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Subrmztted to the Annals of Statistics

RECURSIVE BIAS ESTIMATION FOR HIGH
DIMENSIONAL REGRESSION SMOOTHERS

BY PIERRE-ANDRE CORNILLON, NICOLAS HENGARTNER AND ERIC
MATZNER-L@BER

Montpellier SupAgro, Los Alamos National Laboratory and University
Rennes 2

In multivariate nonparametric analysis, sparseness of the covari-
ates also called curse of dimensionality, forces one to use large smooth-
ing parameters. This leads to biased smoother. Instead of focusing
on optimally selecting the smoothing parameter, we fix it to some
reasonably large value to ensure an over-smoothing of the data. The
resulting smoother has a small variance but a substantial bias. In this
paper, we propose to iteratively correct of the bias initial estimator
by an estimate of the latter obtained by smoothing the residuals. We
examine in details the convergence of the iterated procedure for clas-
sical smoothers and relate our procedure to L2-Boosting. We apply
our method to simulated and real data and show that our method
compares favorably with existing procedure‘.:

1. Introduction. Regression is a fundamental data analysis tool for
uncovering functional relationships between pairs of observations (X;, Y;),1 =
1,...,n. The traditional approach specifies a parametric family of regression
functions to describe the conditional expectation of the response variable Y’
given the independent multivariate variables X € R%, and estimates the free
parameters by minimizing the squared error between the predicted values
and the data. An alternative approach is to assume that the regression func-
tion varies smoothly in the independent variable x and estimate locally the
conditional expectation of Y given X. This results in nonparametric regres-
sion estimators [e.g. 15, 21, 33]. The vector of predicted values Y; at the
observed covariates X; from a nonparametric regression is called a regres-
sion smoother, or simply a smoother, because the predicted values Y; are
less variable than the original observations Y;.

Over the past thirty years, numerous smoothers have been proposed:
running-mean smoother, running-line smoother, bin smoother, kernel based
smoother, spline regression smoother, smoothing splines smoothm locally
weighted running-line smoother, just to mention a few. We refer’ to Buja
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et al. [6], Eubank [14], Fan and Gijbels [15], Hastie and Tibshirani [21] for
more in depth treatments of univariate regression smoothers and to Cleve-
land and Devlin [8] for multiple smoothers. A

An important property of smoothers is that they do-not require a rigid
(parametric) specification of the regression function. That is, we model the
pairs (X;,Y;) as

(1.1) Y, = m(X))+e, i=1,...,n,

where m(-) is an unknown smooth function. The disturbances €; are indepen-
dent mean zero and variance o random variables that are independent of the
covariates X;, i = 1,...,n. To help our discussion on smoothers, we rewrite
Equation (1.1) compactly in vector form by setting ¥ = (Y1,...,Y,)},
m= (m(X1),...,m(Xn))* and € = (£1,...,€n)", to get

(1.2) Y = m+e

Finally we write m = Y= ()71, - ,)7,1)‘, the vector of fitted values from the
regression smoother at the observations. Operationally, linear smoothers can
be written as

m=_S,Y,

where Sy is a n X n smoothing matrix. Smoothing matrices Sy typically
depend on a tuning parameter, which is denoted by A, that governs the
tradeoff between the smoothness of the estimate and the goodness-of-fit
of the smoother to the data by controlling the effective size of the local
neighborhood over which the responses are averaged. We parameterize the
smoothing matrix such that large values of A will produce very smooth curves
while small A will produce a more wiggly curve that wants to interpolate
the data. The parameter A is the bandwidth for kernel smoother, the span
size for running-mean smoother, bin smoother, and the penalty factor A for
spline smoother.

Much has been written on how to select an appropriate smoothing param-
eter, see for example Simonoff [33]. Ideally, we want to choose the smoothing
parameter )\ to minimize the expected squared prediction error. But without
explicit knowledge of the underlying regression function, the mean squared
prediction error can not be computed directly. Instead, one relies on es-
timates of the mean squared prediction error using Stein Unbiased Risk
Estimate [34] or Cross-Validation [26].

It is well known in multivariate analysis that the distance between typical
covariates increases with increasing dimensions d of the covariates X. The re-
sulting sparseness of the covariates, often called the curse of dimensionality,
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RECURSIVE BIAS ESTIMATION 3

forces one to use larger smoothing parameters in higher dimensions, which
in term leads to more biased smoothers. Optimally selecting the smooth-
ing parameter does not alleviate this problem, and therefore, the common
wisdom is to avoid general nonparametric smoothing in higher dimension.
Instead one often focus on fitting structurally constrained regression models,
such as additive models [21] and multiplicative models [28].

This paper takes a different approach. Instead of focusing on selecting the
tuning parameters A of the smoother, or equivalently the size of the local
neighborhood over which the responses are averaged, we fix the smoothing
parameter to some reasonably large value to ensure that smoother averages
the responses over large neighborhoods. This resulting over-smooth of the
data has a small variance but a substantial bias. We then proceed to correct
the initial smoother by subtracting from it an estimate of its bias obtained
by smoothing the residuals from the initial fit. If we smooth the residuals
with the same smoother that we used to smooth the data, we do not change
the size of the local neighborhood we are averaging over. As a result, this bias
correction partially circumvents the root cause of the curse of dimensionality.

Since the estimate of the bias is itself biased, there is potentially a benefit
to iterating the bias correction step. We can let the data tell us the desirable
number of iterations of bias correction by minimizing an estimate of the
prediction error, obtained by cross-validation or generalized cross-validation,
for example. <

We show in this paper that the behavior of the sequence of iteratively
bias corrected smoother depends on the spectrum of I — S). For some com-
monly used smoothers, such as Gaussian kernel regression smoothers and
smoothing splines, the bias of the iteratively bias corrected smoothers con-
verge to zero. But for other common smoothers, such as the nearest neighbor
smoother and kernel regression smoothers with an Epanechnikov kernel, the
bias of the iterative bias corrected smoother diverges.

This approach has the potential to work very well when the true under-
lying regression function is smooth. When applied to simulated data, our
method leads to smoothers that whose mean squared prediction error is up
to 30% smaller than the mean squared prediction of additive models and
MARS. The good predictions observed on simulated data is also realized
on real data. When applied to the Los Angeles Ozone data, our method of
iterative bias reduction produces a smoother with substantially lower mean
squared prediction error, around 18% smaller, than the mean squared pre-
diction error of competing smoothers proposed in the literature.

