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Abstract In recent years, a strong debate has emerged in 
the hydrologic literature regarding what constitutes an 
appropriate framework for uncertainty estimation. Partic­
ularly, there is strong disagreement whether an uncertainty 
framework should have its roots within a proper statistical 
(Bayesian) context, or whether such a framework should be 
based on a different philosophy and implement informal 
measures and weaker inference to summarize parameter 
and predictive distributions. In this paper, we compare a 
formal Bayesian approach using Markov Chain Monte 
Carlo (MCMC) with generalized likelihood uncertainty 
estimation (GLUE) for assessing uncertainty in conceptual 
watershed modeling. Our formal Bayesian approach is 
implemented using the recently developed differential 
evolution adaptive metropolis (DREAM) MCMC scheme 
with a likelihood function that explicitly considers model 
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structural, input and parameter uncertainty. Our results 
demonstrate that DREAM and GLUE can generate very 
similar estimates of total streamflow uncertainty, This 
suggests that formal and informal Bayesian approaches 
have more common ground than the hydrologic literature 
and ongoing debate might suggest. The main advantage of 
formal approaches is, however, that they attempt to dis­
entangle the effect of forcing, parameter and model 
structural error on total predictive uncertainty. This is key 
to improving hydrologic theory and to better understand 
and predict the flow of water through catchments. 

1 Introduction and scope 

Uncertainty quantification is currently receiving a surge in 
attention in hydrology, as researchers are trying to better 
understand what is well and what is not well understood 
about the watersheds that are being studied and as decision 
makers push to better quantify accuracy and precision of 
model predictions. Various methodologies have been 
developed in the past decade to better treat uncertainty. 
These approaches include state-space filtering, model 
averaging, and Bayesian approaches, and they differ in the 
underlying assumptions, mathematical rigor, and how the 
various sources of error are being treated (Montanari 
2007). 

Despite these advances, the more recent approaches for 
uncertainty estimation require considerable understanding 
of mathematics and statistics, and significant experience 
with implementation of these methods on a digital com­
puter. For example, sequential filtering methodologies not 
only require models to be written in a state-space formu­
lation, but also need a mathematical procedure that defines 
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how and which states to update when new information 
becomes available. This programming task can become 
quite difficult and cumbersome, especially in the absence 
of general-purpose software that enables the use of these 
state-of-the-art methods in a user-friendly environment. 
Simpler methods, on the contrary, are easier to understand 
and use and require less modifications to existing source 
codes of hydrologic models. They, therefore, have an 
important advantage over more sophisticated filtering and 
Bayesian approaches. We, therefore, posit that many 
researchers and practitioners will, at least for the foresee­
able future, prefer to keep using simple methods for 
uncertainty estimation. 

A relatively simple approach for uncertainty estimation 
is the generalized likelihood uncertainty estimation 
(GLUE) method of Beven and Binley ( 1992). This method 
is inspired by the Hornberger and Spear ( 1981 ) method of 
sensitivity analysis and operates within the context of 
Monte Carlo analysis coupled with Bayesian or fuzzy 
estimation and propagation of uncertainty. Since its intro­
duction in 1992, GLUE has found widespread application 
for uncertainty assessment in many fields of study, 
including modeling of the rainfall-runoff transformation 
(Beven and Binley 1992; Freer et at. 1996; Lamb et at. 
1998), soil erosion (Brazier et at. 200 I), tracer dispersion 
in a river reach (Hankin et a1. 2001 ), groundwater and well 
capture zone delineation (Feyen et at. 200 I; Jensen 2003), 
unsaturated zone (Mertens et a1. 2004), flood inundation 
(Romanowicz et al. 1996; Aronica et at. 2002), land-sur­
face-atmosphere interactions (Franks et at. 1997), soil 
freezing and thawing (Hansson and Lundin 2006), crop 
yields and soil organic carbon (Wang et at. 2005), and 
ground radar-rainfall estimation (Tadesse and Anagnostou 
2005). Recent applications of GLUE are also found in 
distributed hydrologic modeling (McMichael et at. 2006; 
Muleta and Nicklow 2005). The popularity of GLUE is 
probably best explained by its conceptual simplicity and 
relative ease of implementation, requiring no modifications 
to existing source codes of simulation models. In addition, 
GLUE can take great advantage of the property of being 
"embarrassingly parallel" and thus result in nearly linear 
speed ups on distributed computer systems. 

Recent contributions to the hydrologic literature have 
criticized GLUE for not being formally Bayesian, resulting 
in parameter and predictive distributions that are statistically 
incoherent, unreliable, and that should therefore not be used 
(Christensen 2004; Montanari 2005 ; Mantovan and Todini 
2006; Vogel et at. 2008). The GLUE method is most often 
used with a statistically informal likelihood function, does 
not attempt to find the maximum likelihood estimate of the 
parameters to benchmark the performance of the best model, 
and does not explicitly consider model errors in the deriva­
tion and communication of predictive distributions. In recent 

years, a strong debate has emerged in the hydrologic com­
munity between those that adhere strongly to the underlying 
philosophy of GLUE and believe that the method is a useful 
working methodology for assessing uncertainty in non-ideal 
cases (see Beven 2006), and researchers and practitioners 
that strongly oppose incorrect usage of statistics, and prefer 
to use coherent probabilistic approaches. The goal of this 
paper is to establish common ground between these two 
different view points, and highlight that under a variety of 
different conditions both Bayesian and informal Bayesian 
methods can result in very similar estimates of predictive 
uncertainty. This paper builds further on our previous work 
(Blasone et at. 2008) and compares informal GLUE with a 
formal Bayesian approach using the recently developed 
differential evolution adaptive metropolis (DREAM) Mar­
kov Chain Monte Carlo (MCMC) scheme (Vrugt et al. 
2008a, b). The DREAM algorithm has important advantages 
over the shuffled complex evolution metropolis (SCEM-UA) 
global optimization algorithm (Vrugt et al. 2003), and 
maintains detailed balance and ergodicity which enables it to 
provide an exact Bayesian estimate of uncertainty. 

The remainder of this paper is organized as follows. 
Section 2 provides a general overview of the inference 
problem considered in this paper, and presents a formal 
(DREAM) and informal (GLUE) Bayesian approach to 
estimating uncertainty of model predictions. In Sect. 3, we 
consider the application of these methods to hydrologic 
modeling using the hydrologic model (HYMOD) conceptual 
watershed model. In this section we are especially concerned 
with inference of parameter and predictive uncertainty. 
Finally, a summary with conclusions is presented in Sect. 4. 

