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ABSTRACT

We present a new way of using spherical harmonics expansions to solve transport problems. Our ap-
proach uses filtered expansions to give positive solutions and reduce wave effects in the solutions. We
present two specific filters: one based on maintaining positivity in a P; expansion, and the other that
is a function of the total cross-section and the order of the expansion. We compare solutions using our
filtered expansions to the standard spherical harmonics expansions, Monte Carlo, diffusion, discrete or-
dinates, and analytic transport solutions. These numerical results suggest that our filtered expansions
give solutions that are comparable to other methods in terms of accuracy. Additionally, we point out how
filtered spherical harmonics expansions could be improved.

Key Words: particle transport, spherical harmonics

1. INTRODUCTION

Spherical harmonics expansions are a common way of treating the angular variable in the first-order form
of the neutral particle transport equation [1,2]. These expansions can be shown to be an asymptotic limit
of the transport equation [3]. To get numerical solutions, the expansion must be truncated at some order,
however, when scattering from the material medium is small the truncated expansion can give nonphysical
osciallations in the solution. These oscillations are the result of the spherical harmonics being the expansion
that best approximates the transport solution in a least-squared sense [4]. These oscillations can cause the
solution to become negative and make multiphysics simulations fail [5-7]. Moreover, it can be proven
that for a given order of spherical harmonics expansion there exists a problem where the solution becomes
negative [7].

The goal of this study is eliminate the oscillations in the solution to the spherical harmonics (P ) equations
and ensure that the solution is positive. We accomplish this by using filtered spherical harmonics expansions.
These filters are based on finding the Py expansion that minimizes the L? norm of the error subject to a cost
function related to the second angular derivative of the expansion. Such a filter is analagous to an artificial
viscosity used in the numerical solution of hyperbolic conservation laws. This gives a general form for
a filter with the strength of the filter a free parameter. We give two prescriptions for choosing this filter
strength. The first takes the P; expansion and using the filter guarantees that this expansion is positive in
the angular flux, in a similar manner to a slope limiter. The other filter chooses the filter strength based on
the order of the expansion and the size of the total macroscopic cross-section of the material. As the order
of expansion or the cross-section becomes larger, the filter strength decreases. Though we give two recipes
for a filter, we do not assert that these are optimal. In fact, we suggest ways to create better filters.

In the following section we present the theory of filtered spherical harmonics expansions. For much of this
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section we follow the derivations given by Boyd [4]. We then concoct two filters and discuss their properties
in Sec. 3. Section 4 discusses the Py equations and how we solve them numerically. Numerical results are
presented in Sec. 5, followed by a conclusions section.

2. FILTERED SPHERICAL HARMONICS EXPANSIONS
The spherical harmonics expansion takes the angular flux, ¥ (x, Q,v,t), and expands the angular variable
Q = (u, ) in terms of spherical harmonics functions

l

P(x, Q0. t) =Y D VY (x,0,0). (1)
=0 l

m=—

where the spherical harmonics functions are given by

204+ 1 (1l —m)!
(+m)!

"= (1™ P (u)e™?, )

P™() are the associated Legendre functions. The expansion coefficients in Eq. (1) are given by

Y (x, v, 1) = A Y™ Q) (x, Q, v, t) d. 3)

The expansion in Eq. (1) must be made finite so that numerical computation can be performed. The most
common means of making Eq. (1) finite is to truncate the series above a certain value of | = IV,

Y =0 I>N. @)

Though this truncation is straightforward, it causes the solution to transport problems to have oscillations.
Indeed, Boyd, when discussing truncated spherical harmonics expansions for general problems exclaims
[4], “Truncating a [spherical harmonics] series is a rather stupid idea.” These oscillations can be explained
by the fact that the spherical harmonics expansion is the minimizer of the functional

00 l 2
J = (zp(x,fz,vt IR G (L xvt)) dd. (5)
=0 m=—1

4

This functional can allow large oscillations about the true solution because it minimizes the square of the
erTor.

Following Boyd [4], one can change the functional that is minimized to

l

- 2
7= <¢<x,fz,v,t)—z >, W”(fz)&z”(x,v,w) a2
S =0 m=—1
’ 00 l 2
o [1 (Z >, Vé"%’"@)?ﬁl"(&ﬂi)) d. (6)
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In this new functional V, is the gradient operator with respect to Qanda >0isa parameter. This filter is,
in a sense, adding artificial viscosity to the expansion: oscillations make this new term in the cost function

large.