From a historical perspective, the idea of estimating the bias from resid-
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uals to correct a pilot estimator of a regression function goes back to the
concept of twicing introduced by Tukey [35] to estimate bias of misspecified
multivariate regression models. More recently, Di Marzio and Taylor [12]
studied one-step bias correction of univariate kernel regression smoothers,
and showed that it corresponded to making on iteration of the Ly boosting
algorithm of Biithlmann and Yu [4]. The correspondence between Ly-boosting
and our iterative bias correction procedure follows from the representation
of the bias corrected smoother presented in Section 2 and the expression
found in Bihlmann and Yu [4]. This new interpretation for the Ly boost-
ing algorithm as iterative bias corrections was alluded to in Ridgeway [30]’s
discussion of Friedman et al. [18] paper on the statistical interpretation of
boosting. The idea of iterative debiasing regression smoothers is also present
in Breiman [3] in the context of the bagging algorithm.

Finally, while this paper focus on linear smoothers to estimate bias, it is
possible to apply the same idea with nonlinear bias reduction techniques.
For example, one can use the multiplicative bias correction technique of Burr
et al. [7], Hengartner and Matzner-Lgber [22] that preserve the sign of the
pilot smoother.

This paper is structure as follows. We start in Section 2 by presenting
two approaches to bias estimation for linear smoothers. The first is based
on the plug-in method while the second focuses on smoothing residuals. We
give conditions under which both approaches produce the same estimate
for the bias. Identifying the smoothing matrix corresponding to the k-times
bias corrected smoother allows us to describe qualitatively the behavior of
the sequence of iteratively bias-corrected smoothers in terms of the spec-
trum of 7 — S. In Section 3, we study the behavior of the iterative bias-
corrected smoother based on commonly used multivariate smoothers: kernel
smoothers, K-nearest neighbor smoothers and smoothing splines. We prove,
and show by example, that not all smoothers are suitable fer to be used
by our iterative bias reduction technique. In particular, we prove that the
iterative bias correction of nearest neighbor smoothers produces a sequence
of smoothers that behave erratically after a small number of iteratior;_f and
eventually diverges. Another class of smoothers that are not suitable for our
iterative bias correction scheme are kernel smoothers based on kernels that
are not positive definite.

The iterative bias correction scheme is controlled by two parameters: the
smoothness of the initial smoother, and the number of bias correction it-
erations. We discuss the choice of both these parameters in Section 4. The
simulations in Section 5 show that combining a GCV based stopping rule
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RECURSIVE BIAS ESTIMATION 5

to the iterative bias reduction algorithm seems to work well. It stops early
when the sequencé of iterated bias corrected smoothers misbehaves, and
otherwise takes advantage of the bias reduction. Our simulation compares
optimum smoothers and optimum iterative bias corrected smoothers (using
generalized cross validation) for general smoothers without knowledge of the
underlying regression function. We conclude that the optimal iterative bias
corrected smoother outperforms the optimal smoother.
Finally, the proofs are gathered in the Appendix.

2. Bias estimation. This section introduces our bias corrected lin-
ear smoother and characterizes the qualitative behavior of the sequence of
smoothers obtained through iterative bias correction.

2.1. Bias Corrected Linear Smoothers. Recall the multivariate nonpara-
metric regression model in vector form (1.2) from Section 1

Y = m+e,

where the errors € are independent, have mean zero and constant variance
o?, and are independent of the covariates X = (Xi,...,Xn), X; € R4
Linear smoothers can be written as

(2.1) iy = SY,

where S is an n X m smoothing matrix. Typical smoothing matrices are
contractions, so that ||SY|| < [|Y]|, and as a result the associated smoother
SY is called a shrinkage smoother (see for example Buja et al. [6]). Let I be
the n x n identity matrix. The linear smoother (2.1) has bias

(2.2) B(m,) = E[|X] —m = (S —I)m
and variance
V(@ |X) = SS'0?,

respectively.

There are at least two approaches to estimate the bias (2.2). A first esti-
mator for the bias is obtained by plugging in an estimator 7. = S2Y for the
unknown regression function m into the expression (2.2) for the bias of the
estimator my = S1Y. This produces

~

by = (Sy—I)m
= (S - DSyY.
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6

Correcting the pilot smoother 7m; for its bias produces
my = S1Y + (I == Sl)SQY,

which is itself a linear smoother. Repeating the bias correction step k times,
leads to the linear smoother

(23) 7y = S1Y+({UT—-851)SY +-+{—51)I —S2) - StY,
whose associated smoothing matrix is simplified in the following theorem.

THEOREM 2.1 (Plug-in estimator). After k iterations, estimator (2.3)
can be explicitly written as

(2.4) e = [I—I=S51)—82) - (I—-Sk)Y.

A second estimator for the bias is obtained by observing that the residuals
Ry =Y —my = (I — S51)Y have expected value E[R;|X] = m — E[f1]|X] =
(I = S1)m = —B(m1). This suggests estimating the bias by smoothing the
negative residuals

(2.5) by := —S3R; = —So(I — §1)Y.

Correcting the pilot smoother 7m; with the latter bias estimate produces the
smoother

me = S1Y + Sz(.[ — SI)Y
Iterating the bias reduction step k times leads to the linear smoother
(2.6) M = SH1Y+So(I—-851)Y+ -+ Skl —Sk-1) (I -S)Y.

The next theorem provides a compact representation for its smoothing ma-
trix

THEOREM 2.2 (Residual smoothing estimator). After k iterations, esti-
mator (2.6) can be explicitly writien as
(2.7) e = [[— T =Sk = Sk-1)---(I = S1)]Y.

Theorems 2.1 and 2.2 show that in general, the two sequences of smoothers
are not the same unless the smoothing matrices Sy,..., S, commute. An

important special case of the latter is when S; = Sp = --- = S, in which
case both (2.1) and (2.2) reduce to the following corollary.

imsart-aos ver. 2007/04/13 file: paper5.tex date: September 3, 2008



RECURSIVE BIAS ESTIMATION 7

COROLLARY 2.3.  If the same smoother S is used to smooth the data and
to estimate the bias, then the k" jterated bias corrected linear smoother iy
can be explicitly writlen as

S[I+(I—S)+(]—S)2+..‘_{_ (I _'S)I:—]]Y
[I = (I - SNY = &Y.

