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Abstract In recent years, a strong debate has emerged in
the hydrologic literature regarding what constitutes an
appropriate framework for uncertainty estimation. Partic-
ularly, there is strong disagreement whether an uncertainty
framework should have its roots within a proper statistical
(Bayesian) context, or whether such a framework should be
based on a different philosophy and implement informal
measures and weaker inference to summarize parameter
and predictive distributions. In this paper, we compare a
formal Bayesian approach using Markov Chain Monte
Carlo (MCMC) with generalized likelihood uncertainty
estimation (GLUE) for assessing uncertainty in conceptual
watershed modeling. Our formal Bayesian approach is
implemented using the recently developed differential
evolution adaptive metropolis (DREAM) MCMC scheme
with a likelihood function that explicitly considers model
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structural, input and parameter uncertainty. Our results
demonstrate that DREAM and GLUE can generate very
similar estimates of total streamflow uncertainty. This
suggests that formal and informal Bayesian approaches
have more common ground than the hydrologic literature
and ongoing debate might suggest. The main advantage of
formal approaches is, however, that they attempt to dis-
entangle the effect of forcing, parameter and model
structural error on total predictive uncertainty. This is key
to improving hydrologic theory and to better understand
and predict the flow of water through catchments.

1 Introduction and scope

Uncertainty quantification is currently receiving a surge in
attention in hydrology, as researchers are trying to better
understand what is well and what is not well understood
about the watersheds that are being studied and as decision
makers push to better quantify accuracy and precision of
model predictions. Various methodologies have been
developed in the past decade to better treat uncertainty.
These approaches include state-space filtering, model
averaging, and Bayesian approaches, and they differ in the
underlying assumptions, mathematical rigor, and how the
various sources of error are being treated (Montanari
2007).

Despite these advances, the more recent approaches for
uncertainty estimation require considerable understanding
of mathematics and statistics, and significant experience
with implementation of these methods on a digital com-
puter. For example, sequential filtering methodologies not
only require models to be written in a state-space formu-
lation, but also need a mathematical procedure that defines
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how and which states to update when new information
becomes available. This programming task can become
quite difficult and cumbersome, especially in the absence
of general-purpose software that enables the use of these
state-of-the-art methods in a user-friendly environment.
Simpler methods, on the contrary, are easier to understand
and use and require less modifications to existing source
codes of hydrologic models. They, therefore, have an
important advantage over more sophisticated filtering and
Bayesian approaches. We, therefore, posit that many
researchers and practitioners will, at least for the foresee-
able future, prefer to keep using simple methods for
uncertainty estimation.

A relatively simple approach for uncertainty estimation
is the generalized likelihood uncertainty estimation
(GLUE) method of Beven and Binley (1992). This method
is inspired by the Hornberger and Spear (1981) method of
sensitivity analysis and operates within the context of
Monte Carlo analysis coupled with Bayesian or fuzzy
estimation and propagation of uncertainty. Since its intro-
duction in 1992, GLUE has found widespread application
for uncertainty assessment in many fields of study,
including modeling of the rainfall-runoff transformation
(Beven and Binley 1992; Freer et al. 1996; Lamb et al.
1998), soil erosion (Brazier et al. 2001), tracer dispersion
in a river reach (Hankin et al. 2001), groundwater and well
capture zone delineation (Feyen et al. 2001; Jensen 2003),
unsaturated zone (Mertens et al. 2004), flood inundation
(Romanowicz et al. 1996; Aronica et al. 2002), land—sur-
face—atmosphere interactions (Franks et al. 1997), soil
freezing and thawing (Hansson and Lundin 2006), crop
yields and soil organic carbon (Wang et al. 2005), and
ground radar-rainfall estimation (Tadesse and Anagnostou
2005). Recent applications of GLUE are also found in
distributed hydrologic modeling (McMichael et al. 2006;
Muleta and Nicklow 2005). The popularity of GLUE is
probably best explained by its conceptual simplicity and
relative ease of implementation, requiring no modifications
to existing source codes of simulation models. In addition,
GLUE can take great advantage of the property of being
“embarrassingly parallel” and thus result in nearly linear
speed ups on distributed computer systems.