2 The inverse problem 

Let us consider a model, / that simulates the response 
Y = {y" ... ,y,,} with length n of a real-world system for 
measured boundary ( and initial conditions ¢, using a 
vector of d model parameters, fJ = {fJ" ... ,fJd }: 

Y = / (fJ ,(, ¢ ) (I) 

The model hypothesis is typically represented by a 
deterministic or stochastic function / : (, ¢ -+ Y closed by 
the parameter vector fJ (Kavetski et al. 2006a). Note that in 
typical time series analysis the influence of ¢ on the model 
output diminishes with increasing distance from the start of 
the simulation. In those situations, it is common to use a spin­
up period to reduce sensitivity to state-value initialization. 

To establish whether/provides an accurate description of 
the underlying system it is intended to represent, it is a 
standard practice to confront the model-simulated 
response with measurements of observed system behavior, 
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Y = {jI" .. .,y,,}. The difference between Y and Y defines 
the vector of residuals: 

(2) 

The closer the residuals are to zero, the better the model 
represents the observational data. However, because of 
errors in the observed initial and boundary (forcing) 
conditions, (and hence ~ and t), structural inadequacies 
in the model, errors in the output measurements, Y and 
uncertainty associated with the correct choice of 8, the 
residual values are not expected to go to zero. 

The common approach that has historically developed is 
to attempt to force the residual vector to be as close to zero 
as possible by tuning the values of the parameters, without 
considering forcing and structural model uncertainty as 
potential sources of error. A measure that is commonly 
minimized during parameter estimation is the sum of 
squared residuals (SSR): 

" SSR(8IY,t, ~) = Lei(8IY , t , ~)2 (3) 
i=l 

This is the standard least squares (SLS) formulation. 
Various numerical optimization methods have been 
developed during the past decades to efficiently minimize 
this measure for d-dimensional parameter spaces (see e.g., 
Duan et al. 1992). Unfortunately, such algorithms only 
provide an estimate of the best values of 8. It would also be 
desirable to have an estimate of the underlying posterior 
probability density function (pdf) of 8, p(8IY,t , ~). This 
distribution will help assess the information content of the 
data, and help generate predictive distributions of Y. 

One approach to estimate uncertainty of parameters, state 
variables, and model output prediction is through Bayesian 
statistics coupled with Monte Carlo sampling. The Bayesian 
paradigm provides a simple way to combine multiple prob­
ability distributions using Bayes theorem. In a hydrologic 
context, this method is admirably suited for systematically 
addressing and quantifying the various error sources within a 
single cohesive, integrated, and hierarchical manner 
(Kuczera and Parent 1998; Bates and Campbell 200 J ; 
Engeland and Gottschalk 2002 ; Vrugt et al. 2003; Marshall 
et al. 2004; Liu and Gupta 2007). 

If we assume that the measurement errors in Eq. 2 are 
mutually independent (uncorrelated) and Gaussian-distrib­
uted with a constant variance, 0;, the posterior pdf takes the 
following form: 

P(8IY,t , ~)=c.p(8)fIJI 2 
i=l 21T.(Je 

(Yi(8It ' ~)-Yi)2)
X exp - 2 2 (4)( (Je 

where c is a normalizing contact, and p(8) signifies the prior 
distribution of 8. This distribution combines the data 
likelihood (multiplicative part of Eq. 4) with a prior 
distribution using Bayes theorem. It is convenient to 
maximize the logarithm of the likelihood function (or log­
likelihood function) rather than the likelihood function itself, 
for reasons of both algebraic simplicity and numerical 
stability; the same parameter values that maximize one also 
maximize the other. The log-likelihood, ( of Eq. 4 is: 

, , , n n 2 1 _ 2 
( (8IY, ( , </» = -2 In(21T.) - 2 In ((Je ) - 2(Je 

" x L(Yi(8I t , ~) _ .9;)2 (5) 
i=l 

The use of this formulation is convenient, but the 
assumption of uncorrelated errors is not very realistic in 
hydrologic modeling. The time series of residuals typically 
exhibit considerable non-stationarity and autocorrelation. 
These error characteristics need to be explicitly accounted 
for to result in parameter and predictive uncertainty 
estimates that can be considered coherent from a statistical 
viewpoint. 

One approach to at least partially account for correlated 
errors is through use a first-order autoregressive (AR) 
scheme of the residuals: 

ei=pei- l+Vi i=I , ... , n (6) 

where p is the first-order correlation coefficient, and 
v '" N(O, (J~) is the remaining (unexplained) error with 
zero mean and constant variance (J~. The AR-I corrected 
time series of residuals is then: 

<5i(8,p IY,t, ~) = ei(8IY,t,~) - pei- l(8IY ,t, ~) (7)
i = I, . . ., n. 

with eo = O. Sorooshian and Dracup ( 1980) have shown 
how to incorporate this AR-I model into the formulation of 
the log-likelihood function: 

, , , n I (J~ I 2 
((B, pIY, "</» = -2 In(2n) - 21n 1 _ p2 - 2(1- p) 

- 2 ", 2 1 _ 2 
X (J v el(8IY, ',</» -2(Jv 

" 
X L<5i(8, pIY , t,~)2 (8) 

i=2 

Note that for p = 0, Eq. 8 automatically reduces to Eq. 5. 
In the Bayesian approach we will assume Jeffrey's prior for 
(J~ and the uniform prior for p. The first-order AR 
formulation of Eq. 8 explicitly accounts for autocorrelation 
in the residuals, and thus the effect of model structural error. 
However, Eq. 8 ignores potential error in forcing conditions. 
Hence, t is only an approximation of the true forcing 
conditions, C 
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Identification of different storm events 

Time [days] 

Fig. 1 Illustrative example of how rainfall multipliers are assigned to 
individual storm events. The values of these multipliers are estimated 
simultaneously with the hydrologic model parameters by minimizing 
the mismatch between observed and simulated catchment response. In 

In a previous paper (Vrugt et al. 2008b), we have shown 
how we can treat forcing error in hydrologic modeling by 
assigning rainfall multipliers to each individual storm event 
in the forcing time series. This follows the approach 
introduced by (Kavetski et al. 2006a, b). Prior to calibra­
tion, individual storm events are identified from the 
measured hyetograph and hydrograph. A simple example 
of this approach is illustrated in Fig. I. Each storm, j = 
I , ... ,Y is assigned a different rainfall multiplier Ilj, and 
these scalar values are added to the vector of model 
parameters fJ and p to be optimized: 

"" n I O'~" I 2 
£(fJ ,p, illY, ¢) = -2 In (211:) - 2 1n 1- p2 - 2(1 - p) 

- 2 " " 2 1 _ 2 
X O'v el(fJ,JIIY,¢) -20'v 

X L
II 

bi(fJ, p, JIIY, ¢)2 (9) 
i= 2 

Note that the individual storms are clearly separated in 
time in the hypothetical example considered in Fig. I. This 
makes the assignment of the multipliers straightforward. In 
practice, the distinction between different storms is 
typically not that simple, and therefore information from 
the measured hyetograph and streamflow data must be 
combined to identify different rainfall events. It can be quite 
difficult in practice to identify and quantify individual error 
sources, because input, parameter and structural error are 
likely to interact strongly through multiplication in Bayes 
law and nonlinear processing of input errors by the model 
necessarily leads to structured, non-stationary residuals 
(Beven et al. 2008). Nevertheless, to improve hydrologic 

theory through modeling, it is necessary that we attempt to 
separate and quantify individual error sources. This will 
help to find out what parts of the model can potentially be 
improved. 