Il

Mk

(2.8)

Remark 1 If the smoother S is a projection (as is the case for bin
smoothers and regression splines), then the estimated bias

b=S(I-S)Y =0,

and hence Sy = S for all k.

Remark 2 In the univariate case, smoothers of the form (2.8) arise
from the Ly boosting algorithm with convergence factor p; = 1 studied
by Bithlmann and Yu [4] when S is a smoothing spline. This provides a
new statistical interpretation for Lo boosting. Breiman [3] noted a similar
interpretation for the bagging algorithm applied to the residuals of nonpara-
metric smoothers.

2.2. Predictive smoothers. As defined by (2.1), smoothers predict the
conditional expectation of responses at the design points. It is interesting to
extend regression smoothers to produce predictions at arbitrary locations.
Such an extension enables us to assess and compare the quality of various
smoothers in terms of how well they predict new observations.

To this end, recall that the prediction of a linear smoother S at an arbi-
trary location = can be written as

m(z) = S(z)'Y,

where S(z) is a vector of size n whose entries are the weights for predicting
m(z). The vector S(z) is readily computed for many of the smoothers used
in practice.

To extend the iterative bias corrected smoother 7, defined in 2.8, we
write

Mg = o401+ -+ by
= S 4 {I=8+[T~=8PF 4+ {I-8FYY
= 5Bk,
and predict m(z) by
(2.9) g (z) = S(I)tﬁk.
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This formulation is computationally advantageous because the vector of
weights S(z) only needs to be computed once, and the iterative bias correc-
tion scheme leads to the sequential update rule

Bk = Br-1+ Ry,
where Ry =Y — my. is the residual vector from the previous fit.

2.3. Properties of iterative bias corrected smoothers. The squared bias
and variance of the k** iterated bias corrected smoother 7y (2.8) are

B(ig) = mt((I-5)F) (I - 5)km
V(1) g

I

oI — (1= 8" (I - (I - 5)¥))

respectively. It follows that the qualitative behavior of the sequence of iter-
ative bias corrected smoothers 7y, is determined by the spectrum of I — S.
The next theorem collects the various convergence results for sequence of
iterated bias corrected linear smoothers.

THEOREM 2.4. Suppose that the singular values A\; = \j(I —S) of I - S
satisfy

(2.10) =1<Xi<l for j=1,...,n
Then we have that

bkl < llbg-a]l and  lim B =0,
k—oo

|Rkll < ||Re—1]] and  lim Ry =0,
k—oo

lim my =Y and i ]E[Hﬁlk _ m“2] .

k—oo k—oo

Conwversely, if I — S has a singular value |\;| > 1, then

lim ||bg]l = lim ||Ri|| = lim || = oo.
k—o0 k—o0 k—oo

The assumption that for all j, the singular values —1 < A\;(I = S) < 1
implies that 7 —.S is a contraction, so that ||[(I —S)Y|| < ||Y||. This condition
does not imply that the smoother S itself is a shrinkage smoother as defined
by Buja et al. [6]. Conversely, not all shrinkage estimators satisfy the con-
dition (2.10) of the theorem. In the next section, we will give examples of
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RECURSIVE BIAS ESTIMATION 9

common shrinkage smoothers for which |A;(/ — S)| > 1, and show numeri-
cally that for these shrinkage smoothers, the iterative bias correction scheme
will fail. The reason of this failure lies with the fact that by overestimates
the true bias by, and hence the iterative bias corrected smoother repeatedly
over-corrects the bias of the smoothers, which results in a divergent sequence
of smoothers.

We conclude this section by noting that iterating the bias correction
scheme to reach the limiting smoother M, is not desirable, for either mq, =
Y or ||Meo|| = co. However, since each iteration decreases the bias at the
cost of increased variance, a suitably selected estimator from the sequence
{my} is likely to improve upon the initial smoother ;.

3. Bias reduction for classical smoothers. This section is devoted
to understanding the behavior of the iterative bias reduction schema using
classical smoothers, which in light of Theorem 2.4, depends on the magnitude
of the singular values of the matrix I — S.

TON
;;;\;:s ""‘ "','""’
Z a:‘:‘:‘\‘\‘\\\:‘:‘::ﬁ;'l:l”"'z:’%\\&%}z
® NSO E

F1G 1. "Mezican hat” function 3.1 on [—10,10] x [—10, 10]

3.1. Pedagogical example. Throughout this section, we illustrate the the-
oretical results by applying the iterative bias reduction scheme using various
common smoothers on the same simulated bivariate regression example. In
that example, we sample the well known ”Mexican hat” (see Figure 1)

_  nsin(y/z?+al)
(3.1) . m(zy,z2) = 10—*\/(1?”3) .

at 100 points taken on the regular grid {—9.5,—-8.5,...,8.5, 9.5}2, The dis-
turbances are mean zero Gaussian with variance producing a signal to noise
ratio of five.
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3.2. Projection type smoothers. We start our discussion by noting that
iterative bias reduction a projection type smoothers is of no interest be-
cause residuals (I — S)Y are orthogonal to smoother SY'. It follows that the
smoothed residuals S(I — S)Y =0, and as a result, m; = my for all k.

3.3. Kernel type smoothers. The smoothing matrix S of Nadaraya kernel
type estimators has entries S;; = K(dn (X, X;))/ > K(dn(Xi, X;)), where
K(.) is typically a symmetric function in R (e.g., uniform, Epanechnikov,
Gaussian), and dj,(z, ) is a weighted distance between two vectors z,y € R%.
The particular choice of the distance d(-,-) determines the shape of the
neighborhood. For example, the weighted Euclidean norm

d

(z; — ;)2
dp(z,y) = Z —jhg_—J),
j=1 J
where h = (hy,...,hq) denotes the bandwidth vector, gives rise to elliptic

neighborhoods.

3.3.1. Spectrum of kernel smoothers. To apply Theorem 2.4, we need
to characterize the spectrum of I — S. While the smoothing matrix S is
not symmetric, it has a real spectrum. To see this, write S = DK, where
K is symmetric matrix with general element K;; = K(dn(X;, X;)) and D
is diagonal matrix with elements Dy = 1/3; K(dn(X;, X;)). If ¢ is an
eigenvector of S associated to the eigenvalue A, then

Sq = DKq = D'/2 (DWKDI/?) D125 = )g,

and hence

(DI/QKD1/2) (D-l/zq) = A (D—1/2q>_

This shows that the symmetric matrix A = D'/2KD'/2 has the same spec-
trum as .S. Since S is row-stochastic, all its eigenvalues are less or equal to
one. Thus, in light of Theorem 2.4, we seek conditions on the kernel K to
ensure that its spectrum is non-negative. Necessary and sufficient conditions
on the smoothing kernel K for S to have a non-negative spectrum are given
in the following theorem.

