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Interdiction of a Markovian Evader 

Alexander Gutfraind* Aric Hagbergt David Izraelevitz+ Feng Pan§ 

Abstract 

Network interdiction is a combinatorial optimization problem on an 
activity network arising in a number of important security-related 
applications. It is classically formulated as a bilevel maximin 
problem representing an "interdictor" and an "evader". The evader 
tries to move from a source node to the target node along the 
shortest or safest path while the interdictor attempts to frustrate 
this motion by cutting edges or nodes. The interdiction objective 
is to find the optimal set of edges to cut given that there is 
a finite interdiction budget and the interdictor must move first. 
We reformulate the interdiction problem for stochastic evaders by 
introducing a model in which the evader follows a Markovian 
random walk guided by the least-cost path to the target. This model 
can represent incomplete knowledge about the evader and the graph 
as well as partial interdiction. We formulate the optimization 
problem for this model and show how, by exploiting topological 
ordering of the nodes, one can achieve an order-of-magnitude 
speedup in computing the objective function. We also introduce 
an evader-motion-based heuristic that can significantly improve 
solution quality by providing a global view of the network to 
approximation methods. 

1 Introduction 

Mathematical modeling of network interdiction was origi­
nally introduced in the study of military supply chains and 
interdiction of transportation networks [12, 16]. The prob­
lem is currently studied in different classes of networks and 
in a variety of contexts, and finds applications in countering 
of nuclear proliferation programs [17], control of infectious 
diseases [20], and disruption of terrorist networks [10]. The 
underlying networks may represent transportation networks, 
but more generally may be social or activity networks. 
Recent interest in the problem has been in part due to the 
threat of smuggling ofnucIear materials and devices [18J. In 
the case of nuclear smuggling, interdiction might correspond 
to the installation of special radiation-sensitive detectors 
along the selected transportation edges. 

The problem is often posed in terms of two agents called 
"interdictor" and "evader" where the evader attempts to min­
imize some objective function in the network, e.g. distance, 
cost, or risk when traveling from network location s to 
location t, while the interdictor attempts to limit success 
by removing network nodes or edges. The interdictor has 
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limited resources and can thus only remove a finite set of 
nodes or edges. In the simplest formulation, the interdictor 
seeks to identify a set of edges (or nodes) on the network 
whose removal maximizes the cost of the least-cost path 
from a source to a destination node, while the evader seeks to 
find and traverse the best unimpeded path. This interdiction 
problem is known as the "most vital edges" (or "most vital 
nodes") problem [9J and it has been shown to be NP-hard [3J 
and hard to approximate [6]. Methods for solving network 
interdiction problems have included exact algorithms for 
solving integer programs, such as branch-and-bound, as 
well as decomposition methods to rebuild the network by 
iteratively adding relevant paths to reduce the size of both 
the underlying network and the number of binary decision 
variables. A more recent approach, based on structure­
dependent cutting planes, exploits the relationship between 
the ordered set of evading paths and binary interdiction 
variables [19J. 

A common assumption in many studies is that there is 
perfect knowledge about hard-to-compute network param­
eters, such as the cost to the evader to traverse a network 
edge in terms of resource consumption or probability of 
detection. However, it is clear that the evader, and, to a 
lesser extent, the interdictor, have unreliable and incomplete 
information about the network and edge weights. This 
undermines the classical approach which assumes that the 
evader follows just the optimal (e.g. least-cost) evasion 
path because the constitution of this path can be highly 
sensitive to network parameters. Indeed, under uncertainty 
the evader can only be described in probabilistic terms. By 
constructing such probabilistic evader models one can expect 
to develop more robust interdiction solutions. Any type of 
uncertainty places the interdiction problem within stochastic 
optimization, where one seeks to find those edges that are 
vital on average. This problem of stochastic interdiction has 
been the focus of a number of recent studies [17, I, 5, 14, 21]. 

