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RECURSIVE BIAS ESTIMATION FOR HIGH 

DIMENSIONAL REGRESSION SMOOTHERS 


By PIERRE-ANDRE CORNILLON, NICOLAS HENGARTNER AND ERIC 


MATZNER-L0BER 


Montpellier SupAgro, Los Alamos National Laboratory and University 
Rennes 2 

In multivariate nonparametric analysis, sparseness of the covari­
ates also called curse of dimensionality, forces one to use large smooth­
ing parameters. This leads to biased smoother. Instead of focusing 
on optimally selecting the smoothing parameter, we fix it to some 
reasonably large value to ensure an over-smoothing of the data. The 
resulting smoother has a small variance but a substantial bias. In this 
paper, we propose to iteratively correct .o·rthe bias initial estimator 
by an estimate of the latter obtained by smoothing the residuals. v.,'e 
examine in detail~ 'the convergence of the iterated procedure for clas­
sical smoothers and relate our procedure to L2-Boosting. We apply 
our method to simulated and real data and show that our method 
compares favorably with existing procedur~/-

1. Introduction. Regression is a fundamental data analysis tool for 
uncovering functional relationships between pairs of observations (Xi, Yi), i = 
1, .. . , n. The traditional approach specifies a parametric family of regression 
functions to describe the conditional expectation of the response variable Y 
given the independent multivariate variables X E JRd, and estimates the free 
parameters by minimizing the squared error between the predicted values 
and the data. An alternative approach is to assume that the regression func­
tion varies smoothly in the independent variable x and estimate locally the 
conditional expectation of Y given X. This results in nonparametric regres­
sion estimators [e.g. 15, 21, 33]. The vector of predicted values Y; at the 
observed covariates Xi from a nonparametric regressioh is called a regres­
sion smoother, or simply a smoother, because the predicted values Y; are 
less variable than the original observat.ions Yi. 

Over the past thirty years, numerous smoothers have been proposed: 
running-mean smoother, running-line smoother, bin smoother, kernel ",??s,~d 

smoother, spline regression smoother, smoothing splines smootheL'" locally 
weighted running- line smoother, just to mention a few. We refer/t o Buja 
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et al. [6], Eubank [14], Fan and Gijbels [15), Hastie and Tibshirani [21) for 
more in depth treatments of univaria te regression smoothers and to Cleve­
land and Devlin [8) for multiple srn oothers. 

An important property of smoothers is that they do ·not require a rigid 
(parametric) specification of the regression function. That is, we model the 
pairs (Xi, Yi) as 

(1.1) Yi = m(Xi) +ci, i= l , ... ,n, 
where m(·) is an unknown smooth function . The disturbances Ci are indepen­
dent mean zero and variance 0 2 random variables that are independent of the 
covariates Xi, i = I, .. . , n . To help our discussion on smoothers, we rewrite 
Equation (1.1) compactly in vector form by setting Y = (Y1 , ... , Yn)t, 
m = (m(Xl)"'" m(Xn))t and C = (C1"'" cn)t, to get 

(1.2) Y = m+c. 

Finally we write in = Y = (Y1 , ... , Yn)t, the vector of fitted values from the 
regression smoother at the observations. Operationally, linear smoothers can 
be written as 

in = SAY' 

where SA is a n x n smoothing matrix. Smoothing matrices SA typically 
depend on a tuning parameter, which is denoted by A, that governs the 
tradeoff between the smoothness of the estimate and the goodness-of-fit 
of the smoother to the data by controlling the effective size of the local 
neighborhood over which the responses are averaged. We parameterize the 
smoothing matrix such that large values of Awill produce very smooth curves 
while small A will produce a more wiggly curve that wants to interpolate 
the data. The parameter A is the bandwidth for kernel smoother, the span 
size for running-mean smoother, bin smoother, and the penalty factor A for 
spline smoother. 

Much has been written on how to select an appropriate smoothing param­
eter, see for example Simonoff [33). Ideally, we want to choose the smoothing 
parameter A to minimize the expected squared prediction error. But without 
explicit knowledge of the underlying regression function, the mean squared 
prediction error can not be computed directly. Instead, one relies on es­
timates of the mean squared prediction error using Stein Unbiased Risk 
Estimate [34) or Cross-Validation [26]. 

It is well known in multivariate analysis that the distance between typical 
covariates increases with increasing dimensions d of the covariates X. The re­
sulting sparseness of the covariates, often called the CUTse of dimensionality, 
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forces one to use larger smoothing parameters in higher dimensions , which 
in term leads to more biased smoothers. Optimally selecting the smooth­
ing parameter does not alleviate this problem, and therefore, the common 
wisdom is to avoid general nonparametric smoothing in higher dimension . 
Instead one often focusoon fitting structurally constrained regression models, 
such as additive models [21] and multiplicative models [28]. 

This paper takes a different approach. Instead of focusing on selecting the 
tuning parameters A of the smoother, or equivalently the size of the local 
neighborhood over which the responses are averaged, we fix the smoothing 
parameter to some reasonably large value to ensure that smoother averages 
the responses over large neighborhoods. This resulting over-smooth of the 
data has a small variance but a substantial bias. We then proceed to correct 
the initial smoother by subtracting from it an estimate of its bias obtained 
by smoothing the residuals from the initial fit. If we smooth the residuals 
with the same smoother that we used to smooth the data, we do not change 
the size of the local'neighborhood we are averaging over . As a result, this bias 
correction partially circumvents the root cause of the curse of dimensionality. 

Since the estimate of the bias is itself biased, there is potentially a benefit 
to iterating the bias correction step. We can let the data tell us the desirable 
number of iterations of bias correction by minimizing an estimate of the 
prediction error, obtained by cross-validation or generaJized cross-validation, 
for example. ~\~ 

We show in this paper that the behavior of the sequence of iteratively 
bias corrected smoother depends on the spectrum of I - S).. . For some com­
monly used smoothers, such as Gaussian kernel regression smoothers and 
smoothing splines, the bias of the iteratively bias corrected smoothers con­
verge to zero. But for other common smoothers, such as the nearest neighbor 
smoother and kernel regression smoothers with an Epanechnikov kernel, the 
bias of the iterative bias corrected smoother diverges. 

This approach has the potential to work very well when the true under­
lying regression function is smooth. When applied to simulated data, our 
method leads to smoothers that whose mean squared prediction error is up 
to 30% smaller than the mean squared prediction of additive models and 
MARS. The good predictions observed on simulated data is also realized 
on real data. When applied to the Los Angeles Ozone data, our method of 
iterative bias reduction produces a smoother with substantially lower mean 
squared prediction error, around 18% smaller, than the mean squared pre­
diction error of competing smoothers proposed in the literature. 

