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Modeling electrokinetic flows in microchannels using 
coupled lattice Boltzmann methods 

Moran Wang! and Qinjun Kang2 

Los Alamos National Laboratory, Los Alamos, NM 87545 

Abstract: We present a numerical framework to solve the dynamic model for electrokinetic 
flows in microchannels using coupled lattice Boltzmann methods. The governing equation for 
each transport process is solved by a lattice Boltzmann model and the entire process is simulated 
through an iteration procedure. After validation, the present method is used to study the 
applicability of the Poisson-Boltzmann model for electrokinetic flows in microchannels. Our 
results show that for homogeneously charged long channels, the Poisson-Boltzmann model is 
applicable for a wide range of electric double layer thickness. For the electric potential 
distribution, the Poisson-Boltzmann model can provide good predictions until the electric double 
layers fully overlap, meaning that the thickness of the double layer equals the channel width. For 
the electroosmotic velocity, the Poisson-Boltzmann model is valid even when the thickness of 
the double layer is ten times of the channel width. For heterogeneously charged microchannels, a 
higher zeta potential and an enhanced velocity field may cause the Poisson-Boltzmann model to 
fail to provide accurate predictions. The ionic diffusion coefficients have little effect on the 
steady flows for either homogeneously or heterogeneously charged channels. However the ionic 
valence of solvent has remarkable influences on both the electric potential distribution and the 
flow velocity even in homogeneously charged microchannels. Both theoretical analyses and 
numerical results indicate that the valence and the concentration of the counter-ions dominate the 
Oebye length, the electrical potential distribution, and the ions transport. The present results may 
improve the understanding of the electrokinetic transport characteristics in microchannels. 
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Electrokinetic flows in microchannels 

1. Introduction 

Multiphysical transport has attracted a lot of attention in recent years due to its increasingly 
important applications in biomedical, environmental, and energy engineering [1; 2; 3; 4; 5]. 
Electrokinetic flow, which includes fluid flow, electrostatic interaction, species diffusion, and 
sometimes energy transfer, is one of the most typical multiphysical transport phenomena because 
of the ubiquitousness of the electrolyte solution in nature and engineering applications [6; 7]. 
Although numerous theories and models for large-scale electrokinetic flows have been 
developed for almost one century [6; 8], only in recent decades has the electrokinetic transport 
shown awakening importance in biophysical applications, especially at micro- and nanoscale. 
For instance, a better understanding of nanoscale electrokinetic flows will help understand the 
mass and information transport in ion channels in cell [9; 10]; accurate predictions of micro 
electroosmotic flow in Lab-on-a-chip devices may shed light on optimal designs of biological­
chemical-medical Microsystems, such as those for DNA or protein diagnostics [2; 11; 12; 13]. 
Electrokinetic flow is also an important non-mechanical actuating technique for 
microfluidics[12], and has been widely applied for pumping[14; 15; 16], mixing [17; 18; 19], 
and separating [11]. 
The Poisson-Boltzmann (PB) model is the most popular method for analyses and predictions of 
electrokinetic flows in microchannels, which is composed of a Navier-Stokes equation for fluid 
flow and a PB equation for electric potential distribution [6; 20]. The Boltzmann distribution 
assumption of ions in electric double layer (EDL) leads to the decoupling between the fluid flow 
and the ion distribution, which makes the predictions much easier. Many algorithms and analyses 
based on the PB model have been proposed for the understanding of electrokinetic fluid 
mechanics and optimization of electrokinetic microdevices [21; 22; 23; 24]. However the 
Boltzmann distribution is restricted by its preconditions, such as the dilute solution, negligible 
ionic advection etc .. A more general model is the dynamic model which utilizes the Nernst­
Planck equation for ions transport instead of the hypothesized distribution [25]. In the dynamic 
model, each transport process is governed by the corresponding basic dynamic equation. Because 
the transport processes are influenced by each other, the governing equations are coupled 
together. Such coupled partial differential equations pose a great challenge to the numerical 
solution. 
However there are still several efforts that have been made to numerically solve the coupled 
governing equations in the dynamic model based on the traditional PDE solvers, such as the 
finite difference method (FDM) [26; 27], the finite volume method (FVM) [28; 29] and the finite 
element method (FEM) [30]. Recently Lu et al. [31] presented a hybrid framework of finite 
element and boundary element methods to solve the Poisson-Nernst-Planck equation for 
electrodiffusion. Hlushkou et al. [32] proposed a coupled lattice-Boltzmann and finite-difference 
method to solve the dynamic model for electroosmosis in microchannels, in which the lattice 
Boltzmann method (LBM) was used to model fluid flow and other governing equations were 
solved by the FDM. This is a good attempt to take advantage of the flexibility and efficiency of 
the LBM. However the boundary condition might be inconsistent between these two methods on 
the same set of grid [33]. He and Li [34] provided a multiple LBM process for the 
electrochemical systems, but they used a local neutrality law to constrain the electric potential 
distribution which could be inaccurate for charged colloids [35]. 
The objectives of this contribution are to: 1) present a coupled LB algorithm and framework to 
solve the governing equations in the dynamic model for the mUltiphysical transport in 
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electrokinetic flows in microchannels; 2) simulate the electroosmotic flows in microchannels and 
to compare the results with those from the PB model to clarify the factors and conditions under 
which the PB model will fail. The paper is organized as follows. Section 2 introduces the 
governing equations and the boundary conditions of the dynamic model. In Section 3, we present 
our evolution equations for all the transport processes and the coupling framework. In Section 4, 
after validating the accuracy and efficiency of the code, we investigate the applicability ofthe PB 
model in homogeneously and heterogeneously charged microchannels by comparing the results 
from the dynamic model and the PB model. In addition, some results that have never been 
studied by the PB model will also be presented. 

