
LA-UR- oY,- 73)~
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Intended for:

Parallel Log Structured File System (PLFS)

Gary Grider
John Bent
James Nunez

PDSW Meeting, Austin, TX, November 17, 2008

Q Alamos
NATIONAL LABORATORY
- - - EST.1943 --­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-ACS2-06NA2S396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Parallel Log Structured File System (PLFS)

Gary Grider, HPC-DO

Abstract

Currently and in the foreseeable future, the way that large HPC applications cope with
interrupts of the application is checkpointing of state of the application to stable storage.
This is typically done by writing application state to a global parallel file system. Given
the anticipated reliability decrease in future HPC systems, it becomes vital that this
checkpointing action be done rapidly to keep the computation to checkpoint time ratio
high. Checkpointing has the property of being a write mostly application. Typically,
many more checkpoints are created/written than actually ever read since this is a
defensive I/O mechanism. Checkpointing typically takes one of three forms
• Each process writes its own state to its own file: N processes to N files (N to N)
• Multiple processes write data into several files: N processes to M files (N to M)
• All processes write data into one single file: N processes to 1 file (N to 1)
The N to 1 method for checkpointing has many advantages for users of HPC applications
but is most difficult for HPC parallel file systems. The N to N method for checkpointing
is easiest on HPC parallel file systems but most inconvenient for HPC application users.
The PLFS work in this paper is an attempt to take the best properties ofN to N 110 and
the best properties ofN to 1 110 and make them available to users/applications in a
completely transparent way to the applications (requiring no modifications/re-linking
etc.) applications that use the N to 1 dump method.

Parallel Log Structured File System (PLFS)

Gary Grider, John Bent, James Nunez
{ggrider,jnunez, john bent @ lanl.gov}

Los Alamos National Laboratory (LANL)

Work suppo~ed by:

DOEINNSA ASC Program

DOE/Office of Science SciDAC Petascale Data Storage Institute

LANL/CMU Institute for Reliable High Performance Information Technology (IRHPIT)

11/05/2008

Background/Motivation
The need for increasing scale in scientific computation drives the need for rapidly
increasing scale in storage capability for scientific processing. Individual storage devices
are rapidly getting denser while their bandwidth and agility is not growing at the same
pace.

Although processor clock speeds have grown drastically over the last two decades, it
appears that the rapid increases in processor clock rates are slowing. The microprocessor
industry is exploring and even beginning to deploy processor architectures that have
many more processing units per chip or board to continue to meet the processing power
growth demand. This implies that scientific applications will have to begin to rely more
heavily on multi-process/task parallelism at a greater scale than ever before. The compute
capabilities of machines anticipated for scientific computing is growing rapidly.
Additionally, it is important to note that the amount of memory per processor/core
appears to be going down, for example, over the last few years, memories in ASC
progam machines have gone from 2-4 GB/processor to .25 GB/processor on the Blue
GenelL. Memory per Teraflop (TF) has gone down from around 1 Terabyte (TB) per TF
to about.1 TB per TF [HECFSIO-2007].

Also, the trend in high end supercomputers to continue to grow in parallelism leads to
these machines becoming less reliable, which implies that mean time to interrupt for large
parallel applications running on these machines will be decreasing. Currently and in the
foreseeable future, the way that large applications cope with interrupts of the application
is checkpointing ofstate of the application to stable storage. This is typically done by
writing application state to a global parallel file system. Given the anticipated reliability
decrease, it becomes vital that this checkpointing action be done rapidly to keep the
computation to checkpoint time ratio high. Checkpointing has the property of being a
write mostly application. Typically, many more checkpoints are created/written than
actually ever read since this is a defensive I/O mechanism. Checkpointing typically takes
one of three forms [Nunez-ISW2008].

• Each process writes its own state to its own file: N processes to N files (N to N)
• Multiple processes write data into several files: N processes to M files (N to M)

PLFS 1

http:lanl.gov

• All processes write data into one single file: N processes to 1 file (N to 1)

N to N:
While N to N offers the highest concurrency for writing data which is the easiest thing for
file systems to handle, it also stresses the metadata portion of file systems for concurrent
inserting of file entries. As the number of processes grows to utilize the large number of
processor/cores in future supercomputers, the N to N checkpoint method becomes
difficult to manage as the number of files for the user to manage gets enormous. Take a
future Blue Gene machine with 1 million processes taking checkpoints every few hours
as an example. N to N checkpointing in this case would generate millions of files per day
and billions of files for a significant scientific study. Additionally, N to N makes restart
of a job from checkpoint files trivial for restarting on the same number of nodes as
generated the checkpoint, but restarting from differing number of processes is quite
complex. In the following example, each process has 3 arrays data. Each process writes
all of its data to a separate file.