From a historical perspective, the idea of estimating the bia,s from resid­

imsart-aos ver. 2007/04/13 file: paperS.tex date: September 3, 2008 



4 

uals to correct a pilot estimator of a regression functi on goes back to the 
concept of twicing introduced by Thkey [35] to estimate bias of misspecified 
multivariate regression models. More recently, Di Marzio and Taylor [12] 
studied one-step bias correction of univariate kernel regression smoothers, 
and showed that it corresponded to making on iteration of the L2 boosting 
algorithm of Buhlmann and Yu [4] . The correspondence between L2-boosting 
and our iterative bias correction procedure follows from the representation 
of the bias corrected smoother presented in Section 2 and the expression 
found in Buhlmann and Yu [4] . This new interpretation for the L2 boost­
ing algorithm as iterative bias corrections was alluded to in Ridgeway [30]'s 
discussion of Friedman et al . [18] paper on the statistical interpretation of 
boosting. The idea of iterative debiasing regression smoothers is also present 
in Breiman [3] in the context of the bagging algorithm. 

Finally, while this paper focus ' cm linear smoothers to estimate bias, it is 
possible to apply the same idea with nonlinear bias reduction techniques. 
For example, one can use the multiplicative bias correction technique of Burr 
et al. [7], Hengartner and Matzner-L0ber [22] that preserve the sign of the 
pilot smoother. 

This paper is structure as follows . We start in Section 2 by presenting 
two approaches to bias estimation for linear smoothers. The first is based 
on the plug-in method while the second focuses on smoothing residuals. We 
give conditions under which both approaches produce the same estimate 
for the bias. Identifying the smoothing matrix corresponding to the k-times 
bias corrected smoother allows us to describe qualitatively the behavior of 
the sequence of iteratively bias -corrected smoothers in terms of the spec­
trum of I - S. In Section 3, we study the behavior of the iterative bias ­
corrected smoother based on commonly used multivariate smoothers: kernel 
smoothers, K-nearest neighbor smoothers and smoothing spl ines. We prove, 
and show by example, that not all smoot hers are suitable jeT to be used 
by our iterative bias reduction technique. In particular, we prove that the 
iterative bias correction of nearest neighbor smoothers produces a sequence 
of smoothers that behave erratically after a small number of iteration; and 
eventually diverges. Another class of smoothers that are not suitable for our 
iterative bias correction scheme are kernel smoothers based on kernels that 
are not positive definite. 

The iterative bias correction scheme is cont rolled by two pammeters: the 
smoothness of the initial smoother, and the number of bias correction it­
erations. We discuss the choice of both these parameters in Section 4. The 
simulations in Section 5 show that combining a GCV based stopping rule 
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to the iterative bias reduction algorithm seems to work well. It stops early 
when the sequenc~ of iterated bias corrected smoothers misbehaves, and 
otherwise takes advantage of the bias reduction. Our simulat ion compares 
optimum smoothers and optimum iterative bias correct'ed smoothers (using 
generalized cross validation) for general smoothers without knowledge of the 
underlying regression function. Vie conclude that the optimal iterative bias 
corrected smoother outperforms the optimal smoother. 

Finally, the proofs are gathered in the Appendix. 

2. Bias estimation. This section introduces our bias corrected lin­
ear smoother and characterizes the qualitative behavior of the sequence of 
smoothers obtained through iterative bias correction. 

2.1. Bias Corrected Linear Smoothers. Recall the multivariate nonpara­
metric regression model in vector form (1.2) from Section 1 

Y = m+E, 

where the errors E are independent, have mean zero and constant variance 
(]'2, and are independent of the covariates X = (Xl,'" ,Xn ), Xj E JRd. 
Linear smoot hers can be written as 

(2.1) 

where S is an n x n smoothing matrix. Typical smoothing matrices are 
contractions, so that IISYII ::; IIYII, and as a result the associated smoother 
SY is called a shrinkage smoother (see for example Buja et al. [6]) . Let I be 
the n x n identity matrix. The linear smoother (2.1) has bias 

(2.2) 

and variance 

respectively. 
There are at least two approaches to estimate the bias (2.2) . A first esti­

mator for the bias is obtained by plugging in an estimator in. = 52 Y for the 
unknown regression function m into the expression (2.2) for the bi as of the 
estimator ml = 51 Y. This produces 

hI 	 (51 - I)ih 

(51 - I)52y' 
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Correcting the pilot smoother m) for its bias produces 

which is itself a linear smoother. Repeating the bias correction step k times, 
leads to the linear smoother 

whose associated smoothing matrix is simplified in the following theorem. 

THEOREM 2.1 (Plug-in estimator). After k iterations, estimator {2.3} 
can be explicitly written as 

(2.4) 

A second estimator for the bias is obtained by observing that the residuals 
Rl = Y - ml = (I - Sl)Y have expected value lE[RlIX] = m - lE[mlIX] = 
(1 - Sl)m = -B(ml). This suggests estimating the bias by smoothing the 
negative residuals 

(2 .5) 

Correcting the pilot smoother m) with the latter bias estimate produces the 
smoother 

Iterating the bias reduction step k times leads to the linear smoother 

The next theorem provides a compact representation for its smoothing ma­
trix 

THEOREM 2.2 (Residual smoothing estimator). After k iterations, esti­
mator {2.6} can be explicitly written as 

Theorems 2.1 and 2.2 show that in general, the two sequences of smoothers 
are not the same unless the smoothing matrices S), ... ,Sk commute. An 
important special case of the latter is when S1 = S2 = ... = S, in which 
case both (2.1) and (2.2) reduce t.o the following coroll ary. 
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COROLLARY 2.3. If the same smoother 5 is used to smooth the data and 
to estimate the bias, then the kth itemted bias corrected lineol" smoother ink 
can be explicitly written as 

5[1 + (I - 5) + (J - 5)2 + ... + (J - S) ';- 11Y 

(2.8) [I - (J - S)k]y = SkY. 

Remark 1 If the smoother 5 is a projection (as is the case for bin 
smoothers and regression splines) , then the estimated bias 

b= S(I - S)Y = 0, 

and hence Sk = S for all k. 
Remark 2 In the univariate case, smoothers of the form (2.8) arise 

from the L2 boosting algorithm with convergence factor f.Lk == 1 studied 
by Biihlmann and Yu [4] when S is a smoothing spline. This provides a 
new statistical interpretation for L2 boosting. Breiman [3] noted a similar 
interpretation for the bagging algorithm applied to the resid uals of nonpara­
metric smoothers. 