the example considered here .. = 9 different rainfall evens are 
identified and hence nine different multipliers. IIj. j = 1 ..... 9 are used 
to characterize forcing uncertainty within the formal Bayesian 
approach 

Unfortunately, in many hydrologic studies, the proba­
bility distribution defined in Eq. 9 cannot be derived 
through analytical means nor by analytical approximation. 
Iterative approximation methods such as Monte Carlo 
sampling are therefore needed to generate a sample from 
the posterior pdf. In the following two sections we discuss 
two methods that have found widespread use in the field of 
hydrology to estimate parameter and predictive distribu­
tions within a Bayesian context. 

2.1 	 Generalized likelihood uncertainty estimation 
(GLUE) 

Simple assumptions about the error characteristics of the 
residuals in Eq. 2 are convenient in applying statistical 
theory but are not often borne out in the actual calibration 
time series of residual errors which may show changing 
bias, variance (heteroscedasticity). skewness, and correla­
tion structures under different hydrologic conditions (and 
for different parameter sets). For linear systems it is known 
that ignoring such characteristics, or wrongly specifying 
the structure of the error model, will lead to bias in the 
estimates of parameter values. There does not appear to be 
a way around this problem without making some very 
strong (and generally difficult to justify) assumptions about 
the nature of the errors (Beven 2006). 

The origins of the GLUE method lie in trying to deal 
with uncertainty estimation problems for which simple 
theoretical likelihood assumptions do not seem appropriate. 
The GLUE methodology rejects the traditional statistical 
basis for the likelihood function in favor of finding a set of 
representations (model inputs, model structures, model 
parameter sets, model errors) that are behavioral in the 
sense of being acceptably consistent with the (non-error­
free) observations. To this end, it uses an informal 
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likelihood measure to avoid over conditioning and exclude 
parts of the model (parameter) space that might provide 
acceptable fits to the data and be useful in prediction. Many 
different informal measures have been used within the 
context of GLUE. Of these, the inverse error variance, 
introduced by Beven (1 989) and Beven and Binley ( 1992), 
is most commonly used to measure the closeness between 
model predictions and observations: 

where T is a parameter chosen by the user. Note that when 
T = 0, every simulation will have equal likeHhood and 
when T -. 00 the emphasis will be placed on a single best 
simulation, while the other solutions are assigned a negli ­
gible likelihood. To estimate parameter and model output 
uncertainty, the GLUE method works as follows: 

I. 	 Draw a sample of points e of size N using the 
specified prior distribution, p«(}). 

2. 	 Compute the likelihood L(liIY, C, 4» of each point of 
e, i = 1, .. . ,N. 

3. 	 Define a cutoff threshold to separate good solutions 
from non-behavioral parameter combinations of e. 
Collect the k behaviorial solutions in o. 

4. 	 Normalize the likelihood values of the behavioral 
solutions, i = l, ... ,k of 0, L(OiIY, C, 4» = L(OiIY,C, 
4»/2::=1L(OiIY,c, 4» so that 2:~= 1 L(oiIY, " 4» = 1. 

5. 	 Assign each output prediction yi, i = l, ... ,k of 0, 
probability L(OiIY, (, 4». 

6. 	 Sort the yi, i = l, ... ,k with their corresponding prob­
abilities to create the pdf of the model output 
prediction, and use these to generate uncertainty 
intervals. 

To summarize, a large number of runs are performed 
for a particular model with different combinations of the 
parameter values, chosen randomly from prior parameter 
distributions. By comparing predicted and observed 
responses, each set of parameter values is assigned a 
likelihood value, i.e. a function that quantifies how well 
that particular parameter combination (or model) simu­
lates the system. Higher values of the likelihood function 
typically indicate better correspondence between the 
model predictions and observations. Based on a cutoff 
threshold, the total sample of simulations is then split 
into behavioral and non-behavioral parameter combina­
tions. This threshold is either defined in terms of a 
certain allowable deviation of the highest likelihood 
value in the sample, or more commonly as a fixed 
percentage of the total number of simulations. The 
likelihood values of the retained solutions are then 
rescaled to obtain the cumulative distribution function 

(cdf) of the output prediction. The deterministic model 
prediction is then typically given by the median of the 
output distribution, and the associated uncertainty is 
derived from the cdf, normally chosen at the 5 and 95% 
prediction quantiles in most of the published GLUE 
studies. The likelihood weights of the GLUE procedure 
attempt to approximate and reflect all sources of error in 
the modeling process and allow the uncertainties asso­
ciated with those errors to be carried forward into the 
predictions. Note that the limits of acceptability approach 
developed in Beven (2006) can be applied at every 
single time step if required before combination into a 
single likelihood weight. 

Because of its conceptual simplicity and ease of 
implementation, the GLUE method has found widespread 
use. If used with a formal Bayesian likelihood function 
such as Eq. 4, GLUE generally will result in very similar 
estimates of parameter and predictive uncertainty as 
Markov Chain Monte Carlo simulation through DREAM. 
However, DREAM will have a much better efficiency in 
finding "acceptable" models as it uses adaptive proposal 
updating to search for high quality solutions. Use of a 
simple uniform sampling distribution of model parameters 
over a relatively large region, as typically done in GLUE, 
can result in an algorithm that, even after billions of model 
evaluations, may only have generated a handful of good 
solutions (lorgulescu et at. 2005), even if Latin Hypercube 
sampling has been used. 