Failure to account for evader uncertainty can lead to sub­
optimal decisions, namely, solutions that do not maximize 
the expected cost of the evader to reach the target. In the 
network in Fig. 1 there are four paths from the source to 
the target: through nodes 1,2,3 and the direct path (0,5) 
with costs 9,8,8 and 8.01, respectively. If we can only 
remove one edge the solution in the classical formulation is 
to remove edge (4,5) which increases the path length from 
8.0 to 8.01. Now suppose an evader would take, with equal 
probability, any path whose cost is :::: 1.25 times the cost of 
the least-cost path. In other words, the evader is unable to 
determine exactly which one of those paths has the least­
cost. If so, interdiction at (4,5) would actually decrease the 
expected cost from ~ 8.25 to 8.01. This is because it would 
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Figure 1: Example network where the shortest path inter­
diction formulation produces a suboptimal solution when 
interdicting a single edge. Interdicting that edge (4,5) 
decreases the expected path cost. Interdicting anyone of 
(0,2). (2,4),(0,3), or (3,4) increases the expected path cost. 

cut off the costly path through node 1. The optimal choice is 
actually to interdict anyone of (0,2), (2,4), (0,3), or (3,4). 
This choice would increase the expected cost from ~ 8.25 to 
~ 8.33. 

In this paper we propose a Markovian network interdiction 
framework which can capture a wide range of network be­
haviors by the evader (Sec. 2). We then specialize the general 
framework to a simple model based on low-level evader 
decision-making processes (Sec. 3). Finally we develop 
efficient heuristic algorithm for the interdiction problem 
using predicted evader motion (Sec. 4). 

The general interdiction model 

Our formulation is a stochastic geperalization of the classical 
max-min shortest path interdiction problem [12, 16]. In the 
classical formulation an evader wants to traverse a network 
from an origin s to a destination t. Let p be some path 
between sand t in a graph G(N,E) with the set of nodes 
N and the set of weighted edges E. Let c(p) be the path cost 
computed by summing the costs on each of the edges in p.l 
The cost Cjj of an edge (i,j) is used here interchangeably 
with edge weight. The costs are assumed to be given in 
the problem and may depend on direction (in the case that 
G(N, E) is a digraph). 

The network interdiction strategy is represented by choos­
ing elements r from the feasible interdiction set R which is 

1The additivity of costs is natural for resources such as money or time, 
but it also holds for simple models of risk. Suppose cost c(p) measures the 
probability of detection on p, which is 1 less the probability of evasion on p. 
If q(p) is the probability of evasion on this path then set c(p) -log(1 
q(p». If the probabilities of detection on all edges of p are independent, 
then the probability of detection on p, 1 - q(p), is just an exponential of 
negative the sum of the costs Cjj along each edge on p. 

typically a subset of the edge set E with a limited size B. We 
set the value of rij = 1 if edge (i, j) is interdicted. and nj = 0 
otherwise. Let Dij ?: 0 be the added cost of traversing (i, j) 
when it is interdicted. When the value of Dij is very large all 
paths avoid the interdicted edge (i, j) (assuming that there is 
an alternative path) which effectively removes the edge (i, j) 
from the graph. 

In the classical model, the evader only travels on least-cost 
paths, and is fully aware of interdiction decisions. We denote 
the increased cost of traversing path p given an interdiction 
strategy r as cr(p). Thus if r intersects p, then typically 
cr(p) >= c(p). Given the set of edges Ep on the path 
P E PT, cr(p) = c(p) + L(i,j)EEpDWiJ and we need to solve 
the optimization problem 

max min cr(p) . (1) 
rER pEPT 

This formulation is for edge interdiction but a similar prob­
lem can be considered for node interdiction by introducing 
node costs Dj. 

A stochastic version of the interdiction problem can be 
constructed by supposing that an evader may take any path 
from s to t, according to some probability distribution, rather 
than always choosing the least-cost path. Randomness in 
evader path decision could be caused by uncertainty about 
interdiction decisions r or network costs, mistaken cost com­
putations, or possibly by intent to increase unpredictability. 
The path P becomes a random variable distributed as Pr(p), 
and the expected cost of traveling from s to t is then 

E(c) L Pr(p)c(p). (2) 
pEPT 

The interdiction problem becomes 

max L Pr(plr)cr(p),
rER pEPT 

(3) 

where Pr(plr) is now the probability of traversing a path 
given the interdiction set r and note that Pr(plr) implicitly 
contains the evader's strategy. The classical optimization 
problem (1) is clearly just a special instance of (3) when 
the expectation is conditioned on traversal of only least-cost 
paths. 