THEOREM 3.1.  If the inverse Fourier-Stieltjes transform of a kernel K (-)
is a real positive finite measure, then the spectrum of the Nadaraya- Watson
kernel smoother lies between zero and one.
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RECURSIVE BIAS ESTIMATION 11

Conversely, suppose that X1,...,X, are an independent n-sample from
a density f (with respect to Lebesque measure) that is bounded away from
zero on a compact set strictly included in the support of f. If the inverse
Fourier-Stieltjes transform of a kernel K(+) is not a positive finite measure,
then with probability approaching one as the sample size n grows to infinity,
the mazimum of the spectrum of I — S is larger than one.

Remark 1: The assumption that the inverse Fourier-Stieltjes transform of
a kernel K(-) is a real positive finite measure is equivalent to the kernel
K(-) being positive a definite function, that is, for any finite set of points
T1,-..,Tm, the matrix

K(O) I((dh(xl,l‘z)) K(dh(ml,xg)) N K(dh(xl,xm))
K (dp(z2,1)) K(0) K(dp(z2,23)) ... K(dn(z2,2m))
K(dn(@m71)) K(dn(@mz2) K(dn(@mzs)) ...  K(0)

is positive definite. We refer to Schwartz [31] for a detailed study of positive
definite functions.

Remark 2: Di Marzio and Taylor Di Marzio and Taylor [13] proved the first
part of the theorem in the context of univariate smoothers. Our proof of the
converse shows that for large enough sample sizes, most configurations from
a random design lead to smoothing matrix S with negative singular values.

3.3.2. Numerical implementation. Iterative smoothing of the residuals
can be computationally burdensome. To derive an alternative, and com-
putationally more efficient representation of the iterative bias corrected
smoother, observe that

g = [[-(I-8)%Y
[I o (Dl/2D~—1/2 _ DI/ZDI/ZKDI/QD—1/2>IC]Y
[I _ D1/2(I _ D1/2KD]/2)I€D~1/2]Y
D21 — (I — A)Y|D™/?Y.
Writing the symmetric matrix 4 = DV/2KD1/2 is symmetric as A = PyA P,
with P4 the orthonormal of eigenvectors and A4 diagonal matrix of associ-
ated eigenvalues leads to a computationally efficient representation for the
smoother

I

x = DY2PA[I — (I — Aa)¥|PYDV2Y.

Note that the eigenvalue decomposition of A needs only to be computed
once, and hence leads to a fast implementation for calculating the sequence
of bias corrected smoothers.
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3.3.3. Ezample of Gaussian kernel smoother. The Gaussian and trian-
gular kernels are positive definite kernels (they are the Fourier transform
of a finite positive measure Feller [16]). In light of Theorem 3.1 the itera-
tive bias correction of Nadaraya-Watson kernel smoothers with these kernels
produces a sequence of well behavior smoother.

The anticipated behavior of iterative bias correction for Gaussian kernel
smoothers is confirmed in our numerical example. Figure 2 shows the pro-
gression of the sequence of bias corrected smoothers starting from a very
smooth surface (see panel (a)) that is nearly constant. Fifty iterations (see
panel (b)) produces a fit that is visually similar to the original function.
Continued bias corrections then then slowly degrades the fit as the smoother
starts to over-fit the data. Panel (c) show the smoother after 10000 iterations.
Continuing the bias correction scheme will eventually lead to a smoother
that interpolates the data. This examples hints at the potential gains that
can be realized by suitably selecting the number of bias correction steps.

(a) (b) (c)

F1G 2. Gaussian kernel smoother of the function m(z1,z2) from n = 100 equidistributed
points on [—10,10] x [—10,10], evaluated on a regular grid with k = 1 iteration (a), 50
iterations (b) and 10000 iterations (c).

3.3.4. Kernel smoothers with Uniform and Epanechnikov kernels. The
uniform and the Epanechnikov kernels are not positive definite. Theorem
3.1 states that for large enough samples, we expect with high probability
that 7 — S has at least one eigenvector larger than one. When this occurs,
the sequence of iterative bias corrected smoothers will behave erratically and
eventually diverge. Proposition 3.2 below strengthens this result by giving
an explicit condition on the configurations of the design points for which the
largest singular value of I — S is always larger than one.

PROPOSITION 3.2. Denote by N; = {X; : K(dn(X;,X;)) > 0} the the
set of distinctive points in the neighbors of X;.
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RECURSIVE BIAS ESTIMATION 13

If there exists a set N; such that |[N;| > 3 that contains points X;, Xy # X;
such that dp(X;, X;) < 1, dn(X5, Xi) < 1 and dp(X;, Xi) > 1, then the
smoothing matriz S for the uniform kernel sinoother has at least one negative
etgenvalue.

If there exits a set N such that |[N;| > 3 that contains pomts Xy Xp 2 Xy
that satisfy

dh(Xj, Xk) > min{dh Xi, X‘), dh(X,, Xk)},
then the smoothing matriz S for the Epanechnikov kernel smoother has at
least one negative eigenvalue.

Remark. The proof of the proposition is readily adapted to multivariate
kernel smoothers whose kernel are defined as the product of univariate kernel
in each of the components.

The lack a suitability of Epanechnikov kernel smoothers for the iterated
bias correction scheme is illustrated in the numerical example shown in
Figure 3. As for the Gaussian smoother, the initial smoother (panel (a))
is nearly constant. After five iterations (panel (b)) some of the features
of the Mexican hat become visible. Continuing the bias corrections scheme
produces an unstable smoother. Panel (c) shows that after only 25 iterations,
the smoother becomes noisy. Nevertheless, when comparing panel (a) with
panel (b), we see that some improvement is possible from a few iterations
of the bias reduction scheme.

(a) (b)

\\1\:
WAl
31!
mw ll

i ““""n':”mc'
\\\ ‘0 q

i
l

Fic 3. Epanechnikov kernel smoother of the function m(zy1,z2) from n = 100 equidis-
tributed points on [—10,10] x [—10,10], evaluated on a regular grid with k = 1 iteration
(a), 5 iterations (b) and 25 iterations (c).