We will now find the new expansion coefficients, 1/3,"‘ Noting that the spherical harmonics are eigenfuctions
of the Laplacian operator on the sphere,

VRY™ = -0+ 1Y, (7

one can show that

7 1/) l

Wl TE al?k(l + 1)’
Therefore, the filtered expansion forces the expansion coefficients to decrease with increasing [. These
filters are also conservative in that they do not change the magnitude of ) meaning that the scalar flux is
unchanged. There still is the free parameter o that we must specify. In this study we suggest two ways of
defining «, though we note that further research will probably uncover better filters.

®

3. TWO FILTERS

3.1. Strictly Positive P; Reconstruction

The first filter that we describe is based on the P} expansion of the angular flux. This expansion is

Y= \/—%‘f’ \/7 \/7?/) TV1- 42, €

W
where we have used the relation that ¢* = (—1)™), ™ [8]. Notice that this reconstruction can be negative;
when

|¥9] > 7 (10)
or '0
ly1] > % (11)

then 7/ will be less than zero for some combination of (i, ).

This possibility for a negative value suggests some kind of slope limiter. When 1" is too large we want to
scale it back. The amount to scale it by is given in the modified reconstruction

1
=5 7%+3 fuﬂ/ —Oxpie /1 — 122, (12)

with
98
1 =min | ——,1 ], (13)
(\/§|1/’(1)|
and
0
G5 ="min | —>—,1]. (14)
(\/6 [41] )
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This reconstruction guarantees that 1 is positive.

We can cast the limited reconstruction of Eq. (12) as a filter by defining « as

19

a = —22—k', (15)

where the unadorned 6 is the minimum of #; and 5. With this definition of o we then apply the filter as in
Eq. (8).

One important property of this filter is that it only is applied where it is needed, i.e. in regions where the
angular flux can be negative—when 6 = 1 the filter does nothing. Also, in the diffusion limit it should not
have an effect. This can be seen by the fact that in the diffusion limit 47" is an order € quantity whereas 1]
is order one, so that # will be one.

There is a drawback to this filter in that it limits the Py equations wavespeed to the P; wavespeed, v/v/3
where v is the particle speed. This is a result of the hard limit we place on the size of *. For higher
order Py expansions, there are higher moments that can create a positive reconstruction with 7 outside
the bounds of Egs. (5) and (6). We believe that the reconstruction could be modified to ensure that the Ps
expansion is positive. This would require devising conditions where a cubic is positive and we have not
been successful to date in deriving such a condition. Even higher Py expansions could be modified to give
a positive reconstruction, though we believe as the order increases deriving positivity constaints becomes
increasingly more difficult (and tedious). Finally, we point out that the slow wavespeed could be remedied
by employing a Py /3 type correction that adjusts the P; wavespeed to be v [9].

3.2. Material Property Dependent Filter

The second filter we discuss does not explicitly guarantee a positive reconstruction of ), rather it imposes a
filter in parts of the problem where the material interaction is weak. This filter writes « as

w
(87

= LTI (16)

where IV is the order of the Py expansion, oy is the total macroscopic cross-section of the material, L is
some characteristic length, and w is a positive number.

This filter has the property that as the order of the expansion increases, the filter effects the solution less.
Therefore, as N — oo the solution does still converge to the transport solution. Moreover, this filter does
not effect the diffusion limit: when oy is an O(1/€) quantity, then & = 1 + O(e?). Perhaps the biggest
upside to this filter is that it is linear in ;. Unlike the filter based on the P; reconstruction, this filter can
be implemented in a straightforward manner.

At low expansion orders, for example P, this filter is strong is streaming regions. When o, = 0 for N = 1,
1
1+ 4w

o = A (17)
regardless if the solution “needs” to be filtered or not. The other drawback to this filter is that it has a free
parameter, w. Though this parameter gives flexibility to increase or decrease the filter strength, it would be
better to have a prescribed value that guarantees positivity.
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4. THE SPHERICAL HARMONICS EQUATIONS

To show how we implement the filtered expansion, we begin with the equation for the time dependent

transport of neutral particles,

Loy
;E-l_Q Vy =S5, (18)

where (x, 0, v,t) is the angular flux, v is the particle speed, (2 is the direction of flight variable, o is
the macroscopic interaction cross-section of the material, and S is a source function that takes into account
the material-particle interaction, such as a scattering source. Also, we will be dealing with 2-D Cartesian
geometry so that V = (%, 3‘9;). We then expand Q in spherical harmonics functions as discussed above to
get the system

Loy 10
= ¢l +§% (_nglwln_le’f'Dm_l : _+_Em+1,¢)m+l Fm+1,¢)m+1)