N-to-N example

ITPO IPpe IHpo I ITpll PPI IHpll I TP21 pp2 1Hp2 1

Process 0 Process 1 Process 2

NtoM:
N to M checkpointing has some nice properties in that it reduces the metadata
concurrence workload for the file system but it also reduces the I/O concurrency which is
bad for performance. It also can be quite complex for restarting on a different number of
nodes.

PLFS 2

N to 1:

N to 1 checkpointing offers the best situation for metadata inserts, is easiest for the user
to cope with file management, can simplify restart on different number of nodes, but
suffers from the biggest issues for I/O concurrency. Additionally, as memory per process
goes down, if data is interleaved from each process into the file to further assist restart on
different number of processes operations, the concurrency creates hot spots in the single
file. In the following example, each process has 3 arrays ofdata, just as in the N to N
example. In this N to 1 strided example, the first arrays are co-located together with all
processes writing to a single file.

N-to-1 st[ided example

Additionally, high level scientific data management libraries such as the Hierarchical
Data Format (HDF) [HDF] and Network Common Data Format (NetCDF) [NETCDF]
use the N to N method. These libraries help scientific users document the structures in
the data. These libraries use the N to 1 model to make the users life easier.

Also, the MPI-IO parallel I/O library has immense power to describe complex derived
parallel/distributed data types and complex views of the data in the data files. Often, N to
1 is the file outcome from users of this powerful capability [THAKUR-1999].

PLFS 3

Initial Goals for the PLFS

As you can see, the N to 1 method for checkpointing has many advantages. The major
disadvantage to the N to 1 method is the issues with concurrent writing of data into a
single file and the difficulties this presents to modem global parallel file systems. All
parallel file systems have a difficult time with this I/O pattern. Most of these parallel file
systems have special modes for handling the N to 1 small strided I/O patterns which are
seldom used properly by users/applications. A great deal of work has also been done in
middleware like MPI-IO to help file systems deal with this N to 1 small strided 110
pattern. The PLFS work is an attempt to take the best properties ofN to N I/O and the
best properties ofN to 1 I/O and make them available to users/applications in a
completely transparent way to the applications (requiring no modifications/re-linking
etc.) applications that use the N to 1 dump method. The hope is that this work will
improve performance ofN to 1 dumps for applications immensely and make it possible
for N to 1 small 110 patterns to scale extremely well, again with no application
modifications. Additionally, it is hoped that by making PLFS available to the HEC File
Systems and 110 research community, this tool could be used for further research to
explore new frontiers of thought and to improve the tool or replace it with something far
better. To facilitate this enabling further research goal, one of the goals is to keep the
PLFS simple, small, and user space based code. The intent is to attack the N to 1 small
strided problem fundamentally and simply to get huge improvement but not to go after a
completely optimal solution which might be much more complex and jeopardize the goal
of enabling much new research. Because we want to enable much new research with this
tool, it is important that the tool be completely user space, not much code, and relatively
simple.

To achieve the above goals, we will exploit the fact that checkpointing is a write mostly
workload so optimization will be done for N to 1 small strided writes and read
convenience and speed may need to be traded for write performance. Additionally, we
may have to trade off some peak single node write performance to enable scalable writes
across multiple machines.

PLFS 4

Some Related work

There has been much work in the area of dealing with large parallel checkpointing for
HEC, so much work that it would not be practical to mention all of the work. For this
reason we have chosen to mention a few relatively recent works organized in groups of
methods of attack.

• 	 Global Parallel File System vendors have tried to help with the N to 1 small
strided concurrence problem by offering special modes of operation that users of
these systems can request. These include

o 	 Panas as provides parallel RAID 1 0 and other layout control operations
which allow for more concurrency on N to 1 patterns and concurrent write
open flags which require the user to promise to not overlap 1I0s which
allow for better concurrency [BENT-2008] [WELCH-2008].

o 	 GPFS provides a method for applications to provide layout information to
the file system for optimizations [ANTYPAS-2007] [SCHMUCK-2002].

o 	 Lustre provides a method for the applications/users to provide layout
information [YU-2007].