3.4. K-nearest neighbor smoother. The associated smoothing matrix of
the K-nearest neighbor smoother is S;; = 1/Kwhen X; belongs to the K-
nearest neighbor of X; and S;; = 0 otherwise. While this smoother enjoys
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many desirable properties, it is not well suited for the iterative bias correc-
tion scheme because the matrix I — S has singular values larger than one.
The next theorem gives conditions on the configurations of the design points
that leads to negative singular for the smoothing matrix.

THEOREM 3.3. Let S be the smoothing matriz of the K nearest neighbor
smoother with K > 3. Let Ny = {X; : X; is a nearest neighbor of X;}, the
set of nearest neighbors of X;. If there exists at least one neighboring set N;
such that there exists X;, Xy € Nj for which

X; E./\/j, Xiej\/k and Xy, Q’/\/J ande €Nk,
then at least one singular value of S is negative.

The proof of the theorem is found in the appendix. A consequence of the-
orems 3.3 and 2.4, is that the sequence of iterative bias corrected K-nearest
neighbor smoothers divergent, and hence should not be used in practice.

We confirm this behavior numerically. Using the same data as before,
we apply the iterative bias reduction algorithm to the K-nearest neighbor
smoother. We start with a pilot K-nearest neighbor smoother with K = 20
(see Figure 4 panel (a)) that produces a very smooth nearly constant surface
as K is a significant fraction of the sample size n = 100. Already after
five iterations, the smoother deteriorates (panel (b)) and exhibits an erratic
behavior after ten iterations (panel (c)).

(@) (b) (c)

F1G 4. K -nearest neighbor smoother of the function m(z1, x2) given n = 100 points equidis-
tributed on [—10,10] x [—10,10] evaluated on a reqular grid with k = 1 iteration (a), 5
iterations (b) and 10 iterations (c).

3.5. Smoothing spline smoother. It is well known that the univariate
spline smoother is a symmetric smoothing matrix .S whose eigenvalues lie
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between 0 and 1. To extend smoothing splines to multivariate settings, one
can use the fact that polynomial smoothing splines can be recasted in the
framework of reproducing kernel Hilbert space, as well as thin-plate splines
see Gu [20]. Recall briefly that univariate cubic smoothing splines can be
described as minimizers of

(3.2) ;@3; (Y; — F(X))? + MFIE,

where H is a reproducing kernel Hilbert space (here C(®) equiped with a
suitable reproducing kernel) and ||f||?, is a squared (semi)norm in H. Using
this framework, modeling with several covariate can be done easily with
tensor product of reproducing kernel Hilbert space. The resulting smoothing
matrix S remains symmetric and has eigenvalues between 0 and 1 Gu [20],
p. 61. In light of Theorem 2.4, the iterative bias correction scheme based on
smoothers S from splines (in both univariate and multivariate settings) leads
to fitted value 7y that converge to Y. The resulting sequence of smoothers
is stable as opposed to those based on nearest neighbor, Epanechnikov or
uniform kernel. Moreover, bias and variance can be expressed as a function
of eigenvalues as in Bithlmann and Yu [4] who studied the behavior of the
Ly boosting algorithm for univariate cubic smoothing splines.

4. Parameter selection. The iterative bias reduction scheme requires
the user to supply two parameters: the bandwidth of the smoother and the
number of iterations of bias correction. The choice for both these parameters
is discussed in this section.

4.1. Selecting the bandwidth. An important question is how to chose the
bandwidth of smoother. We know that for bias reduction to be effective, we
want to use a large bandwidth that oversmooths the responses, as such pilot
smoothers will be heavily biased. As a general rule, the larger the bandwidth,
the more biased the pilot smoother will be and the more iterations of the bias
reduction scheme will be required to obtain a “good” smoother. Otherwise,
the method is generally robust to the choice of the bandwidth.

The bandwidth in each component of the covariate depends on its scale.
It is common to first rescale the data before selecting the bandwidth. In our
numerical experiments, we found it preferable to leave the scales unchanged,
and to select the bandwidth based on the effective degree of freedom (trace of
the smoothing matrix) of the univariate smoother in each of the components,
with typical values for the degree of freedom we ranging from 1.05 to 1.2.
A further advantage of the latter choice is that there is no explicit reference
to sample size.
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4.2. Data driven selection of the number of bias reduction steps. Theo-
rem 2.4 in Section 2 states that the limit of the sequence of iterated bias
corrected smoothers is either the raw data Y or has norm ||Ya|| = co. It
follows that iterating the bias correction algorithm until convergence is not
desirable. However, since each iteration of the bias correction algorithm re-
duces the bias and increases the variance, often a few iteration of the bias
correction scheme will improve upon the pilot smoother. The possibility of
such improvements was shown in the numerical examples of the previous
section. This brings up the important question of how to decide when to
stop the iterative bias correction process.

Viewing the latter question as a model selection problem suggests stop-
ping rules for the number of iterations based on Mallows’ C, [29], Akaike In-
formation Criteria (AIC), Akaike [1], Bayesian Information Criterion (BIC),
Schwarz [32], cross-validation, L-fold cross-validation, and Generalized cross
validation Craven and Wahba [10], and data splitting Hengartner et al. [23].
Each of these data-driven model selection methods estimate the optimum
number of iterations k of the iterative bias correction algorithm by minimiz-
ing estimates of the expected squared prediction error of the smoothers over
some pre-specified set K = {1,2,..., M} for the number of iterations.

We rely on the expansive literature on model selection to provide insight
into the statistical properties of stopped bias corrected smoother. Theorem
3.2 of Li [27] describes the asymptotic behavior of the generalized cross-
validation (GCV) stopping rule applied to smoothers. Results on the finite
sample performance for data splitting for arbitrary smoothers is given in
Theorem 1 of Hengartner et al. [23]. In nonparametric smoothing, the AIC
criteria has a noticeable tendency to select more iterations than needed,
leading to a final smoother 7’7‘175“0 that typically undersmooths the data. As
a remedy, Hurvich et al. [25] introduced a corrected version of the AIC under
the simplifying assumption that the nonparametric smoother 7 is unbiased,
which is rarely hold in practice and which is particularly not true in our
context.