Recent contributions to the hydrologic literature have
criticized GLUE for not being formally Bayesian, resulting
in parameter and predictive distributions that are statistically
incoherent, unreliable, and that should therefore not be used
(Christensen 2004; Montanari 2005; Mantovan and Todini
2006; Vogel et al. 2008). The GLUE method is most often
used with a statistically informal likelihood function, does
not attempt to find the maximum likelihood estimate of the
parameters to benchmark the performance of the best model,
and does not explicitly consider model errors in the deriva-
tion and communication of predictive distributions. In recent
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years, a strong debate has emerged in the hydrologic com-
munity between those that adhere strongly to the underlying
philosophy of GLUE and believe that the method is a useful
working methodology for assessing uncertainty in non-ideal
cases (see Beven 2006), and researchers and practitioners
that strongly oppose incorrect usage of statistics, and prefer
to use coherent probabilistic approaches. The goal of this
paper is to establish common ground between these two
different view points, and highlight that under a variety of
different conditions both Bayesian and informal Bayesian
methods can result in very similar estimates of predictive
uncertainty. This paper builds further on our previous work
(Blasone et al. 2008) and compares informal GLUE with a
formal Bayesian approach using the recently developed
differential evolution adaptive metropolis (DREAM) Mar-
kov Chain Monte Carlo (MCMC) scheme (Vrugt et al.
2008a, b). The DREAM algorithm has important advantages
over the shuffled complex evolution metropolis (SCEM-UA)
global optimization algorithm (Vrugt et al. 2003), and
maintains detailed balance and ergodicity which enables it to
provide an exact Bayesian estimate of uncertainty.

The remainder of this paper is organized as follows.
Section 2 provides a general overview of the inference
problem considered in this paper, and presents a formal
(DREAM) and informal (GLUE) Bayesian approach to
estimating uncertainty of model predictions. In Sect. 3, we
consider the application of these methods to hydrologic
modeling using the hydrologic model (HYMOD) conceptual
watershed model. In this section we are especially concerned
with inference of parameter and predictive uncertainty.
Finally, a summary with conclusions is presented in Sect. 4.

2 The inverse problem

Let us consider a model, f that simulates the response
Y = {yi,....yn} with length n of a real-world system for
measured boundary { and initial conditions é), using a
vector of d model parameters, 0 = {0,,...,0,}:

Y =£(0,(,¢) (1)

The model hypothesis is typically represented by a
deterministic or stochastic function f : ¢ ,(}S — Y closed by
the parameter vector 6 (Kavetski et al. 2006a). Note that in
typical time series analysis the influence of d) on the model
output diminishes with increasing distance from the start of
the simulation. In those situations, it is common to use a spin-
up period to reduce sensitivity to state-value initialization.

To establish whether f provides an accurate description of
the underlying system it is intended to represent, it is a
standard practice to confront the model-simulated
response with measurements of observed system behavior,
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Y = {J1,...,9.}. The difference between Y and Y defines
the vector of residuals:
&(0lY,{, @) = yi(01L, 4) -y

The closer the residuals are to zero, the better the model
represents the observational data. However, because of
errors in the observed initial and boundary (forcing)
conditions, (and hence (2) and (), structural inadequacies
in the model, errors in the output measurements, Y and
uncertainty associated with the correct choice of 0, the
residual values are not expected to go to zero.

The common approach that has historically developed is
to attempt to force the residual vector to be as close to zero
as possible by tuning the values of the parameters, without
considering forcing and structural model uncertainty as
potential sources of error. A measure that is commonly
minimized during parameter estimation is the sum of
squared residuals (SSR):

n
SSR(OY,{,¢) = Y _&(0]Y,{,¢)° (3)

i=1

f= L (2)

This is the standard least squares (SLS) formulation.
Various numerical optimization methods have been
developed during the past decades to efficiently minimize
this measure for d-dimensional parameter spaces (see e.g.,
Duan et al. 1992). Unfortunately, such algorithms only
provide an estimate of the best values of 6. It would also be
desirable to have an estimate of the underlying posterior
probability density function (pdf) of 6, p(0]Y, ¢, ¢). This
distribution will help assess the information content of the
data, and help generate predictive distributions of Y.