2. Mathematical models 

2.1 Governing equations 

Since our scale of interest is much larger than the atomistic scale, the macroscopic hydrodynamic 
and electrodynamic equations are still valid. For a mUlti-component Newtonian electrolyte 
flowing in a microchannel with no mass source, the governing equations for laminar flow are 

ap +V.(pu)=O, (1)
at 

and 

a(pu) + u. V(pu) = V· [vV(pu)] + F, (2)at 
where p represents the density of the fluid, t the time, u the velocity vector, v the kinetic 

viscosity, and F the body force. 

For the i -th ion species in the solute, the mass conservation equation describing transport and 

reaction can be written in the general form [36]: 

ac 
_1 +V .J, +}",Ci =RI' (3)at 
where C, denotes the ionic concentration, J i the species flux, )'/ a radioactive decay constant, 

and 1\ the rate at which the i -th species is produced or consumed by chemical reactions. The 

flux J; , in general, consists of contributions from advection, diffusion and dispersion in addition 

to an electrochemical migration term. Neglecting dispersion, the flux has the form[36] 

J, =- e~~, C,V'!' D,(VC; +C,VlnrJ+C;u, (4) 

. where the first term on the right refers to electrochemical migration, the second term to aqueous 
diffusion, and the last term to advective transport. This is the famous Nernst-Planck equation 
[25]. Here Zi' D; and r; denote the ion algebraic valence, the diffusivity and the activity 

coefficient of the i -th species, respectively; and e, k , and T denote the absolute charge of 
electron, the Boltzmann constant and the absolute temperature, respectively. The quantity'!' 
represents the local electrical potential caused by the ionic distribution which is governed by the 
Poisson equation 

V . (GrGoV'!') = -Pe =- LezjC;, (5) 
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Electrokinetic flows in microchannels 

where G r is the local dimensionless fluid dielectric constant, Go the permittivity of a vacuum, 

and Pe the net charge density. 

Equations (1 )-(5) nearly fully describe the hydrodynamic and electrochemical transport 
processes in electrokinetic flows. For isothermal incompressible uniform fluids with no 
polarization, radiation or chemical reactions, these equations can be further simplified as 
V·u =0, (6) 
au 2 F 
- + u . Vu =vV u + ,
at P 

(7) 

ac 2-'+u·VC =DV C+at '" kT 
()V· CVlfI , 

I 

(8) 

and 

V2lf1=_A , (9) 
GrGo 

where F can be any kind of body force. In this contribution we only consider the electric force. 

The general form of electrical force in electrokinetic fluids can be expressed as [23]: 


F =Fexi + Pe(Eint +~ X B int ) + Fv ' (10) 


where Fe.tl represents the external body forces. For only an electrical field, Fexi =-PeVlfIexl' 


where lfI eXI is the external electrical potential field. are internally smoothed
E int and B int 

electrical and magnetic fields due to the motion of the charged particles inside the fluid. Fv is a 


single equivalent force density due to the intermolecular attraction, which can be neglected in 

uniform fluids. Since the velocity of the electrokinetic flows in microchannels is very low, the 

electromagnetic susceptibility is negligible. 

When the ionic convection is negligible and the electric potential is continuously derivable, 

Eq.(8) has a simple steady solution for dilute electrolyte solutions: 


Ci = Ci roe (11) 


Substituting Eq. (11) into Eq. (9) yields the famous nonlinear PB equation [37]: 


V2lf1 __I_ Iezp"ro exp(- ez, lfI). (12) 

GrGo i kT 

The PB model leads to the decoupling of the electric potential distribution from the fluid flow, 
which makes the solution much easier than the dynamic model. The PB model has been 
numerically solved by numerous methods successfully [16; 21; 22; 23; 24; 26; 33; 38; 39; 40]. 