• 	 Many attempts to address the N to 1 small strided issue have been done via
middleware

o 	 ROMIOIMPI-IO provides complex types support and two phased 110 to
do aggregation of 110 operations (ANL) [THAKUR-1998].

o 	 Work has been done to allow for assisting with open storms on a single
file using collective methods with MPI-IO and file systems [LATHAM­
2007]

o 	 Work has been done to do alignment with the ROMIOIMPI-IO two
phased 110 [CHING-2003]

o 	 Work has been done to do delayed/asynchronous I/O operations with
ROMIOIMPI-IO two phased 110 [CHOUDHARY-2006]]

o 	 Many applications have written their own two phased I/O middlewahre
methods which do aggregation, alignment, and delayed/asynchronous I/O
[GITTINGS-2008]

• 	 To help deal with huge numbers of files typically seen in N to N dump operations
a number ofhigh metadata concurrence schemes have been devised

o 	 Panasas file system offers the ability to spread file system metadata over
multiple metadata servers to increase aggregate insert rates [WELCH­
2008]

o 	 The Lustre file system team designed a directory splitlhash scheme to split
up directory entries across multiple metadata servers, this capability is not
yet available in general release however [LUSTRE-LITE]

o 	 The GPFS file system offers directory splitting across multiple SAN
volumes [SCHMUCK-2002]

o 	 The PVFS file system offers splitting of metadata operations across
multiple servers [PVFS]

o 	 CMU has recently done work in using the file system in user space FUSE
software to do directory splitting/hashing [GIGAPLUS]

PLFS 5

• 	 Log Structured File Systems have been used in the past to cope with high seek
workloads

o 	 The work by Ousterhout and Douglas on defining log structured file
systems to deal with high write seek workloads is of course legendary and
has become the standard way to optimize for random write workloads.
[ROSENBLUM-1990] [ROSENBLUM-1992]

• 	 The file system in user space (FUSE) is a loadable kernel module for Unix-like
computer operating systems, that allows a user space daemon to provide file
system functions. The following diagram shows how the FUSE software transfers
file system requests from user applications to the FUSE daemon, in our case
PLFS and the FUSE daemon interacts with the real file system. This enables the
FUSE daemon to act on behalf of the user app to restructure its file system
requests. [FUSE]. The following diagram describes the request flow using FUSE
to front-end a file system.

FUSE flow

User
Space

Kernel

UserApp

~/~

VFS

FUSE PLSF
Daemon

FUSE

Parallel File
System

PLFS 6

PLFS Design
To achieve the goals stated above for the PLFS, FUSE was chosen as the technology that
underlies the PLFS. FUSE allows all the PLFS code to reside in user space and be quite
small and simple. FUSE is an amazing gem in the open source community which allows
for user space file system development to be quite simple. Additionally, in recent years,
FUSE has become quite efficient on modem Linux machines.

The N to N checkpointing method benefits from the fact that each process has its own
file. There are many benefits that are exploited because of this file per process scheme,
high concurrency with little to no locking/consistency issues in the parallel process
setting and aggressive caching because of no consistency issues. The high concurrence
enables extremely good scaling of write performance. Additionally, the aggressive
caching enables latency hiding of application 110. An even further benefit is that most N
to N applications write their own file serially or nearly serially which even further assists
the aggressive caching and minimizes file system seeking. Of course the drawback to
this N to N pattern is the large number of files created making metadata workload high
and making it difficult to manage the files over time.

The concept behind PLFS is to turn N to 1 strided write operations into serial write
operations only coming from one process or possibly all the processes on one
host/compute node or aggregator node. The example cartoon below shows how each
process writes its various arrays of data to a file per process serially while at the same
time maintaining an index of where each write really should be if this were writing to a
single file. Currently the index files are written serially as well with offset and length
values required to map the file per process serial files to the logical virtual N to 1 strided
file. One serial data file and one index file are created per process. This is just one
example of how this PLSF concept could be implemented.

N-to-1 Strided PLFS example
Process 0 Process I Process 2

Global
File
System

Virtual N to 1 Strided File

PLFS
 7

Notice in the diagram below that the process data/index files are grouped into a directory
per host. This is done to put some structure over the large number of files that will be
created. Notice that each directory of a subset of process data/index files is placed on a
different metadata server. This is done to enable scaling ofmetadata operations within
this single logical file. This again is one example of an implementation of a method to
overcome the bad parts of the N to N workload that this conversion ofN to 1 method to
serial N to N method has created.

