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Abstract. Space weather modeling, forecasts, and predictions, especially for the radiation belts 

in the inner magnetosphere, require detailed information about the Earth's magnetic field . Results 

depend on the magnetic field model and the L * (pron. L-star) values which are used to describe 

particle drift shells. Space weather models require integrating particle motions along trajectories 

5 that encircle the Earth. Numerical integration typically takes on the order of 105 calls to a magnetic 

field model which makes the L* calculations very slow, in particular when using a dynamic and 

more accurate magnetic field model. Researchers currently tend to pick simplistic models over more 

accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic 

field models affect the calculation of electron phase space density by applying adiabatic invariants 

10 including the drift shell value L *. We present here a new method using a surrogate model based on a 

neural network technique to replace the time consuming L * calculations made with modern magnetic 

field models. The advantage of surrogate models (or meta-models) is that they can compute the same 

output in a fraction of the time while adding only a marginal error. Our drift shell model LANL * (Los 

Alamos National Lab L-star) is based on L* calculation using the TSK03 model (Tsyganenko et aI., 

15 2003). The surrogate model has currently been tested and validated only for geosynchronous regions 

but the method is generally applicable to any satellite orbit. Computations with the new model are 

several million times faster compared to the standard integration method while adding less than 1 % 

error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric 

space weather is limited partly due to the long computing time of accurate L * values. Without 

20 them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the 

inner magnetosphere are used to understand physical processes and their effect. Without sufficiently 

accurate L * values, the interpretation of reanalysis results becomes difficult and uncertain. However, 

with a method that can calculate accurate L * values orders of magnitude faster, analyzing whole solar 

mailto:jkoller@lanl.gov


cycles worth of data suddenly becomes feasible . 

25 	 1 Introduction 

The Earth's magnetic field is an important ingredient in space weather modeling and forecasting . 

The field can be very dynamic and non-symmetric depending on the solar wind conditions outside 

of the Earth 's magnetosphere: Results of space weather models and forecasts, especially for the inner 

magnetosphere, depend on the magnetic field model and the L * values which are used to describe 

30 	 particle drift shells. L * is a simple function of the magnetic flux , also known as the third adiabatic 

invariant <P, the dipole moment ko, and the Earth ~ s radius RE 

L* = _ 2-rrko (1)
<PRE 

Physically, L * is the radial distance from the Earth 's center to the equatorial points of the symmetric 

particle drift shell , if all non-dipolar moments are turned off adiabatically.Particle motion , described 

35 	 by adiabatic invariants, depend on the magnetic field B, the particle's energy E, and the pitch angle 

a . In a dipole field the invariants are analytical but a realistic field requires numerical integration 

<P = JB ·dS 	 (2) 

where B is the magnetic field vector and S denotes the enclosed surface. 

In an "adiabatic" system, phase space density is conserved as a function of L * but not as a function 

40 of physical position. Therefore it is critical to pu spacecraft observations in the correct "magnetic 

coordinates" before realistic physical modeling can be done. 

A number of empirical magnetic field models exist. However, it can take a long time to calculate 

L * using more sophisticated models (McCollough et aI., 2008) because full shell tracing in a com­

plex magnetic field is computationally very expensive. Typical integration requires on the order of 

45 105 calls to the magnetic field model for obtaining the magnetic field vector. The resulting long com­

putation times cause researchers to trade more accurate model with faster, but simpler ones but also 

risking large inaccuracies and even wrong conclusions. Huang et al. (2008) recently quantified the 

effect of choosing a magnetic field model for radiation belt studies and concluded that global inac­

curacies of magnetic field models could alter the results of the inferred radial profiles of phase space 

50 densities of radiation belt electrons. A field model affects the calculation of electron phase space 

density by applying adiabatic invariants (Green and Kivelson, 2004). Huang et al. (2008) found that 

during storm times L * can vary by as much as 50% (Huang, priv. communications). As part of the 

DREAM project (Dynamic Radiation Environment Assimilation Model), Chen et al. (2007) studied 

the effect of choosing a magnetic field model on the phase space density calculation and found that 

55 an accurate magnetic field model is critical to radiation belt modeling. 

