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Finite scale equations for compressible fluid flow 

By L.G. Margolin 

Los Alamos National Laboratory, Los Alamos, NM 87544 USA 

Finite scale equations (FSE) describe the evolution of finite volumes of fluid over finite 
intervals of time. We discuss the FSE for a one-dimensional compressible fluid whose 
every point is governed by the Navier-Stokes Equations. The FSE contain new 
momentum and internal energy transport terms. These are similar to tenus added in 
numerical simulation for high-speed flows (e.g., artificial viscosity) and for turbulent 
flows (e.g., sub grid scale models). These similarities suggest the FSE may provide a 
more rigorous basis for computational fluid dynamics. Our analysis of the finite scale 
continuity equation leads to a physical interpretation of the new transport tenus and 
indicates the need to carefully distinguish between volume-averaged and mass-averaged 
velocities in numerical simulation. We make preliminary connections to the recent work 
of Brenner on the kinematics of volume transport. 
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Finite scale equatiouH describe the evolution of finite volumes of fluid over 
time. We discuss the FSE for a one-dimensional compressible fluid whose every point 
is governed by the Navier-Stokes equations. The FSE contain new momentum and 
internal energy transport terms. These are similar to terms added in numerical 
simulation for high-speed flows (e.g., artificial viscosity) and for turbulent flows 
(e.g., subgrid scale models). These similarities suggest the FSE may provide a more 
rigorous basis for computational fluid dynamics. Our analysis of the finite scale 
continuity equation leads to a physical interpretation of the new tranHport terms 
and indicates the need to carefully distinguish between volume-averaged and mass­
averaged velocities in numerical simulation. We make preliminary connections to 
the other recent work reformulating Navier-Stokes equations. 
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1. Introduction 

Finite scale equations describe the evolution of finite volumes of fluid over 
time. Here we introduce the FSE for parcels of fluid whose every point is governed 
by the compressible Navier-Stokes equations. This reformulation of classical fluid 
dynamics offers useful insights, especially in the context of numerical simulations 
of fluid flow. 

In previous work, Margolin & Rider 2002; et al. 2006 (hereafter, ]\\lR 
2002 and MRG 2006), we described the derivation of FSE that are based on Burg­
ers' equation and OIl incompressible Navier-Stokes equations. In both cases, the 
FSE consist of the underlying equations augmented lowest order) by new terms 
quadratic in the length scales over 'which the is performed. In those pa­
pers, the analysis was used as a rationale to justify the numerical technique of 
Implicit Large Eddy Simulation (ILES); see Grinstein, et a1. 2007 for a detailed de­
scription and applications of this technique. However, here we would emphasize that 
the FSE themselves are an analytic result, independent of numerical considerations: 
in particular, the FSE are continuous equations, not discrete. 

Our principal result in considering the incompressible flow equations was the 
appearance of a new momentulll transport term. This term arises directly from 
the nonlinearity of the advective term after averaging in space and time. In MR 
2002, we discussed the similarity of that term to truncation terms that are inherent 
in nOlloscillatory finite volume (NFV) approximations widely used in numerical 
simulations in an Eulerian framework, and to the artificial viscosity that is added 
explicitly to simulations in a Lagrangian framework. This led to the suggestion 
that these terms have a physical, rather than a numerical origin. In MRG 2006, we 
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2 L. C. Margo.lin 

discussed the further similarity of the new momentum transport term in multiple 
spatial dimensions to a class of subgrid scale models used in large eddy simulation 
(LES). Similar terms will arise in our consideration of the momentum and energy 
equations for compressible flow. 