Most applications of GLUE, however presented in the 
hydrologic literature and beyond use an informal likeli­
hood function to distinguish between behavioral and non­
behavioral solutions (or models). An informal likelihood 
function such as Eq. 10 does not properly account for 
the number of measurements n used to condition the 
parameter estimates. A small number of measurements in 
Eq. lO is considered as informative as a data set that 
contains many more observations and spans a much 
wider range of conditions. This is counter intuitive, but 
is done to avoid over-conditioning and thus ensure that 
parameter uncertainty reflects total uncertainty. Each 
model implicitly carries along an error series that is 
known exactly in calibration, and assumed to have 
similar characteristics in prediction (evaluation). More­
over, the cutoff threshold introduced in step (3) to 
separate behavioral from non-behavioral is entirely sub­
jective, and not based on proper statistical arguments. 
But if it is accepted that equifinality, input and model 
structural errors are important issues, then GLUE is a 
useful working paradigm to avoid overconditioning and 
to summarize parameter and predictive distributions. 
Note that GLUE can be used with sequential updating 
which should further reduce chances of overfitting 
(Beven et at. 2008). 
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2.2 Markov Chain Monte Carlo Sampling 
with DREAM 

A more sophisticated and elegant approach to estimate the 
posterior pdf of the parameters and model output prediction 
is MCMC simulation. Not only has this methodology a 
proper statistical foundation. but it is also more efficient 
than GLUE in finding behavioral models. Unlike GLUE. 
MCMC simulation uses a formal likelihood function. 
appropriately samples the high-probability-density region 
of the parameter space. and separates behavioral from non­
behaviorial solutions using a cutoff threshold that is based 
on the sampled probability mass. and thus underlying 
probability distribution. Vrugt et al. (2008a. b) have 
recently presented a novel adaptive MCMC algorithm to 
efficiently estimate the posterior pdf of parameters in 
complex. high-dimensional sampling problems. This 
method. entitled DREAM. runs multiple chains simulta­
neously for global exploration. and automatically tunes the 
scale and orientation of the proposal distribution during the 
evolution to the posterior distribution. This scheme is an 
adaptation of the SCEM-UA global optimization algorithm 
(Vrugt et at. 2003) and has the advantage of maintaining 
detailed balance and ergodicity while showing excellent 
efficiency on complex. highly nonlinear. and multimodal 
target distributions (Vrugt et at. 2008a). The code of 
DREAM is given below. For convenience. we assemble the 
parameters e. p and J.I. into a single vector x. 

I. 	 Draw an initial population X of size N. typically N = d 
or 2d. using the specified prior distribution. The 
symbol d signifies the number of parameters to be 
estimated. 

2. 	 Compute the density p(xiIY , ~) of each point of X. 
i = I •...•N using the antilog of Eq. 9. 

FOR i +- 1, .. . , N DO (CHAIN EVOLUTION) 

3. 	 Generate a candidate point, Zi in chain i, 

( II) 

where b signifies the number of pairs used to gener­
ate the proposal (candidate point), and r(j), r(n) E { I , ... ,N}; 
r(j) =I- r(n) =I- i . The value of y depends on the number of 
pairs used to create the proposal. By comparison with 
random walk metropolis, a good choice for y = 
2.38/ V2bdeff, with delT = d, but potentially decreased in 
the next step. 
4. 	 Replace each element, j = l, ... ,d of the proposal zJ 

with xJ using a binomial scheme with crossover 
probability CR, 
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. 	 {Xi if U ~ I - CR, deff = deff ­ I 
Z' = ~ 	 j = I, .. . ,d 

J zj otherwise 

(12) 

where U E [0,1] is a draw from a uniform distribution. 
5. 	 Compute p(ziIY , ~) and accept the candidate point 

with Metropolis acceptance probability, a(xi,zi). 

.. {min(e(Zil~ ' ~ ) I) ifp(xiIY,~»O
a(x', Z') = I \P(xiI Y,c/» , (13) 

ifp(xiIY,~) =0 

6. 	 If the candidate point is accepted, move the chain, 
Xi = Zi; otherwise remain at the old location, Xi. 

END FOR (CHAIN EVOLUTION) 

7. 	 Remove potential outlier chains using the inter­
quartile-range (lQR) statistic. 

8. 	 Compute the Gelman-Rubin, Rstat convergence 
diagnostic. 

9. 	 If Rstat:S 1.2, stop. otherwise go to CHAIN 
EVOLUTION. 

The method starts with an initial population of points to 
strategically sample the space of potential solutions. The 
use of a number of individual chains with different starting 
points enables dealing with multiple regions of highest 
attraction, and facilitates the use of a powerful array of 
heuristic tests to judge whether convergence of DREAM 
has been achieved. The members of X are used to globally 
share information about the progress of the search of 
the individual chains. Hence, at every individual step, the 
points in X contain the most relevant information about the 
search. This information exchange enhances the surviv­
ability of individual chains, and facilitates adaptive 
updating of the scale and orientation of the proposal dis­
tribution. This series of operations results in a MCMC 
sampler that conducts a robust and efficient search of the 
parameter space. Convergence of the individual chains is 
monitored using the R-statistic of Gelman and Rubin 
(J 992). Detailed balance and ergodicity of DREAM have 
been proved in Vrugt et at. (2008a). 

We did not add the error variance (J~ to the parameter 
vector x. The reason is that the posterior distribution of (J~ 
given the other parameters is known to be inverse chi­
square with n degrees of freedom and scale s with 

( 14) 

We can therefore update (J~ after step 6 in the DREAM 
algorithm by Gibbs sampling, as follows. We draw a value 
z from a chi-squared distribution with n degrees of freedom 
and calculate (J; Y= ~ S2. 
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2.3 Predictive inference using MCMC simulation 
with DREAM 

The posterior pdf of the model parameters derived with 
DREAM contains all required information to summarize 
predictive uncertainty. An estimate of the predictive 
distribution for f( x, ¢) is obtained by evaluating the 
model output, Y for each .) of J draws derived with 
DREAM after convergence has been achieved to a 
stationary distribution. The so-obtained values 
(yi, j = I, ...,J) are summarized in the desired way, e.g. 
by calculating the 2.5 and 97.5% percentiles of each 
individual model prediction, /, i = I, ... ,n. This predictive 
distribution only includes the effect of parameter 
uncertainty. The remaInIng (unexplained) error is 
assumed to be additive and can be summarized as 
follows. 

For each model outcome, (yj, j = 1, ...,J) the residual 
error Bj - N(O,«(J~y/(1_(p2y» is added to the prediction. 
The desired output percentiles can be summarized in a 
similar way as described in · the previous paragraph. 
A slightly more efficient approach is to draw the out­
come variable yi for each .) directly from a Student 
distribution with n degrees of freedom, mean f(xl , ¢) 
and variance i/( 1_(p2y), where i is calculated for the 
current draw using Eq. 14. An even more precise 
approach for obtaining the 95% prediction uncertainty 
intervals including parameter, model and measurement 
error is presented in the Appendix. 

3 Case study 

We compare formal (DREAM) and informal (GLUE) 
Bayesian inference to parameter and model output uncer­
tainty estimation by application to streamflow forecasting 
using the HYMOD conceptual watershed model. This 
study is used to demonstrate that formal and informal 
Bayesian approaches can yield very similar estimates of 
total predictive uncertainty. 

3.1 Rainfall-runoff modeling 

In this study, we use the HYMOD conceptual watershed 
model which is schematically presented in Fig. 2. HYMOD 
is a hierarchical and parsimonious rainfall-runoff model 
whose parameters are thought to vary between watersheds. 
This model has been used in a number of studies in the past 
and has five parameters that need to be specified by the user 
(Table I). Inputs to the model include mean areal 
precipitation (MAP), and potential evapotranspiration 
(PET), while the outputs are estimated channel inflow. The 
HYMOD model has been discussed extensively in many 
previous papers that study streamflow forecasting and 
automatic model calibration (Boyle 2000; Wagener et al. 
200 I; Vrugt et al. 2003). Details of the model can be found 
therein. 