2.2. Predictive smoothers. As defined by (2.1), smoot.hers predict the 
conditional expectation of responses at the design points. It is interesting to 
extend regression smoothers to produce predictions at arbitrary locations. 
Such an extension enables us to assess and compare the quality of various 
smoothers in terms of how well they predict new observations. 

To this end, recall that the prediction of a linear smoother 5 at an arbi­
trary location x can be written as 

where S(x) is a vector of size n whose entries are the weights for predicting 
m(x). The vector S(x) is readily computed for many of the smoothers used 
in practice. 

To extend the iterative bias corrected smoother ink defined in 2.8, we 
wri te 

ink ino + h] + .. . + bk 

5[1 + (J - 5) + (J - 5)2 + ... + (I - Sl- l ]y 

Sfjk , 

and predict m(x) by 

(2.9) 
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This formul ation is computationally advantageous because the vector of 
weights S(x) only needs to be computed once, and the iterative bias correc­
tion scheme leads to the sequential update ru le 

where Rk = Y - ink is the residual vector from the previous fit. 

2.3 . Properties of iterative bias corrected smoothers. The squared bias 
and variance of the kth iterated bias corrected smoother ink (2.8) are 

mt ((1 - S)kr (1 - Slm 

()"2(1 - (1 - S)k) ((1 - (1 - S)k)r, 

respectively. It follows that the qualitative behavior of the sequence of iter­
ative bias corrected smoothers ink is determined by the spectrum of 1 - S. 
The next theorem collects the various convergence I'esults for sequence of 
iterated bias corrected linear smoothers. 

THEOREM 2.4. Suppose that the singular values Aj = Aj(1 - S) of 1 - S 
satisfy 

(2.10) -l<Aj< l for j=l, .. . ,n. 

Then we have that 

Ilbkll < Ilbk-11l and lim bk = 0, 
k ...... oo 

IIRkl1 < IIRk-111 and lim Rk = 0,
k ...... oo 

and lim 1E[llink - m112] = n()"2 . 
k ...... oo 

Conversely, if 1 - S has a singular value IAjl > 1, then 

lim Ilbkll = lim IIRk ll = lim Ilillkll = 00.
k ...... oo k ...... oo k...... oo 

The assumption that for all j, the singular values -1 < Aj (1 - S) < 1 
implies that 1 -S is a contraction, so that 11(1 -S)YII < IWII. This condition 
does not imply that the smoother S itself is a shrinkage smoother as defined 
by Buja et al. [6] . Conversely, not all shrinkage estimators satisfy the con­
dition (2. 10) of the theorem. In the next section , we will give examples of 
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common shrinkage smoothers for which J)'j(1 - S)I > 1, and show num eri­
cally that for these shrinkage smoothers, the iterative bias correction scheme 
will fail. The reason of this failure lies with the fact that bk overestimates 
the true bias bk , and hence the iterative bias corrected smoother repeatedly 
over-corrects the bias of the smoothers, which results in a divergent sequence 
of smoothers. 

We conclude this section by noting that iterating the bias correction 
scheme to reach the limiting smoother moo is not desirable, for either moo = 

Y or IImooll = 00. However, since each iteration decreases the bias at the 
cost of increased variance, a suitably selected estimator from the sequence 
{md is likely to improve upon the initial smoother mI. 

3. Bias reduction for classical smoothers. This section is devoted 
to understanding the behavior of the iterative bias reduction schema using 
classical smoothers, which in light of Theorem 2.4, depends on the magnitude 
of the singular values of the matrix 1- S. 

FIG 1. "Mexican hat" Junction S.l on [-10,10] x [-10, 10J 

3.1. Pedagogical example. Throughout this section, we illustrate the the­
oretical results by applying the iterative bias reduction scheme using various 
common smoothers on the same simulated bivariate regression example. In 
that example, we sample the well known "Mexican hat" (see Figure 1) , 

= lOsjn(~)(3.1) 
.J(xi+x~) 

at 100 points taken on the regular grid {-9.5, -8.5, ... ,8 .5, 9.5}2. The dis­
turbances are mean zero Gaussian with variance producing a signal to noise 
ratio of five . 
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3.2. Projection type smoothers. We start our discussion by noting th at 
iterative bias reduction a projection type smoothers is of no interest be­
cause residuals (J - S) Yare orthogonal to smoother SY. It follows that the 
smoothed residuals S(J - S)Y = 0, and as a result, fnk '= ml for all k. 

3.3. ](ernel type smoothers. The smoothing matrix S of Nadaraya kernel 
type estimators has entries Sij = K(dh(Xi , X j ))/ Lk K(dh(Xi , Xj)), where 
K(.) is typically a symmetric function in JR (e.g., uniform, Epanechnikov, 
Gaussian), and dh(X, y) is a weighted distance between two vectors x, y E JRd. 
The particular choice of the distance d(·,·) determines the shape of the 
neighborhood. For example, the weighted Euclidean norm 

where h = (hI"", hd ) denotes the bandwidth vector, gives rise to elliptic 
neighborhoods. 

3.3.1. Spectrum of kernel smoothers. To apply Theorem 2.4, we need 
to characterize the spectrum of I - S. Vlhile the smoothing matrix S is 
not symmetric, it has a real spectrum. To see this, write S = DOC, where 
OC is symmetric matrix with general element OCij = K(dh(Xi,Xj )) and D 
is diagonal matrix with elements D ii = l/LjK(dh(Xi,Xj )). If q is an 
eigenvector of S associated to the eigenvalue A, then 

and hence 

This shows that the symmetric matrix A = D I / 2OCDI /2 has the same spec­
trum as S. Since S is row-stochastic, all its eigenvalues are less or equaJ to 
one. Thus, in light of Theorem 2.4, we seek conditions on the kernel K to 
ensure that its spectrum is non-negative. Necessary and sufficient conditions 
on the smoothing kernel K for S to have a non-negative spectrum are given 
in the following theorem. 