One approach to estimate uncertainty of parameters, state
variables, and model output prediction is through Bayesian
statistics coupled with Monte Carlo sampling. The Bayesian
paradigm provides a simple way to combine multiple prob-
ability distributions using Bayes theorem. In a hydrologic
context, this method is admirably suited for systematically
addressing and quantifying the various error sources within a
single cohesive, integrated, and hierarchical manner
(Kuczera and Parent 1998; Bates and Campbell 2001;
Engeland and Gottschalk 2002; Vrugt et al. 2003; Marshall
et al. 2004; Liu and Gupta 2007).

If we assume that the measurement errors in Eq. 2 are
mutually independent (uncorrelated) and Gaussian-distrib-
uted with a constant variance, af, the posterior pdf takes the
following form:

p(O1Y,{,9) H W
(01, ) —3)°
- (_ 4-30)

where c is a normalizing contact, and p(0) signifies the prior
distribution of 0. This distribution combines the data
likelihood (multiplicative part of Eq. 4) with a prior
distribution using Bayes theorem. It is convenient to
maximize the logarithm of the likelihood function (or log-
likelihood function) rather than the likelihood function itself;,
for reasons of both algebraic simplicity and numerical
stability; the same parameter values that maximize one also
maximize the other. The log-likelihood, ¢ of Eq. 4 is:

. 1
00,2, ¢) = —gln(Zn) " gln(oz) - 507

x ;(y,-«ﬂé, ¢) — ) (5)

The use of this formulation is convenient, but the
assumption of uncorrelated errors is not very realistic in
hydrologic modeling. The time series of residuals typically
exhibit considerable non-stationarity and autocorrelation.
These error characteristics need to be explicitly accounted
for to result in parameter and predictive uncertainty
estimates that can be considered coherent from a statistical
viewpoint.

One approach to at least partially account for correlated
errors is through use a first-order autoregressive (AR)
scheme of the residuals:

g=psi1+vi i=1,..,n (6)

where p is the first-order correlation coefficient, and
v ~ N, ¢2) is the remaining (unexplained) error with
zero mean and constant variance o2 The AR-1 corrected
time series of residuals is then:

5i(0v p|?v Ev (;5) = B,‘(O'?, Ev (;5) = Péi-1 (0|?7 61 (Ab) (7)

i=1,...,n

with gy = 0. Sorooshian and Dracup (1980) have shown
how to incorporate this AR-1 model into the formulation of
the log-likelihood function:

l (72" 1

€0, pI¥,8,¢) = —51n(2m) — 5 ,_—“pz—i(l—pf

x 6,2 (01Y,{, $)° .
X 25,(079'?,6»@2 (8)
i=2

Note that for p = 0, Eq. 8 automatically reduces to Eq. 5.
In the Bayesian approach we will assume Jeffrey’s prior for
o, and the uniform prior for p. The first-order AR
formulation of Eq. 8 explicitly accounts for autocorrelation
in the residuals, and thus the effect of model structural error.
However, Eq. 8 ignores potential error in forcing conditions.
Hence, C is only an approximation of the true forcing

conditions, {.
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Identification of different storm events
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Fig. 1 Illustrative example of how rainfall multipliers are assigned to
individual storm events. The values of these multipliers are estimated
simultaneously with the hydrologic model parameters by minimizing
the mismatch between observed and simulated catchment response. In

In a previous paper (Vrugt et al. 2008b), we have shown
how we can treat forcing error in hydrologic modeling by
assigning rainfall multipliers to each individual storm event
in the forcing time series. This follows the approach
introduced by (Kavetski et al. 2006a, b). Prior to calibra-
tion, individual storm events are identified from the
measured hyetograph and hydrograph. A simple example
of this approach is illustrated in Fig. |. Each storm, j =
1,...,Y is assigned a different rainfall multiplier y;, and
these scalar values are added to the vector of model
parameters 0 and p to be optimized:

0'2" 1 5

PP n 1 ; >
40, p,ulY, ¢) = —5In(2m) — 517 —5 =] = g]

x 0% (0, WY, ) 5072

v

n
X Zéi(0$pv“|Y7¢)2 (9)
i=2

Note that the individual storms are clearly separated in
time in the hypothetical example considered in Fig. 1. This
makes the assignment of the multipliers straightforward. In
practice, the distinction between different storms is
typically not that simple, and therefore information from
the measured hyetograph and streamflow data must be
combined to identify different rainfall events. It can be quite
difficult in practice to identify and quantify individual error
sources, because input, parameter and structural error are
likely to interact strongly through multiplication in Bayes
law and nonlinear processing of input errors by the model
necessarily leads to structured, non-stationary residuals
(Beven et al. 2008). Nevertheless, to improve hydrologic
theory through modeling, it is necessary that we attempt to
separate and quantify individual error sources. This will
help to find out what parts of the model can potentially be

improved.
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the example considered here Y =9 different rainfall evens are
identified and hence nine different multipliers, u;, j = 1,...,9 are used
to characterize forcing uncertainty within the formal Bayesian
approach

Unfortunately, in many hydrologic studies, the proba-
bility distribution defined in Eq. 9 cannot be derived
through analytical means nor by analytical approximation.
Iterative approximation methods such as Monte Carlo
sampling are therefore needed to generate a sample from
the posterior pdf. In the following two sections we discuss
two methods that have found widespread use in the field of
hydrology to estimate parameter and predictive distribu-
tions within a Bayesian context.

2.1 Generalized likelihood uncertainty estimation
(GLUE)

Simple assumptions about the error characteristics of the
residuals in Eq. 2 are convenient in applying statistical
theory but are not often borne out in the actual calibration
time series of residual errors which may show changing
bias, variance (heteroscedasticity), skewness, and correla-
tion structures under different hydrologic conditions (and
for different parameter sets). For linear systems it is known
that ignoring such characteristics, or wrongly specifying
the structure of the error model, will lead to bias in the
estimates of parameter values. There does not appear to be
a way around this problem without making some very
strong (and generally difficult to justify) assumptions about
the nature of the errors (Beven 2006).

The origins of the GLUE method lie in trying to deal
with uncertainty estimation problems for which simple
theoretical likelihood assumptions do not seem appropriate.
The GLUE methodology rejects the traditional statistical
basis for the likelihood function in favor of finding a set of
representations (model inputs, model structures, model
parameter sets, model errors) that are behavioral in the
sense of being acceptably consistent with the (non-error-
free) observations. To this end, it uses an informal
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likelihood measure to avoid over conditioning and exclude
parts of the model (parameter) space that might provide
acceptable fits to the data and be useful in prediction. Many
different informal measures have been used within the
context of GLUE. Of these, the inverse error variance,
introduced by Beven (1989) and Beven and Binley (1992),
is most commonly used to measure the closeness between
model predictions and observations:

(10)

e A -T
L (sSRO%LH)
L(BIY»quS) - (GZ) - ( n 2 )

where T is a parameter chosen by the user. Note that when
T = 0, every simulation will have equal likelihood and
when T — oo the emphasis will be placed on a single best
simulation, while the other solutions are assigned a negli-
gible likelihood. To estimate parameter and model output
uncertainty, the GLUE method works as follows:

1. Draw a sample of points ©® of size N using the
specified prior distribution, p(6).

2. Compute the likelihood L(€|Y,, $) of each point of
©,i=1,.,N.

3. Define a cutoff threshold to separate good solutions
from non-behavioral parameter combinations of ©.
Collect the k behaviorial solutions in D.

4. Normalize the likelihood values of the behavioral
solutions, i = 1,...k of D, L(D|Y, L, ¢) = g(p‘l?, ¢
)/ izt LID|Y,E, §) sothat T, L(D'[Y, {,¢) = 1.

