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ABSTRACT 

We present a new way of using spherical harmonics expansions to solve transport problems. Our ap­
proach uses filtered expansions to give positive solutions and reduce wave effects in the solutions. We 
present two specific filters: one bas~ on maintaining positivity in a PI expansion, and the other that 
is a function of the total cross-section and the order of the expansion. We compare solutions using our 
filtered expansions to the standard spherical harmonics expansions, Monte Carlo, diffusion, discrete or­
dinates, and analytic transport solutions. These numerical results suggest that our filtered expansions 
give solutions that are comparable to other methods in terms of accuracy. Additionally, we point out how 
filtered spherical harmonics expansions could be improved. 

Key Words: particle transport, spherical harmonics 

1. INTRODUCTION 

Spherical harmonics expansions are a common way of treating the angular variable in the first-order form 
of the neutral particle transport equation [1,2]. These expansions can be shown to be an asymptotic limit 
of the transport equation [3]: To get numerical solutions, the expansion must be truncated at some order, 
however, when scattering from the material medium is small the truncated expansion can give nonphysical 
osciallations in the solution. These oscillations are the result of the spherical harmonics being the expansion 
that best approximates the transport solution in a least-squared sense [4]. These oscillations can cause the 
solution to become negative and make multiphysics simulations fail [5- 7] . Moreover, it can be proven 
that for a given order of spherical harmonics expansion there exists a problem where the solution becomes 
negative [7]. 

The goal of this study is eliminate the oscillations in the solution to the spherical harmonics (PN ) equations 
and ensure that the solution is positive. We accomplish this by using filtered spherical harmonics expansions. 
These filters are based on fincling the PN expansion that minimizes the L2 norm of the error subject to a cost 
function related to the second angular derivative of the expansion. Such a filter is analagous to an artificial 
viscosity used in the numerical solution of hyperbolic conservation laws. This gives a general form for 
a filter with the strength of the filter a free parameter. We give two prescriptions for choosing this filter 
strength. The first takes the PI expansion and using the filter guarantees that this expansion is positive in 
the angular flux , in a similar manner to a slope limiter. The other filter chooses the filter strength based on 
the order of the expansion and the size of the total macroscopic cross-section of the material. As the order 
of expansion or the cross-section becomes larger, the filter strength decreases. Though we give two recipes 
for a filter, we do not assert that these are optimal. In fact, we suggest ways to create better filters. 

In the following section we present the theory of filtered spherical harmonics expansions. For much of this 
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section we follow the derivations given by Boyd [4]. We then concoct two filters and discuss their properties 
in Sec. 3. Section 4 discusses the PN equations and how we solve them numerically. Numerical results are 
presented in Sec. 5, followed by a conclusions section. 

2. FILTERED SPHERICAL HARMONICS EXPANSIONS 

The spherical harmonics expansion takes the angular flux, 'I/J(x , 0, v, t), and expands the angular variable 
o= (IL, <p) in terms of spherical harmonics functions 

00 I 

'I/J(x , 0, v, t) = L L l'r (O)'l/Ji (x, v, t). (1) 
1=0 m=- l 

where the spherical harmonics functions are given by 

¥,Im = (_l)m 2l + 1 (l - m)! p,m( ) im<p (2)
47l' (l + m)! 1 IL e , 

~m(IL) are the associated Legendre functions . The expansion coefficients in Eq. (1) are given by 

'l/Ji(x , v, t) = 1fjm(o)'ljJ(x, 0, v, t) dO. (3) 
411" 

The expansion in Eq. (1) must be made finite so that numerical computation can be performed. The most 
common means of making Eq. (1) finite is to truncate the series above a~certain value of l = N, 

l > N. (4) 

Though this truncation is straightforward, it causes the solution to transport problems to have oscillations. 
Indeed, Boyd, when discu~sing truncated spherical harmonics expansions for general problems exclaims 
[4], "Truncating a [spherical harmonics] series is a rather stupid idea." These oscillations can be explained 
by the fact that the spherical harmonics expansion is the minimizer of the functional 

(5) 

This functional can allow large oscillations about the true solution because it minimizes the square of the 
error. 

Following Boyd [4] , one can change the functional that is minimized to 

:J = L("'(X, n, v, t) - t,mt,"r(n)~r(x, v, t)), dO 


+0 L(t,mt, Vi': Yr(n)~r(x, v , t)), dn. 
 (6) 
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In this new functional '\ln is the gradient operator with respect to nand a > 0 is a parameter. This filter is, 
in a sense, adding artificial viscosity to the expansion: oscillations make this new term in the cost function 
large. 