THEOREM 3.1. ffthe inverse Fourier-Stieltjes transform of a kernel K(-) 
is a real positive finite measure, then the spectrum of the Nadaraya- Watson 
kernel smoother lies between zero and one. 
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Conversely, suppose that Xl, ... , X n are an 'independent n-sample from 
a density f (with respect to Lebesgue m easure) that is bounded away from 
zero on a compact set strictly included in the support . of f. If the inverse 
Fourier-Stieltjes transform of a kernel K (. ) is not a positive finit e measure, 
then with probability approaching one as the sample size n grows to infinity, 
the maximum of the spectrum of 1 - S is larger than on e. 

Remark 1: The assumption that the inverse Fourier-Stieltjes transform of 
a kernel K (.) is a real positive finite measure is equivalent to the kernel 
K(·) being positive a definite function, that is, for any finite set of points 
Xl, .. . ,Xm , the matrix 

K(O) K(dh(Xl, X2)) K(dh(Xl, X3)) K(dh( XI, xm)) ) 
K(dh(~2'XI)) K(O) K(dh(X2, X3)) K (dh (X2, xm)) 

( 
K(dh(xm,XI)) 	 K(O) 

is positive definite. We refer to Schwartz [31] for a detailed study of positive 
definite functions. 
Remark 2: Di Marzio and Taylor Di Marzio and Taylor [13] proved the first 
part of the theorem in the context of univariate smoothers. Our proof of the 
converse shows that for large enough sample sizes, most configurations from 
a random design lead to smoothing matrix S with negative singular values. 

3.3.2. Numerical implementation. Iterative smoothing of the residuals 
can be computationally burdensome. To derive an alternative , and com­
putationally more efficient representation of the iterat ive bias corrected 
smoother, observe that 

mk 	 [1 - (1- S)k]y 

[1 - (D 1/2D- 1/2 _ D 1/ 2D 1/2OC D 1/2D- 1/2)k]y 

[1 - D 1/2(1- Dl/2OCDl /2)kD - 1/ 2]y 

Dl/2[1 - (1 - A)k]D- l /2 y 

Writing the symmetric matrix A = D 1/ 2OCDI /2 is symmetric as A = PAAAP~, 
with PA the orthonormal of eigenvectors and AA diagon al matrix of associ­
ated eigenvalues leads to a computationally efficient representation for the 
smoother 

mk = Dl/2 PA[I - (I - i\ .4)k]P~D- l /2y 

Note that the eigenvalue decomposition of A needs only to be computed 
once, and hence leads to a fast implementation for calculating the sequence 
of bias corrected smoothers. 
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3.3.3 . Example of Gaussian kernel smoother. The Gaussic1l1 and tri an­
gular kernels are positive definite kernels (they are the Fourier transform 
of a finite positive measure Feller [16]). In light of Theorem 3.1 the itera­
tive bias correction of N ad araya-Watson kernel smoothers with these kernels 
produces a sequence of well behavior smoother. 

The anticipated behavior of iterative bias correction for Gaussian kernel 
smoothers is confirmed in our numerical example. Figure 2 shows the pro­
gression of the sequence of bias corrected smoothers starting from a very 
smooth surface (see panel (a)) that is nearly constant. Fifty iterations (see 
panel (b)) produces a fit that is visually similar to the original fun ction. 
Continued bias corrections then then slowly degrades the fit as the smoother 
starts to over-fit the data. Panel (c) show the smoother after 10000 iterations. 
Continuing the bias correction scheme will eventually lead to a smoother 
that interpolates the data. This examples hints at the potential gains that 
can be realized by suitably selecting the number of bias correction steps. 

(a) (b) (c) 

F1G 2. Gaussian kernel smoother of the function m(xl, X2) from n = 100 equidistributed 
points on [-10, lOJ x [-10,10]' evaluated on a regular grid with k = 1 itemtion (a), 50 
iterations (b) and 10000 iterations (c). 

3.3.4. Kernel smoothers with Uniform and Epanechnikov kernels. The 
uniform and the Epanechnikov kernels are not positive definite. Theorem 
3.1 states that for large enough samples , we expect with high probability 
that 1 - S has at least one eigenvector larger than one. When this occurs, 
the sequence of iterative bias corrected smoothers will beha.ve erratically a.nd 
eventually diverge. Proposition 3.2 below strengthens this result by giving 
an explicit condition on the configurations of the design points for which the 
largest singular value of 1 - S is always larger than one. 

PROPOSITION 3.2. Denote by Ni = {Xj : K(dh(Xj , X i)) > O} the the 
set of distinctive points in the neighbors of Xi· 
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If there exists a set M such that INi I 2: 3 that contains points X j , X k =I X i 
such that dh(Xi , Xj) < I, dh(X i , Xk) < 1 and dh(Xj , Xd > 1, then the 
smoothing matrix S for the uniform kernel smoother has (I t least one negative 
eigenvalue. 

If there exits a set M such that 1MI 2: 3 that contains points X j , X k =I X i 
that satisfy 

dh(Xj , X k ) > min{dh(Xi , X j ), dh( X i , X k ) }, 

then the smoothing matrix S for the Epanechnikov kernel smoother has at 
least one negative eigenvalue. 

Remark. The proof of the proposition is readily adapted to multivariate 
kernel smoothers whose kernel are defined as the product of univariate kernel 
in each of the components. 

The lack a suitability of Epanechnikov kernel smoothers for the iterated 
bias correction scheme is illustrated in the numerical example shown in 
Figure 3. As for the Gaussian smoother, the initial smoother (panel (a)) 
is nearly constant. After five iterations (panel (b)) some of the features 
of the Mexican hat become visible. Continuing the bias corrections scheme 
produces an unstable smoother. Panel (c) shows that after only 25 iterations, 
the smoother becomes noisy. Nevertheless, when comparing panel (a) with 
panel (b), we see that some improvement is possible from a few iterations 
of the bias reduction scheme. 

(a) (b) (c) 

FIG 3. Epanechnikov kernel smoothel' oj the Junction m(x l , X2 ) Jmm n = 100 equidis­
tributed points on [-10, lOJ x [-10, 10]' evaluated on a regular gl'id with k = 1 itemtion 
(a) , 5 itemtions (b) and 25 i temtions (c). 

3.4 . K -nearest neighbor smoother. The associated smoothing matrix of 
the K-nearest neighbor smoother is Sij = l / Kwhen X j belongs to the K­
nearest neighbor of X i and Sij = 0 otherwise. While this smoother enjoys 
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many desirable properties, it is not well suited for the iterative bias correc­
tion scheme because the matrix I - S has singular values larger than one. 
The next theorem gives conditions on the configurations of the design points 
that leads to negative singular for the smoothing matrix. 