In this paper we present a new method of calculating L * based on a recent magnetic field model 

(Tsyganenko, 2002a,b; Tsyganenko et aI. , 2003), here TSK03 formerly also known as Tal-storm. 
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The method is based on a forward feed neural network that has been trained on TSK03 calculations 

for all occuring solar wind conditions during the year 2002. Currently the neural network is trained 

60 	 only with geosynchronous regions but we will expand it in a future version to all regions of the 

inner magnetosphere. With a trained neural network, the TSK03 model can be replaced by the much 

faster surrogate model. This approach is also known as meta-modeling (see Kleijnen, 2008, for 

details). The method applies equally to any magnetic field model or arbitrary complexity - statistical, 

empirical, physics-based like magneto-hydrodynamic models, etc. 

65 In the following section we will describe surrogate models in general and in Section 3 how neural 

networks can be used as such surrogate models. Section 4 describes the underlying magnetic field 

model used for creating the neural network and Section 5 how the network was trained. We validated 

and tested the neural network as explained in Section 6 and show how to use the provided code 

(supplemental material) in Section 7. We summarize and conclude with Section 8. 

70 	 2 Surrogate Models 

Surrogate models (or meta-models) can replace a complicated non-linear input-output relationship 

while adding only a minimal error. Other scientific fields use them frequently for studying the 

sensitivity of complex models on input parameters [references!]. Surrogate models are ~ained with 

input-output data from the original model. Once the training is successfully completed, the surrogate 

75 	 can replace the complex model and compute a sufficiently accurate output in a fraction of the time. 

Surrogate models do not contain details of the physical processes or geometries but only focus on 

the input-output relationship. The results from such surrogate models are not exact but sufficiently 

close to the physics-based model. Different methods can be used to create surrogate models: The 

simplest surrogate models are based on polynomial regression. Others are based on Kriging, Gaus­

80 sian process modeling, and neural networks (Kleijnen, 2008; Myers and Montgomery, 2002). We 

chose to use a forward feed neural network to create a surrogate model for TSK03. 

Surrogate models are by definition fast to compute but do not necessarily represent the original 

model exactly. The goal of a surrogate model is to replace a very complex complex model with a fast 

computing model that can deliver results that are sufficiently close to the values calculated directly 

85 	 with the original model. The drift shell model presented here is able to calculate L * with less than 

1% error compared to the original model and over a million times faster. Figure I exemplifies a 

diagram of an artificial neural network use for our study. 

3 Forward Feed Neural Networks 

Artificial neural networks are loosely related to neurons in our nervous system in the sense that 

90 	 they represent a non-linear mapping from input to output signals (Bishop, 1995; Reed and Marks, 

1999). In general, an artificial neural network consists of a number of non-linear processing units 
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Fig. 1. Diagram for a layered forward feed neural network. Solar wind conditions are used as input for pre­

dicting L * values. All nodes have a connection to every node from the previous layer but are not drawn here 

for simplicity. Also, not all possible parameters that can be used as input for the artificial neural network are 

shown. Specifically, our drift shell model includes additional values for Kp, solar wind density, velocity, and 

magnetic coordinates. 

that are inte~connected through weighted communication lines. The units are called neurons and 

receive input signals from a number of other nodes and produce a single scalar output which then 

can be used as input to other neurons via weighted connections. Feed-forward networks do not allow 

95 connections from the output back to the input either direct or indirect. 

Neural networks are usually organized in several layers . Such a network is also called a multilayer 

perceptron. The first layer provides a node for each input element (see Figure 1). In our case the 

input layer consists of 16 nodes, one for each input parameter for the TSK03 model plus additional 

nodes for parameters that help to further specify the system (like geomagnetic coordinates). The 

100 'hidden layer contains 20 neurons that are connected to each input node and one output node to 

produce L * for a specified pitch angle. 