Additionally, notice the model file. This file is a surrogate file for the virtual file that is
being represented by this directory structure. This is a place where extended attributes
can be stored for the logical/virtual N to 1 strided file. Also notice that the top level
directory of this virtual N to 1 file is a SUID directory. This is a directory with the
POSIX SUID bit turned on. SUID is currently undefined for directories so this is the
method used to tell the difference between a real file, a directory and a virtual N to 1 file.
That SUID directory entry represents the logical N to 1 file in the name space of the real
file system. Notice that in the highest level directory there can be many entries and each
entry can be a normal file, a directory, or an SUID directory with the name of the logical
file the user knows the file by.

PLFS Design

" "" " ""0 0 0" 00 0 "0 0" 0
:::ft :;- :;-2 :;- :::ft :::ft :;­2
i" I!) i-t\) i" i"i- i- i­x x x X

:::ft :::ft :::ft :::ft
i" ii' i" i"

Regular
File

Fuse
Mount
Point

SUID
Directory

on MD5-0

Host
Directory

on MD5-2

Host Regular Regular
Directory File File

on MD5-3

" " 0 "0 0
:;- :::ft :;-
i- i" i-x x
:::ft :::ft
i" i"

Regular
File

Regula
Directory

PLFS 8

Current Prototype Implementation

There is currently a prototype implementation of this PLFS we call FUSEPLFS. We use
the FUSE capability to hide this SUID directory from the user. The SUID directory
appears to the user as a regular file. Write operations occur to the logical file as
described in the design section where each process writes serially to a file per process and
each process also writes to an index file. The current prototype implements a
subdirectory per host just as described above. Metadata operations like getattr to fulfill
statO calls uses the index files to determine the length of the file. Other metadata
operations like chownO, chmodO, utimeO, etc. use the model file to represent the logical
file the user sees. There is an experimental read method being developed to use the index
files to look up where read requests should be directed to.

Currently the prototype will not tolerate concurrent writes and read operations on a single
logical file. It also will not handle append file operations. Additionally, the current
prototype requires that the storage under the FUSEPLFS file system be at least a global
file system.

The current PLFS design implies that the users will make some promises to use the
facility. The primary promise that has to be made by the user is that they will not write
the same range ofthe logical file with more than one process ever. This is little different
than other optimizations that have been done in the area of concurrent writing to a single
file in middleware and other file systems.

There are plans to release this PLFS software into the open source community. Currently
the code can be given out selectively with appropriate paperwork until the Department of
Energy and the Los Alamos National Laboratory approve public release. We are hoping
that will be very soon.

There will be a web site for this work at http://institute.lanl.gov/plfs

PLFS 9

http://institute.lanl.gov/plfs

Initial Results

Some simple testing of the PLFS prototype have been done. The Los Alamos MPI-IO
test [LANL-MPIIOTEST] was used to do synthetic workload performance measurements
for N to 1 strided writing and reading. A small 128 node very old Xeon class cluster with
gigabit Ethernet interconnect was used for the tests. The storage use in this test was 12
very old Panasas storage shelves attached to the cluster using gigabit Ethernet. The total
capability of the storage system/storage area network combination was something less
than 2 gigabytes/sec peak. The graph below shows the difference between PLFS on a
small strided N to 1 workload. The PanFS line is the same workload without PLFS. The
N-N line is similar write sizes but using an N to N pattern.

PLFS N-l Strided Bandwidth

1488

1288

1888

....
"­'" 888!

~
t
IV=

PLFS -+­
PanFS ­

N-N -iIE­

688

488

288

68 88 188 128 148 168 188 288

Nunber of Processes

You can see that with a synthetic N to 1 small strided workload, PLFS performance
scales nicely as you would expect.

Much more analysis of the PLFS is needed. Please see future work for planned follow on
activities.

PLFS 10

Possible Future Work
As was stated earlier, PLFS is a prototype currently. There are certainly many avenues of
R&D that can be followed using the PLFS.

