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Finite scale equations for compressible fluid flow
By L.G. Margolin
Los Alamos National Laboratory, Los Alamos, NM 87544 USA

Finite scale equations (FSE) describe the evolution of finite volumes of fluid over finite
intervals of time. We discuss the FSE for a one-dimensional compressible fluid whose
every point is governed by the Navier-Stokes Equations. The FSE contain new
momentum and internal energy transport terms. These are similar to terms added in
numerical simulation for high-speed flows (e.g., artificial viscosity) and for turbulent
flows (e.g., subgrid scale models). These similarities suggest the FSE may provide a
more rigorous basis for computational fluid dynamics. Our analysis of the finite scale
continuity equation leads to a physical interpretation of the new transport terms and
indicates the need to carefully distinguish between volume-averaged and mass-averaged
velocities in numerical simulation. We make preliminary connections to the recent work
of Brenner on the kinematics of volume transport.
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Finite scale equations (FSE) describe the evolution of finite volumes of fluid over
time. We discuss the F'SE for a one-dimensional compressible fluid whose every point
is governed by the Navier-Stokes equations. The FSE contain new momentum and
internal energy trausport terms. These are similar to terms added in numerical
simulation for high-speed flows (e.g., artificlal viscosity) and for turbulent flows
{e.g., subgrid scale models). These similarities suggest the FSE may provide a more
rigorous basis for computational fluid dynamics. Qur analysis of the finite scale
continuity equation leads to a physical interpretation of the new transport terms
and indicates the need to carefully distinguish between volume-averaged and mass-
averaged velocities in numerical simulation. We make preliminary connections to
the other recent work reformulating Navier-Stokes equations.

Keywords: Place keywords here

1. Introduction

Finite scale equations (FSE) describe the evolution of finite volumes of fluid over
time. Here we introduce the FSE for parcels of fluid whose every point is governed
by the compressible Navier-Stokes equations. This reformulation of classical fluid
dynamics offers useful insights, especially in the context of numerical simulations
of fluid flow.

In previous work, Margolin & Rider 2002; Margolin et al. 2006 (hereafter, MR
2002 and MRG 2006), we described the derivation of FSE that are based on Burg-
ers’ equation and on incompressible Navier-Stokes equations. In both cases, the
FSE consist of the underlying equations augmented (at lowest order) by new terms
quadratic in the length scales over which the averaging is performed. In those pa-
pers, the analysis was used as a rationale to justify the numerical technique of
Implicit Large Eddy Simulation (ILES); see Grinstein, et al. 2007 for a detailed de-
scription and applications of this technique. However, here we would emphasize that
the FSE themselves are an analytic result, independent of numerical considerations:
in particular, the FSE are continuous equations, not discrete.

Qur principal result in considering the incompressible flow equations was the
appearance of a new momentum transport term. This term arises directly from
the nonlinearity of the advective term after averaging in space and time. In MR
2002, we discussed the similarity of that term to truncation terms that are inherent
in nonoscillatory finite volume (NFV} approximations widely used in numerical
simulations in an Eulerian framework, and to the artificial viscosity that is added
explicitly to simulations in a Lagrangian framework. This led to the suggestion
that these terms have a physical, rather than a numerical origin. In MRG 2006, we
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2 L.G. Margolin

discussed the further similarity of the new momentum transport term in multiple
spatial dimensions to a class of subgrid scale models used in large eddy simulation
(LES). Similar terms will arise in our consideration of the momentum and energy
equations for compressible flow.

In this paper, we are primarily concerned with the analysis of the FSE as a model
for the numerical simulation of compressible flows with high Reynolds’ number -
e.g., flows with turbulence and/or shocks. In §2, we give a brief summary of the
derivation and then present the averaged equations. In §3 we focus on the terms that
arise from the nonlinearity of the advective terms. Consideration of the finite-scale
(FS) continuity equation will require us to generalize the concept of Lagrangian
volumes and will lead to a physical explanation of the new transport terms for
momentum and energy that consequently arise. In §4, we focus on the terms that
arise from the nonlinearity of the pressure-velocity work terms. We also discuss
the role of unresolved kinetic energy and its relation to thermodynamics. In §5, we
summarize the overlap between the FSE and the current state-of-the-art of finite
volume Lagrangian/ALE and Eulerian methodologies.

Many of the new terms in our FSE have their origin in distinguishing between
two velocities that naturally appear in our analysis — the average or advective
velocity and the momentum or Favre averaged velocity. This distinction is also
made in other recent reformulations of Navier-Stokes equations. In the appendix,
we briefly discuss two of these — the volume transport concept and the Navier-
Stokes o model. We do not suggest the equivalence of these theories to FSE, but
merely point out the similarity of consequences that follow from the existence of
these two velocities.