> ot 1+1 Yie1 +1 Yin
15]
+5z-( Y i + B i) Yot =8 forl=1...n,m=1...1 (19a)
and
1 oYY %)
3tl o (Ez Wi — F11+1¢11+1)+& (AD_ )y + By ) +of = S forl=0...n, (19b)
where

Am l-m+1D(I+m+1) Bm — (l—m)(l+m)
A (21 +3)(20 + 1) e, Y@+ 1)(2l—1)

(
(

sz\/(l+m+1)§l+m+2) sz\/(z_m)(z+m_1)
(

(21 +3)(2l +1) : (21 +1)(21-1)

m L = mEl —m 4+ 2) o JE+mil+m—1)
Ei ‘\/ (21 + 3)(20 + 1) i @r+1)el —1)

For the Py method the scalar flux, ¢ = [, 4 dQap, is given by ¢ = 2,/my§, and the number of unknowns in
the Py equations is 3 L(n? 4 3n) + 1. The initial conditions for Py are given by

Y (x) = dQYz’"*( )¥(x, ). ' (20)

The boundary conditions we will use are ghost cell boundary conditions [5, 7] that are equivalent to the
Mark boundary condition.

4.1. Numerical Method

To solve Eqgs. (19) we will use a linear discontinuous Galerkin method for the spatial discretization and
a semi-implicit time integration method [10]. This approach has been shown to be robust in the diffusion
limit, and it gives a straightforward means to apply our filters.

We apply the filters after each time step by computing « in each spatial cell and then scaling " to get 1/;{"
as in Eq. (8). This approach is simple in that it allows us to treat any nonlinearity in the filter explicitly. How
to deal with nonlinear filters with implicit solvers is an open question that we leave to future work, though
we note that the filter given in Sec. 3.2 is linear and could be used with an implicit solver. We use w = 1/3
for the material based filter.
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4.2. Sources

Our subsequent numerical results will solve two types of problems: linear problems with isotropic scattering
and nonlinear transport problems where the background material emits particles as a blackbody source.

4.2.1. Isotropic Scattering

For problems of linear transport with isotropic scattering and only one particle speed, the source function S
becomes &
§=—¢—ow, (21
47

where oy is the scattering macroscopic cross-section, and oy is the total macroscopic cross-section. This
source makes

S§ = —oaify, (22)
SI" = —ow*,  1>0. (23)

4.2.2. Radiative Transfer Problems

In problems of the radiative transfer of grey x-rays [2] the source term is given by

4
— (w e ) | (24)

4r

where a = 0.01372GJ cm ™2 keV % is the radiation constant, ¢ = 2.998 x 10'% cm/s is the speed of light,
0, is the absorption macroscopic cross-section, and the temperature 7' is governed by

or

C“E =0y (¢ —acT?). (25)
The moments of S are then
acT?
Sy = —oq (¢8 - ﬁ> : (26)
St = —oudy*,  1>0, 27)
and Eq. (25) is in terms of ¥y,
Cv%—:tf = 0a (2V/7Y) — acT?). (28)
5. NUMERICAL RESULTS

The first problem we solve is a linear transport problem as described in Sec. 4.2.1. This problem has an
infinite line source pulsed at the origin at time 0. The material has o0y = o5 = 1 and the particle speed
is v = 1. There is an analytic transport solution to this problem given by Ganapol [11]. This is sort of
a pathological problem due to the presence of a singularity in the solution at /¢t = 1. Nevertheless, this
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Figure 1. Solutions to the pulsed line source problem at ¢ = 1 using several methods.
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Figure 2. Comparison of solutions to the pulsed line source problem and ¢ = 1.

solution shows that the standard Py expansion can become negative (indeed the solution to the standard
Py equations for this problem has a negative singularity).

In Fig. 1 standard Py, filtered Py, and Sy solutions are compared on the line source problem at ¢t = 1.
Our numerical solutions used Az = 0.01, 0.1 for the ¢ = 1 and ¢ = 10 solutions respectively. The difficulty
in solving this problem is apparent in the figure. The P7 solution has large amplitude waves that does go
negative, and the Sg solution has strong ray effects (though they look like “dot” effects on this problem).
The two filtered spherical harmonics solutions both remain positive. The material based filter does not
have waves in the solution and is propagating information at nearly the correct speed. The slope-limiter
based filter moved information too slowly and does demonstrate wave-like behavior. These solutions are
compared to Ganapol’s transport solution in Fig. 2. At this early time none of the numerical solutions
adequately capture the transport solution. The solutions at a later time, ¢ = 10, are show in Fig. 3. At
this time the P; and Sg solutions give nearly the same results as the transport solution. The material based
filter and the slope limiter based filter are not as accurate. The filter based the slope limiter has not moved
information far enough into the problem, causing the solution near the origin to be too high. The material
based filter is also slightly too high near the origin. Despite these shortcomings of the filtered solutions we
note that the solution at £ = 10 was arrived at without negativity or large wave (or ray) effects along the
way.