The preliminary nature of results leaves much room for improvement, adding more file
systems, cluster systems, scale, and parameter sweeps in the results could further
motivate investment in the PLFS. Additionally, trying more real applications especially
those that use popular but problematic N to I small strided methods like those that use
HDF and NetCDF as well as MPI-IO collectives.

Currently, the PLFS uses the FUSE direct-io mode to allow for large writes. In the near
future, the FUSE package will allow large writes without using the direct-io mode. This
may open up the ability for the PLFS to perform even better for smaller strided writes.

Of course, given the prototype nature of the PLFS, there is much room for hardening of
the code as well as improving the very experimental read method. Support for concurrent
read/write operations and append could also be added. Additionally, it is quite possible
that one file per host and one index per host might perform reasonably well and have
produce even less files. Various PLFS layouts could be explored with various workloads.

It is unclear if reconstruction ofa real N to I strided file in an offline fashion before the
file is needed for read is necessary or desired. For some read patterns, the indexed PLFS
format might serve read requests adequately. A study as to the appropriateness of
rebuilding the real N to 1 strided file, versus building an efficient single index from the
distributed index, versus just leaving the file in PLFS format would certainly need to be
done to determine how to best handle differing read workloads against PLFS files.

The indexing scheme used by the prototype PLFS is extremely simplistic. Study of
indexing schemes in memory during writing, offline reconstruction of indexes, honoring
read requests during a write operation, index types to take advantage of popular N to 1
strided patterns, different index distribution schemes etc. are all excellent follow on work.
Additionally, the PLFS concept could also be merged with ideas like Gigaplus making N
to N operations. This entire

The entire PLFS concept starts to head HPC file system storage towards file formats in
the file system. It is quite possible that other file types besides N to 1 strided might be
served well by similar thinking to PLFS. Decades ago, file types and access methods
were used and were supported within a single file system. The IBM MVS storage
systems allowed for many different file types, partitioned data sets, indexed sequential,
virtual sequential, and sequential to name a few. Storage for modem HPC systems may
benefit from a new parallel/scalable version of file types. There is much research to be
done in this area to determine the usefulness of this concept and how such a thing would
work with modem supercomputers and future HPC languages and operating
environments.

PLFS 11

, '

References
[HECFSIO-2007] High End Computing File Systems and I/O 2007 Workshop Report,

http://institute.lanl.govlhec-fsio/docslHECIW G-FSI 0-FY07 -Workshop-Document­

FINAL-FINAL.pdf

[Nunez-ISW2008] LANL Data Release and I/O Forwarding Scalable Layer (lOFSL)

Background and Plans, James Nunez, Gary Grider, John Bent, ISW 2007 presentation,

http://www .dtc. umn.edul disc/resources/nunez...:... isw2008. pdf

[HDF] Hierarchical Data Formats, HDF Group, http://www.hdfgroup.orglHDF5/

[NETCDF] Network Common Data Format,

http://www.unidata.ucar.edulsofiware/netcdf/

[THAKUR-1999] Data Sieving and Collective I/O in ROMIO, Rajeev Thakur, William

Gropp, Ewing Lusk, Proc. of the 7th Symposium on the Frontiers of Massively Parallel

Computation, February 1999, pp. 182-189. c1999 IEEE,

http://209 .85.173.1 04/search?q=cache:Evux653LecAJ :www.mcs.anl.gov/-thakur/papers/

romio-coll.ps+romio+two+phased&hl=en&ct=clnk&cd= 1 &gl=us

[BENT-2008] Storage for Petascale Computing, John Bent, James Nunez, Gary Grider,

IEEE Mass Storage Conference 2008 Presentation,

http://storageconference.org/2008/presentations/2. Tuesday/ AMl2.Bent. pdf

[ANTYPAS-2007] Parallel 10 Library Benchmarking on GPFS, Katie Antypas,

SciComp07 Presentation,

http://www.nersc.gov/news/presentations/kantYpas _ GPFSBenchmarking_ SciComp07. pdf

[SCHMUCK-2002] GPFS: A Shared-Disk File System for Large Computing Clusters,

Frank Schmuck, Roger Haskin, Proceedings of the Conference on File and Storage

Technologies (FAST'02), 28-30 January 2002, Monterey, CA, pp. 231-244. (USENIX,

Berkeley, CA.), http://www.almaden.ibm.comlStorageSystems/projects/gpfs/Fast02.pdf

[YU-2007] Exploiting Lustre File Joining for Effective Collective 10, Yu, Weikuan;

Vetter, Jeffrey; Canon, R. Shane; Jiang, Song, Cluster Computing and the Grid, 2007.