2.2 Boundary conditions 

We assume a longitudinal spatial periodicity for the finite domain under consideration because 
the length of a microfluidic channel is usually extremely large compared to the width. The 
periodic boundary conditions include the continuities between inlet and outlet: 

(13) 


(14)Uintel = Uoultel ' 

and the constant gradient of the external electrical field: 
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E = -V''Pext' (15) 

At the liquid-solid interface n, the non-slip velocity and the zero normal flux conditions are 

applied.: 

un 0, (16) 


(v·JJn 0, (17) 


where v is the outer normal to n. In case of chemical reaction occurring at the interface, the 

normal flux is related to the reaction rate. For a straight microchannel, substituting Eq. (4) into 

Eq. (17) leads to: 


aCi == _ ez, a'P. (18) 

kT
Ci 

Integrate both sides and compare with the PB model, this boundary condition is then further 
simplified as: 

_ ez,( 

Ci.n Ci,,,,e kT , (19) 

where C/,,,, denotes the i -th ionic concentration at the middle of the channel, and (; the zeta 

potential. Thus the boundary condition for Eq. (8) becomes a simple Dirichlet type, which has 
been frequently employed in the previous work [26; 27; 28; 29]. 
In turn, the electrical potential at the interface can be imposed through either the surface charge 
density «(j )or the zeta potential «(; ). The former leads to the Neumann-type and the latter to the 
Dirichlet-type boundary conditions, respectively. A recent study using the lattice Boltzmann 
method has proved that these two types of boundary conditions are consistent, but the latter one 
has a better computational efficiency [39]. Therefore we use the Dirichlet boundary condition for 
the electric potential equation (Eq. 9): 
Ij/Q = (; . (20) 

3. Numerical methods 

We propose to solve the governing equations by coupled multiple lattice Boltzmann methods. 
The LBM is a relatively new numerical method for simulating complex flow and transport 
phenomena[41; 42]. Unlike conventional computational methods based on macroscopic 
continuum equations, the LBM uses the mesoscopic Boltzmann equation to determine 
macroscopic transport dynamics, and makes the governing equations solved by tracking 
distribution functions of species packets on lattices [43]. The LBM is flexible, broadly applicable, 
and straightforwardly adaptable for parallel computing. Due to the ease of incorporating complex 
boundary conditions, it has been successfully applied to multiphase and multicomponent 
transport [44; 45], multiphysical-chemical transport through porous media [40; 46; 47], and solid 
particle suspensions [48; 49; 50]. 
In the rest of this section we introduce the LB evolution equations, the boundary treatments, and 
the flow scheme of our numerical framework. 

3.1 Evolution equations 

3.1.1 Evolution equation for hydrodynamics 

The evolution equation for laminar flow driven by an external force has the form [41; 51] 
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(21) 


where r denotes the position vector, e" the discrete velocities, o( the time step, and Tv the 

dimensionless relaxation time which is a function of fluid viscosity, 
3v 

Tv =-+0.5, (22) 
COt 

For the commonly used two-dimensional nice-speed (D2Q9) model shown in Fig. 1, the discrete 
velocities are, 

(0,0) a=O 

eO' = (cosO",sinOO')c, 0" =(a-l)n/2 a = 1-4, (23) 

.J2(cosO",sinO,,)c, 0" = (a-5)1r/2+1r/4 a=5-81 
where C is the lattice speed defined as Ox /0t' 0, the lattice constant (grid size). The density 

equilibrium distribution f;q can thus be expressed as 

req= [1 3 ·u 9(e".u)2 _3U 2 
] (24)J" OJ"p + + 4 2'2c 2c 

with 

4/9 a=O 

OJ" = 119 a 1-4. (25)
{

1136 a=5 8 

For the electrokinetic flow in a long microchannel driven by an external electric field, the 
external force in the discrete Lattice Boltzmann equation is [52] 

Fa = 3PeE'(e; u) f;q. (26) 
pC 

After evolution, the macroscopic density and velocity can be calculated using 

P= Lj~, (27) 

" 

" 
(28) 


3.1.2 Evolution equations for ion transport 

Inspired by the process of lattice Boltzmann model solving the Navier-Stokes equation, people 
have proposed several models for solving the advection-diffusion equations [23; 52; 53; 54]. We 
use the following evolution equation to solve the ion transport governing equation for each i -th 
ion species, Eq. (8) [23; 39; 54]: 

g" (r+e"o(,D, ,t+o(,J),)- gel (r,t) =-f-[g" (r,t)- g:q (r,t)] 
D, 
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where r D, is the dimensionless relaxation time for the i -th ion transport and is related to D; in 

the form 
3D, 

r D, --+ 0.5 , (30) 
2cD, Ox 

with CD, representing the i -th ionic diffusion lattice speed. The value of CD, in Eqs. (29) and (30) 

is independent of the C in Eqs. (22) - (24) and can be assigned any positive value as long as the 
value of r D, is within (0.5, 2) [39; 54]. Different values of CD, lead to different time steps for 

each ion transport evolution since 

~,Dj =Ox/CD, . (31 ) 

For a D2Q9 lattice system, the equilibrium distribution is [52; 54] 