The number of neurons in the hidden layer is somewhat arbitrary and usually has to be determined 

through testing. However, too many neurons in the hidden layer can cause the artificial neural 

network to simply memorize patterns. In such a case the network will not be able to perform with 

105 	 other data. Barron (1991, 1993, 1994) completed a study on how the error of a neural network output 

scales with the number of training samples and hidden nodes. He found that the error decreases like 

O(l jffi) as the number of training samples N increases. The error also decreases as a function 

of the number of hidden nodes M like O(ljM). In general, it has been shown, by e.g. Cybenko 

(1989), that a sufficiently large network is able to approximate any function with arbitrary accuracy 
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Table 1. Input parameters for the neural network LANL * 

Number Parameter Description Input to TSK03 

Year Integer number representing the year Yes 

2 DOY Day of the year Yes 

3 UT Universal Time in units of hours Yes 

4 Kp Kp index No 

5 Dst Dynamic storm time index [nT] Yes 

6 n Solar wind density [cm­ 3 
] No 

7 v Solar wind velocity [km/s] No 

8 p Solar wind dynamic pressure [nPA] Yes 

9 B y Y component of the IMF field [nT] Yes 

10 B z Z component of the IMF field [nT] Yes 

II GI G I value (Tsyganenko, 2002b) No 

12 G2 G2 value (TsyganenkO, 2002b) Yes 

13 G3 G3 value (Tsyganenko et aI. , 2003) Yes 

14 Lm McIllwain value (Roederer, 1970) No 

15 MLT magnetic local time Yes 

16 MLAT magnetic latitude No 

110 (Bishop, 1995; Reed and Marks, 1999). 

Similar to the real nervous system, artificial neural networks have to be trained by learning from 

examples. Given a set of input parameters and desired outputs, algorithms like the popular "back 

propagation" algorithm (Rumelhart et ai., 1986) can automatically adjust the weights of the intercon­

nections to produce the desired outputs. If the training is successful, then new input can be provided 

115 to the neural network and a correct (within a specified error) output is obtained. 

Once the training of a neural network is completed, the output can be easily calculated given any 

set of input values . If x is the input vector, then the output vector y in a I-hidden-layer architecture 

is 

(3) 

120 where the matrices W O, l, bO, l denote the weight matrices of the hidden and output layer and a bias 

vector b. The bias vector is necessary to obtain a better classification but is, typically, absorbed into 

the weight vector assuming that one of the inputs is constant (bias node). 

The function f is a non-linear squashing function applied to each component of a vector, for 

example 

(4) 
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Squashing functions are used to limit very large positive or negative values. Sigmoid and tanh 

functions are common choices. 

The weight matrices are determined during training using an optimization algorithm which mini­

mizes a chosen error function . For example, the mean-squared error is commonly used 

130 	 E = :N L L (dpi - Y Pi )2 (5) 
p . 

where p indexes the patterns in the training set, i indexes the output nodes, and dpi and Y pi are, 

respectively, the target and actual network output for the i-th output node on the p-th pattern. P and 

N are the number of training patterns and network outputs (Reed and Marks, 1999). 

Because neural networks have such a redundant parallel structure, they exhibit a certain fault 

135 	 tolerance to some degree. Many nodes draw information from a number of other nodes to produce 

one overall output. This makes the system relatively insensitive to minor damage. The loss of some 

input degrades the system but does not necessarily lead to complete failure because the functions are 

distributed over several nodes instead of an isolated single location. This property has been called 

"graceful degradation" (Reed and Marks, 1999). Examples for magnetic field models include Kp, 

140 Dst, solar wind velocity V sw and other input functions that are correlated among each other. 

When neural networks are used as function approximators, they are typically used for interpolation 

and not extrapolation because the fit is usually good near the training data but poor elsewhere. This 

aspect of prediction accuracy is also called "generalization". The distribution of training data and 

network complexity play an important role in the overall performance of the neural network. A poor 

145 	 set of training data may contain misleading regularities (Bishop, 1995; Reed and Marks, 1999). The 

best choice is to randomly select training data following the same probability distribution that also 

governs future data. 

Neural networks are not new to space physics and especially space weather modeling. They have 

been used before to predict the relativistic electron flux at geosynchronous orbit (Koons and Gorney, 

150 	 1991), to forecast geomagnetic induced currents (Lundstedt, 1992), or to analyze solar wind data 

(Dolenko et aI., 2001). To our knowledge, neural networks have not been used as surrogate models 

replacing complex space physics models. Our approach is different since we use a neural network 

for predicting integral values of a known statistical magnetic field model instead of an unknown 

combination of physical processes. 