Extensive simulations, both in the univariate and the multivariate settings
Cornillon et al. [9] have shown that not only is CV and GCV

" trace(Sk
kccy = argmin {log Fo 2log (1 - —(—}‘)> } 5

kek n
are computationally more efficient, and application of these criteria lead to
better final smoothers.

5. Simulations and real example. In this section, we show, via sim-
ulations, that our proposed iterative correction procedure works well for
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both simulated and real data. Due to their prevalence in the literature, we
include a discussion of how our methods compares in the context of univari-
ate smoothing splines. We further show that our method has desirable finite
sample properties in the multivariate setting and compares advantageously
when applied to the well known the Los Angeles Ozone data.

5.1. Univariate case. One of the most common smoother used in uni-
variate function estimation is the smoothing spline. The aim of that section
is to show how the iterative bias correction scheme using smoothing splines
compare to a classical smoothing spline estimation. In order to do so, we
compare for different sample size n = 50, 100 and 500, the iterative smoother
using two different starting points and two different stopping rules (GCV
and Cross Validation) with the smoothing spline estimator obtained by the
function smooth.spline in R. To this end, we consider three different func-
tions

mi(z) = sin(57x)
my(z) = 1-— 48z + 218z% — 315x% + 14527

my(z) = exp (- 3z < 3} +epl-2o - Dz 2 5

The explanatory variable X is a uniform between 0.and 1, an error (Gaussian
or Student 5) with variance such that the signal to noise ratio is 80%. For
100 replications, we calculate on a finite grid in [0,1] the quadratic error
between the true function and the proposed estimate. Table (1) reports the
median over the 100 replications of the ratio of the error obtained but the
iterative estimator and the smoothing spline estimator.

TABLE 1
Median over 100 simulations of the number of iterations and median of the ratio of the
MSE obtained by the iterative debiasing estimation and the MSE obtained by the
smoothing splines smoother for n = 50 data points.

srror leCV Si"lGC'V I::ZGC\’ SEQ(‘(‘\’ ]::lcv SEI(‘V }:“2C\, Si“'ZCY
Function mi(z) = sin(5nz)

Gaussian 4077 0.86 65 0.88 4191 0.84 88 0.83
Student 4115 0.87 70 0.88 4853 0.84 96 0.84
Function ma(z) = 1 — 48z + 21827 — 315z% + 14527
Gaussian 1219 1.09 21 1.12 1339 1.07 27 1.10
Student 1307 1.1% 22 1.13 1714 1.07 30 1.09
Function mg(x) = exp (v — 3){z < 3} +exp[-2(z — 3)[{z > 3}
Gaussian 135 0.93 3 0.93 138 0:92 3 0.93
Student 147 0.95 3 0.97 156 0.94 3 0.94
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Each entry in the table reports the median number of iterations and the
median of the ratio of the MSE obtained by the iterative debiasing estima-
tion and the MSE obtained by the smoothing splines smoother for n = 50
data points. As expected, larger smoothing parameter of the initial smoother
requires more iterations of the iterated algorithm to reach its optimum. In-
terestingly, the selected smoother starting with a very smooth smoother,
has slightly smaller mean squared error. In some cases, the iterative bias
correction has smaller mean squared error than the ”one-step” smoother,
with improvements ranging from 5% to 15%.

5.2. Multivariate case. Here, we focus on the multivariate case, that is
X € R4, d > 1, and consider multivariate Gaussian kernel smoothers. Sta-
tistical lore discourages using fully nonparametric methods in higher dimen-
sions as the resulting estimators suffer from the curse of dimensionality.
Instead, of focuses on estimating structurally constrained regressions mod-
els, such as additive models, multiplicative models, or multivariate tensor
product of spline basis in low dimension such as MARS that have better
statistical properties at the cost of possible misspecification error.

The aim of this section is to show via simulations that the iterative bias
correction scheme using a fully nonparametric regression smoother compares
advantageously to the MARS algorithm of Friedman [17] and additive mod-
els using the backfitting algorithm of Hastie and Tibshirani [21]. To this end,
we consider fitting the following test function

m(z) = 10sin(wz1z2) + 20(z3 — .5)2 + 10z4 + 5x5.

previously used by [17]. As in that paper, the covariate are independent
uniform distributions in each of the five variables, and Gaussian disturbances
with small variance! were added to the response surface m(z).

For each sample size (n = 50,100, 200), we generate the data as above,
use 90% of the data as a training set and predict the remaining 10% with
the R package mda for MARS and R package mgcv for the additive model
mi(z1)+- - -+ ms(xs) without interaction. We compare the prediction mean
square error of these methods with our iterative bias reduction scheme using
a Gaussian kernel regression smoother with three choices of bandwidths
chosen such that the effective degree of freedom for each covariate is 1.05,
1.1, and 1.2. The results we report in Table 2 are over 100 replications of
the simulation.

the variance is such that the signal to noise ratio is 95%.
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TABLE 2
Median over 100 simulations, with the median of iteration between parenthesis.

MARS Add. BRadgi=1.50 BRaai=120 BRuai=1.10 BRadi=1.05

n =50 .

4.298  3.577 3.551 (31) 3.122 (290) 3.179 (1740) 3.226 (14140)
n = 100

3.746  3.314 2.239 (42) 2.014 (589) 1.967 (5084) 1.970 (42930)
n = 200

3.354 2.753 1.842 (57) 1.747 (960) 1.707 (8780) 1.680 (76820)

The same features as those found in univariate simulations are found.
First, the smoother the pilot estimator is, the bigger the number of iterations
chosen by GCV is. Second, the smoother the pilot estimator is, the better
is the results. But here, for very small datasets (n = 50 data points and
d = 5 variables) the smoothest pilot estimator (df 1.05) tried leads to results
that are worse than the second smoothest (df 1.10). MSE obtained with
n = 100 using these pilot estimators are nearly the same, whereas MSE
obtained with n = 200 shows that the smoothest leads to the best results.
Simulations in univariate settings with very wiggly curve (not shown in this
paper) have shown similar results: if the pilot smoother is too smooth (near
to the constant), it cannot capture the whole unknown function as well as
a pilot smoother less smooth.