2. Coarse-graining

We begin this section by offering a concise statement of the theme of this paper. We
consider a Auid in one dimension whose every point is described by the compressible
Navier-Stokes equation. In conservative form, these are:

Op dup )
Jup dulp  Op
I >
OEp Ou*E  Opu g
ot 9z ox o

Here, p, u, F have their usual meanings of density, velocity, and specific total energy.
The pressure, p, is the sum of the thermodynamic pressure plus the viscous pressure,
qg—;, where 77 is the dynamic viscosity. Also, ¢ is the heat flux. At this point, we
make no particular assumptions about the equation of state, but we will return to
this point in somne detail in §4.

We define an averaging operator X for any variable x(z,¢):

B

x(z,t) 511; / ’ dz’ x (', 1) (2.2)

L
pi

and pose the question: What equations govern the evolution of p, pi and p E? An
answer to this question was given in MR 2002 for Burgers’ equation in one dimension
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and also in MRG 2006 for incompressible Navier-Stokes in two dimensions. We
termed these finite scale equations. Each of these derivations followed a similar
path, which we outline here.

The derivation begins by considering scales of length (L) for which the flow is
smooth, by which we mean the dependent variables can be expanded in a convergent
Taylor series. Such scales always exist, due to the presence of molecular viscosity.
In this case, the integrals over the variables, including nonlinear terms, can be
evaluated directly, leading to the equations for p(z,t; L,), etc.; here we explicitly
indicate dependence on the averaging scale.

This derivation is ultimately not justified for large enough scales in the case of
a flow with shocks or turbulence. To proceed, we note that the averaging process
itself produces smoother fields. We quantify this by assuming that the variables
averaged over any scale of (L), are smooth enough to be expanded in convergent
Taylor series on scales of (2L). Next, we proceed by induction. We assume that the
equations written for varlables averaged over {L,) continue to hold for variables
averaged over (L) when L, - L, and then we prove that this implies that the
equations for the variables averaged over (2L) have the same form when L — 2L,

The net result of this derivation is that for any quantities 4 and B,

N .
(—) A.B, + HOT, (2.3)

where A, = f}i and HOT are higher-order terms, e.g., O(L* T%), etc.
__ We choose as our fundamental variables averaged density p, momentum density
M = i and the energy density £ = pE and pressure p. The FSE to order (L?,T?)

are;

op o[ 1/LN\* . .

oM O [~ 1/LN*. —~ )
= _3_3?{/\4'“4”?;(5) ux/M$+p} (2.5)
5E O (o .  1/LN\?4_ ‘

5 = ~51- {Eu +pu-tq 4’5(5) gxul'} (26)

{From this point on, we refrain from writing HOT, implicitly recognizing that all
of our equations are a second-order truncation of an infinite set of terms.) In these
equations, we recognize the appearance of new terms of order O(L?) that describe
the transport of mass, momentum and energy. These terms originate specifically
due to the difference of u and u.

We close with the observation that the FSE are equivalent in physical content to
Navier-Stokes; they are derived from Navier-Stokes and, conversely, Navier-Stokes
can be recovered in the limit L — 0.
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4 L.G. Margolin

3. Analysis of the FSE

{a) The continuity equation

We begin our analysis with the continuity equation {2.4) and recognize an im-
mediate issue — the appearance of @ and its derivatives. Because we have chosen
momentum as our fundamental variable, & cannot be a prognostic variable. How-
ever, we note that by equation {2.3)

—~ . VLN
M:pu:prt+§(§> Pally (3.1

= = I, (3.2

A 1<L>’2a‘1ﬁ1 M
=i
p p

and rewrite the continuity equation in more familiar form

B 0, Cia
= =~ (pi) (3.3)

The meaning of this equation is as follows: When the boundaries of a parcel of fluid
are moved with the momentum velocity 4, then the total mass within the parcel
remains constant. This does not preclude the flux of mass across the boundary,
but rather means that the integral of the flux around the boundary is zero. It is
simple to estimate the exchange mass flux in one dimension as é ( %)2§ﬂx The
flux of mass immplies a concomitant flux of momentum and energy, and the integrals
of these flures do not in general vanish. That is, the exchange of mass by a volume
with its neighbors will lead to a nonzero exchange of momentum and energy.

