that joins two
graph components. Interdiction of such edges is likely
to significantly increase the evader’s cost. This heuristic
is less specific than the direct evader motion (the flow)
because it takes all pairs of nodes and not just the sources
and target of the evader. Yet, it may be more robust to the
evader bypassing an interdicted edge. The computational
cost of this heuristic is O(|N||E| + |N|*log|N|) (8] which is
comparable to the flow heuristic.

4.2.3 Performance of heuristic algorithms For the
comparison of the RGAH algorithms we used the same
50 example interdiction problems introduced earlier. The
results of the comparison show that the RGAH with flow
heuristic stochastically dominates the other algorithms and
provides considerable improvement in solution quality as
shown in Fig. 5. This advantage was maintained in both
A =0 and A = 1000 cases (data not shown). The gain from
~ the heuristic is significant: the normalized cost of RGAH
with the flow heuristic is very close to 1.0 which implies that
it finds solutions almost indistinguishable from solutions
found by an algorithm using 39.5 == 790/20 times as many
cost evaluations. In contrast, the betweenness heuristic does
not provide any significant gain in performance.

5 Further work

The evader model developed here is a first step toward a more
refined model that more closely ties evader motion with its
computational and informational constraints. Research into
more refined models promises further gains in computational
performance and realism. The algorithm performance data
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Figure 5: Comparison between the basic RGA algorithm and
two variants which use a heuristic to choose edges. (top) The
cumulative distribution function of the highest evader cost
for 50 runs of each algorithm. (bottom) The distribution of
best evader costs. The box contains runs from the lower to
upper quartile values of the data. A one-tailed t-test supports
the advantage of RGAH-flow over the other two algorithms
with p < 0.000! and p < 0.0001 for RGAH-betweenness
and basic RGA, respectively. The scale is normalized as in
Fig. 4.



suggests that heuristics can be very valuable for solving
the interdiction problem. However, it would be extremely
useful for network interdiction and other applications to
construct a method for identifying edges that would be vital,
that is, cannot be cheaply bypassed by the evader. This
could potentially eliminate the requirement of computing
the objective function and keeping the sample size small.
Another important objective would be to develop better
theoretical understanding of the performance of the evader
flow heuristic and to bound its performance.
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