2C 
I 

u 2 


--- a=O 

3 c;, 

2 
g:q = 3 +~ ea?·u +~ e a2·u _~ U

2 
] a=1-4 (32) 

9 2 2 cD, 2 cDj 2 CD, 

2 

C; [3+6 ·U +~ ea ·U 3 u
 a=5 8 
36 2 c;), 2 

The final ionic concentration for the i -th ion can be calculated after evolution by 

oD ezDC '" + _1,_., _1_1 Y' .(CY'T) . (33)
i L..ga 2 kT 1 

a 

3.1.3 Evolution equation for electrodynamics 

In order to solve the static electrodynamics equation, Eq. (9), using LBM, we rewrite it by 
adding a time-dependent term [39]: 

aT Y'2T+A. (34)
at erGO 

The evolution equation for the electrical potential on the two-dimensional discrete lattices can 
then be written as [23; 39; 54] 

ha(r + !!.r,t + 0t.III ) - ha(r,t) == __1 [ha(r,t)- h~q (r,t)] + (Oa~.III(l- 0.5)A, (35) 
~ ~ ~~ 

where the dimensionless relaxation time is calculated by 
3 

rV! = +0.5, (36)
2c oxlll 

where cIII is the electrostatic lattice speed, which, similar as CD, ' can be any positive value only 

ensuring the relaxation time rill within (0.5, 2) [39]. The time step in Eq. (35) is 

(37)~.111= 
c 

'jI 

The equilibrium distribution of the electric potential evolution function h is [23; 39] 
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a=O0 

heq 
:;:: 

'I' 
a \-4. (38)a 6 

'.I' 
a 5-8 

12 
The steady solution of the evolution equation (35) has been proved consistent with the 
macroscopic Poisson equation, Eq. (9). The macroscopic electrical potential can be calculated 
using [39] 

(39) 


3.2 Boundary condition implementations 

Boundary treatments are very critical to any numerical methods. Since we are solving several 
governing equations on the same set of lattices, i.e., 0, for all evolution equations is the same, 

the consistency of the boundary implementations is essential. Although the "bounce-back" model 
is popular and easy to use, it has only first-order accuracy. In this contribution, we introduce 
second-order accurate models for all transport processes at the boundaries. 

3.2.1 Non-slip modelfor hydrodynamics 

For still walls, the unknown density distribution functions at the wall are determined from the 
local equilibrium distribution function with a "counter slip" velocity [55; 56]. Take the upper 
wall as an example. The populations .h, h , h, f, and fc, are known from the previous 

evolution step, but f4' .f; , and .is need to be determined from the boundary condition. The 

"counter slip" velocity is defined by 
)

u' 6~~~~~~- (40)
p' 

where 

p' =6(f2 +.is +1;,). (41 ) 

Thus the unknown density distributions are calculated from the equilibrium distribution function 

f =!P'[l +3 u' +9 (u _ 3(u ')2] (42a) 
J4 9 c 2c2 ' 

= 1 '[1+3 u' +9(U')2 _ 3(u')2] (42b)f 
7 36 P c 2c2 2c2 

' 

f =_1 '[1+3 U'+ (u'i _3(U'/]. (42c) 
J 8 36 P c 2c2 2c2 

3.2.2 Dirichlet boundary treatmentfor ions 
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Several boundary treatment methods have been proposed to deal with the Dirichlet type 
boundary conditions for advection-diffusion equations. Here we follow D'Orazio's approach [57; 
58] which is of second-order accuracy and consistent with the non-slip model for fluid flow. In 
this approach, the unknown populations are assumed to be from an equilibrium distribution at a 
concentration C"o which is determined by the given constraints. Again for the upper wall, the 

unknown g4' g7' and gs can be obtained from the equilibrium distribution of Ci,o which is: 

CiO =: 3C, n -3S 
g 

-1.58, D Z»a eZ,Di V.(CiVlf'), (43)
" , , a kT 

where Sg is the sum of known populations coming from the internal nodes and nearest wall 

nodes 

Sg =go + g] + g2 + g3 + gs + g6' (44) 

Thus the unknown distributions are 

g4 =C, 0 /6, (45a) 

g7 Cl,o 112, (45b) 

gg C,0112. (45c) 

3.2.3 Dirichlet boundary treatment for electric potential 

The Dirichlet boundary of electric potential can be treated similarly as that for ions [57; 58]. Still 
for the upper wall, the h4' ~, and hg can be obtained from the equilibrium distribution of If'0 : 

If'o=3lf'n 3Sh -1.581,,,,Z>'a ' (46) 
a GrGo 

where Sh is the sum of known populations coming from the internal nodes and nearest wall 

nodes 

Sh == ho + ~ + h2 + ~ + hs + h6 ' (47) 

Thus the unknown distributions are 

h4 == If'0/6, (48a) 

~ If'oI12, (48b) 

hg If'oI12. (48c) 