2.1 Markovian evaders In order to compute Pr(plr) 
values it is necessary to develop stochastic evader models. 
In the following we consider, for simplicity, the problem of 
a Markovian evader. Complete information about such an 
evader is encoded in a distribution of starting nodes, a, and 
a Markovian transition probability matrix, P. An element PiJ 
of this matrix is the probability that an evader at node i will 
move along edge (i,j). The distribution of starting nodes 
is assumed to be given and independent of the interdiction 
strategy r, while the P matrix is assumed to be determined 
as soon as the graph and r are known. This Markovian 
assumption simplifies cost computations as we show below 
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but, in general, the evader may have transition probabilities 
node i to node j that depend not only on the current evader 
location and target but also on the history of previous moves. 

To compute the expected path cost E(p) with a given 
a and P we first construct a list of paths that reach t in 
order of increasing length.2 It is convenient in the following 
calculations to introduce a new matrix M to be the same 
as the transition matrix P, but with a single entry Mtt set 
to O. This M can be interpreted as an evader model where 
the evader is removed from the network when reaching the 
target t. Suppose a path from s to t is specified by the edge 
sequence (s,a), (a,b), ... , (z,t) (see for example Fig. 2). The 
conditional probability that the evader will traverse this path 
is MsaMab ... Mv. The cost accumulated along this path is 

Csa + Cab + ... +Cv , (4) 

where qj would include the cost of passing an interdicted 
edge if (i,j) is interdicted. Let Ten be the probability vector 
whose j coordinate is the probability that a path of length 
n begins at s and ends at j. Thus, Ten is the sum of the 
probabilities of all paths of length n that end at j. Since M 
defines a Markov chain, Ten = Ten-I M noMn aMn, where 
a is the distribution over the starting nodes. If all paths must 
begin at s, then a is just the unit vector in the s direction. 

Figure 2: The evader's goal is to travel from node s to node t and 
the interdictor's task is to remove edges (or nodes) to increase the 
expected path traversal cost to the evader. The probability of the 
evader crossing the marked edge (a,b) is Mab with an associated 
traversal cost of Cab' The costs and probabilities are set by the 
network structure and the evader model. 

Let the vector hn represent the expected accumulated costs 
for paths of length n. The j coordinate [hn]j is the expected 

2The length of a path p is the number of edges in the path, while the cost 
c(p) of a path is the sum of the costs of the edges. These are equal only if 
the cost of each edge is unity. 

cost accumulated by a path with length n that terminates at j 

[hnl.i L[hn-tliMU + [TC,,-diMijCij. (5) 
i 

The entire vector can be written as 

(6) 

where C0M is the matrix formed by element-wise 
"Hadamard" multiplication of C and M. The expected 
accumulated cost of paths of any length is given by 
h := I:;;=ohn, when the sum converges. Noting that 
r;=o Ten r;=o noMfl = a(1 - M)-I, and summing Eq. (6) 
over all n gives 

h a(I-M)-I(C0M)(I M)-l, (7) 

where I is the identity matrix. Equation 7 is key to our 

approach: its tth element, [h](, expresses in closed form the 
expected cost of paths starting at s and ending at t given the 
evader's movement model. Each part of Eq. (7) formula has 
an intuitive meaning: the vector a(I - M)-l is the expected 
number of times that each of the nodes is visited by the 
evader when starting at a distribution a [13, p.419]; the 
vector a(I-M)-1(C0M) is the expected cost of reaching 
each of the nodes from their immediate predecessor nodes; 
and h gives the expected cost of reaching each of the nodes 
from the starting distribution a. 

The interdiction objective, according to our approach, is 
to maximize [hlt- Because the interdiction variable r affects 
the costs and then the matrix M this results in the nonlinear 
optimization problem 

max [a(I-M)-I(C0M)(I-M)-lt. (8)
rER 

This expression can be generalized for the case of mul­
tiple evaders where evader k has certain probability w(k) 

of occurring (rkW(k) 1), as well as a distinctive source 
distribution a(k), target node t(k) and transition matrix M(k). 