We will now find the new expansion coefficients, ;jJi. Noting that the spherical harmonics are eigenfuctions 
of the Laplacian operator on the sphere, 

(7) 

one can show that 
-m _ 1/)i (8)1/J1 - 1 + al2k(l + 1)2k' 

Therefore, the filtered expansion forces the expansion coefficients to decrease with increasing t. These 
filters are also conservative in that they do not change the magnitude of 1/Jg meaning that the scalar /lux is 
unchanged. There still is the free parameter a that we must specify. In this study we suggest two ways of 
defining a, though we note that further research will probably uncover better filters. 

3. TWO FILTERS 

3.1. Strictly Positive P1 Reconstruction 

The first filter that we describe is based on the P1 expansion of the angular /lux. This expansion is 

1 0 ' 0 -1/J1e1 -i ~ (9)a1/J=--1/Jo+-1~-1/J1IJ,+ 'P y 1-p,-,2.Ji 2 7r 27r 

where we have used the relation that 1/Ji = (-1 )m1/Jl"m [8]. Notice that this reconstruction can be negative; 
when 

1·,,01 > 1/Jg (10)
'f'1 ..)3' 

or 

·,,11 > 1/Jg (11 )1'f/l J6' 
then 1/J will be less than zero for some combination of (IL, cp) . 

This possibility for a negative value suggests some kind of slope limiter. When 1/Jr is too large we want to 
scale it back. The amount to scale it by is given in the modified reconstruction 

(12) 

with 

(13) 

and 

(14) 
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This reconstruction guarantees that '1f; is positive. 

We can cast the limited reconstruction of Eq. (12) as a filter by defining ex as 

1-0 
(15)ex = 22k ' 

where the unadorned 0 is the minimum of 01 and O2 . With this definition of ex we then apply the filter as in 
Eq. (8) . 

One important property of this filter is that it only is applied where it is needed, i.e. in regions where the 
angular flux can be negative-when 0 = 1 the filter does nothing. Also, in the diffusion limit it should not 
have an effect. This can be seen by the fact that in the diffusion limit '1f;"r is an order 10 quantity whereas '1f;8 
is order one, so that 0 will be one. 

There is a drawback to this filter in that it limits the PN equations waves peed to the PI wavespeed, v / v'3 
where v is the particle speed. This is a result of the hard limit we place on the size of '1f;"r. For higher 
order PN expansions, there are higher moments that can create a positive reconstruction with '1f;"r outside 
the bounds of Eqs. (5) and (6). We believe that the reconstruction could be modified to ens!lre that the P3 

expansion is positive. This would require devising conditions where a cubic is positive and we have not 
been successful to date in deriving such a condition. Even higher PN expansions could be modified to give 
a positive reconstruction, though we believe as the order increases deriving positivity constaints becomes 
increasingly more difficult (and tedious). Finally, we point out that the slow waves peed could be remedied 
by employing a P1/ 3 type correction that adjusts the PI waves peed to be v [9]. 

3.2. Material Property Dependent Filter 

The second filter we discuss does not explicitly guarantee a positive reconstruction of'1f;, rather it imposes a 
filter in parts of the problem where the material interaction is weak. This filter writes ex as 

w 
(16) 

where N is the order of the PN expansion, at is the total macroscopic cross-section of the material, L is 
some characteristic length, and w is a positive number. 

This filter has the property that as the order of the expansion increases, the filter effects the solution less . 
Therefore, as N --> 00 the solution does still converge to the transport solution. Moreover, this filter does 
not effect the diffusion limit: when at is an 0(1/10) quantity, then ex = 1 + 0(102 ). Perhaps the biggest 
upside to this filter is that it is linear in '1f;j. Unlike the filter based on the PI reconstruction, this filter can 
be implemented in a straightforward manner. 

At low expansion orders, for example PI, this filter is strong is streaming regions. When at = 0 for N = 1, 

(17) 

regardless if the solution "needs" to be filtered or not. The other drawback to this filter is that it has a free 
parameter, w. Though this parameter gives flexibility to increase or decrease the filter strength, it would be 
better to have a prescribed value that guarantees positivity. 
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4. THE SPHERICAL HARMONICS EQUATIONS 

To show how we implement the filtered expansion, we begin with the equation for the time dependent 
transport of neutral particles, 

1a'ljJ A 

--+0.·\l'ljJ=S (18)
vat ' 

where 'ljJ(x ,n,v,t) is the angular flux, v is the particle speed, nis the direction of flight variable, O't is 
the macroscopic interaction cross-section of the material, and S is a source function that takes into account 
the material-particle interaction, such as a scattering source. Also, we will be dealing with 2-D Cartesian 
geometry so that \l = (Ix, fz ). We then expand nin spherical harmonics functions as discussed above to 
get the system 

~ a'ljJi + ~~ (_cm-1'ljJm-1 + Dm-1'ljJm-1 + Em+l'ljJl1Hl _ Fm+l'ljJm+l)
v at 2 ax 1-1 1-1 1+1 1+1 1-1 1-1 1+1 1+1 