{6y The momentum and total energy equations

We now rewrite the momentum equation {2.5) in terms of @

M o [ ~_ 1 /7L\? _ »
oM é {M'zz+p+§(§> pui} : (3.4)

where we have used M a P in collecting the second-order terms. The new term,
proportional to L?, is the net exchange of momentum referred to in the previous
subsection. Its origin lies in two sources, the first being the difference between the
"true” advective velocity v and the averaged advective velocity 4, and the second
being the difference between advective velocity @ and the momentum velocity .
We note that the first differrence is present in both compressible and incompressible
flows. However, the second difference, from equation (3.2), is proportional to the
gradient of density and so vanishes in incompressible flow.

Similarly, we rewrite the energy equation in terms of u:

N SRS IV A
il 5u+pz&+§(§> (/)UxEr)} (3.5)
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where £ = & / o # E. T Here also we identify a new term representing energy
transport {kinetic and internal} associated with the exchange of mass within the
volume with its neighbors. The fact that it is the same exchange mass Hux that
transports both momentum and energy leads to a simple relation between the
respective coefficients of 4, and E, - they are the same! This relationship is a
special case of an Onsager reciprocity relation.

In this section, we have analyzed the properties of the FSE from the point
of view of conservation and the convective fluxes. Next, we turn our attention to
thermodynaniic issues.

4. Energetics
{a) The internal energy equation

In continuum Navier-Stokes theory, one constructs an equation for internal en-
ergy in two steps: one manipulates the momentum equation to form an equation
for kinetic energy, which one then subtracts from the total energy equation. The
internal energy equation is redundant; i.e., internal energy can always be found as
the difference of the total and kinetic energies. However, in many numerical algo-
rithms for simulating high-speed flow, there are advantages to solving the internal
energy equation instead of the total energy equation (Margolin & Shashkov 2004).

Directly averaging the internal energy equation for I= oI yields:

Jp= 2

where T = f/ﬁ £1.
We derive a 'S equation for macroscopic kinetic energy K by multiplying the
momentum equation (3.4} by w. Using the identity: 2& = 2&’%‘;— u? —5';3 we find

oy /\NQ oy ey 2 e
oK _topu®  1opw . 1 (g) Opuy (4.2)

Bt 2 ot 2 or W3 o

From equations (3.5}, (4.1) and (4 2, we see T # & — K. Since at the continuum
level, £ = K 4+ I, we must have & =K + 7. The issue is that K #£ K.

(b) Resolved and unresolved kinetic energy

From a macroscopic point of view (that is, from the point of view of an observer
whose instruments can only resolve niotion on scales greater than L), the cascade of
fluid motions to scales smaller than L in the FSE appears to dissipate macroscopic
kinetic energy. However, froin the continuum viewpoint, this unresolved kinetic en-
ergy must continue its cascade down in scale until it is simall enough to be dissipated
hy viscosity, and so does not affect the thermodynamic pressure immediately. This
situation has been long recognized in the turbulence simulation community where
an additional partition of the total energy, turbulence kinetic energy or TKE, is

T We endeavor to write our equations in terms of the fundamental variables chosen ig §2. Note
also that it is @ and £ that are calculated in finite volume numerical codes, not @ and £.
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recognized and a transport equation for turbulent kinetic energy is often used to
represent its evolution; see, e.g., the discussion in Pope 2000, pages 124-128.

To proceed, we formally recognize the existence of an additional partition &
of the total energy, writing £ = K + 7 + §. {We write § to emphasize that our
discussion is not restricted to turbulent flows.) We can form the equation for the
unresolved kinetic energy & by subtracting the sumn of equations (4.1) and (4.2)
from equation (3.5):

o5  aSu 1/L
ot ox 3

2
5) o - - ) (43)
In equation (4.3), the work term associated with the new momentum transport is
seen to be a source term to the unresolved kinetic energy partition.
From its definition, § is a quantity of O(L?) and in fact

1/ 1 /L\?
S= 3 (pu pu ) 6 (—2> pus (4.4)

The significance of equation (4.4) is that it is not necessary to solve an additional
prognostic equation for &, in contrast to the practice in the turbulence transport
theory.

(¢} Enhanced momentum and heat fluzes

If we consider the density, momentum and total energy equations as fundamen-
tal, we see that an alternative interpretation of the new momentum exchange term
is as a nonthermodynamic contribution to the pressure. That is, in the momentum
equation (3.4) we could define an enhanced pressure

1 /L\? . M .
(—) ply %:—%{MﬂJrP}. (4.5)

P=rtal3 ot

In the energy equation, we substitute E, = %ﬂﬂx + I, (ignoring &, as higher order)

08 0 fa = 1 (L\® . .
i {Su-rfpu+q+§(5) (}Oua‘lx)} (4.6)