5.3. Los Angeles Ozone Data. We consider the classical data set of ozone
concentration in the Los Angeles basin which has been previously consid-
ered by many authors (Breiman [2], Bithlmann and Yu [4, 5]). The sample
size of the data is n = 330 and-the number of explanatory variables d = 8.
We use here a multivariate Gaussian kernel and select each individual band-
width in order to have the same degree of freedom by variable. These are
chosen equal to 1.05, 1.1, 1.2 and 1.5 in order to investigate the influence of
such parameter. We compare our iterative bias procedure with Mars using R
package mda, with additive models estimation using R package mgev and
Lo-Boosting proposed by Biihlmann and Yu [4], which we recall here. Multi-
variate Lo-Boosting proposed by Bithlmann and Yu [4] leads to component-
wise additive model

d
mpoes = by fHO)
g=1

where the component f (k,(9) is obtained by choosing the univariate smoother
Sx;(X;) which leads to the best improvement in smoothing the residuals of
previous iteration k — 1.
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The estimate mean squared prediction error is obtain by randomly split-
ting the data into 297 training and 33 test observations and averaging 50
times over such random partitions. We are in the configuration as Bithlmann
and Yu [4] and reporting theirs results we obtain the following table :

TABLE 3
Predicted mean Squared Error on test observations of ozone data for different methods.

Method | Mean Squared Error
LyBoost with component-wise spline 17.78
additive model (backfitted with R) 17.44
MARS (with R) 17.49

iterative bias reduction with GCV stopping rule
and multivariate Gaussian kernel with

1.05 initial DDL per variable and 297 iterations | 14.74
1.1 initial DDL per variable and 64 iterations 14.74
1.2 initial DDL per variable and 15 iterations 14.78
1.5 initial DDL per variable and 3 iterations 14.97

We can see (table 3) that, as in univariate setting, the smoother the pilot
estimator is, the better the final estimation is, at the cost of increasing
computation time. The combination of iterated of GCV and bias corrected
estimator leads to a diminution of more than 15% over other multivariate
methods.

6. Discussion. In this paper, we make the connection between iterative
bias correction and the Lo boosting algorithm, thereby providing a new
interpretation for the latter. A link between bias reduction and boosting was
suggested by Ridgeway [30] in his discussion of the seminal paper Friedman
et al. (18], and explored in Di Marzio and Taylor [11, 12] for the special case
of kernel smoothers. In this paper, we show that this interpretation holds
for general linear smoothers.

It was surprising to us that not all smoothers were suitable to be used for
boosting. We show that many weak learners, such as the k-nearest neighbor
smoother and some kernel smoothers, are not stable under iterated bias esti-
mation. Our results extend and complement the recent results of Di Marzio
and Taylor [12).

Iterating the bias correction scheme until convergence is not desirable.
Better smoothers result if one stops the iterative scheme. Our simulations
and application to real data show that our method performs well in higher
dimensions, even for moderate sample sizes.

As a final remark, note that one does not need to keep the same smoother
throughout the iterative bias correcting scheme. We conjecture that there
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are advantages to using weaker smoothers later in the iterative scheme, and
shall investigate this in a forthcoming paper.

APPENDIX A: APPENDIX

Proof of Theorem 2.3 To show 2.8, let ¥ = I+ (I~ S)+---+ (I — S)*1.
The conclusion follows from a telescoping sum argument applied to

SE#E—(I—S)E:I—(I—S)"'.

Proof of Theorem 2.4
IBel® = 1= (= S5y A

I(Z = S)(I = 8)¥2SY||? < ||(T = 9)1?[|bx—rI?

llbk-1l1?,

where the last inequality follows from the assumptions on the spectrum of
I — S. Similarly, one shows that

IA

IRkl? = 12 = S*Y|? < |l = S|P Rk-1]* < [[Re-1 .
Proof of Theorem 3.3 Let us consider the K-nn smoother the matrix S

is of general term

1
Sij = e if X; € K-nn(X;).

In order to bound the singular values of (I — S), consider the eigen values
of (I —S)(I —S) which are the square of the singular values of I —S. Since
A= (I-S8)(I—-S) is symmetric, we have for any vector u that

u' Au

u'u

(A1) e 2% 2 5,

Let us find a vector w such that v’ Au > v'u. First notice that A =1 — .5 —
S’ — SS’. Thus we have that

Second, to bound A;ij, we need to consider three cases:

imsart-aos ver. 2007/04/13 file: paper5.tex date: September 3, 2008



22

1. If X; belongs to the K-nn of X; and vice versa, then S;; = S;-i =1/K.
This does not mean that all the &-nn neighbor of X; are the same as
those of X;, but if it is the case, then (S5");; < K/K? and otherwise
in the pessimistic case, we bound (SS");; > 2/K?.1t therefore follows
that

2 K 2 1
Ve My B m=l,
A K~ Aij < X+ K K
2. If X; belongs to the K-nn of X; S;; = 1/K but X; does not belong
to the K-nn of X; then Sj; = 0. There is at a maximum of K — 1
points that are in the K-nn of X; and in the K-nn of X; so (S5');; <
(K —1)/K?. In the pessimistic case, there is only one point, which
leads to the bound
I L. 4 oE—-1 1. 1
K K- " 7 K K= &B¥
3. If X; does not belong to the K-nn of X; S;; = 0 and X; does not
belong to the K-nn of X; then S]’-i = (0. However there are potentially
as many as K — 2 points that are in the K-nn of X; and in the K-nn
of X;. In that case

K—2
K

Choose three points E, F' and G in X; such that

0<A4; < <

FE € K-nn(F) and F € K-nn(F)
F e K-nn(G) and G € K-nn(F)
E ¢ K-nm(G) or G ¢ K-nn(E).

an tool example is given in the next picture for bivariate random variables
in the unit square with K = 5.
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F1c 5. Ezample of the configuration of the points E, F and G that lead to a negative
eigenvalue of the smoothing matriz for I = 5.

Next, consider the vector u of R™ that is zero every where except at
position e corresponding at point E (respectively f and g) where its value
is -1 (respectively 2 and -1). For this choice, we expand u'Au to get

WAu = Ae,e + 4Af,f + Ag,g e 4Ae,f = 4Af’g + 2Aeyg
= 66— }(6- = 4Ae’f = 4Af’g -+ 2Ae,g-

With the choice of FE, F and G, we have
. ) 2
u Au > 6+ 74 4 2.

The latter shows that v’ Au > v'u whenever

1
Ae, = —75)

which is always true with the choice of points £ and G.