CCGRID 2007. Seventh IEEE International Symposium on

Volume, Issue, May 2007 Page(s):267 - 274

Digital Object Identifier lO.l109/CCGRID.2007.51

[WELCH-2008] Scalable Performance of the Panasas Parallel File System, Brent Welch,

Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small, Jim Zelenka,

Bin Zhou, USENIX FAST-08 Conference Paper,

http://www . usenix.org/eventifast08/techifull---'papers/welchlwelch _htmllindex.html

PLFS 12

http://www
http:lO.l109/CCGRID.2007.51
http://www.almaden.ibm.comlStorageSystems/projects/gpfs/Fast02.pdf
http://www.nersc.gov/news/presentations/kantYpas
http://storageconference.org/2008/presentations/2
www.mcs.anl.gov/-thakur/papers
http://209
http://www.unidata.ucar.edulsofiware/netcdf
http://www.hdfgroup.orglHDF5
http://www
http://institute.lanl.govlhec-fsio/docslHECIW

. . •

[THAKUR-1998] A Case for Using MPI's Derived Datatypes to Improve 110

Performance, Rajeev Thakur, William Gropp, Ewing Lusk, In Proceedings ofSC98:

High Performance Networking and Computing, November 1998. Copyright 1998 IEEE,

http://www.mcs.anl.gov/~thakur/dtype/

[CHING-2003] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp. Efficient
structured data access in parallel file systems. In Proceedings of Cluster 2003, Hong
Kong, November 2003, http://www.mcs.anl.gov/~thakur/papers/scalable-mpi-io.pdf

[LATHAM-2007] The Impact of File Systems on MPI-IO Scalability, Rob Latham, Rob
Ross, Rajeev Thakur, http://www.mcs.anl.gov/~robl/papers/latham:scalable_ops.pdf

[CHOUDHARY-2006] Choudhary, Alok N., Mahmut T. Kandemir and Rajeev S.
Thankur "Collaborative Research: Scalable 110 Middleware and File System
Optimizations for High-Performance Computing." High End Computing University
Research Activity NSF 06-503 (2006)

[GITTINGS-2008] The RAGE radiation-hydrodynamic code, Michael Gittings_, Robert
Weaver, Michael Clover, Thomas Betlach, Nelson Byrne, Robert Coker, Edward Dendy,
Robert Hueckstaedt, Kim New, W Rob Oakes, Dale Ranta, Ryan Stefan, Physics.Comp­
ph April, 2008, http://arxiv.org/PS_cache/arxiv/pdfl0804/0804.1394vl.pdf

[LUSTRE-LITE] Lustre Lite announcement, includes plans for multiple metadata
servers, http://lwn.net/ Articles/2524 71

[PVFS] PVFS description, http://www.parl.clemson.edu/pvfs/desc.html

[GIGAPLUS] GIGA+: Scalable Directories for Shared File Systems, Garth Gibson,
Swapnil Patil, http://www.pdl.cmu.eduIPDSl/gigaplus/index.html

[ROSENBLUM-1990] Rosenblum, Mendel and Ousterhout, John K. (June 1990) - "The
LFS Storage Manager". Proceedings of the 1990 SurnmerUsenix. pp315-324.

[ROSENBLUM-1992] Rosenblum, Mendel and Ousterhout, John K. (February 1992) ­
"The Design and Implementation of a Log-Structured File System". ACM Transactions
on Computer Systems, Vol. 10 Issue 1. pp26-52.

[FUSE] File System in User Space, http://fuse.sourceforge.net/

[LANL-MPIIOTEST] The Los Alamos MPI-IO Test, http://institute.lanl.gov/data

PLFS 13

http://institute.lanl.gov/data
http:http://fuse.sourceforge.net
http://www.pdl.cmu.eduIPDSl/gigaplus/index.html
http://www.parl.clemson.edu/pvfs/desc.html
http:http://lwn.net
http://arxiv.org/PS_cache/arxiv/pdfl0804/0804.1394vl.pdf
http://www.mcs.anl.gov/~robl/papers/latham:scalable
http://www.mcs.anl.gov/~thakur/papers/scalable-mpi-io.pdf
http://www.mcs.anl.gov/~thakur/dtype