To compare GLUE and DREAM we use historical data 
from the Leaf River (1 ,950 km2

) and French Broad 
(767 km2

) watersheds in the USA. The data consists of 

Fig. 2 Schematic Rainfall 
representation of the HYMOD 
conceptual watershed model PET I 

c Alphat t 
l~b... ~L~ Streamflow 

(I-Alpha) ~ 
WRq ~ 
...i-----------------------.~ 

Table 1 Prior ranges and 
Parameter Description Minimum Maximum

description of the hydrologic 
model (HYMOD) parameters emax (mm) Maximum storage in watershed 1.00 500.00 
and rainfall multipliers 

bexp Spatial variability of soil moisture storage 0.10 2.00 

Alpha Distribution factor between two reservoirs 0. 10 0.99 

Rs (days) Residence time slow flow reservoir 0.001 0.10 

Rq (days) Residence time quick flow reservoir 0.10 0.99 

p First-order correlation coefficient - 1.00 1.00 

Jlj ,j = I, ... , Y Rainfall multipliers 0.25 2.50 
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MAP (mm/day), PET (mm/day), and streamflow (m3/s). 
For both catchments 5 years of data is used for model 
calibration, whereas the remainder of the data is used for 
evaluation purposes. The calibration data set consists of 
October I , 1953 to September 30, 1958 for the Leaf River 
and spans the period of October I, 1954 to September 30, 
1959 for the French Broad river. In this 5-year calibration 
time series, a total of Y = 57 and Y = 59 storm events are 
identified for the Leaf River (October I, 1954-September 
30, 1959) and French Broad (October I, ] 953-September 
30, ]958) watersheds, respectively. This results in a total of 
d = 63 (Leaf River) and d = 65 (French Broad) parame­
ters to be estimated within the formal Bayesian inference 
procedure using DREAM. The upper and lower bounds 
that define the prior uncertainty ranges of the HYMOD 
model parameters, first-order correlation coefficient and 
rainfall multipliers are given in Table I. These ranges are 
based on previous work (HYMOD parameters), mathe­
matics (correlation coefficients) or analysis of rain-gauge 
data (multipliers) to make sure that the parameter values 
remain hydrologically realistic. 

To approximate the posterior pdf of the HYMOD model 
parameters, storm multipliers and first-order correlation 
coefficient in the likelihood function of Eq. 9, a total of 
2,000,000 HYMOD model evaluations are performed with 
DREAM using uniform prior ranges over the hypercube 
specified in Table I . We use N = 100 different Markov 
chains. In GLUE, a sample size of N = 100,000 is used 

with a value of T = I in the informal likelihood function of 
Eq. 10 and cutoff threshold in step (3) as the best I% of the 
sample. These are rather standard settings with GLUE and 
in the present context will result in a total of k = 1,000 
different behavioral solutions present in D. Similar results 
with GLUE and DREAM are obtained for larger sample 
sizes. 

To stabilize the total error variance, a~ and reduce 
heteroscedasticity we use a Box-Cox transformation (Box 
and Cox 1964) of the simulated and measured streamflow 
data: 

(y ;) = {(y i 
_ 1)/;. if;. ,to ° (15)

T ,. In(Y) if/. = ° 
using ;. = 0.3, which is consistent with previous studies 
(Misirli et al. 2003 ; Vrugt et al. 2003 , 2006). 

Figure -' presents histograms of the HYMOD model 
parameters using the formal (top panels) and informal 
(bottom panels) Bayesian inference considered here for 
the Leaf River streamflow time series. The x-axis in each 
graph is fixed to the prior range of each individual 
parameter, to facilitate pairwise comparison of the results 
of the formal and informal Bayesian approaches. For 
DREAM, the last 20% of the samples in each individual 
chain are used to compute and summarize the marginal 
densities, whereas for GLUE the marginal frequencies 
of the k = 1,000 different behavioral solutions are 
plotted. 

Fig. 3 Histograms of the HYMOD model parameters inferred using a parameter space. The model parameters are much better identifiable 
formal likelihood function (top panels a--e) which explicitly considers when using a formal Bayesian approach for statistical inference and 
input, parameter, and model structural error, and informal likelihood analysis. Is equifinality the outcome of a weak inference procedure 
function (bottom pallels f-j) that maps all uncertainty onto the that lumps all uncertainty onto the model parameters? 
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The histograms in the top panels show that formal 
Bayesian inference results in parameter distributions that 
are well identified and encompass only a relatively small 
region interior to the prior uncertainty bounds. Note that 
the recession parameters of the quick and slow flow tanks 
are particularly well defined with very small dispersion 
around the mode of their respective distributions. Hence, 
this is relative to the prior uncertainty ranges. Nevertheless, 
these results demonstrate that the explicit treatment of 
forcing data error and model structural inadequacies 
through the use of d =58 additional parameters (I = 57 
storm multipliers and one first-order correlation coeffi­
cient) in the definition of the likelihood function in Eq. 9 
does not negatively affect the identifiability of the 
HYMOD model parameters. They remain well calibrated 
with relatively tight uncertainty bounds, and small corre­
lation among the individual parameters (not shown). On the 
contrary, using an informal Bayesian approach with GLUE 
results in parameter distributions that are much wider and 
almost cover the entire prior defined hypercube of the 
individual parameters. Implicit projection of forcing and 
structural uncertainty onto the HYMOD model parameters 
gives rise to what Beven et at. in a series of papers since 
1992 have called equifinality (Beven 1993). Qualitatively 
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similar findings, as presented here, are also found for the 
French Broad watershed. 

Although not further demonstrate herein, the optimized 
distributions of the first-order correlation coefficient are 
approximately Gaussian with 95% uncertainty bounds 
ranging between 0.76 and 0.85 for the Leaf River and 0.39 
and 0.48 for the French Broad watershed. These values of p 
confirm the presence of significant autocorrelation between 
the error residuals, and establish a clear need for explicit 
modeling of the (non-random) input and model structural 
errors. The finding that p is relatively well defined is 
encouraging as it provides support for the claim that within 
the context of our assumptions model structural and input 
error are identifiable from the observed streamflow time 
series. Separating these two error sources is necessary to be 
able to understand if, and what parts of, the model can be 
improved. This is the key to improving hydrologic theory. 