In this paper, we are primarily concerned with the analysis of the FSE as a model 
for the Ilumerical simulation of compressible flows with high Reynolds' number ­
e.g., flows with turbulence and/or shocks. In §2, we give a brief summary of the 
derivation and then present the averaged equations. In §3 we focus on the terms that 
arise from the nonlinearity of the advective terms. Consideration of the finite-scale 
(FS) continuity equation will require us to generalize the concept of Lagrangian 
volumeD and will lead to a physical explanation of the new transport terms for 
momentum and energy that consequently arise. In §4, we focus on the terms that 
arise from the nonlinearity of the pressure-velocity work terms. vVe also discuss 
the role of unresolved kinetic energy and its relation to thermodynamics. In §5, we 
summarize the overlap between the FSE and the current state-of-the-art of finite 
volume Lagrangian/ALE and Eulerian methodologies. 

Many of the new terms in our FSE have their origin in distinguishing between 
two velocities that naturally appear in our analysis - the average or advective 
velocity and the momentum or Favre averaged velocity. This distinction is also 
made in other recent reformulations of Navier-Stokes equations. In the appendix, 
\ve briefly discuss two of these the volume transport concept and the l'\avier­
Stokes a model. vVe do not suggest the equivalence of these theories to FSE, but 
merely point out the similarity of consequences that follow from the existence of 
these two velocities. 

2. Coarse-graining 

We begin this section by offering a concise statement of the theme of this paper. vVe 
consider a fluid in one dimension whose every point is described the compressible 
Navier-Stokes equation. In conservative form, these are: 

ap 
Dt Dx (2.1) 

oup ap 
at ax ax 

oEp au2 E ap'll,
---­

oq 
at ax ax f):r 

Here, p, 'U, E have their usual meanings of density: velocity, and total energy, 
The pressure, p, is the sum of the thermodynamic pressure plus the viscous pressure, 
rt~.~, wherert is the dynamic viscosity. Also, q is the heat flux. At this point: we 
make no particular assumptions about the equation of hut we will return to 
thiD point in some detail in §4. 

We define an averaging operator Xfor any variable X(x, t): 

X(x, t) ±lX~~- dx' X(;1J , t) (2.2) 
. ,r~2 

and pose the question: What eqnatio.ns go.vern the evolntio.n o.f p, pu and p E? An 
answer to this question was given in MR 2002 for Burgers' equation in one dimension 
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3 Finite Scale Equations 

and also in MRG 2006 for incompressible :.'-Javier-Stokes in two dimensions. We 
termed these finite scale equations. Each of these derivations followed a similar 
path, which we outline here. 

The derivation begins by considering scales of length (Lo) for which the flow is 
smooth, by which we mean the dependent variables can be expanded in a convergent 
Taylor series. Such scales always exist, due to the presence of molecular viscosity. 
In this case, the integrals over the variables, including nonlinear terms, can be 
evaluated directly, to the equations for t: L o ), etc.; here we explicitly 
indicate dependence on the averaging scale. 

This derivation is ultimately not justified for large enough scales in the case of 
a flow with shocks or turbulence. To proceed, we note that the averaging process 
itself produces smoother fields. We quantify this by assurning that the variables 
averaged over any scale of (L), are smooth enough to be expanded in convergent 

series on scales of (2L). :.'-JexL we proceed induction. \Ve assume that the 
equations written for variables averaged over continue to hold for variables 
averaged over (L) when Lo and then we prove that this implies that the 
equations for the variables averaged over (2L) have the same form when L --+ 2L. 

The net result of this derivation is that for any quantities A and B) 

(2.3) 

where Ax::::: and HOT are higher-order terms, e.g., 0(L4,T4), etc. 
\Ve choose as our fundamental variables density p, momentum 

A-1 and the energy density f pE and pressure if. The FSE to order (L2, 
are: 

a { 1 (Lypu-'-- - } (2.4)ax 3 2 

aM a {-.~ 1 (~) \Zx J\1.r + p} (2.5) 

a {~ q ~ 

at Mu 
3 

1 (L r }--. ElL + 3 '2 [xux (2.6)ax 

(From this point on, we refrain from writing HOT, implicitly recognizing that all 
of our equations are a second-order truncation of an infinite set of terms.) In these 
equations, we recognize the appearance of new terms of order 0(L2) that describe 
the transport of mass, momentum and energy. These terms originate specifically 
due to the difference ofu and U. 