Indeed, this is exactly how the artificial viscosity is implemented in high-speed
flow codes. This reformulation simplifies the appearance of the FS momentum and
energy equations, but does not simplify the internal energy equation. Instead, we
propose to define a new variable i = T + &. It is readily seen that U obeys the

equation
1 5 [~ 1 /LN\? . .
%_Z;I = —% {Ufl*% g+ 3 (3) puIII} — Puy, (4.7)

In other words, in high-speed flow codes, it is I/ that is actually calculated, not 7.
This has potentially new implications for how the thermodynamic equation of state
is evaluated in those codes.
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Before proceeding to our final step of defining an enhanced heat flux, we consider
the nature of the pressure-velocity average pu invoking the assumption of a specific
thermodynamic equation of state, the ideal gas. Here,

p=(y-Upl = p=(v— 1T

It is straightforward to show

2
= B+ (v~ 1) {% (é) (5’1}@)} (48)

That is, the average of the product of pressure and velocity is the product of the
averages plus a term identical to the heat exchange term except for dimensionless
coefficient. This specific result for an ideal gas leads us to interpret (pi — pii) more
generally as another contribution to the heat flux.i

We define an enhanced heat flux by

32

A

VS A
Q=q+ 3|5 ) puly + (P —pu (4.9)
to derive our final result for the FS energy and I:

o€ B

= {€u+Pu+ 0} (4.10)
ou O Tre A o~ N

5. Discussion
{a) FSE results

Here, we summarize the major differences between the continmun Navier-Stokes
equations and their FS counterparts. The principal difference lies in the presence
of new transport terms for momentum and energv. Some of the new transport
terms arise from the nonlinearity of the advective terms, as was the case in the
incompressible equations (MRG 2006). However, additional terms also arise from
the nonlinearity of the pressure-velocity terms (thermodynamic work). Further, the
FSE predict definite relations among all these transport coefficients analogous to
Onsager reciprocity relations. The FSE also allow an estimate of the unresolved ki-
netic energy in terms of the volume-averaged variables. This energy, dissipated from
the resolved kinetic energy field, does not contribute to the thermodynamic pres-
sure immediately; this effect is probably not important in shocks, but is important
in turbulent Hows.

+ This would appear to be a result of dimensional analysis, not of similarity of the underlying
physical origins of these terms.
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8 L.G. Margolin

(b} Numerical simulation

As stated in the introduction, we are interested in the FSE as an alternative
model for numerical simulation. Here, we discuss the overlap of two modern ap-
proaches to simulating compressible flow with the FSE.

For compressible flow, especially for high Reynolds number flows with shocks
and/or turbulence, most simulation codes are based on finite volume approxima-
tions; this has dictated our choice of the fundamental variables for the FSE as the
deunsities of the conserved variables ~ p, M and £. For flows with multiple ma-
terials and strong shocks, and when vorticity does not play an important role, a
Lagrangian or arbitrary Lagrangian-Eulerian (ALE) formulation has considerable
advantages (Margolin 1997). When vorticity becomes important, e.g., when the flow
becomes turbulent, Lagrangian meshes tangle and an Eulerian formulation becomes
preferable. Simulation codes may also be distinguished by the data structures of
the computational variables. Lagrangian/ALE codes and many Eulerian codes are
based on a staggered mesh where thermodynamic variables are placed at cell cen-
ters, but velocity is placed at the cell vertices. Other Eulerian codes, principally
those based on Godunov tvpe methods, have all variables colocated at the cell
centers. See chapter 4 of Grinstein et al. 2007 for a detailed discussion of these.

Most modern Eulerian and ALE codes use nonoscillatory differencing to ap-
proximate the advective terms. Nonoscillatory approximation invokes mathemati-
cal notions such as the preservation of sign or of monotonicity to modify (limit)
the advective fluxes. In MRG 2006, modified equation analysis was used to show
that the combination of nonoscillatory differencing and finite volume approximation
(NFV} in advection schemes effectively solves the FS momentum equation rather
than the Navier-Stokes’ momentum equation. This "implicit” appearance of the F'S
momentum exchange terms was offered as a rationale for the modeling technique
of implicit large eddy simulation (ILES). We expect the NFV differencing of the
energy equation will produce similar terms to the 'S energy equation {3.5). How-
ever, as noted above, not all of the new FSE trausport terms of energy arise from
the advective terms. Further, there are still open questions in NFV methods as to
the relation of the limiting process in the separate conservation equations (Schar &
Smolarkiewicz 1996), which our reciprocity relations may help to clarify.

