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R&D Motivation



Project R&D

* Project R&D is performed to reduce project risk to acceptable
levels. For example
— Use published values/correlations or measure 1:1 values
— Build prototype or just scale from equations

e For TEP the primary motivations for R&D are:

— Impurity processing base technology performance evaluation and
model benchmarking

— Process scale-up
— Control system development



Issues that drive TEP R&D

Need to size impurity processing to Determined WGS and MSR kinetics
meet challenging product for candidate catalysts.
requirements. Test prototype impurity processing
Limited catalyst performance data in systems

TEP processing regime.

Considerable scale-up Test IP at two sizes

Feed to IP will vary considerably over Perform dynamic performance
relatively short periods of time.

Successful operation requires addition Perform control systems test
of reactants

Need to be able to recover from All of the above
unexpected operations

Use computer modeling to generalize and scale results



Catalyst Testing



Reactions

Water gas shift
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Hydrogen Processing Laboratory




Catalysts

Catalyst 1: United Catalyst, 60-70%
Ni/Al,O,, 1/16” extrusion

Catalyst 2: Degussa, 0.15% Pt/ 0.15% Pd on
Al,O,, 2 mm spheres |

Catalyst 3: NIKKI, 50% Ni on diatomaceous
earth, 2 mm pellets

Catalyst 4: Engelhard, ~2% Pt on Al,O,
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Methane-steam reforming and water-gas shift - Key
equations

Iy p
CH, + H,0 _ 3H, + CO
ks
kz,_f
O + H,0 . H, + CO,
.
dwzﬂ‘) = —AV¢{k, ([cH,][H,0] - k. [H,]*[cal]
@ = —AV ¢{k, f[CH,1[H,0] - k,, [H,]?[CO] + k, £[COIH, 01} - k,,[H,][CO,]
d[F;H’} = —AV {3k, , [H,]?[c0] — 3k, ;[CH,1[H,0] + k. ,[H.][CO.] — k. ;[CO][H.,O]]
=T = — AV ¢k, [H,1°[C0] — k, [CH,]IH,0] + k; [[CO1[H,0] — k;, [H,1[CO,])
d(Fxca, )

=2 = _ AV {ks . [H,1[CD,] - k. CON[H,O])



Arrhenius plot for forward MSR reaction (k1f)

k1f (m3/mol/s)
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Arrhenius plot for forward MSR reaction (k1r)
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Arrhenius plot for forward WGS reaction (k2f)

k2f (m3/mol/s)
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Arrhenius plot for forward WGS reaction (k2r)
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Example comparison of model to experiment-MSR over
NiA
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PMR --Preliminary Data--



By removing hydrogen as it is produced, thermodynamic barriers are
circumvented and process can be greatly simplified

Catalyst

H, Perméable

Membrane Reactor Shell



TEP R&D Test Stand — Highlighted for PMR test
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PMR — recent accomplishment summary

e Completed design and fabrication of 3-tube and prototype (1/6t
scale) PMR

* Developed conditioning procedure
* Developed method for preventing tube crushing

 Tested 3-tube PMR with Pt catalyst
— Performed baseline and parametric testing

e Testing 3-tube PMR with Nikki catalyst



3-tube PMR Sketch
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C0O,C0O2 Mole Fraction (Dry Basis)

PMR — baseline data — water-gas shift
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PMR — baseline data — methane-steam reforming
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PMR — WGS - effect of feed composition
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DF

PMR — MSR - effect of feed composition
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PMR — WGS — effect of feed composition
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PMR — MSR - effect of feed composition
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PMR — WGS — effect of retentate pressure
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PMR — MSR - effect of retentate pressure
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PMR — WGS - effect of temperature
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PMR — MSR - effect of temperature
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PMR — WGS - effect of perforated metal shields on
Pd/Ag tubes
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PMR Nikki results




ALP/WLP testing next steps

* ALP/WLP performance/sizing tests
— Test 3-tube with Nikki (non-tritium)
— Prototype Test (7-tube, non-tritium)
 ALP processing control
— Dynamic performance tests
— Control system tests



TEP prototype PMR
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Conclusions