\Ve close with the observation that the FSE are equivalent in physical content to 
Kavier-Stokes; they are derived from Kavier-Stokes and, Xavier-Stokes 
can be recovered in the limit L --+ O. 
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4 L. C. ]'vfargo lin 

3. Analysis of the FSE 

(a) The ("{ j'fI,/'I,'IIU"!' equation 

\Ve begin our analysis with the continuity equation (2.4) and recognize an im­
mediate issue - the appearance of fi and its derivatives. Because we have chosen 
momentum as our fundamental fi cannot be a prognostic variable. How­
ever, we note that by equation (2.3) 

M (3.1) 

\Ve define a "momentum" velocity u: 

M 
p' (3.2) 

and rewrite the continuity equation in more familiar form 

(3.3) 

The meaning of this equation is as follows: When the boundaries of a parcel of fluid 
are moved with the momentum 11, then the total mass within the parcel 
remains constant. This does not preclude the flux of mass across the bounda.ry, 
but rather means that the integral of the flux around the bounda.ry is zero. It is 

simple to estimate the exchange mass flux ill one dimension as i ( ~) 2 The 
flux of mass implies a concomitant flux of lllomentum and energy, and the Tlli,pI/Tn,f.,' 

of these fluxes do not in general vanish. That is, the exchange of mass by a volume 
with its neighbors will lead to a nonzero exchange of momentum and energy. 

(b) Themornentum and total energy equat'ions 

We now rewrite the lllomentum equation (2.5) in terms of u: 

u {~_ ~ 1 (L) 2~2} 
u;r: Mil. +P + 3 -2 pUx (3.4) 

where we have used Ai ;:::;; in the second-order terms. The new term, 
proportional to L2, b the net of momentum referred to in the previous 
subsection. Its origin lies in two sources, the first being the difference between the 
"true" advective velocity 11 and the averaged advective velocity u: and the second 
being the difference between advective velocity u and the momentum velocity U. 
We note that the first differrence is present in both compressible and incompressible 
flows. However, the second from equation (3.2), is proportional to the 
gradient of density and so vanishes in incompressible flow. 

Similarly, we rewrite the energy equation in terms of u: 

+ (3.5) 
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5 Finite Scale Equations 

where E flp # t Here also we identify a new term representing energy 
transport (kinetie and internal) associated with the exchange of mass within the 
volume with its neighbors. The fact that it is the same exchange mass flux that 
tran!'lports both momentum and energy leads to a simple relation between the 
respective coefficients of u:r and Ex ~ they are the same! This relationship is a 
special case of an On!'lager reciprocity relation. 

In this section, we have analyzed the properties of the FSE from the point 
of view of conservation and the convective fluxes. Next, we turn our attention to 
thermodynamic issues. 

4. Energetics 

(a) The internal energy 

In continuum N avier-Stokes theory, one constructs an equation for internal en­
ergy in two steps: one manipulates the momentum equation to form an equation 
for kinetic energy, which one then subtracts from the total energy equation. The 
internal energy equation is redundant; i.e., internal energy can always be found as 
the difference of the total and kinetic energies. However, in many numerical 
rithms for simulating high-speed flow, there are advantages to solving the internal 
energy equation instead of the total energy equation (:vlargolin & Shashkov 2004). 

Directly the internal energy equation for i pI yields: 

} - pU; 

where I =i Ip::J 1. 
We derive a FS equation for macroscopic kinetic energy K by multiplying the 

~ U h' i' ~ ,,~DfiU - ~2iJn . fi dmomentum equation (3. .4) bY'u. 'sing t e lcentlty: ~ LUm - U "Ft, we n 

1 apu3 

---- 1 (~)2 uapv; ( 4.2) 
2 ax 3 2 ax 

From equations (3.5), and (4.2, we see i 1: f K. Since at the continuum 
level, E = K + I, we must have f = K+ The issue is that K # k. 