The generalized objective would be a weighted sum of 
Eq. (7). 

3 Least-eost-guided evader model 

In order to solve interdiction problems, it is necessary to 
develop a concrete model of evader behavior, namely, to 
specifY'M, and this is our next task. In general, model design 
for the Markovian evader is constrained by the requirement 
that r;;=ohn converges. Fortunately, it is sufficient to know 
that any node is visited at most a finite number of times 
(because Ilhll S lIa(I-M)-llll maxU,j}EECij.) Hence, the 
sum converges if under the model a(1 M)-l is well­
defined. For a general source distribution a this corresponds 
to the existence of (I M) -1 . This is guaranteed if the 
target node is an absorbing state of the Markov chain defined 
by P, namely if: (a) upon reaching the target the evader 
never leaves and (b) for each source site, the target node is 
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reached with non-zero probability after finitely many steps 
[13, Sec. 1 1.2]3. 

Recall that stochasticity in evader motion may have two 
causes: first, the evader has limited information about the 
network topology, interdiction decisions and the costs/risks 
along alternative paths and second, the evader may be 
intentionally trying to make unpredictable moves to make 
the task of the interdictor harder. In order to capture the 
former stochasticity, suppose that the errors of the evader 
are random rather than systematic. This implies that the 
network known to us gives an average of the networks that 
the evader might perceive. If so, the probability Mij that 
a cost- or risk-minimizing evader at node i would traverse 
i ---4 j increases with the probability of (successful) evasion 
on the shortest path to the target through this edge, %. 
Suppose then that Mij is found by taking a monotonically 
increasing function q, : qij ---4 JR, and setting Mij oc q, (%). 
One choice is to assume that an evader would choose edge 
(i, j) with probability proportional to qij, or more generally, 
proportional to a positive power of qij 

MijO<: (q~j)A (9)
ql*, 

where A > 0 is a parameter, qi* = max j % is the probability 
of evasion if the shortest path from i to the target is followed, 
and the constant of proportionality is found from Lj Mij 1 
(for an illustration, see Fig.3.) When A the evader 00 

moves deterministically along the least-risk path and when 
A ---40 the motion is perfectly random. The least-risk path 
has the highest probability, but the difference with other 
paths vanishes as A---4 O. Hence, the model can be called the 
"least-cost-guided evader". The parameter A represents the 
precision of the information the evader has about the graph 
and interdiction decisions. 

In many cases the values qij and qi* are not known directly 
but are instead found by relating them to edge costs and 
applying Dijkstra's algorithm. One approach is to find the 
cost of the path through j, Zij, and the cost of the least-cost 
path from i, Zi* (see Eq. 4.) Then the probabilities of evasion 
may be computed from the cost by the relation qij e-Zij. 

Substitution into Eq. 9 yields 

(10) 

Notice that although Mij values depend on the cost of least­
cost paths, this dependence is smooth rather than a step 
function of the classical evader model. This model is similar 
to one developed for routing in ad-hoc wireless networks. In 
that application M is used to determine where to transmit 
a message when the final destination cannot be reached 
directly [4]. 

3The M matrix here is the Q matrix in Grinstead and Snell's formula­
tion [13] except for a small detail: Q includes only the transitions between 
non-absorbing states, but here M does include the absorbing state - the target 
node t. As a compensation, we impose M" 0 implying that the evader is 
removed from the graph upon reachiug t. 

3.1 Model with no backtracking A useful variant of 
this model is to make the reasonable assumption that evaders 
never backtrack, that is, move away from the target node t 
or move to an already-visited node. Hence, we assume that 
there is zero probability of motion through (i, j) if i is at 
least as close to the target as j as defined by c(i) :::; c(j), 
where c(i) and c(j) are the smallest costs of paths to the 
target from nodes i and j computed using Eq. (4). This 
assumption implies that the evader would never cross a node 
or an edge twice. Consequently the set of nodes becomes a 
partially ordered set and as a result, there exists a relabeling 
a (i.e. a basis) of the nodes such that if c(i) > c(j) then 
aU) > a(j). A simple (non-unique) procedure is to take 
the target node as a(t) = 0 and then rank the nodes in the 
order of their distance i.e. cost along least-cost path to t, 
breaking ties arbitrarily. Computationally, this is the same 
as the order they are reached by Dijkstra's algorithm that 
starts at t. The transition probability becomes (where a is 
the normalization) 

c(i) > c(j) 

c(i) :::; c(j) . 