3.3 Flow scheme of the numerical framework 

Since the governing equations, Eqs. (6)-(10), are coupled together, we implement an iterative 
scheme as shown in Fig. 2. In each iteration procedure, the electric potential distribution is first 
obtained through the evolutions of electric potential to the steady state based on the evolution 
equation (35), in which the charge density is calculated from the ion distributions of the last 
iteration based on Eq. (5) (or from the initial state for the first iteration). Then, the ionic 
concentration for each species is calculated by the evolution equation (29) for Nc, steps. The 

time step, ~,D, ' may differ for different ions, but the total time step within one iteration has to be 

the same value for all ions, i.e., t'OIG! == Nc, .81,D,' The last step in the iteration is to solve the 
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evolution equation (21) to obtain the velocity field. The evolution number, N v ' has to ensure the 

total time step in the iteration to be {Ivlal' i.e., N v = tlolal 1°1 • 

Thus the coupled governing equations are solved by the iterative multiple lattice evolutions 
models. This scheme is able to simulate time-dependent process with a very low Reynolds 
number. In this contribution, we only apply it to steady flows. 
To judge if the simulation reaches steady state or not, we define the total divergence rates for 
electric potential convergence and velocity convergence as 

s:dr _ 
U'I' - (49) 

(50) 

where r denotes the location vector, and the superscript "n" represents the n-th iteration. The 
simulation stops and the results are regarded as steady state once the divergence rate is less than 
a given error tolerance (typically 10-6

). 

The current method preserves the advantages of the LBM and is suitable for complex flows and 
parallel computing [46; 47]. Although only 20 problems are considered in this paper, the 
algorithm can be easily extended to 3~. 

4. Results and discussion 

In this section, we simulate the electrokinetic flows in homogeneously and heterogeneously 
charged microchannels using our coupled lattice Boltzmann codes, and compare the results with 
the PB model, to validate our codes and to investigate the conditions under which the PB model 
wilI fail. 

4.1 Accuracy and efficiency 
4.1.1 Benchmark 
To validate the present algorithm and code, we first simulate the electroosmotic flow in a 
homogeneously charged microchannel, as shown in Fig. 3, with a width H of one micron. A 
1OOx 10 uniform grid is used. AI:1 electrolyte solution is considered and the bulk ionic 
concentration 10-5 M. The zeta potential for both walls is S=-5 mV. The other properties 

and physical parameters are: the fluid density p =999.9 kg/m3
, the dielectric constant 

&r&O =6.95x 10- 10 e2/J m, the dynamic viscosity J1 =0.889 mPa s, the temperature T K, the 

diffusion coefficients for both ions D) = D2 =1 xl 0-8 m 2/s and E =1 xl 03 Vim. 

Since the x direction is periodic, there is no y-directional flow across the channel. Therefore the 
electric potential distribution resulted from the coupled dynamic equations, Eqs. (6)-(9), should 
be consistent with those from the PB model for thin EOL. Fig. 4 compares the electric potential 
and velocity profiles across the channel respectively between the present simulations and the 
classical PB model. The ionic concentration is high enough for this case to result in no 
interaction between the double layers of both walls. No chemical reactions are considered at the 
interfaces and the boundary conditions for the present dynamic equations are consistent with 
those for the PB model. The governing equations in the PB model were solved by the LPBM [23; 
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59]. The good agreements between the present dynamic model and the PB model validate the 
present algorithm and the codes. 

4.1.2 Unphysical parameters 

There are two unphysical parameters, the lattice speed (c) and evolution number per iteration 
(N). In the present algorithm they can influence the stability, the accuracy and the efficiency of 
simulations. 
Since the physical characteristic times for fluid flow and species diffusions differ significantly, it 
is hard to find a common lattice speed to ensure that the dimensionless relaxation time ( T ) for 
each evolution equation is within (0.5, 2). We use different lattice speeds for different evolution 
equations. Because all the boundary condition treatments employed are of second-order accuracy, 
the accuracy will not change with the value of the lattice speed [55]. As reported before, a larger 
lattice speed leads to a lower convergence speed [39], but a better stability. One has to balance 
between the stability and the convergence speed. For the present coupling algorithm, it is better 
to advance each iteration in a moderate level, i.e. not too drastic, to avoid numerical fluctuation 
or even divergence, especially for the ion transport. 
The evolution number per iteration is the other unphysical parameter that needs to be optimized 
and balanced between accuracy and efficiency. To ensure the same total time step for each 
iteration, the evolution number has to satisfy 

Net A,D, = Nc, '~,J)1 =Nv A, (51) 

where Nv is usually much greater than N e, and Nc, . 