(b) Resolved and unresolved kinetic eneryy 

From a macroscopic point of view (that from the point of view of an observer 
whose in!'ltruments can only resolve motion on scales greater than L). the cascade of 
fluid motions to scales smaller than L in the FSE appears to dissipate macroscopic 
kinetic energy. from the continuum viewpoint, this unresolved kinetic en­
ergy must continue its cascade down in scale until it is small enough to be dissipated 
by viscosity, and so does not affect the thermodynamic pressure immediately. This 
situation has been long recognized in the turbulence simulation community where 
an additional partition of the total energy, turbulence kinetic energy or is 

t vVe endeavor to our equations in terms of the fundamental variables chosen §2, Note 
also that it is u and that are calculated in finite volume numerical codes, not fi and 
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6 L. G. Margolin 

recognized and a transport equation for turbulent kinetic energy is often used to 
represent its evolution: see, e.g., the discussion in Pope 2000, pages 124-128. 

To proceed, we formally recognize the existence of an additional partition S 
of the total energy, writing £ K+ i + s. (We write S to emphasize that our 
discussion is not restricted to turbulent flows.) \Ve can form the equation for the 
unresolved kinetic energy S by subtracting the sum of equations (4.1) and (4.2) 
from equation (3.5): 

8S 8Su 1 (!:)2 (4.3)
at 3 2 

In equation (4.3), the work term associated with the new momentum transport is 
seen to be a source term to the unresolved kinetic energy partition. 

From its definition, S is a quantity of 0(L2) and in fact 

(4.4) 

The significance of equation (4..1) is that it is not nece8sar'y to solve an additional 
prognostic equation for S, in contrast to the practice in the turbulence transport 
theory. 

(c) Enhanced moment'um and heat fluxes 

If we consider the density, momentum and total energy equations as fundamen­
tal, we see that an alternative interpretation of the new momentum term 
is as a nonthermodynamic contribution to the pressure. That is, in the momentum 
equation (3.4) we could define an enhanced pressure 

(4.5) 

In the energy equation, we substitute +Ix (ignoring SJ as higher order) 

8£ 
(4.6)

8t 

Indeed, this is exactly how the artificial viscosity is implemented in high-speed 
flow codes. This reformulation the appearance of the FS momentum and 
energy equations, but does not simplify the internal energy equation. we 
propose to define a ne\v variable U I + S. It is readily seen that U the 
equation 

8U 8 {U~~= - 11+ (4.7)
8t 

In other words, in high-speed flow codes, it is U that is actually calculated, not I. 
This has potentially new implications for how the thermodynamic equation of state 
is evaluated in those codes. 
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7 Finite Scale Equations 

Before proceeding to our final step of defining an enhanced heat we consider 
the nature of the pressure-velocity average invoking the assumption of a specific 
thermodynamic equation of state, the ideal gas. Here, 

p=(r-l)pI p h - l)pI 

It is straightforward to show 

(4.8) 

That is. the average of the product of pressure and velocity is the product of the 
averages plus a term identical to the heat exchange term except for dimensionless 
coefficient. This specific result for an ideal gas leads us to interpret fiU) more 
generally as another contribution to the heat flux.t 

\Ve define an enhanced heat flux by 

1 (L)2 + (iJU - fiU) ( 4.9) Q=q+:3 '2 

to derive our final result for the FS energy and U: 

at: 
(4.10)at 

au a {~ ~} ~ 
at ax UIi+ Q -Pux (4.11 ) 