THEOREM 3.3. Let S be the smoothing matrix of the K nearest neighbor 
smoother with K 2 3. Let Ni = {Xj : X j is a nearest neighbor: of Xd! the 
set of nearest neighbors of Xi . If there exists at least one neighboring set M 
such that there exists X j , X k EM for which 

then at least one singular value of S is negative. 

The proof of the theorem is found in the appendix. A consequence of the­
orems 3.3 and 2.4, is that the sequence of iterative bias corrected K-nearest 
neighbor smoothers divergent, and hence should not be used in practice. 

Vie confirm this behavior numerically. Using the same data as before, 
we apply the iterative bias reduction algorithm to the K-nearest neighbor 
smoother. \Ve start with a pilot K-nearest neighbor smoother with K = 20 
(see Figure 4 panel (a)) that produces a very smooth nearly constant surface 
as K is a significant fraction of the sample size n = 100. Already after 
five iterations, the smoother deteriorates (panel (b)) and exhibits an erratic 
behavior after ten iterations (panel (c)). 

(a) (b) (c) 

FIG 4. K -nearest neighbor smoother of the Junction m(xl, X2) given n = 100 points equidis­
tributed on [-10, 10J x [-10, 10J evaluated on a regular g7'id with k = 1 iteration (a), 5 
iterations (b) and 10 iterations (c). 

3.5. Smoothing spline smoother. It is well known that the univariate 
spline smoother is a symmet.ric smoothing matrix S whose eigenvalues lie 
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between 0 and 1. To extend smoothing splines to multivariate settings, one 
can use the fact that polynomial smoothing splines can be recasted in the 
framework of reproducing kernel Hilbert space, as well itS thin-plate splines 
see Gu [20] . Recall briefly that univariate cubic smoothing splines can be 
described as minimizers of 

(3.2) min L
n 

(~ - f(Xi)f + Allfll;", 
J EH i= l 

where 1{ is a reproducing kernel Hilbert space (here C(2) equiped with a 
suitable reproducing kernel) and IIfll; is a squared (semi)norm in 1{. Using 
this framework, modeling with several covariate can be done easily with 
tensor product of reproducing kernel Hilbert space. The resulting smoothing 
matrix S remains symmetric and has eigenvalues between 0 and 1 Gu [20], 
p. 61. In light of Theorem 2.4, the iterative bias correction scheme based on 
smoothers S from splines (in both univariate and multivariate settings) leads 
to fitted value mk that converge to Y . The resulting sequence of smoothers 
is stable as opposed to those based on nearest neighbor, Epanechnikov or 
uniform kernel. Moreover, bias and variance can be expressed as a function 
of eigenvalues as in Biihlmann and Yu [4] who studied the behavior of the 
L2 boosting algorithm for univariate cubic smoothing splines. 

4. Parameter selection. The iterative bias reduction scheme requires 
the user to supply two parameters: the bandwidth of the smoother and the 
number of iterations of bias correction. The choice for both these parameters 
is discussed in this section. 

4.1. Selecting the bandwidth. An important question is how to chose the 
bandwidth of smoother. \Ve know that for bias reduction to be effective, we 
want to use a large bandwidth that oversmooths the responses, as such pilot 
smoothers will be heavily biased. As a general rule, the larger the bandwidth, 
the more biased the pilot smoother will be and the more iterations of the bias 
reduction scheme will be required to obtain a "good" smoother. Otherwise, 
the method is generally robust to the choice of the bandwidth . 

The bandwidth in each component of the covariate depends on its scaJe. 
It is common to first rescale the data before selecting the bandwidth . In our 
numerical experiments, we found it preferable to leave the scales unchanged, 
and to select the bandwidth based on the effective degree of freedom (trace of 
the smoothing matrix) of the univa.ria.te smoother in each of the components, 
with typical values for the degree of freedom we ranging from 1.05 to 1.2. 
A further advantage of the latter choice is that there is no explicit reference 
to sample size. 
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4.2. Data driven selection of the number of bias reduction steps. Theo­
rem 2.4 in Section 2 states that the limit of the sequence of iterated bias 
corrected smoothers is either the raw data Y or has n()rm fWooff = 00. It 
follows that iterating the bias correction algorithm until convergence is not 
desirable. However, since each iteration of the bias correction algorithm re­
duces the bias and increases the variance, often a few iteration of the bias 
correction scheme will improve upon the pilot smoother. The possibility of 
such improvements was shown in the numerical examples of the previous 
section. This brings up the important question of how to decide when to 
stop the iterative bias correction process. 

Viewing the latter question as a model selection problem suggests stop­
ping rules for the number of iterations based on Mallows' Cp [29], Akaike In­
formation Criteria (AIC), Akaike [1], Bayesian Information Criterion (BIC), 
Schwarz [32], cross-validation, L-fold cross-validation, and Generalized cross 
validation Craven and Wahba [10], and data splitting Hengartner et al. [23J . 
Each of these data-driven model selection methods estimate the optimum 
number of iterations k of the iterative bias correction algorithm by minimiz­
ing estimates of the expected squared prediction error of the smoothers over 
some pre-specified set J( = {I, 2, ... ,M} for the number of iterations. 

We rely on the expansive literature on model selection to provide insight 
into the statistical properties of stopped bias corrected smoother. Theorem 
3.2 of Li [27J describes the asymptotic behavior of the generalized cross­
validation (GCV) stopping rule applied to smoothers. Results on the finite 
sample performance for data splitting for arbitrary smoothers is given in 
Theorem 1 of Hengartner et al. [23J. In nonparametric smoothing, the AIC 
criteria has a noticeable tendency to select more iterations than needed, 
leading to a final smoother m~k that typically undersmooths the data. As 

Ale 
a remedy, Hurvich et al. [25J introduced a corrected version of the AlC under 
the simplifying assumption that the non parametric smoother mis unbiased, 
which is rarely hold in practice and which is particularly not true in our 
context. 

Extensive simulations, both in the univariate and the multivariate settings 
Cornillon et al. [9J have shown that not only is CV and GCV 

kccv = argmin {log 0'2 - 210g (1 _trace(Sk))} . 
kEK. n 

are computationally more efficient, and application of these criteria lead to 
better final smoothers. 

5. Simulations and real example. In this section, we show, via sim­
ulations, that our proposed iterative correction procedure works well for 
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17 RECU RSIV E BIAS ESTIMATION 

both simulated and real data. Due to their prevalence in the li terature, we 
include a discussion of how our methods compares in the context of univari­
ate smoothing splines. We further show that our methoq has desirable finite 
sample properties in the multivariate setting and compares advantageously 
when applied to the well known the Los Angeles Ozone data. 