155 	 4 The Tsyganenko 2003 Model 

The magnetic field model TSK03 (Tsyganenko et aI., 2003) is just one out of series of models 

published by Tsyganenko and colleagues. It is one of the most accurate models currently available 

(Chen et aI. , 2007). It accounts for external contributions from the magnetotail current sheet, ring 

current, magnetopause current and Birkeland current (McCollough et aI., 2008). It also includes 
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160 partial ring current with field-aligned closure currents which allows it to account for local time 

asymmetries of the inner magnetospheric field. These currents are driven by separate variables 

calculated as a time integral for a combination of geoeffective parameters of solar wind density, 

speed, and the magnitude of the southward component of the interplanetary magnetic field (IMF). 

The TSK03 model is occasionally referred to as the TOl-storm model (Chen et aI. , 2007) with 

165 the same parameterization as Tsyganenko (2002a,b) but with a specific storm time data set. The 

performance of several different magnetic field models has been recently studied by Huang et al. 

(2008); McCollough et al. (2008); Chen et al. (2007). Based on these studies and the long computing 

time issue illustrated by McCollough et al. (2008), specifically when calculating L * with more recent 

models e.g. (Tsyganenko and Sitnov, 2005), has lead us to choose TSK03 as an illustrativeexample 

170 to demonstrate the LANL * neural network. McCollough et al. (2008) reports a 2.5 hour computing 

time with TSK03 for 1440 L * calculations. 

We used the ONERA-DESP library V4.1 (Boscher et aI. , 2007) implementation of the magnetic 

field model TSK03 (option 10) which has no upper or lower limit on the input values. The model 

uses time, Dst, solar wind pressure, and the y and z components of the IMF magnetic field . It also 

175 includes two parameters G2 and G3 representing the time-integrated driving effect of the solar wind 

on the magnetosphere (McCollough et aL, 2008). 

5 Training the Network 

In order to create the training data, we have constructed an optimized algorithm that can compute a 

large number of L * in a short period of time on a high performance cluster (HPC) at Los Alamos 

180 National Lab. Our parallelized code can compute half a million L * values typically within 45 hours 

compared to 900 hours on a recent single CPU desktop machine. 

The generalization performance of the neural network, which is how efficiently it can predict in 

untrained domains, strongly depends on the training data. Best results are obtained by randomly 

distributing the input-output training patterns. This prevents the system from simply memorizing 

185 	 patterns in the input-output relations. In order to test the neural network methology we chose to 

train it for a coordinate torus with the following bounds: r E [6.6RE , 6.7RE ], <P E [-180°, + 180°] , 

() E [-6°, 6°] in spherical geographic coordinates. We randomly picked IO locations inside this 

coordinate torus to calculate L * for every hour in the year 2002 using full numerical integration 

of the TSK03 model (Fig. 2). This resulted in 87,600 input-output patterns that we used to train 

190 the neural network. The input data for Kp, Dst, solar wind density, pressure, velocity, y and z 

components of the IMF magnetic field were taken from the ornni2 data set provided by NASA via 

ornniweb (http://omniweb.gsfc.nasa.govl). 

Typically, the locations inside the coordinate training torus are on closed drift shells. L * is only 

defined when the integral is closed. However, during storm conditions the magnetosphere can be 
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Fig. 2. (left) Coordinate range for creating the training data set (left: top view; right: side view) 

195 	 compressed by the solar wind and the drift shells move outward due to adiabatic effects and end 

up as open drift shells. During the main phase of a storm the increase in ring current causes a 

decrease in the magnetic field strength in the inner magnetosphere and a reduction of the magnetic 

flux enclosed by an electron drift orbit (Kim and Chan, 1997; Roederer, 1970). This effect requires 

two separate neural networks, one that can tell us the maximum L * value (NN-l) that is possible in 

200 	 a given magnetic field configuration and a second one (NN-2) that will actually provide us with the 

L * value for the particle pitch angle and spacecraft location. 