The next problem that we solve is a radiative transfer problem first suggested in alternate form by Brunner
[12]. This problem is a simplified hohlraum from an inertial confinement fusion experiment and is dia-
grammed in Fig. 4. A source of radiation is present on the left of the problem. This radiation flows into the
problem and heats that block at the center.

The radiation field from this problem for different methods is shown in Fig.5. The radiation is measured
by the radiation temperature, Trag = +/¢/ac. We compare the solution for our filtered spherical harmonics
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Figure 3. Comparison of solutions to the pulsed line source problem and ¢ = 10.
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Figure 4. Layout for the 2-D hohlraum problem. The blue regions have o, = 10073 cm~! for 7" in keV.
The white regions have oy = 0. Also, Cy, = 0.3 GJ/cm®-keV.
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approximations to implicit Monte Carlo (IMC) [13], flux-limited diffusion, and Sg calculations. The implicit
Monte Carlo calculations used 10° particles per time step with a time step size of 10~2 ns and 200 mesh
cells per direction. The flux-limited diffusion solution used Larsen’s flux limiter [14] with n = 2 and 200
mesh cells in each direction. Our deterministic transport solutions, Py and Sy used 100 cells per direction.

In Fig. 5 we compare several methods to solve the holhraum problem. For this problem the IMC solution
is the most correct in terms of transporting radiation energy in a physically correct manner. Conversely,
the flux-limited diffusion solution is the least correct because it allows radiation to flow around the block in
the center of the problem. We do not show a P7 solution to this problem because the P7 radiation energy
became negative and drove the material temperature negative causing the calculation to fail. The solution
to the P equations with the slope limiter based filter appears to be similar to the IMC solution except that
there is slightly more radiation to the right of the block than in the IMC solution. The P7 solution with the
material based filter has not moved the radiation far enough into the problem. This defect is mitigated by
going to P;; with the material based filter.

To better compare the methods we look at the radiation temperature along the line at ¥y = 0.125 c¢m in
Fig. 6 and z = 0.85 cm in Fig. 7. In Fig. 6 we see that the Py solution with the filter based on the slope
limiter is above the IMC solution with the Sg below the IMC solution. The material based filter solutions
dip below the IMC solution; the P; version of this filter is far below the IMC solution near the right edge of
the problem, and the P;; solution is closer to IMC but still below Sg. These comparisons hold on the right
of the block as shown in Fig. 7 where the slope limiter based filter solutions is higher than IMC, with the
material based filter solutions are below IMC.

The material temperatures from different methods are compared in Fig. 8. In this figure we can see ray
effects present in the Sg solution in the hot spots present on the right wall and the right side of the block. The
Py solution using the filter based on a linear reconstruction appears to be the closest to the IMC solution. The
solutions using the material based filter have not enough heating on the right side of the problem compared
to IMC.

6. CONCLUSION

We have presented a general framework for developing filters for spherical harmonics approximations. We
also developed two filters: one that guaranteed positivity using a limiter based on the P; expansion, and
one that enforced a decay in the expansion coefficients based on the material properties and the order of
expansion. On the pulsed line source problem both filters gave positive solutions, however, both solutions
also did not capture the transport solution at late times. On a multi-material problem of thermal radiative
transfer the P solution using a filter based on a slope limiter applied to the P; reconstruction was nearly as
accurate as the Sg. This is significant because the filtered solution did not have negativite energies or ray
effects. On the same problem the material based filter was not as accurate as Sg even when P;; was used.

We would like to again emphasize that the filters presented in this study are not likely the best filters for
transport. Nevertheless, we believe that filters are a way to remove the drawbacks of the spherical harmonics
equations. Possible directions for future work include a filter based on a positive P3 reconstruction, though
this is certainly not the only way forward.
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Figure 5. Radiation temperature solutions the hohlraum problem at ¢ = 1 ns.
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Figure 6. Radiation temperatures for the hohlraum problem at y = 0.125 cm.
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Figure 7. Radiation temperatures for the hohlraum problem at z = 0.85 cm.
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Figure 8. Material temperature solutions the hohlraum problem at ¢ = 1 ns.
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