Source 

Figure 3: lllustration of the evader model in Eq.( 10) on a 
50-node network. The probabilities that an evader would 
pass anyone of the edges are indicated by the width of the 
(red) edges. The thin (gray) edges have probability zero and 
thus not traversed at all. The evader has A 0 and does not 
backtrack. 

This no-backtracking assumption implies that all paths 
must reach the target after at most INI 1 steps, where INI 
is the number nodes in G, and hence M becomes nilpotent 
of power INI - L Moreover, by labeling the nodes from 0 
up in order of increasing cost, M can be written as a lower­
triangular matrix with zero diagonal. For example, if the 
evader traverses a 2x3 grid graph with the target in any corner 

4 



node then one possible ()" gives the matrix 

o 
0 

M= 
0 
1 

0 
0 0 

.5 .5 0 0 
.5 .5 0 

This special structure of M facilitates an order-of mag­
nitude speedup in the computation of Eq. 7. For a general 
M, computing a(I - M) -1 involves Gaussian elimination at 
a cost of ~ INI3. For a nilpotent lower-triangular M the cost 

falls to INI2 since we can use backward-forward substitutions 
instead of Gaussian elimination. The cost of computing the 
objective function Eq. 7 is also expected to drop to O(INI2) 
despite the need to reorder the matrix C when the nodes are 
relabeled. 

4 Solving the Markovian interdiction problem 

The challenge of network interdiction consists of developing 
both realistic models and tractable algorithms. The above 
evader model adds realism to interdiction but does not reduce 
the computational complexity of interdiction. The general 
model is computational hard because in the limit of A --+ 

0, the model reduces to the least-cost interdiction problem 
which is NP-Hard [2, 3] and also hard to approximate 
(6). Therefore, in this section we discuss approximation 
algorithms. We consider general purpose algorithms such 
as simulated annealing, as well as heuristics based on evader 
motion and network structure. 

4.1 Local search algorithms Local search algorithms 
have been successfully used to solve many combinatorial 
optimization problems. In general, local search algorithms 
take a random solution (or a population thereof) and improve 
it by a series of incremental changes. Some of the the most 
frequently used local search algorithms are simulated an­
nealing (SA), genetic algorithm (GA), Tabu search (TS) [15]. 
In addition to those we consider here a randomized greedy 
algorithm (RGA) which constructs a solution incrementally, 
(one edge at a time). At each increment in the RGA an edge 
is added to the interdiction set which is the best of a random 
sample of edges (see Alg. I). The sample size L is typically 
much smaller than the graph size because of the high cost 
of computing the change As in the objective function. By 
running the local algorithms several times it is possible to 
improve the likelihood of finding the optimal set. 

We compared the local search algorithms on a set of 50 
network interdiction problems. In each problem the under­
lying network structure was constructed randomly using a 
loo-node Geographical Threshold Graph (GTG) model. The 
GTG model has been used as a model for wireless networks 
and may be appropriate as a model for random transportation 
networks [7]. We set the threshold parameter in the GTG 

Algorithm 1 RGA construction of the interdiction set S with 
budget B and sample size L 

S+-0 
whileB> Odo 

W +- {L random elements from E '" S} 
for all ei E W do 

As(ei) :=h(SU{ed)-h(S) 
S +- SU {argmaxejEw As(ei)}, resolving ties arbitrarily. 
B +-B I 

Output(S) 

model at e = 30 to produce sparse graphs but connected 
graphs; resulting in graphs of around 800 edges. 

To make the comparison fair, all algorithms were allowed 
to perform the same number of cost evaluations and all had 
their parameters tuned. To compare solutions across several 
different networks with different interdiction complexities, 
the solution on each network was normalized by the solution 
found on this network with a benchmark algorithm. For the 
benchmark, we used a variant of RGA, namely RGA with 
L lEI so the "sample" contains all of the network's edges. 
This exhaustive search allows this algorithm to find solutions 
superior to anything the four algorithms can find (at a vast 
increase in computational cost.) 