L*---' -,.' max 

Fig. 3. Diagram of finding the last closed drift shell by using a leap-frog method along the radial direction at 

midnight local time. The dashed line represents the last closed drift shell with L*max . 

We trained the first neural network NN-l with L::nax values calculated from the full integration of 

the TSK03 magnetic field model. We have devised a leap-frog method that can efficiently determine 

the last valid closed drift shell by calculating L * along the radial coordinate at midnight local time 

205 	 (Fig. 3). Solar wind data including Dst and Kp were used as input and the obtained L::nax values 

were used as target for training the network. 
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--------------------

We trained the second neural network NN-2 with the L * values provided by the magnetic field 

model. The input vector patterns are as described above but also include geomagnetic coordinate 

locations to better define the problem. Adding these coordinates drastically increased the perfor­

210 mance of the neural network because they describe the location of the spacecraft as a direct function 

of the asymmetric magnetic field. In addition, we calculated L * for several pitch angles between 

a E [10°, 90°] . Since the results from NN-I and NN-2 depend on the pitch angle, it was necessary 

to create several neural networks for a range of pitch angles. 

The setup of neural networks is displayed in Fig. 4. Each set consists of several neural networks 

215 	 for different pitch angles. One set is for calculating the last closed drift shell L:'nax and the second 

set is for calculating the actual L * value. We have also added several more paramters than the ones 

actually required by TSK03 (see Table I). We found that these additional values, including Kp, solar 

wind density, velocity, 01, and especially magnetic coordinates (MacIllwain L, magnetic longitude 

and latitude) dramatically increase the generalization properties of the neural network. 

solar wind conditions 2 sets of neural networks 

Year .. 
DOY .. 
UT .. 
Dst • 
p .. 

--•• L*maia)
By .. 
Bz • 
G2 • 
G3 • 
Kp .. 
n • 
v • --•• L*(a)Gl .. 
Lm .. 
'llMag • 
9Mag .. 

Fig. 4. Set of neural networks that can calculate L' as a function of pitch angle. Each set consists of several 

neural networks for a range of pitch angles. One set calculates L · and the other set computes the last closed 

drift shell L:nax' 

220 We used the python module ffnet (Wojciechowski, 2(07) to train our neural networks with opti­

mization algorithm provided in the ffnet package. The ffnet python module has a functionality that 
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allows exporting the trained neural network into a FORTRAN subroutine which enables us to share 

the neural network efficiently. 

In addition, the neural network can calculate L * in a fraction of the time. Half a million calcula­

225 tions can be done in only a few seconds whereas running the magnetic field model in serial mode 

would have taken over 1700 hours. This translates into a speedup of over several million times. 

6 Testing and Validating the Network 

We validated our global neural network by comparing its results to the results from the actual mag­

netic field model. We chose a number of LANL geosynchronous satellites and calculated their L* 

230 values in hourly resolution covering the years of 2002 and partially 2001 and 2005. The validation 

results of the neural network of this out-of-training-sample are shown in Fig. 5, 6. We have tested 

several different geosynchronous satellites and found similar performance with all of them. Figure 

5 and 6 show one validation example with LANL-OIA where the L* values of the neural network 

L * are plotted against the actual results from using TSK03. We find the standard deviation error is 

235 	 t::.L* = 0.04 or less than 1%.This is much lower than the intrinsic error of empirical magnetic field 

models (Huang et aI., 2008) and shows that using the neural network will add only a marginal error. 

The overall error is calculated by adding the variances: afSK03 + aJ.N = aZot. We also show in 

Fig. 7 that the neural network L* is indeed following the L* calculation from using TSK03. 

sIc LANL-OIA PA90 

7.5 

7.0 

>l 
1;
! 6.5 
c: '" 
~ 
iil6.0 
c: 
~ 

5.5 

5.0 

/ 

8.0 ....---.----.------,-----,----,----,---::1 

slope: 0.973188 
intercept: 0.187791 
corr: 0 .996768 
stderr: 0 .038455 

4·~"=". 5---="5.~0---="5.'="5---='6.0"..---6='".S=---7='".0=---,7=".S:----"J8.0 

L' target 


Fig. 5. Validation for the neural network using an out-of-sample data set from the positions of LANL-GEO 

spacecraft LANL-OIA. Each point represents one L ' calculation by the Tsyganenko model versus the neural 

network L ' result. The dahsed green line would represent a perfect prediction by the neural network; the red 

line is a linear fit to the predictions. The standard deviation is /::;,L* = 0.04 or less than 1%. 