The situation in Lagrangian/ALE codes is more complicated. It was recognized
from the earliest days of computing high speed flows that an artificial viscosity was
required to produce the requisite entropy production in shocks. von Neumann &
Richtmyer’s (1950) viscosity is the momentun exchange term in the F'S momentunt
equation (3.4), although it is typically only emploved in compression. This basic
viscosity with some generalization for multiple space dimensions is still in wide use
today. Similarly, an artificial heat conduction was proposed by Noh (1978) to treat
the numerical problem of wall heating. This term is not yet in common use. The
relationship of artificial heat conduction to the artificial viscosity may be clarified
by reciprocity of coefficients in the analogous terms predicted by the FSE.

The Lagrangian/ALE community has also partially confronted the therniody-
namic issues discussed in §4. In these codes, velocity (more precisely, momentum
velocity) Is placed at the cell vertices and so the new position of a cell and its
volume can be calculated geometrically. However, Reynolds’ transport theorem (in
integral form) offers an alternate equation to update volume. Problems associated
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with the lack of consistency of the geometric volume change and the discretization
of the velocity divergence led to formulation of compatible differencing techniques
{Bauer et al. 2006; Margolin & Shashkov 2008). However, thermodynamic issues
have continued to affect these codes (Whalen 1996). One modern approach to these
problems is the technique of subcells (Bauer et al. 2006). Although the subcell
technique was originally developed to control null space deformations (e.g., hour-
glassing}, they also imply higher-order approximations to the pressure and velocity
distributions within a cell and sc provide a more accurate approximation to the
nonlinear pressure-velocity work term.

(¢} Summary

We have presented and analyzed the finite scale equations that describe the
evolution of finite parcels of fluid whose individual points are governed by the com-
pressible Navier-Stokes (NSE) equations. The volume-averaged variables are the
fundamental variables of finite volume numerical simulation codes when one identi-
fies the averaging scale L with the computational cell size Az. Direct comparison of
the FSE with the discretized equations shows that many of the new features of the
FSE are already incorporated into the codes on a less rigorous basis, and provides
guidance for future improvement.

Appendix A.
(a) Kinematics of volume transport

In a recent paper, Howard Brenner (2005a) discusses the kinematics of volume
transport — that is, the transport and production of the extensive property of vol-
ume in a fluid (see also Brenner 2005b}. Brenner’s analysis has many features in
common with FSE, though its derivation and context are quite different. In par-
ticular, Brenner remains in the context of the Navier-Stokes equations and does
not introduce any additional length scale. All B-equation and page numbers in this
subsection refer to Brenner 2005a.

Brenner begins with the recognition that the advective velocity and the momen-
tum velocity are distinct, even in continuum Navier-Stokes theory. In contrast to
our development, he chooses to maintain the framework of the advective velocity.
Rewriting the continuity equation in terms of specific volume, v = 1, he derives
new terms representing the diffusion of v; cf. B-equation (2.11). Further, Brenner
derives a relation, B-equation (3.15) between these velocities that is similar to our
equation (3.2} in its dependence on the logarithmic gradient of density. Lacking any
additional length scale, Brenner invokes the length scales of molecular diffusion to
construct the coefficient of the gradient — B-equation (3.13).

Brenner acknowledges the redundancy of his volume transport B-equation (2.11),
but emphasizes that its cousideration leads to new physical insights. In particular,
he discusses the possibility that volume transport will play a dynamic role in trans-
porting energy and momentum across material surfaces (B-page 43) and derives a
pressure dependent correction to the heat flux in B-equation (5.20).

Brenner’s theory is focused on explaining experimental results for low-speed
flows and has not vet been connected to numerical simulation.
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{b) Naver-Stokes o models

The a-models (Holm et al. 1998) were introduced to describe the mean motion
of ideal incompressible fluids. The equations are derived in an Euler-Poincaré for-
malism, which is the Lagrangian version of the Lie-Poisson Hamiltonian framework,
and have been successfully used as a model for numerical simulation {e.g., Chen
et al. 1999, Hecht et al. 2008). In the derivation of these equations, two velocities
appear, the Lagrangian-averaged (momentum) velocity and the Eulerian-averaged
(advection) velocity. These are related by a Helmholtz operator — compare equa-
tion (1) of Hecht et al. 2008 with our equation (3.2). Another similarity lies in the
estimate of the total kinetic energy of the flow ~ compare equation (8} of Holm et
al. 1998 with our equation {4.4).

An important difference between the c-models and the FSE is that the spatial
scale ¢ is a flow-dependent quantity representing the small scale fluctuations of
the flow, whereas our L is a fixed scale representing the ”observer”. However, as
a model for numerical simulation these may not be so dissimilar; that is, a would
appear to represent the size of a cell in a Lagrangian simulation whereas L would
represent the size of an Eulerian cell.
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