As can be seen in Fig. 4, the four algorithms gave 
comparable performance. In another experiment with a 
small sample of other types of graphs, it was found that 
only SA, RG, and RGA gave comparable performance, while 
the performance of the genetic algorithm was significantly 
inferior in percentage and statistical senses to the other three 
algorithms (data not shown). The relatively high variance 
in all heuristics is likely due to sensitivity of the solution 
quality to randomness in sample choice. In absolute sense, 
the performance of all four algorithms was relatively poor. 
The average solution was 83% of the benchmark algorithm, 
which itself likely falls short of the optimum (possibly by a 
large gap). 

In general local search algorithms are not a promising 
approach for large problems. Given the exponential size of 
the solution space it is unlikely that they would be able to 
explore even a small fraction of it in a reasonable number 
of optimization runs. Moreover, the solution space is quite 
rugged: there are synergies (non-linear gains) when multiple 
edges are interdicted on paths going to a single target. 

4.2 Graph heuristics The poor performance of the local 
search algorithms suggests that fast high-quality approxi­
mation algorithms can only come from more specialized 
solvers that exploit the structure of the interdiction problem. 
We now discuss two heuristics, RGAH-flow and RGAH­
betweenness, that build on top of the RGA algorithm above. 
The idea in both is to make the RGA algorithm above 
more efficient; instead of randomly sampling from E '" S 
we choose edges from that set that are ranked highly by a 
heuristic as described in Alg.2. In Alg.2, Hs(ei) is the value 
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Figure 4: A comparison of of local search algorithms on 
sample interdiction problems. (top) The cumulative distri­
bution function of the highest evader cost for 50 runs of each 
algorithm. The overlap between the data series indicates 
that no algorithm stochastically dominates the other three. 
(bottom) The distribution of best evader costs. The box 
contains runs from the lower to upper quartile values of the 
data. The high overlap between the boxes indicates that all of 
the algorithms have comparable performance. In all runs, the 
edge costs were Cij = I and interdiction doubled them to 2 
(Dij = 1.) There were two evaders with uniformly distributed 
probability of starting from the set of source nodes. For half 
the problems we used A I and the other A WOO. The 
interdictor budget was B 6 and the sample size was L = 20. 
The evader cost in both graphs was scaled by the solution of 
a benchmark algorithm (see text). 

of the heuristic (e.g. edge betweenness of ei) on the network 
G modified by interdicting the set S. We give two examples 
below of heuristics that hold promises for our interdiction 
problem. 

Algorithm 2 RGAH with budget B and sample size L 

S+-0 
whileB > Odo 

W +- { l~J random elements from E " s} 
W +- RU{ ei lei E top elements ranked by Hs(ei)} 
foraDq E Wdo 

Lls(ei) :=h(SU{ei}) h(S) 
S +- SU {argmaxeiEWLls(ei)}, resolving ties arbitrarily. 
B+-B 1 

Output(S) 

Notice that Alg.2 selects some but not all of the edges 
using the heuristic. Allowing some edges to be selected 
randomly ensures that the algorithm is not deterministic: 
determinism would have prevented it from exploring the 
entire set of feasible solutions even in principle (for complete 
exploration replace argmax with stochastic selection). Also, 
the reason RGAH is allowed only L - I edges rather than L 
in the sample was to keep the comparison of the algorithms 
fair, namely, to ensure that the basic algorithm (RGA) and 
its heuristic-modified versions (RGAH) have about the same 
asymptotic computational cost (more on the cost of the 
heuristic below.) Thus. if the solutions found by RGAH 
have better quality than those of RGA then it is because the 
heuristics are able to identify interdiction locations that are 
better than random. 

The RGA does not provide performance guarantees. In­
deed, on some graphs its solution is arbitrarily poor as 
a fraction of the optimal solution. Nevertheless, RGA 
performed .as well as the other local search algorithms and 
it is probably the simplest of them all so it is a logical 
foundation for building heuristic algorithms. It would be 
interesting to incorporate heuristics into algorithms other 
than RGA. 