5. Discussion 

(a) FSE results 

Here, we summarize the major differences between the continuum Kavier-Stokes 
equations and their FS counterparts. The principal difference lies in the presence 
of new transport terms for momentum and energy. Some of the new transport 
terms arise from the nonlinearity of the advective terms, as was the case in the 
incompressible equations (MRG 2006). However, additional terms also arise from 
the nonlinearity of the pressure-velocity terms (thermodynamic work). Further. the 
FSE predict definite relations among all these transport coefficients analogous to 
Onsager reciprocity relations. The FSE also allow an estimate of the unresolved ki­
netic energy in terms of the volume-averaged variables. This energy, dissipated from 
the resolved kinetic energy field, does not contribute to the thermodynamic pres­
sure illlmediately; this effect is probably not important in but is important 
in turbulent flows. 

t This would appear to be a result of dimensional analysis, not of similarity of the underlying 
physical origins of these terms. 
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8 L. G. Margohn 

(b) Nume'dcal simulation 

As stated in the introduction, we are interested in the FSE as an alternative 
model for numerical simulation. Here, we discuss the overlap of two modern ap­
proaches to simUlating compressible flow with the FSE. 

For compressible flow, especially for high Reynolds number flows with shocks 
and/or turbulence, most simulation codes are based on finite volume approxilmv­
tions; this has dictated our choice of the fundamental variables for the FSE as the 
densities of the conserved variables p, Nt and e. For flows with multiple ma­
terials and strong shocks, and when vorticity does not play an important role, a 
Lagrangian or arbitrary Lagrangian-Eulerian (ALE) formulation has considerable 
advantages (Margolin 1997). When vorticity becomes important, e.g., when the flow 
becomes turbulent, Lagrangian meshes tangle and an Eulerian formulation becomes 
preferable. Simulation codes may also be distinguished by the data structures of 
the computational variables. Lagrangian/ALE codes and many Eulerian codes are 
based on a staggered mesh where thermodynamic variables are placed at cell cen­
ters, but velocity is placed at the cell vertices. Other Eulerian codes, principally 
those based on Godunov type methods, have all variables colocated at the cell 
centers. See chapter 4 of Grinstein et al. 2007 for a detailed discussion of these. 

Most modern Eulerian and ALE codes use nonoscillatory differencing to ap­
proximate the advective terms. Nonoscillatory approximation invokes mathemati­
cal notions such as the preservation of sign or of monotonicity to modify (limit) 
the advective fluxes. In MRG 2006, modified equation allalysis was used to show 
that the combination of nonoscillatory differencing and finite volume approximation 
(:qFV) in advection schemes effectively solves the FS momentum equation rather 
than the Navier-Stokes' momentum equation. This "implicit" appearance of the FS 
momentum exchange terms was offered as a rationale for the modeling technique 
of implicit eddy simulation (ILES). We expect the ::\"FV differencing of the 
energy equation will produce similar terms to the FS energy equation (3.5). How­
ever, as noted above, not all of the new FSE transport terms of energy arise from 
the advective terms. Further, there are still open questions in NFV methods as to 
the relation of the limiting process in the separate conservation equations (Schar & 
Smolarkiewicz 1996), which our reciprocity relations may help to clarify. 

The situation in LagrangianjALE codes is more complicated. It was recognized 
from the earliest days of computing high speed flows that an artificial viscosity was 
required to produce the requisite entropy production in shocks. von Neumann & 
Richtmyer's (1950) viscosity is the momentum exchange term in the FS momentum 
equation (3.4), although it is typically only employed in compressioll. This basic 
viscosity with some generalization for multiple space dimensions is still in wide use 
today. an artificial heat conduction was proposed by Noh (1978) to treat 
the numerical problem of wall This term is not in common use. The 
relationship of artificial heat conduction to the artificial viscosity may be clarified 
by reciprocity of coefficients in the analogous terms predicted by the FSE. 