10 



sIc LANL-01A PA 90 

~ 
v c

i't ~ 
v " ~ g 600 

~ 
"' 
~ 400 

;1 
~ 
~ 

i 
~ 

0.10 0.15 0.20 
~ L* 

Fig_ 6_ Histogram plot of the error introduced by using the neural network. 

7 	 How to Use the LANL* Neural Network 

240 The complete library of neural networks plus examples are included as s'upplemental material to this 

publication. After extracting the files, read the "README" file and follow the instructions of using 

the Makefile and adopting your FORTRAN compiler. 

After installation, use the following steps for calling the LANL * library. 

1. Obtain the required Kp, Dst, and solar wind input parameters from an omni data base (from 

245 e.g. http://omniweb.gsfc.nasa.gov ) 

2. 	 Obtain the coordinates of the spacecraft and convert to geomagnetic coordinates. This can be 

done with the onera-desp library by cal\jng the coordinate transformation subroutine. 

3. Decide on a pitch angle a E [10°, 90°] 

11 

http:http://omniweb.gsfc.nasa.gov


sIc LANL-OIA PA 90 
8.0 I---,----.---..-------.r==~;;;;;;:;;:===::::;_] 

- TSK03 
- neural network 

Fig. 7. Test case of calculating L · with the Tsyganenko model TSK03 (blue) and with the neural network (red) 

for satellite LANL-OlA. The standard deviation error is f:::.L* = 0.04 or less than 1%. 

4. Call the LANL * subroutine to obtain the L * value for the requested spacecraft location. If the 

250 	 spacecraft is located outside the last closed drift shell value and L * is not defined, the number 

-99.0 is reported. 

Since version 1.0 of the LANL * model was trained only with values inside the artificial geo­

synchronous coordinate torus, it should only be used for the geosynchronous region as well. If the 

satellite location is far away from this region, the results are expected to be bad because function 

255 	 approximating neural networks are known to have low extrapolation performance. 

8 Conclusion and Summary 

Space weather models for the inner magnetosphere use adiabatic invariants to convert observed 

quantities to phase space density coordinates in order to make a comparison with model results 

possible. In particular, radiation belt models use the coordinate L * to study the dynamic and highly 

260 	 energetic environment which satellites are exposed to. L * values are calculated by using current 

magentic field models and integrating along particle drift paths. However, such calculations require 

a long computational time which is sometimes not available. 

We have presented an innovative method of calculating L * values by creating a surrogate model 

using a forward-feed neural network method. Our method can replace complex and time-consuming 

265 magnetic field model integrations and provide a speed-up of several million times while adding only 

a marginal error of less than one percent. 
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The neural network is trained with hourly data from the year 2002 for a random number of lo­

cations. We found that 10 locations close to geosynchronous orbit was sufficient to create a well 

perfonning neural network. We also found that adding several more solar wind parameters increases 

270 the generalizability of the neural network. We have validated the neural network with geonsyn­

chronous satellites and found less than one percent error with satellite LANL-OIA. 

The LANL * neural network for calculating L * makes well-perfonning real-time and reanalysis 

applications feasible because our approach removes a major time-consuming task that previously 

prevented researchers from using accurate magnetic field models. Reanalysis of past geomagnetic 

275 	 events and even whole solar cycles can be used to better understand the physical processes con­

trolling the environment in the inner magnetosphere. Real-time applications will become faster and 

better inassesing the current environment and forecasting future conditions. 

The current version (V 1.0) of the LANL * libarary is only valid for geosynchronous regions. 

However, we are working on extending the neural network training to include the whole inner mag­

280 netosphere to be published in a future version of the LANL * library. 
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