To provide more insights into the values of the rainfall 
multipliers, consider Fig. 4, which presents boxplots of the 
sampled rainfall mUltipliers for the Leaf River (top panel) 
and French Broad (bottom panel) catchments. These box­
plots are created using the last 200,000 samples generated 
with DREAM in the N = 100 parallel chains. The marginal 
pdfs of the multipliers vary widely between individual 
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Fig. 4 Marginal posterior distribution of the rainfall multipliers for 
the a Leaf River, and b French Broad watersheds. These results are 
derived with DREAM using a total of 2,000,000 function evaluations. 
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The solid black lines indicate no adjustment to the observed rainfall 
depths with multiplier values of I across both plots 
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storm events. Some events are very well defined, while 
others show considerable uncertainty. For instance, com­
pare the boxplots of /146 and /147 for the Leaf River, and /114 

and /115 for the French Broad watershed. These adjacent 
storms differ substantially in their posterior width, but 
exhibit approximately similar mean values. The overall 
mean posterior value of the storm multipliers is Ii = 0.99) 
for the Leaf River and Ii = 0.93 for the French Broad 
watershed. This shows that, on average our inferred rainfall 
from the streamflow data is in close correspondence with 
the observed rainfall amounts from the rain-gauge data. 
Detailed analysis further demonstrates that the rainfall 
multipliers exhibit small temporal autocorrelation, and 
show no obvious time or seasonality pattern. Furthermore, 
the d-dimensional correlation matrix of the posterior 
demonstrates that correlation among the multipliers is 
small. This confirms our earlier finding that observed daily 
streamflow data contain sufficient information to warrant 
the identification of an additional Y = 57 and Y = 59 
storm multipliers, simultaneous with the five HYMOD 
model parameters and first-order correlation coefficient. 

Most of the storm multipliers are clustered in the 
vicinity of I for both catchments. This illustrates that the 
measured rainfall is on average unbiased and generally 
consistent in pattern and depth with the estimated rainfall 
record derived from the streamflow data. This is an 
important diagnostic and provides support for the claim 

that the rain-gauge data, albeit having a very small spatial 
support, provide a good proxy of whole-catchment pre­
cipitation for both watersheds. 

Up to now, we have only discussed the parameter dis­
tributions as a main interest of the Bayesian inference, 
without recourse to examining the predictive uncertainty of 
the HYMOD model. Figure 5 illustrates how the marginal 
posterior pdf of the parameters (P(xIY, 4»: DREAM) and 
behavioral solutions (D: GLUE) translates into 95% 
streamflow predictive uncertainty for a representative 
portion of the calibration (left column) and evaluation 
(right column) period for the Leaf River watershed. In the 
case of DREAM (top panels), the 95% prediction uncer­
tainty of the HYMOD model predictions due to parameter 
uncertainty is indicated with the dark gray region, whereas 
the remaining prediction error is represented with the light 
gray region. For GLUE (bottom panels) only total error 
(due to parameter uncertainty) is assessed, and the 
streamflow uncertainty ranges denote 95% prediction 
quantiles. 

The HYMOD model forecasts generally track the 
streamflow observations very well, especially when using 
the formal Bayesian inference. This is to be expected 
because individual rainfall events can be perturbed in their 
precipitation amounts to better match the hydrograph. 
Qualitatively, there is a strong agreement between the 
estimates of streamflow prediction uncertainty derived with 

FOIrrd Bo;eslm A~cx:rh Using DREAM: Led Rive- Wcie-shed 

(8) Evaluotton period
600 • 

• 
400 

200 

Calibration period 

• 

50 100 150 200 250 300 350 

IntOlrrd Bo;esim A~oa;h Using GLUE : Led Rive- Wale-shed 

(C)400.---....-----r--~-~--.,---r---.,.., Callblation period 

250 300 350 

(Ok EvaluoNon period

i 300 • 
400• •~ 

i
E I • 

200 

100 

50 100 150 200 250 300 350 

Day number (Day 1 = October 1. 1957) 

Fig. 5 Streamflow prediction uncertainty ranges derived with 
DREAM (lOp panels) and GLUE (bollom panels) for a representative 
portion of the calibration (left column) and evaluation period (right 
column) for the Leaf River watershed. In each DREAM graph, the 
dark gray region represents the 95% confidence intervals of the 
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output prediction due to parameter uncertainty, whereas the light gray 
region represents the additional 95% ranges of the prediction 
uncertainty. For GLUE the 95% prediction quantiles are presented. 
The solid circles denote the streamflow observations 
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DREAM and GLUE, although the streamflow ranges of 
DREAM are slightly smaller and provide a better coverage 
at various rainfall events. For instance, consider the three 
storm events in the evaluation period between days 185 and 
220. The informal Bayesian approach severely underesti­
mates the actual streamflow data because error in rainfall is 
not explicitly considered within GLUE. This is an inter­
esting result, because GLUE has often been criticized in 
the literature for grossly overestimating the actual uncer­
tainty observed in the calibration data. Thus, GLUE can 
significantly underestimate total predictive uncertainty 
when input errors are large. 

The formal Bayesian approach is less prone to errors in 
the measured forcing data, because these errors are 
explicitly considered through MCMC. When using 
DREAM, parameter uncertainty appears to be a rather 
small contribution to total uncertainty, with the exception 
of certain rainfall events during the evaluation period. This 
is because of incomplete knowledge of the rainfall multi­
pliers outside the calibration period. These multipliers are 
assigned prior to each individual storm event by drawing 
from a specified probability distribution. The properties of 
this distribution are inferred using the calibration stream­
flow time series. How this is done is discussed below. 

Figure 6 presents a scatter plot of the standard deviation 
of the rainfall multipliers as a function of the observed 
rainfall for the 5-year calibration period of the (a) Leaf 
River, and (b) French Broad watersheds. The standard 
deviation of the multipliers for each individual rainfall 
event is computed using the last 25 samples generated in 
each individual chain. This results in a total of J = 2,500 
draws of mUltipliers from the posterior distribution. Both 
scatter plots depict a strongly nonlinear hyperbolic rela­
tionship between the actual measured precipitation and the 
standard deviation of the multipliers. Low precipitation 
amounts are generally associated with relatively high 

0.7r--_­____-~--~-_,
Fig. 6 The DREAM inferred tAl lea1 ilIYe<_ [81 Francn i!<cxxJ_ 
standard deviation of the rainfall 
multipliers as a function of the 0 0 

observed rainfall for the a Leaf 
River, and b French Broad 05 

watersheds. The dotted black 
Line denotes the average 
standard deviation that is used 
to generate ensembles of 
precipitation records during the 
evaluation period ..O. 

~ _.14-
~: 

~~ 
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uncertainty, whereas higher rainfall amounts appear to be 
better defined with smaller variation among the multipliers. 
This finding is consistent with the recent work by Villarini 
and Krajewski (2008) who, for the Brue catchment in 
Southwest England, have shown that the standard deviation 
of the spatial sampling error decreases with increasing 
rainfall intensity. Note that we arrive at this conclusion 
based on the observed streamflow data only. This high­
lights the strength of a (formal) Bayesian approach that 
disentangles various error sources. To further benchmark 
the reasonableness of the rainfall error characteristics in 
Fig. 6, future work should include analysis of the spatial 
variability of rain-gauge measurements in both watersheds, 
as well as a comparison of the optimized rainfall depths 
against radar data. This is beyond the scope of the current 
paper. 