Fig. 5 shows the maximum x-velocity for different evolution numbers per iterative step after 
finite iterative steps (500), and CPU time per iterative step, where Coo 10-5 M, S =-50 mV, 

E =5x 106 Vim and the other parameters are same as those in 4.1.1. The code was run on the 
Saguaro cluster at LANL, which has 64x2 AMD Opteron CPUs at 2.4 GHz. The results indicate 
that the simulated velocity becomes independent of Ne, and stable when NC Z 100, but the CPU 

1 

time increases sharply when Nc Z 2000. Another calculation for 2:2 electrolyte solute shows 
I 

that the simulated results becomes unstable again after Nc, Z 2000. Therefore for this case, 

Nc should be an integer within [100, 1000] for good accuracy and satisfactory efficiency. In all 
J 

the following simulations of this work, we use Nc =1000. , 

4.2 Effects of the EDL thickness 

The applicability of the PB model has been often questioned when the EDL is thick relatively to 
the channel width. Discrepancies have been reported between results of the PB model and the 
dynamic model and the breakdown of the PB model was always ascribed to the EDL overlap and 
interactions [26; 27; 28; 29; 60]. However, after a careful review of the previous work, we find 
that the inconsistent boundary conditions for different models may be the main reason for such 
deviations in these reports [60]. Our new algorithm and codes enable us to examine the effects of 
the EDL thickness on the applicability of the PB model. 
Still for a long straight microchannel as shown in Fig. 3, we change the bulk ionic concentration 

C", to vary the EDL thickness, namely the Debye length, defined as It =JcocrkT /(2e 2z/C",) for 
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1:1 electrolyte solution [6], and keep the other parameters the same as those in 4.1.1. Based on 
this definition, the EDL thickness for the case in Fig. 4 is 0.18 of the channel width, i.e. 
A=0.18H. 
Fig. 6 compares the results for different EDL thickness from the dynamic model and from the PB 
model. For the EDL thickness (A,) much smaller than the channel width (H), the ions 
distribution and flow velocities from both models are in excellent agreement, as shown in Fig. 4 
and Fig. 6(a). When ). is comparable to H, like in Fig. 6(b), the ion distribution from the PB 
model begins to deviate from that from the dynamic model, though the deviation is very small 
«1%). This deviation increases with the increase of the EDL thickness. However the velocity 
profiles from both models are still in good agreement even when A, is about 10 H as shown in 
Fig. 6(d). Quite different from the previous studies that the deviation appeared as soon as the 
EDLs overlapped, the present results show that the PB model is applicable for a wide range of 
EDL thickness. For ions distribution predictions, the PB model is accurate for A, no greater than 
H; while for flow modeling, the PB model is still applicable even for A as large as 10 H . 

4.3 Effects of heterogeneously charged surface 

Heterogeneously charged surfaces are usually used to change the flow field or change the 
wetting property of interfaces, which have many important applications in microfluidics, such as 
micromixing enhancement [17; 18; 19], biomacromolecules separation, and microchip switch 
[13; 61; 62]. 
For the homogeneously charged long channel, there is no difference for the predicted electric 
potential distributions between the PB model and the dynamic (PNP and NS) model since the 
electric potential distribution is fully developed everywhere. However for the heterogeneously 
charged channel, the electric potential distribution is not developed, especially near the interface 
of different charged surfaces, which may lead to the predicted electric potential distributions of 
the PB model deviating from the dynamic model. Similar studies can be found in the "entry 
flow"[26] and in the step charged channels[27]. In this section, we are focusing on how the 
heterogeneous surface charge influences the electric potential distribution in the channel and 
whether these effects invalidate the PB model. 
Fig. 7(a) shows a symmetrical arrangement of surface charge in a heterogeneously charged 
microchannel. Each wall is charged with uniform charge density, but with a boundary electric 
potential of ; for one half and -; for the other half. The channel is also periodic in x direction. 
Fig. 7(b) shows a typical velocity vector field with four vertices in this domain. 

4.3.1 Zeta potential effects 

We first consider the effect of zeta potentials on the electric potential distribution. To avoid the 

effects from the velocity field, we set the external electric field strength to a low value: E xl 03 


Vim. To exclude the effect from different diffusion coefficients, we set them to the same value 

for both ions: Dl D2=2xlO-9 m2/s. The channel width is 1 pm and 100xlOO grids are used. We 


vary the zeta potential ; from -5m V to -100 m V and keep the other parameters the same as 

those in 4.1.1. 

When the absolute value of the zeta potential is small, such as 50 m V or lower, the electric 

potential distribution resulted from the PB model agrees well with that from the dynamic model. 
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Fig. 8(a) shows the electric potential profiles at the A-A section when r; =-50 mV, where the two 
curves are almost the same. As the zeta potential increases, the result from the PB model begins 
to differ from that from the dynamic model. Fig. 8(b) illustrates the electric potential profiles for 
r; 100 mV. For a high zeta potential, the electric potential profile predicted from the dynamic 

model is not as developed as that from the PB model. This result indicates that it is necessary to 
replace the PB model with the present dynamic (PNP and NS) model for heterogeneously charge 
surfaces with high zeta potentials. 