5.1. Univariate case. One of the most common smoother used in uni­
variate fun ction estimation is the smoothing spline. The aim of that section 
is to show how the iterative bias correction scheme using smoothing splines 
compare to a classical smoothing spline estimation . In order to do so, we 
compare for different sample size n = 50, 100 and 500, the iterative smoother 
using two different starting points and two different stopping rules (GCV 
and Cross Validation) with the smoothing spline estimator obtained by the 
function smooth. spline in R. To this end, we consider three different func­
tions 

sin(57rx) 

1 ­ 48x + 218x2 
- 315x3 + 145x4 

1 1 
exp (x - -){x < -} + exp[-2(x ­

3 3 
1 1 
-)]{x > -}.
3 - 3 

The explanatory variable X is a uniform between O.and 1, an error (Gaussian 
or Student 5) with variance such that the signal to noise ratio is 80%. For 
100 replications, we calculate on a finite grid in [0, 1J the quadratic error 
between the true function and the proposed estimate. Table (1) reports the 
median over the 100 replications of the ratio of the error obtained but the 
iterative estimator and the smoothing spline estimator. 

TABLE 1 

Median over 100 simulations of the number of iterations and median of the ratio of the 
MSE obtained by the iterative debiasing estimation and the MSE obtained by the 

smoothing splines smoother for n = 50 data points. 

error k1Gcv s- hGCV Sk2GC),1 kIcv s- k2cv Sk2 Cy.k J'i!::;:~' kH::;:jl 
Function ml (x) = sin(5nx) 

Gaussian 4077 086 65 0.88 4191 0.84 88 0.83 

Student 4]]5 0.87 70 0.88 4853 0.84 96 0.84 


Function m2(x) = 1 - 48x + 218x2 - 315x3 + 145x~ 

Gaussian ]2]9 109 21 1.12 1339 107 27 1]0 

Student ]307 1.]] 22 1.13 1714 107 30 1.09 


Function m3(x ) = exp (x - 1){x < V+ exp[-2(x - ~ »){x > ~} 

Gaussian 135 0.93 3 0.93 138 0.92 3 0.93 

Student 147 0.95 3 0.97 156 0.94 3 0.94 
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Each entry in the table reports the median number of iterations and the 
median of the ratio of the MSE obtained by the iterative debiasing estima­
tion and the MSE obtained by the smoothing splines smoother for n = 50 
data points. As expected, larger smoothing parameter of the initial smoother 
requires more iterations of the iterated algorithm to reach its optimum. In­
terestingly, the selected smoother starting with a very smooth smoother, 
has slightly smaller mean squared error. In some cases, the iterative bias 
correction has smaller mean squared error than the "one-step" smoother, 
with improvements ranging from 5% to 15%. 

5.2. Multivariate case. Here, we focus on the multivariate case, that is 
X E !Rd , d > 1, and consider multivariate Gaussian kernel smoothers. Sta­
tistical lore discourages using fully nonparametric methods in higher dimen­
sions as the resulting estimators suffer from the curse of dimensionality. 
Instead, of focuses on estimating structurally constrained regressions mod­
els, such as additive models, multiplicative models, or multivariate tensor 
product of spline basis in low dimension such as MARS that have better 
statistical properties at the cost of possible misspecification error. 

The aim of this section is to show via simulations that the iterative bias 
correction scheme using a fully nonparametric regression smoother compares 
advantageously to the MARS algorithm of Friedman [17J and additive mod­
els using the backfitting algorithm of Hastie and Tibshirani [21J. To this end, 
we consider fitting the following test function 

previously used by [17J. As in that paper, the covariate are independent 
uniform distributions in each of the five variables, and Gaussian disturbances 
with small variance l were added to the response surface m(x). 

For each sample size (n = 50,100,200), we generate the data as above, 
use 90% of the data as a training set and predict the remaining 10% with 
the R package mda for MARS and R package mgcv for the additive model 
ml (xI) +.. . + m5(x5) without interaction . We compare the prediction mean 
square error of these methods with our iterative bias reduction scheme using 
a Gaussian kernel regression smoother with three choices of bandwidths 
chosen such that the effective degree of freedom for each covariate is 1.05, 
1.1, and 1.2. The results we report in Table 2 are over 100 replications of 
the simulation. 

Ithe variance is such that the signal to noise ratio is 95%. 
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TABLE 2 
Median over 100 simulations, with the m edian of itemtion between parenthesis. 

MARS Add. BRddl=1.50 BRddl=1.20 BRddl=l.l o BRdd l = J.OS 

n = 50 
4.298 3.577 3.551 (31) 3.122 (290) 3. 179 (1740) 3226 (14.140) 

n = 100 
3.746 3.314 2.239 (4.2) 2.014 (589) 1.967 (5084 ) 1.970 (42930) 

n = 200 
3.354 2.753 1.842 (57) 1.747 (960) 1.707 (8780) 1.680 (76820) 

The same features as those found in univariate simulations are found . 
First, the smoother the pilot estimator is, the bigger the number of iterations 
chosen by GCV is. Second, the smoother the pilot estimator is , the better 
is the results. But here, for very small datasets (n = 50 data 'points and 
d = 5 variables) the smoothest pilot estimator (df 1.05) tried leads to results 
that are worse than the second smoothest (df 1.10). MSE obtained with 
n = 100 using these pilot estimators are nearly the same, whereas MSE 
obtained with n = 200 shows that the smoothest leads to the best results. 
Simulations in univariate settings with very wiggly curve (not shown in this 
paper) have shown similar results: if the pilot smoother is too smooth (near 
to the constant), it cannot capture the whole unknown function as well as 
a pilot smoother less smooth. 