The dotted black lines in Fig. 6a and b present the 
average standard deviation, (JI' of all values of the multi­
pliers. This information, albeit a bit crude is used to 
generate an ensemble of rainfall records during the evalu­
ation period. To this end, we first draw 2,500 different 
rainfall multipliers for each individual storm event in the 
evaluation period of both watersheds using a Gaussian 
distribution with mean j1., and standard deviation 
(JI" N(P., (Jp). Using the information from Figs. 4 and 6, we 
use p. = 0.99 and (JI' = 0.18 for the Leaf River, and p. = 
0.93 and (JI' = 0.13 for the French Broad watershed. We 
then combine each of these 2,500 multiplier vectors for 
both watersheds with the observed rainfall record, which 
results in an ensemble of 2,500 different rainfall hyeto­
graphs for the evaluation period for the Leaf River and 
French Broad. Finally, each rainfall hyetograph is assigned 
a posterior combination of the HYMOD model parameters 
and first-order correlation coefficient derived from cali­
bration to create an ensemble of 2,500 different streamflow 
hydrographs for both data sets. Note that by setting p. equal 
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to the overall posterior mean of the multipliers found Table 2 Coverage (%) and spread (m3/s) of the 95% streamflow 
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Fig. 7 Streamflow prediction uncertainty ranges derived with output prediction due to parameter uncertainty, whereas the light gray 
DREAM (top pallels) and GLUE (bollom pallels) for a representative region represents the additional 95% ranges of the prediction 
portion of the calibration (left coilimll) and evaluation period (right uncertainty. For GLUE the 95% prediction quantiles are presented. 
coilimll) for the French Broad watershed. In each DREAM graph, the The solid circles denote the streamflow observations 
dark gray region represents the 95% confidence intervals of the 

during the calibration period, any potential bias in the 
measured rain gauge data is removed. 

Figure 7 presents streamflow prediction uncertainty 
bounds derived with the formal (top row) and informal 
(bottom row) Bayesian approaches for the French Broad 
watershed. The left column depicts the results for the cal­
ibration period, whereas the right two plots correspond to 
the evaluation period. The results presented here are 
qualitatively very similar to those previously presented in 
Fig. 5 for the Leaf River watershed. The HYMOD pre­
dictions generally provide a good fit to the observed 
streamflow time series, and the total uncertainty ranges 
derived with DREAM and GLUE show a relatively close 
correspondence. Notice, however that GLUE has a ten­
dency to overestimate the actual streamflow uncertainty 
during rainfall events. This is clearly visible in the evalu­
ation period between days 160 and 180. Although, the 
formal and informal Bayesian approaches used here differ 
fundamentally in their underlying philosophy and repre­
sentation of error, both methods receive quite similar 
performance in terms of ensemble spread and forecast. 

This is further demonstrated in Table 2 that summarizes 
the probabilistic properties of the streamflow ensemble 
derived with the formal and informal Bayesian analyses 
considered herein. The coverage (%) measures the per­
centage of streamflow observations contained in the 95% 

prediction ranges associated with the total uncertainty estimated with 
DREAM (consisting of parameter and remaining residual error) and 
GLUE (parameter error only) for the Leaf River and French Broad 
watersheds. A distinction is made between the calibration and eval­
uation periods 

Method Leaf River watershed French Broad watershed 

Coverage Spread Coverage Spread 

Calibration period 

DREAM 94.2 

GLUE 76.9 

Evaluation period 

DREAM 92.2 

GLUE 72.1 

18.2 

20.6 

30.3 

30.9 

94.8 

88.4 

93.2 

88.8 

15.9 

17. 1 

18.4 

22.8 

uncertainty bounds (DREAM) or 95% prediction quantiles 
(GLUE), whereas the spread (m3/s) quantifies the width of 
the prediction uncertainty intervals. A significant departure 
from a 95% coverage would indicate that the predictive 
uncertainty is either under- or overestimated, and would 
call into question the validity of the modeling approach for 
performing accurate probabilistic streamflow forecasting. 

The results presented in this Table highlight a number of 
interesting results. The ensemble spread derived with the 
formal Bayesian approach is statistically coherent with a 
coverage of the streamflow observations that ranges 
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between 92 and 95% at the 95% prediction level. This is an 
encouraging result, because it illustrates that our charac­
terization of rainfall error during the evaluation period is 
consistent with the statistical properties of the streamflow 
observations. On the contrary, the prediction quantiles 
derived with GLUE underestimate the actual uncertainty in 
the streamflow measurements with a coverage that ranges 
between 72 and 89%. This seems counter-intuitive because 
the widths of the streamflow uncertainty bounds are, on 
average, about 10% larger with GLUE than with DREAM. 
The predictive pdf generated with DREAM is simply 
sharper and encompasses a larger percentage of the 
streamflow observations. This is a desirable characteristic 
for streamflow forecasting. 

The results presented here warrant the conclusion that 
formal and informal Bayesian methods can receive very 
similar estimates of total predictive uncertainty. This is a 
rather unexpected result, considering that both methods 
rely on completely different philosophies and mathematical 
rigor. The formal Bayesian approach has its roots within 
classical statistical theory and applies formal mathematics 
and MCMC simulation to infer parameter and predictive 
distributions. The informal Bayesian approach (GLUE) 
makes use of subjective likelihood measures or probabili­
ties and uses simple Monte Carlo sampling to estimate 
parameter and predictive uncertainty. 

If the interest is in estimating total predictive uncer­
tainty, there are several advantages in using GLUE over 

more formal Bayesian approaches. The method is very easy 
to implement and use, and is computationally efficient. For 
instance, in the examples considered here, GLUE is about 
20 times more efficient than MCMC simulation with 
DREAM. The main disadvantage of GLUE, however is 
that it does not attempt to separate the effects of forcing, 
parameter and structural error on total predictive uncer­
tainty. This makes it impossible to pinpoint what elements 
of the model are most uncertain and require improvement. 
Rather, the user of GLUE is left with a total estimate of 
uncertainty. 

Figure 8 presents sample autocorrelation functions of 
the residuals for the evaluation period using the formal (top 
panels) and informal (bottom panels) Bayesian approaches 
for statistical inference of model parameter and output 
predictions. The mean posterior residuals are used. Similar 
to our previous graphs, the left two panels illustrate the 
results for the Leaf River, whereas the right two panels plot 
the results for the French Broad watershed. Note that the 
results are quite similar for both watersheds. Significant 
autocorrelation between the error residuals at the first lag 
(between 0.50 and 0.75) is found for GLUE. In the case of 
DREAM, the AR-I model reduces the temporal correlation 
between the residuals. 