4.3.2 Velocity field effects 

Since the streamlines are not parallel to the surfaces any more for heterogeneously charged 
channels, the convection of ions will change the ions distribution and may consequently 
influence the electric potential distribution. Similar cases can be found even in homogeneously 
charged channels with blocks, where the velocity field is changed by the geometry. For 
heterogeneously charged channels, the advection strength can be easily controlled by varying the 
external electric field strength (E). Fig. 9 shows the electric potential distributions at the A-A 
and the C-C sections for different ionic advection strength controlled by the electric field 
strength (E). The zeta potential is r; =-50 m V and the external electric field strength vary from 

1 x 103 to 2x I 07 Vim. The other parameters are the same as those in 4.3.1. 
When the electric field strength is small, such as E =IX 103 V1m, the ions advection is weak and 
negligible so that the electric potential distribution from the dynamic model almost overlaps that 
from the PB model. As the driving force increases, the ions advection becomes stronger and the 
predicted electric potential distribution deviates more from the PB predictions. When E = 1 x 1 06 

Vim which can be actually easily realized in experiments, the maximum relative error between 
the two models for the electric potential is as large as 172%. This result indicates that the present 
dynamic model will better predict and interpret results for the applications of heterogeneously 
charged channels, such as micromixing enhancements by electrokinetic flows. 
Besides the external electric field strength, the velocity field can be also influenced by many 
other factors. For examples, the ionic advection in the heterogeneously charged channel is also 
related to the ionic concentration (C/,,,,), the fluid viscosity (v), and the zeta potential (r;). In 

engineering applications, the flow may also be driven by other forces, such as pressure gradient 
( fl...p). The channel may not be a smooth straight one if there are blocks or roughness and 
cavitations inside. Each of these factors may lead to considerable contribution of ionic advection 
to the ion redistribution. For such cases, the present model will provide more accurate 
predictions. 

4.3.3 Diffusion coefficient effect 

Since the electric potential distribution in a heterogeneously charged microchannel is not fully 
developed, it is interesting to find out whether the ionic diffusion coefficients and their 
differences have any influence on the electric potential distributions. For the same microchannel 
as above, we change the diffusion coefficient values and their ratios from I: I to 1:1 00. Fig 10 
shows the electric potential profiles at the A-A section for different ionic diffusion coefficients, 
where r; =-50 mV, E=I x 103 Vim and the other parameters are same as those in 4.3.1. The results 

indicate that the effect from the ionic diffusion coefficients is negligible for the electroosmotic 
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flows in long microchannels. The reason may be that the characteristic time of ionic diffusion is 
much smaller than those of fluid flow and ions advection. 

4.4 Effects of ionic valence 

Although the multi-valence ions have been reported to influence nanoscale electrokinetic 
transport greatly [63; 64], the effects of ionic valence on the electroosmotic flows in 
microchannels have never been investigated to the best of the authors' knowledge. The reason is 
that the net charge term (Pe ) is hard to be linearized if the absolute value of valence ratio, 

IZ] : Z2 I, is not 1: 1. However it is not a problem for the present algorithm because there is no 

need for linearization at all. 
Consider a homogeneously charged microchannel as shown in Fig. 3. The bulk solvent 
concentration Coo =lxl0-5 M, the external electric field strength E=5xl06 Vim, the zeta potential 

S =-50 m V and the other parameters are the same as those in 4.1.1. Fig. 11 compares the electric 

potential and velocity distributions for different ionic valence ratios. Four cases are considered: 
Iz] :z21=1:1, 1:2,2:1 and 2:2 respectively. Z] denotes the valence of the positive ions and Z2 

that of the negative ones. For the 1: 1 valence ratio, the results from a double bulk solvent 
concentration (2 Coo) are also plotted in the same figures. The results show: (1) the ionic valence 

does influence the electric potential distribution and the velocity profile in electroosmotic flows. 
Among the different valence ratios, the 1: 1 case leads to the smallest averaged electric potential 
(absolute value) and velocity across the channel when the other conditions are the same. The 
electric potential profiles and velocity distributions for the 2:1 and 2:2 valence ratios are close; 
while those results for the 1:2 valence at a bulk ionic concentration of Coo and the 1: 1 valence 

ratio at 2 Coo are close. (2) The corresponding Debye length varies with the valence ratio as well. 

Fig. 11 (a) indicates that the EDLs for 1:1 and 1:2 valence ratios are thicker than those for 2: 1 and 
2:2 ones. The valence number of positive ions seems to dominate the Debye length in the present 

negatively charged walls. 

Our results apparently contradicts a popular definition of the Debye length [65] 


A = £o£,kT/ e~Z~Ci,oo , (52) 

which will lead to the same Debye length between 1:2 and 2:1 valence ratios. 