+ ! (A~1'ljJ~1 + Br;.l'ljJl-:-l) + O't'ljJi = Si for l = 1 .. . n, m = l ... l (19a) 

forl = 0 ... n, (l9b) 

where 

(l - m + l)(l + m + 1) (l - m)(l + m)
Ai= Bi = 

(2l + 3)(2l + 1) (2 l + 1)(2l-1) 

(l + m + l)(l + m + 2) (l - m)(l + m - 1)
Ci= Di = 

(2l + 3)(2l + 1) (2l + 1)(2l- 1) 

(l - m + 1)(l - m + 2) (l + m)(l + m - 1) 
Ei= Jif=(2l + 3)(2l + 1) (2l + 1)(2l - 1) 

For the PN method the scalar flux, 1> = J41r dn 'ljJ , is given by 1> = 2fi'ljJ8 , and the number of unknowns in 
the PN equations is ~ (n2 + 3n) + 1. The initial conditions for PN are given by 

'ljJi(x ) = 1dn }T*(n) w(x, n). (20) 
41r 

The boundary conditions we will use are ghost cell boundary conditions [5,7] that are equivalent to the 
Mark boundary condition. 

4.1. Numerical Method 

To solve Eqs. (19) we will use a linear discontinuous Galerkin method for the spatial discretization and 
a semi-implicit time integration method [10], This approach has been shown to be robust in the diffusion 
limit, and it gives a straightforward means to apply our filters. 

We apply the filters after each time step by computing 0: in each spatial cell and then scaling 'ljJi to get ;Pi 
as in Eq. (8). This approach is simple in that it allows us to treat any nonlinearity in the filter explicitly. How 
to deal with nonlinear filters with implicit solvers is an open question that we leave to future work, though 
we note that the filter given in Sec. 3.2 is linear and could be used with an implicit solver. We use w = 1/3 
for the material based filter. 

2009 International Conference on Mathematics, Computational 
Methods & Reactor PhYSics (M&C 2(09), Saratoga Springs, NY, 2009 

5/14 



R.O . McClarren, C.D. Hauck, and R.B. Lowrie 

4.2. Sources 

Our subsequent numerical results will solve two types of problems: linear problems with isotropic scattering 
and nonlinear transport problems where the background material emits particles as a blackbody source, 

4.2.1. Isotropic Scattering 

For problems of linear transport with isotropic scattering and only one particle speed, the source function S 
becomes 

(21) 

where as is the scattering macroscopic cross-section, and at is the total macroscopic cross-section, This 
source makes 

s8 = -O'a7/Jg, (22) 

S m . I,m l > 0 (23)I = -O't<rl , . 

4.2.2. Radiative Transfer Problems 

In problems of the radiative transfer of grey x-rays [2] the source term is given by 

aCT4)
S = -O'a (7/J - ~ , (24) 

where a = 0.01372 GJ cm-3 key-4 is the radiation constant, C = 2.998 X 1010 cmls is the speed of light, 
O'a is the absorption macroscopic cross-section, and the temperature T is governed by 

(25) 

The moments of S are then 

o (0 aCT4)
So = -O'a 7/Jo - 2~ , (26) 

l > 0, (27) 

and Eq. (25) is in terms of 7/Jg, 

(28) 

5. NUMERICAL RESULTS 

The first problem we solve is a linear transport problem as described in Sec. 4.2.1. This problem has an 
infinite line source pulsed at the origin at time O. The material has at = as = 1 and the particle speed 
is v = 1. There is an analytic transport solution to this problem given by Ganapol [11], This is sort of 
a pathological problem due to the presence of a singularity in the solution at x/t = 1. Nevertheless, this 
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(c) H Slope Limited Filter (d) S8 

Figure 1. Solutions to the pulsed line source problem at t ~ 1 using several methods. 
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Figure 2. Comparison of solutions to the pulsed line source problem and t = 1. 

solution shows that the standard PN expansion can become negative (indeed the solution to the standard 
PN equations for this problem has a negative singularity). 

In Fig. 1 standard P N , filtered PN , and 8 N solutions are compared on the line source problem at t = 1. 
Our numerical solutions used ~x = 0.01 , 0.1 for the t = 1 and t = 10 solutions respectively. The difficulty 
in solving this problem is apparent in the figure. The P7 solution has large amplitude waves that does go 
negative, and the 88 solution has strong ray effects (though they look like "dot" effects on this problem). 
The two filtered spherical harmonics solutions both remain positive. The material based filter does not 
have waves in the solution and is propagating information at nearly the correct speed. The slope-limiter 
based filter moved information too slowly and does demonstrate wave-like behavior. These solutions are 
compared to Ganapol's transport solution in Fig. 2. At this early time none of the numerical solutions 
adequately capture the transport solution. The solutions at a later time, t = 10, are show in Fig. 3 .. At 
this time the P7 and 8 8 solutions give nearly the same results as the transport solution. The material based 
filter and the slope limiter based filter are not as accurate. The filter based the slope limiter has not moved 
information far enough into the problem, causing the solution near the origin to be too high. The material 
based filter is also slightly too high near the origin. Despite these shortcomings of the filtered solutions we 
note that the solution at t = 10 was arrived at without negativity or large wave (or ray) effects along the 
way. 