4.2.1 Evader How One heuristic approach is to exploit 
the fact that edges likely to be traversed by the evader are 
also likely to be good interdiction locations. Interdiction 
of such edges will compel the evader to take alternative 
paths which might be considerably more costly. Another 
argument in support o(this heuristic is from the reverse: it 
would be wasteful to interdict a low-likelihood edge i.e. an 
edge not likely to be traversed by the evader because such 
an interdiction is not going to increase the evader's cost. 
Naturally any heuristic based on evader motion in the current 
graph has limited ability to predict evader motion on the 
graph after edges have been interdicted; it may be possible 
for the evader to take an alternative path with little or no 
cost penalty. Fortunately, this is not a serious problem since 
within RGAH, the heuristic is only the first computational 
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step. After selection of the top likelihood edges (and the 
random sample), we compute the gain from interdicting each 
one of them, and then take the one with the best gain (that is, 
greatest increase in evader cost.) 

For the flow heuristic, we rank each edge (i, j) based on 
the the expected number of times the evader is likely to 
traverse it, a(I M) -1Mij. These values can be computed 
for all edges in the network simultaneously at a cost of 
O(IN/2) . In contrast, to compute the evader cost in Eq. (7) 
for all edges would cost O(IEI·INI2

). The A value in the 
heuristic was set to be the same as of the evader itself. In 
general, it is possible that at least on some graphs setting A to 
be lower than the evader's own would give better exploration 
of the solution space and hence better results. 

4.2.2 Betweenness centrality Another heuristic 
approach is to use network betweenness centrality, originally 
introduced to measure the importance of nodes in a social 
networks [11], to rank the edges. Betweenness centrality is 
the fraction of shortest paths (or least-cost paths in weighted 
networks) between all pairs of nodes in a network that cross 
a given node (or edge). This metric identifies those edges 
that are critical to connectivity within a network because 
they participate in a large number of least-cost paths linking 
nodes on a network, such as a bridge edge that joins two 
graph components. Interdiction of such edges is likely 
to significantly increase the evader's cost. This heuristic 
is less specific than the direct evader motion (the flow) 
because it takes all pairs of nodes and not just the sources 
and target of the evader. Yet, it may be more robust to the 
evader bypassing an interdicted edge. The computational 
cost of this heuristic is O(INIIEI + INI 2 10g INI) [8] which is 
comparable to the flow heuristic. 

4.2.3 Performance of heuristic algorithms For the 
comparison of the RGAH algorithms we used the same 
50 example interdiction problems introduced earlier. The 
results of the comparison show that the RGAH with flow 
heuristic stochastically dominates the other algorithms and 
provides considerable improvement in solution quality as 
shown in Fig. 5. This advantage was maintained in both 
A 0 and A = 1000 cases (data not shown). The gain from 
the heuristic is significant: the normalized cost of RGAH 
with the flow heuristic is very close to 1.0 which implies that 
it finds solutions almost indistinguishable from solutions 
found by an algorithm using 39.5 790/20 times as many 
cost evaluations. In contrast, the betweenness heuristic does 
not provide any significant gain in performance. 

5 Further work 

The evader model developed here is a first step toward a more 
refined model that more closely ties evader motion with its 
computational and informational constraints. Research into 
more refined models promises further gains in computational 
performance and realism. The algorithm performance data 
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Figure 5: Comparison between the basic RGA algorithm and 
two variants which use a heuristic to choose edges. (top) The 
cumulative distribution function of the highest evader cost 
for 50 runs of each algorithm. (bottom) The distribution of 
best evader costs. The box contains runs from the lower to 
upper quartile values of the data. A one-tailed t-test supports 
the advantage of RGAH-flow over the other two algorithms 
with p < 0.0001 and p < 0.0001 for RGAH-betweenness 
and basic RGA, respectively. The scale is normalized as in 
Fig. 4. 
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suggests that heuristics can be very valuable for solving 
the interdiction problem. However, it would be extremely 
useful for network interdiction and other applications to 
construct a method for identifying edges that would be vital, 
that is, cannot be cheaply bypassed by the evader. This 
could potentially eliminate the requirement of computing 
the objective function and keeping the sample size small. 
Another important objective would be to develop better 
theoretical understanding of the performance of the evader 
flow heuristic and to bound its performance. 
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