5.3. Los Angeles Ozone Data. 'ATe consider the classical data set of ozone 
concentration in the Los Angeles basin which has been previously consid­
ered by many authors (Breiman [2], Bi.ihlmann and Yu [4 , 5]). The sample 
size of the data is n = 330 and ·the number of explanatory variables d = 8. 
\Ale use here a multivariate Gaussian kernel and select each individual band­
width in order to have the same degree of freedom by variable. These are 
chosen equal to 1.05, 1.1, 1.2 and 1.5 in order to investigate the influence of 
such parameter . We compare our iterative bias procedure with Mars using R 
package mda, with additive models estimation using R package mgcv and 
L2-Boosting proposed by Bi.ihlmann and Yu [4], which \ve recall here. Multi­
variate L2-Boosting proposed by Bi.ihlmann and Yu [4J leads to component­
wise addit ive model 

d 
~ boos t m fl + .L jlk],(j )(Xj ) ,k 

j=] 

where the component jlk],(j ) is obtained by choosing the univariate smoother 
S>' j (Xj) which leads to the best improvement in smoothing the residuals of 
previous iLeration k - 1. 
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) 

The estimate mean squared prediction error is obtain by randomly split­
ting the data into 297 training and 33 test observations and averaging 50 
times over such random partitions. We are in the configu.ration a'i Bi..ihlmann 
and Yu [4] and reporting theirs results we obtain the following table : 

TABLE 3 
Predicted mean Squared Error on test observations of ozone data for different methods. 

Method I Mean Squared Error 

L2Boost with component-wise spline 17.78 
additive model (ba.ckfitted with R) 17.44 
MARS (with R) 17.49 
iterative bias reduction with GCV stopping rule 
and multivariate Gaussian kenlel with 
1.05 initial DDL per variable and 297 iterations 14.74 

14.741.1 initial DDL per variable and 64 iterations 
1.2 initia l DDL per variable and 15 iterations 14.78 
1.5 initial DDL per variable and 3 iterations 14.97 

We can see (table 3) that, as in univariate setting, the smoother the pilot 
estimator is, the better the final estimation is , at the cost of increasing 
computation time. The combination of iterated of GCV and bias corrected 
estimator leads to a diminution of more than 15% over other multivariate 
methods. 

6 . Discussion. In this paper, we make the connection between iterative 
bias correction and the L2 boosting algorithm, thereby providing a new 
interpretation for the latter. A link between bias reduction and boosting was 
suggested by Ridgeway [30J in his discussion of the seminal paper Friedman 
et aJ. [18], and explored in Di Marzio and Taylor [11, 12J for the special case 
of kernel smoothers. In this paper, we show that this interpretation holds 
for general linear smoothers. 

It was surprising to us that not all smoothers were suitable to be used for 
boosting. 'Ne show that many weak learners, such as the k-nearest neighbor 
smoother and some kernel smoothers, are not stable under iterated bias esti­
mation. Our results extend and complement the recent results of Di Marzio 
and Taylor [12J. 

Iterating the bias correction scheme until convergence is not desirable. 
Better smoothers result if one stops the iterative scheme. Our simulations 
and application to real data show that our method performs well in higher 
dimensions, even for moderate sample sizes. 

As a final remark, note that one does not need to keep the same smoother 
throughout the iterative bias correcting scheme. We conjecture that there 
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are advantages to using weaker smoothers later in t he iterative scheme, ilnd 
shall invest igate this in a forthcoming paper. 

APPENDIX A: APPENDIX 

Proof of Theorem 2.3 To show 2.8 , let L: = 1 + (1 - S) + . . . + (1 - S)k- l . 
The conclusion follows from a telescoping sum argument applied to 

SL: = L: - (1- S)L: = 1 - (1 - S)k . 

Proof of Theorem 2.4 

IIhk l1 2 II - (1- S)k- I SYI12 

11(1 - 5)(1- S)k-2SYI1 2 
:<:::: 11(1- S)11 21I bk_ 111 2 

< Ilhk_111 2
, 

where the last inequality follows from the assumptions on the spectrum of 
1 - S. Similarly, one shows that 

Proof of Theorem 3.3 Let us consider the K-nn smoother the matrix 5 

is of general term 

1 
Sij = if Xj E K-nn(Xi )·

K 

In order to bound the singular values of (1 - S), consider the eigen values 
of (1- S)(1- S)' which are the square of the singular values of 1 - S. Since 
A = (1- S)(1 - S)' is symmetric, we have for any vector 1[ that 

(A .l ) 

Let us find a vector 1[ such that 1[' Au > u'u. First not ice that A = 1 - S ­
S' - SS'. Thus we have that 

1
1 - -. 

K 

Second , to bound Aiij, we need to consider three cases : 

imsart-aos ver. 2007/04/13 file: paperS.tex dat e : September 3, 2008 



22 

1. 	 If Xi belongs to the ]{-nn of X j and vice versa, then Sij = Sji = 11K. 
This does not mean that all the K-nn neighbor of Xi are the same as 
t hose of X j , but if it is the case, then (SS')ij s:: K I K2 and otherwise 
in the pessimistic case, we bound (SS')ij ;::: 21K2. It therefore follows 
that 

2/K2 _ .! < A .. < K _ .! = _ ~ 
K 	 - t,) - K2 K K . 

2. 	 If Xi belongs to the K-nn of Xj Sij = 11K but Xj does not belong 
to the K-nn of X i then Sji = O. There is at a maximum of K - 1 
points that are in the K-nn of X i and in the K-nn of Xj so (SS')ij s:: 
(K - 1)IK2. In the pessimistic case, there is only one point, which 
leads to the bound 

1 1 K-l 1 1 
--- < A.,)' < --2- - - < --2'
j{2 K- • - K K- K 

3. 	If Xi does not belong to the K-nn of Xj Sij = 0 and Xj does not 
belong to the K-nn of Xi then Sji = O. However there are potentially 
as many as K - 2 points that are in the K-nn of Xi and in the K-nn 
of X j . In that case 

K 	- 2 
0_< A.J. <- < --2-' . - K 

Choose three points E, F and G in Xi such that 

E 	E K-nn(F) and F E K-nn(E) 

FE K-nn(G) and G E K-nn(E) 

E 	~ ]{-nn(G) or G ~ K-nn(E) . 

an tool example is given in the next picture for bivariate random variables 
in the unit square with ]{ = 5. 
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.' . . ". 

FIG 5. Example of the configuration of the points E, F and G that lead to a negative 
eigenvalue of the smoothing matrix for J( = 5. 

Next, consider the vector u of lRn that is zero every where except at 
position e corresponding at point E (respectively f and g) where its value 
is -1 (respectively 2 and -1). For this choice, we expand u'Au to get 

u'Au Ae,e + 4AJ,f + Ag,g - 4Ae,f - 4A J,g + 2Ae,g 

6 - -]{ 
6 

- 4Ae,J - 4A J,9 + 2Ae,g' 

With the choice of E, F and G, we have 

, 2 
u Au ~ 6 + J{ + 2Ae,g· 

The latter shows that u'Au > u'u whenever 

1 
A e,g> - J{' 

which is always true with the choice of points E and G. 