The next problem that we solve is a radiative transfer problem first suggested in alternate form by Brunner 
[12]. This problem is a simplified hohlraum from an inertial confinement fusion experiment and is dia­
grammed in Fig. 4. A source of radiation is present on the left of the problem. This radiation flows into the 
problem and heats that block at the center. 

The radiation field from this problem for different methods is shown in Fig.S. The radiation is measured 
by the radiation temperature, T rad = ij¢ / ac. We compare the solution for our filtered spherical harmonics 
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Figure 3. Comparison of solutions to the pulsed line source problem and t = 10. 
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Figure 4. Layout for the 2-D hohlraum problem. The blue regions have O'a = 100T- 3 cm- 1 for T in keY. 
The white regions have O'a = O. Also, Cv = 0.3 GJlcm3_keV. 
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approximations to implicit Monte Carlo (lMC) [13], flux-limited diffusion, and S8 calculations. The implicit 
Monte Carlo calculations used 106 paIticles per time step with a time step size of 10-2 ns and 200 mesh 
cells per direction. The flux-limited diffusion solution used Larsen's flux limiter [14] with n = 2 and 200 
mesh cells in each direction. Our deterministic transport solutions, PN and SN used 100 cells per direction. 

In Fig. 5 we compare several methods to solve the holhraum problem. For this problem the IMC solution 
is the most correct in terms of transporting radiation energy in a physically correct manner. Conversely, 
the flux-limited diffusion solution is the least correct because it allows radiation to flow around the block in 
the center of the problem. We do not show a P7 solution to this problem because the P7 radiation energy 
became negative and drove the material temperature negative causing the calculation to fail. The solution 
to the P7 equations with the slope limiter based filter appears to be similar to the IMC solution except that 
there is slightly more radiation to the right of the block than in the IMC solution. The P7 solution with the 
material based filter has not moved the radiation far enough into the problem. This defect is mitigated by 
going to PH with the material based filter. 

To better compare the methods we look at the radiation temperature along the line at y = 0.125 cm in 
Fig. 6 and x = 0.85 cm in Fig. 7. In Fig. 6 we see that the P7 solution with the filter based on the slope 
limiter is above the IMC solution with the S8 below the lMC solution. The material based filter solutions 
dip below the IMC solution; the P7 version of this filter is far below the IMC solution near the right edge of 
the problem, and the Pll solution is closer to IMC but still below S8. These comparisons hold on the right 
of the block as shown in Fig. 7 where the slope limiter based filter solutions is higher than IMC, with the 
material based filter solutions are below IMC. 

The material temperatures from different methods are compared in Fig. 8. In this figure we can see ray 
effects present in the S 8 solution in the hot spots present on the right wall and the right side of the block. The 
P7 solution using the filter based on a linear reconstruction appears to be the closest to the IMC solution. The 
solutions using the material based filter have not enough heating on the right side of the problem compared 
to IMC. 

6. CONCLUSION 

We have presented a general framework for developing filters for spherical harmonics approximations. We 
also developed two filters: one that guaranteed positivity using a limiter based on the PI expansion, and 
one that enforced a decay in the expansion coefficients based on the material properties and the order of 
expansion. On the pulsed line source problem both filters gave positive solutions, however, both solutions 
also did not capture the transport solution at late times. On a multi-material problem of thermal radiative 
transfer the P7 solution using a filter based on a slope limiter applied to the PI reconstruction was nearly as 
accurate as the S8 . This is significant because the filtered solution did not have negativite energies or ray 
effects. On the same problem the material based filter was not as accurate as S8 even when Pll was used. 

We would like to again emphasize that the filters presented in this study are not likely the best filters for 
transport. Nevertheless, we believe that filters are a way to remove the drawbacks of the spherical harmonics 
equations. Possible directions for future work include a filter based on a positive P3 reconstruction, though 
this is certainly not the only way forward . 
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Figure 5. Radiation temperature solutions the hohlraum problem at t = 1 ns. 
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Figure 6. Radiation temperatures for the hohlraum problem at y = 0.125 cm. 
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Figure 7. Radiation temperatures for the hohlraum problem at x = 0.85 cm. 
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Figure 8. Material temperature solutions the hohlraum problem at t = 1 ns. 
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