The Lagrangianj ALE community has also partially confronted the thermody­
namic issues discussed in §4. In these codes. velocity (more precisely, momentum 
velocity) is placed at the cell vertices and so the new position of a cell and its 
volume can be calculated geometrically. However, Reynolds' transport theorem (in 
integral form) offers an alternate equation to update volume. Problems associated 
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9 Finite Scale Equations 

with the lack of consistency of the geometric volume and the discretization 
of the velocity divergence led to formulation of compatible differencing techniques 
(Bauer et al. 2006; :\!Iargolin & Shashkov 2008). However, thermodynamic issues 
have continued to affect these codes (Whalen 1996). One modern approach to these 
problems is the technique of subcells (Bauer et al. 2006). Although the subcell 
technique was originally developed to control null space deformations hour­
glassing), they also imply higher-order approximations to the pressure and velocity 
distributions within a cell and so provide a more accurate approximation to the 
nonlinear pressure-velocity work term. 

(c) S1~mmaT'y 

We have presented and analyzed the finite scale equations that describe the 
evolution of finite parcels of fluid whose individual points are governed by the com­
pressible Kavier-Stokes (NSE) equatioIls. The volume-averaged variables are the 
fundamental variables of finite volume numerical simulation codes when one identi­
fies the averaging scale L with the computational cell size c.x. Direct comparison of 
the FSE with the discretized equations shows that many of the Ilew features of the 
FSE are incorporated into the codes on a less basis, and provides 
guidance for future improvement. 

Appendix A. 

(a) Kinematics of volume tmnspo'rt 

In a recent paper, Howard Brenner (2005a) discusses the kinematics of volume 
transport - that the transport and production of the extensive property of vol­
ume in a fluid (see also Brenner 2005b). Brenner's analysis has many features in 
common with FSE, though its derivation and context are quite different. In par­
ticular, Brenner remains in the context of the Xavier-Stokes equations and does 
not introduce any additional length scale. All B-equatiol1 and page numbers in this 
subsection refer to Brenner 2005a. 

Brenner begins with the recognition that the advective velocity and the momen­
tum velocity are distinct, even in continuum N'avier-Stokes theory. In contrast to 
our development, he chooses to maintain the framework of the advective velocity. 
Rewriting the continuity equation in terms of specific volume, v = i, he derives 
new terms representing the diffusion of v; cf. B-equatioll (2.11). Further, Brenner 
derives a relation, B-equation (3.15) between these velocities that is similar to our 
equation (3.2) in its dependence on the logarithmic gradient of density. Lacking any 
additional length scale, Brenner invokes the length scales of molecular diffusion to 
construct the coefficient of the gradient - B-equation (3.13). 

Brenner acknowledges the redundancy of his volume transport B-equation (2.11), 
but emphasizes that its consideration leads to new physical insights. In particular, 
he discusses the possibility that volume transport will playa dynamic role in trans­
porting energy and momentum across material surfaces 43) and derives a 
pressure dependent correction to the heat flux in B-equation (5.20). 

Brenner's theory is focused on explaining experimental results for low-speed 
flows and has not yet been connected to numerical simulation. 
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10 L. C. lvJargolin 

(b) N(wer-Stokes a models 

The a-models (Holm et al. 1998) were introduced to describe the mean motion 
of ideal incompressible fluids. The equations are derived in an Euler-Poincare for­
malism, which is the Lagrangian version of the Lie-Poisson Hamiltonian framework, 
and have been successfully used as a model for numerical simulation (e.g., Chen 
et al. 1999, Hecht et al. 2008). In the derivation of these equations, two velocities 
appear, the Lagrangian-averaged (momentum) and the Eulerian-averaged 
(advection) velocity. These are related by a Helmholtz operator - compare equa­
tion (1) of Hecht et al. 2008 with our equation (3.2). Another similarity lies in the 
estimate of the total kinetic energy of the flow····· compare equation (8) of Holm et 
al. 1998 with our equation (4.4). 

An important difference between the a-models and the FSE is that the spatial 
scale a is a flow-dependent quantity representing the small scale fluctuations of 
the flow, wherea.'> our L is a fixed scale representing the "observer". However, as 
a model for numerical simulation these may not be so dissimilar; that is, a would 
appear to represent the size of a cell in a Lagrangian simulation whereas L would 
represent the size of an Eulerian cell. 
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