Finally, Table 3 presents summary statistics of the one­
day-ahead streamflow forecasts of the HYMOD model 
using the formal (DREAM) and informal (GLUE) Bayes­
ian analyses for the Leaf River and French Broad 
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Fig. 8 Autocorrelation functions of the residuals of the mean 
ensemble streamflow forecasts and the verifying streamflow obser­
vations for the Leaf River (left column) and French Broad (right 
column ) watersheds during the evaluation period. The top panels 

(D)~~~--~~--~~~--~~~ 
French Brood WatelShed 

° 2 4 6 8 10 12 14 16 18 20 

Log 

show the results using a formal Bayesian inference with DREAM, 
whereas the bottom results correspond to GLUE. The dotted lines in 
each of the individual panels denote the 95% confidence intervals for 
a series of uncorrelated and normally distributed residuals 
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Table 3 Summary statistics of the streamflow forecasts for the Leaf River and French Broad watersheds using formal (DREAM with MCMC 
simulation) and informal (GLUE) Bayesian inference 

Leaf River watershed 	 French Broad watershed 

Calibration Evaluation Calibration Evaluation 

Wy (1954-1958) 

RMSE CORR BIAS 

WY (1959-1963) 

RMSE CORR BIAS 

WY (1953-1957) 

RMSE CORR BIAS 

WY (1958-1962) 

RMSE CORR BIAS 

DREAM 13.46 0.95 -1.72 28.38 0.93 1.36 6.72 0.94 -1 .33 7.83 0.93 0.09 


GLUE 22.05 0.88 -4.21 34.82 0.91 -4.88 7.37 0.92 0.52 7.86 0.93 5.69 


Units of RMSE, CORR, and BIAS are mJ/s, -, and %, respectively 

RMS£ root mean square error, CORR correlation coefficient, BIAS bias 

watersheds. The statistics correspond to the mean ensemble 
forecast and distinguish between the calibration and eval­
uation period. The results in this Table show that the 
formal Bayesian approach consistently receives the best 
performance. This is not very surprising for the calibration 
period because rainfall and model structural inadequacies 
are explicitly inferred with the storm multipliers and first­
order autoregressive (AR-I) scheme. This allows the HY­
MOD model to more closely track the streamflow 
observations. Yet, the difference in performance between 
the formal and informal Bayesian approach is generally 
smaller for the evaluation period. This is because our 
knowledge of precipitation multipliers for future events is 
at best incomplete. The difference in performance between 
DREAM and GLUE is most significant for the Leaf River, 
whereas a minor difference in RMSE, CORR and BIAS is 
found for the French Broad watershed. The rainfall record 
for the French Broad is structurally more consistent with 
the observed streamflow data, and cannot be improved 
much with storm multipliers. Indeed, their values reside in 
the vicinity of I. 

We like to emphasize that the findings presented in this 
paper are insensitive to the choice and length of the cali ­
bration time series. In all our calculations presented in this 
paper, we use T = I in Eq. 10. This is a standard setting 
that is most often used in GLUE applications. Larger val­
ues of T will increase the peakiness of the informal 
likelihood function in Eq. 10 and therefore reduce the 
parameter and output prediction (streamflow) uncertainty. 

4 Summary and conclusions 

In recent years, a strong debate has emerged in the 
hydrologic literature whether an uncertainty framework 
should have its roots within a proper statistical (Bayesian) 
context, or whether such a framework should implement 
informal measures and procedures to extract the informa­
tion from the calibration data and summarize parameter 
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and predictive distributions. The goal of this paper was to 
establish some common ground between these two differ­
ent approaches, and compare GLUE with the more formal 
DREAM algorithm. This method implements Bayesian 
statistics, and uses state-of-the-art MCMC simulation to 
approximate the posterior probability distribution of the 
model parameter and output predictions. Our results dem­
onstrate that: 

• 	 Formal Bayesian approaches that make very strong 
assumptions about the nature of the statistical proper­
ties of the residuals can generate very similar estimates 
of total 'predictive uncertainty as informal Bayesian 
approaches (such as GLUE used herein) that are based 
on a completely different philosophy of error represen­
tation. The debate that currently exits in the hydrologic 
literature between supporters of statistically coherent 
approaches for uncertainty estimation and champions 
of less formal approaches therefore might need serious 
reconsideration. 

• 	 The Bayesian method considered in this paper, has a 
somewhat smaller spread of the streamflow prediction 
uncertainty bounds than GLUE and better coverage of 
the streamflow observations. 

• 	 The GLUE procedure can reveal when no model can 
reproduce the observations given the available input 
data without compensation by a statistical error model 
or input adjustments. This is an important part of the 
learning process in hydrological modeling since it 
requires that model structure, input data or observations 
be questioned. 

• 	 Parameter uncertainty is made especially large in most 
GLUE applications because it includes implicit repre ­
sentation of model error. One should therefore be 
particularly careful in drawing conclusions about 
equifinality. 

• 	 The inability of GLUE to separate between individual 
error sources impairs our ability to identify structural 
deficiencies in models. 
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• 	 Formal Bayesian approaches attempt to disentangle the 
effect of input. output. parameter and model structural 
error. which is key to improving our hydrologic theory 
of how water flows through watersheds. Note. however 
that formal Bayes law suffers from interaction between 
these individual error sources. which makes statistical 
inference difficult. and therefore results should be 
carefully interpreted. 

• 	 Low precipitation amounts are generally associated 
with relatively high uncertainty. whereas higher rainfall 
events are well defined with relatively small variation 
among the multipliers. This finding, made possible 
through analysis of streamflow data with a formal 
Bayesian approach, is consistent with papers in the 
literature that have analyzed the spatial variability and 
measurement error of rain-gauge data. 

The source codes of GLUE and DREAM are written in 
MA TLAB and can be obtained from the first author 
(vrugt@lanl.gov) upon request. 
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Appendix 

Calculation of predictive uncertainty from MCMC 
simulation 

Assume that for each MCMC draw ,t the distribution of 
each model outcome Yi. i = l •... ,n is F and that 
F(c) = Pr{y < cI,t) can be calculated exactly for any value 
of c. For example. from the MCMC runs using Eq. 9 and 
AR-I normally distributed model and measurement error 
as in Eq. 6. F is a Student distribution UP. (12) with v = n. 
P =f(xI,¢) and (12 = i/(l_p2) with i in Eq. 14. Now 
Pr{y < c) can be estimated from the J MCMC draws using 
the average of Pr{y < cI,t). To estimate a I()()a% percentile 
we thus need to find c such that: 

I J-L Pr(y < clx!) = a ( 16) 
J j = 1 

This can be done numerically by a root-finding 
algorithm. A 95% confidence interval is constructed 
by calculating the 2.5 and 97.5% percentile. 
respectively. 
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