Proof of Theorem 3.1 For pedagogical reasons, we present the proof in 
the univariate case. Let Xl , ... ,Xn is an i.i.d. sample from a density f that 
is bounded away from zero on a compact set strictly included in the support 
of f. Consider without loss of generality that f(x) ~ c > 0 for all Ixl < b. 

We are interested in the sign of the quadratic form u tAu where the indi­
vidual entries Aij of matrix A are equal to 
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Recall the definition of the scaled kernel K hC) = K C/h)/h. If v is the vector 
of coordinate Vi = UdJLl Kh(Xi - Xd then \ve have utAu = vtIKv, where 
IK is the matrix with individual entries Kh(Xi - X j). Thus a.ny conclusion 
on the quadratic form vtlKv carryon to the qua.dratic form utAu. To show 

the existence of a negative eigenvalue for IK, we seek to construct a vector 
U = (U1(Xl)' ... ' Un(Xn)) for which we can show that the quadratic form 

n n 

UtlKU = L L Uj(Xj)Uk(Xk)Kh(Xj - Xk) 
j=lk=l 

converges in probability to a negative quantity as the sample size grows to 
infinity. We show the latter by evaluating the expectation of the quadratic 
form and applying the weak law of large number. Let ~(x) be a real function 

in L2, define its Fourier transform 

<p(t) = Je-2i1rtx~(x)dx 

and its Fourier inverse by 

<Pinv(t) = Je2i1rtx~(x)dx . 

For kernels KC) that are real symmetric probability densities , we have 

From Bochner's theorem, we know that if the kernel KC) is not positive 
definite, then there exists a bounded symmetric set A of positive Lebesgue 
measure (denoted by IAI), such that 

(A.2) K(t) < a 'It E A. 

Let rp(t) E L2 be a real symmetric function supported on A, bounded by B 
(i .e. Irp(t)1 :s B). Obviously, its inverse Fourier transform 

~(x) = i: e-27rixtrp(t)dt 

is integrable and by virtue of P arceval's identity 

Using the following version of Parceval's identity [see 16, p .620j 

2I: I: ~(x)~(y)K(x - y)dxdy = 1: Irp(t)1 i«t)dt, 
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which when combined with equation (A,2), leads us to conclude that

1:1: cp(x)cp(y)K(x - y)dxdy < 0, 

Consider the following vector 

u=~ 
nh 

\Oj1x1~)n(/Xn/ < b) 

With this choice, the expected value of the quadratic form is 

We bound the first integral 

Kh(O) rb cp(s/h)2 ds 
nh2 J-b f(s) 

< KdO) j'b/h cp(u)2du 
nch - h/h 

< B2/A/K(0) - 1 
ch2 n, 

Observe that for any fixed value h, the latter can be made arbitrarily small 
by choosing n large enough, We evaluate the second integral by noting that 

( 1 - ~) 11.-2 r 
b 

r 
b 

cp(s/h)<p(t/h)Kh(s - t)dsdt 
n Lb J-b 

( 1) 11. - 1b 1b 1 . (s- -,t)1 - - 2 cp(s/h)cp(t/h) -K - dsdt 
n -b -b h h L 

b h( 1) 1/ f b/h(A.3) 	 1 - - h- 1 cp(v,)cp(V)K(ll - v)dudv, 
n - b/h - b/h 
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By virtue of the dominated convergence theorem, the va lue of the last inte­
gral converges to J~oo Icp(t)j2 K(t)dt < 0 as h goes to zero. T hus for h small 
enough, (A.3) is less than zero, and it follows that we can make IE[QJ < 0 
by taking n ~ no, for some large no. Finally, convergen'ce in probability of 
the quadratic form to its expectation is guaranteed by the weak law of large 
numbers for U statistics [see 19, for example] . The conclusion of t he theorem 
follows . 

Proof of Proposition 3.2 To handle multivariate case, let each component 
h j of the vector h be larger than the minimum distance between three con­
secutive points, and denote by dh(Xi , X j ) the distance between two vectors 
related to the vector chosen by the user. For example, if the usual Euclidean 
distance is used, we have 

,, 

The multivariate kernel evaluated at Xi, Xj can be written as K(dh(Xi , Xj)) 
where K is univariate. We are interested in the sign of the quadratic form 
utOCu (see proof of Theorem 3.1) . Recall that if OC is semidefinite then all its 
principal minor [see 24, p.398] are nonnegative. In particular, we can show 
that A is non-positive definite by producing a 3 x 3 principal minor with 
negative determinant. To this end, take the principal minor OC[3] obtained 
by taking the rows and columns (iI, iz, i3) ' The determinant of JK.[3] is 

det(OC[3]) = K(dh(O)) [K(dh(O))Z - K(dh(Xi3 , X i2))2 ] 

-K(dh(Xi2,Xil)) X 

[K(dh(O))K(dh(Xi2 , Xii)) - K(dh(Xi3 , X i2)) K(dh(Xi3' XiJ)] 

+K(dh(Xi3, Xil)) x 

[K(dh(Xi2,Xil))K(dh(Xi3,Xi2)) - K(dh(O )) K(dh(Xi3, X il))] ' 

Let us evaluate this quantity for the uniform and Epanechnikov kernels. 

Uniform kernel. Choose 3 points in {X;}bl with index i 1, i2, i3 such that 

\Vith this choice, we read ily calculate 
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Since a principal minor of lK is negative, we conclude that lK a.nd A are not 
sem idefinite positive. 

Epanechnikov kernel. Choose 3 points {Xdi=l with 'index i1,i2,i3, such 
that dh(Xi1 , X iJ ) > min(dh(XiJ ' X i2 ); dh(Xi2 , X iJ )) and set dh(XiJ , X i2 ) 
x:S 1 and dh(Xi2 ,XiJ = y:S l. 

Using triangular inequality, we have 

det(lK[3]) < 0.75(0.752 - K(y)2) - K(x)(0.75K(x) - K(y)K(min(x, y))) 

-K(min(x, y))K(x)K(y) - 0.75K(x + y)2 

The right hand side of this equation is a bivariate function of x and y. Nu­
merical evaluations of that function show that small x and y leads to negative 
value of this function, that is the determinant of lK[3] can be negative. 

"{).2 0 .2~
ci" 

0.1/:~~'~ 
ci L,------~------~------~------_,------_,~ 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG 6. Contour of an upper bound of det( IK[3)) as a function of (x, y). 

Thus a principal minor of lK is negative, and as a result, lK and A are not 
semidefin ite positive. 
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