To understand these results, let us revisit the original PB equation, Eq. 12, for two-species/ions 

solutions: 


V2'l' = - Pe,oo [exP(--=-zl'l'J -exP(--=-Z2'l'J], (53)
£'£0 kT kT 

where Pe,oo =ez1C1,oo =-ez2C2 ,oo denotes the bulk charge density, Zl is positive and Z2 negative, 

C1,,,, and C2,oo are the species bulk ionic concentrations for positive and negative ions 

respectively. For I Zl : Z2 I =N :N, C1,oo = C2,oo = Coo . When I Zl : Z2 1=1 :2, C1,oo =2 Coo and C2,oo = Coo' If 

IZl : z21 =2:1, C1,,,, =C", and C2,oo =2 C"" 

Eq. (53) indicates that if the electric potential, 'l', is negative, the first term in the square bracket 
of the right hand side is much greater than the second term, i.e., the valence of positive ions 
dominates the potential distribution; otherwise the valence of negative ions controls the Debye 
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length. Such an analysis agrees well with our numerical results that the valence and the 
concentration of the counter-ions dominate the Debye length. A greater valence of the counter­
ions leads to a smaller Debye length. Therefore the definition in Eq. (52) is only valid for I: I 
electrolyte solutions. 

5. Conclusions 

In this contribution, we developed a coupled multiple lattice Boltzmann method framework to 
solve the dynamic model for electrokinetic flows in microchannels. The governing equation for 
each transport is solved by a lattice Boltzmann method and the whole transport process is 
simulated through an iteration procedure. We solve all the governing equations on the same set 
of lattices with consistent boundary condition treatments. The present algorithm and codes have 
been validated by comparisons with the results from the lattice PB method for homogeneously 
charged channels when the ionic advection is negligible. 
Using the present method, the applicability of the PB model for electrokinetic flows in 
microchannels is studied. For homogeneously charged long channels, the PB model can provide 
good predictions for electric potential distributions until the electric double layers fully overlap 
which occurs when the thickness of the EDL equals to the channel width. The electroosmotic 
velocity prediction from the PB model is even good when the thickness of the EDL is ten times 
of the channel width. For heterogeneously charged microchannels, a high zeta potential will 
make the PB prediction breakdown since the electric potential distribution is not fully developed. 
Because the streamlines are not parallel to the surfaces any more, an enhanced velocity field may 
cause the PB model to fail. However the ionic diffusion coefficients do not have noticeable 
effects on the steady flows for either homogeneously or heterogeneously charged channels. For 
the first time, the effects of ionic valence of solvent have been studied on the electric potential 
and flow velocity distributions in homogeneously charged microchannels. It is found that the 
valence and the concentration of the counter-ions dominate the Debye length, the electrical 
potential distribution and ions transport. The present results may improve the understanding of 
the electrokinetic transport characteristics in microchannels. 
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Figure Legends 


Fig. 1 Direction system for D2Q9 model 

Fig. 2 Flow chart of the coupled lattice Boltzmann method 

Fig. 3 The homogeneously charged microchannel 

Fig. 4 Comparisons of electric potential and x-velocity distributions between the present 
simulation and the PB model 

Fig. 5 Effects of evolution step number per iterative step on computational accuracy and 
efficiency 

Fig. 6 Comparisons of net charge density and x-velocity profiles for different EDL thicknesses 

Fig. 7 Schematic of surface charge arrangement of a microchannel and its velocity field driven 
only by an external electric field. 

Fig. 8 Electric potential profiles at the A-A section for different zeta potentials 

Fig. 9 Velocity field effects on the electric potential distributions controlled by the external 
electric field strength for heterogeneously charged microchannels. 

Fig. 10 Electric potential profiles for different ionic diffusion coefficient ratios at the A-A 
section 

Fig. 11 Electric potential and velocity distributions in homogeneously charged channels for 
different ionic valence ratios. 
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Fig. 1, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 2, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 2 Flow chart of the coupled lattice Boltzmann method 
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Fig. 3, Wang and Kang, Submitted to Biophysical Journal 

• 

E 
H 

Yi~~.~_____________C_i_,n___________*L-______ 
x 

Fig. 3 The homogeneously charged microchannel 

22 




-0.5 

·1 

~ -1.5 

o 
-

Submitted to LGl1en:IUlr 
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the PB model 
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Fig. 5, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 6, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 7, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 7 Schematic of surface charge arrangement of a microchannel and its velocity field driven only by 
an external electric field. 
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Fig. 8, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 8 Electric potential profiles at the A-A section for different zeta potentials 
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Electrokinetic flows in microchannels 

Fig. 9, Wang and Kang, Submitted to Biophysical Journal 
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(b) electric potential distributions at C-C section 

Fig. 9 Velocity field effects on the electric potential distributions controlled by the external electric field 
strength for heterogeneously charged microchannels. 
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Fig. 10, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 10 Electric potential profiles for different ionic diffusion coefficient ratios at the A-A section 
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Electrokinetic flows in micro channels 

Fig. 11, Wang and Kang, Submitted to Biophysical Journal 
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Fig. 11 Electric potential and velocity distributions in homogeneously charged channels for different 
ionic valence ratios. 
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