Proof of Theorem 3.1 For pedagogical reasons, we present the proof in
the univariate case. Let X1,...,X, is an i.i.d. sample from a density f that
is bounded away from zero on a compact set strictly included in the support
of f. Consider without loss of generality that f(z) > ¢ > 0 for all |z| < b.
We are interested in the sign of the quadratic form u!Au where the indi-
vidual entries A;; of matrix A are equal to
A = Kp(X; — X;)
g = .
2 Kn(Xi — Xo)\ /20 Kn(X; — X))
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Recall the definition of the scaled kernel K (-) = K (-/h)/h. If v is the vector

of coordinate v; = u;/v/>; Kn(X; — Xi) then we have u*Au = v'Kuv, where
K is the matrix with individual entries Kj(X; — X;). Thus any conclusion
on the quadratic form v'Kv carry on to the quadratic form u'Au. To show

the existence of a negative eigenvalue for K, we seek to construct a vector
U= (Ui(X1),...,Un(Xp)) for which we can show that the quadratic form

mn n
U'KU =Y Ui (X;)Uk(Xi) Kn(X; — Xi)
Jj=1k=1

converges in probability to a negative quantity as the sample size grows to
infinity. We show the latter by evaluating the expectation of the quadratic
form and applying the weak law of large number. Let ¢(z) be a real function

in Lo, define its Fourier transform

ot) = [ Hmoy(a)de

and its Fourier inverse by

Pimalt) = [ ™ p(a)da.
For kernels K (-) that are real symmetric probability densities, we have
Kt) = Kin(t).

From Bochner’s theorem, we know that if the kernel K(-) is not positive
definite, then there exists a bounded symmetric set A of positive Lebesgue
measure (denoted by |A|), such that

(A.2) K()<0 Vte A

Let @(t) € Ly be a real symmetric function supported on A, bounded by B
(i.e. |@(t)] < B). Obviously, its inverse Fourier transform

o0
W(f) - / e —27ixt ~ (t)dt
—00
is integrable and by virtue of Parceval’s identity
llel® = ll@l1* < B2|A| < co.

Using the following version of Parceval’s identity [see 16, p.620]

[ [ @k - vy = [ porK e

—00
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which when combined with equation (A.2), leads us to conclude that

/ / w(z)p(y) K (z — y)dzdy < 0.

Consider the following vector

——(f‘l/’l I(|X,| < b)

B ﬁ}i‘-;i’—‘lﬂ<|xg| <b)

U:nh

n/h ;
2L X | < b)

With this choice, the expected value of the quadratic form is

E[Q] = Z Ui (X;5) Uk (X ) Kn(X; — Xi)

F =1

1 b 1
= 3 L Tt/ o)ds

n2—n (b b1 dsd
el -
2 [ [ s /mett/mE(s - tydsdt
= L+ 1.

We bound the first integral

_ Kn(0) % els/)?
i = nh? /_b f(s) e

K"_() /b/h o(u)?du

nch b/h
leA]K(O)
ch?

IA

Observe that for any fixed value h, the latter can be made arbitrarily small
by choosing n large enough. We evaluate the second integral by noting that

L = (1——) // (s/R)e(t/R) Kn(s — t)dsdt

(1 - —) / / (s el t/h) K ( )dsdt
(1 - —) B / bb//hh / b:/z ) B — ol
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By virtue of the dominated convergence theorem, the value of the last inte-
gral converges to [°° |3(t)|?K (t)dt < 0 as h goes to zero. Thus for & small
enough, (A.3) is less than zero, and it follows that we can make E[Q] < 0
by taking n > ng, for some large ng. Finally, convergence in probability of
the quadratic form to its expectation is guaranteed by the weak law of large
numbers for U statistics [see 19, for example]. The conclusion of the theorem
follows.

Proof of Proposition 3.2 To handle multivariate case, let each component
h; of the vector h be larger than the minimum distance between three con-
secutive points, and denote by dj(X;, X;) the distance between two vectors
related to the vector chosen by the user. For example, if the usual Euclidean
distance is used, we have

Xa— Xj\?
d2(Xi, X;) = Z(—TJ) :

=1

The multivariate kernel evaluated at X;, X; can be written as K (dj(X;, X;))
where K is univariate. We are interested in the sign of the quadratic form
u'Ku (see proof of Theorem 3.1). Recall that if K is semidefinite then all its
principal minor [see 24, p.398] are nonnegative. In particular, we can show
that A is non-positive definite by producing a 3 x 3 principal minor with
negative determinant. To this end, take the principal minor K[3] obtained
by taking the rows and columns (4;,1%2,43). The determinant of K[3] is

det(K[3) = K(dn(0)) [K(dn(0))? — K (dn(Xis, Xin))?]
—K(dp(Xiy, Xip)) X
(K (dn(0)) K (dn(Xip, Xiy)) — K (dn(Xig» Xin)) K (dn(Xig, Xi,))]
+K(dh(Xi3» Xil)) X
[K (An(Xigs Xiy ) K (dr(Xig, Xiy)) — K (dr(0)) K (dn(Xig, Xiy))] -

Let us evaluate this quantity for the uniform and Epanechnikov kernels.

Uniform kernel. Choose 3 points in {X;}/*; with index 4y, iz, 3 such that
dh(Xil,X,;2) <1, dh(X‘ig;Xig) <1, and dh(XiuX'ia) > 1.
With this choice, we readily calculate

det(K[3)) = 0 K,(0) [Kn(0)*~ 0] —0<0.
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Since a principal minor of K is negative, we conclude that K and A are not
semidefinite positive.

Epanechnikov kernel. Choose 3 points {X;};L; with index iy, i, i3, such
that dh(Xil 5 X‘i3) > I]]in(dh()fi1 ; Xiz)§ dh(Xiz, Xi3)) and set dp(X;,, Xi,) =
z <1 and dh(Xi;nXig) =y <1l

Using triangular inequality, we have

det(K[3]) < 0.75(0.75% — K (y)?) — K (x)(0.75K (z) — K (y) K (min(z, y)))
—K (min(z,y)) K (z) K (y) — 0.75K (z + y)?
The right hand side of this equation is a bivariate function of  and y. Nu-

merical evaluations of that function show that small z and y leads to negative
value of this function, that is the determinant of K[3] can be negative.

o

) Com
| 5n ——
.- j\ o

.0

0.8

\

0.2 0.4

/

0.0

0.
T T T T
0.0 0.2 0.4 0.6 0.8

F1G 6. Contour of an upper bound of det(K[3]) as a function of (z,y).

Thus a principal minor of K is negative, and as a result, K and A are not
semidefinite positive.
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