5. Assign each output prediction Y', i = 1,..k of D,
probability L(D/|Y, {, ¢).

6. Sort the Y', i = I,....k with their corresponding prob-
abilities to create the pdf of the model output
prediction, and use these to generate uncertainty
intervals.

To summarize, a large number of runs are performed
for a particular model with different combinations of the
parameter values, chosen randomly from prior parameter
distributions. By comparing predicted and observed
responses, each set of parameter values is assigned a
likelihood value, i.e. a function that quantifies how well
that particular parameter combination (or model) simu-
lates the system. Higher values of the likelihood function
typically indicate better correspondence between the
model predictions and observations. Based on a cutoff
threshold, the total sample of simulations is then split
into behavioral and non-behavioral parameter combina-
tions. This threshold is either defined in terms of a
certain allowable deviation of the highest likelihood
value in the sample, or more commonly as a fixed
percentage of the total number of simulations. The
likelihood values of the retained solutions are then
rescaled to obtain the cumulative distribution function

(cdf) of the output prediction. The deterministic model
prediction is then typically given by the median of the
output distribution, and the associated uncertainty is
derived from the cdf, normally chosen at the 5 and 95%
prediction quantiles in most of the published GLUE
studies. The likelihood weights of the GLUE procedure
attempt to approximate and reflect all sources of error in
the modeling process and allow the uncertainties asso-
ciated with those errors to be carried forward into the
predictions. Note that the limits of acceptability approach
developed in Beven (2006) can be applied at every
single time step if required before combination into a
single likelihood weight.

Because of its conceptual simplicity and ease of
implementation, the GLUE method has found widespread
use. If used with a formal Bayesian likelihood function
such as Eq. 4, GLUE generally will result in very similar
estimates of parameter and predictive uncertainty as
Markov Chain Monte Carlo simulation through DREAM.
However, DREAM will have a much better efficiency in
finding “acceptable” models as it uses adaptive proposal
updating to search for high quality solutions. Use of a
simple uniform sampling distribution of model parameters
over a relatively large region, as typically done in GLUE,
can result in an algorithm that, even after billions of model
evaluations, may only have generated a handful of good
solutions (Iorgulescu et al. 2005), even if Latin Hypercube
sampling has been used.

Most applications of GLUE, however presented in the
hydrologic literature and beyond use an informal likeli-
hood function to distinguish between behavioral and non-
behavioral solutions (or models). An informal likelihood
function such as Eq. 10 does not properly account for
the number of measurements n used to condition the
parameter estimates. A small number of measurements in
Eq. 10 is considered as informative as a data set that
contains many more observations and spans a much
wider range of conditions. This is counter intuitive, but
is done to avoid over-conditioning and thus ensure that
parameter uncertainty reflects total uncertainty. Each
model implicitly carries along an error series that is
known exactly in calibration, and assumed to have
similar characteristics in prediction (evaluation). More-
over, the cutoff threshold introduced in step (3) to
separate behavioral from non-behavioral is entirely sub-
jective, and not based on proper statistical arguments.
But if it is accepted that equifinality, input and model
structural errors are important issues, then GLUE is a
useful working paradigm to avoid overconditioning and
to summarize parameter and predictive distributions.
Note that GLUE can be used with sequential updating
which should further reduce chances of overfitting
(Beven et al. 2008).
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2.2 Markov Chain Monte Carlo Sampling
with DREAM

A more sophisticated and elegant approach to estimate the
posterior pdf of the parameters and model output prediction
is MCMC simulation. Not only has this methodology a
proper statistical foundation, but it is also more efficient
than GLUE in finding behavioral models. Unlike GLUE,
MCMC simulation uses a formal likelihood function,
appropriately samples the high-probability-density region
of the parameter space, and separates behavioral from non-
behaviorial solutions using a cutoff threshold that is based
on the sampled probability mass, and thus underlying
probability distribution. Vrugt et al. (2008a, b) have
recently presented a novel adaptive MCMC algorithm to
efficiently estimate the posterior pdf of parameters in
complex, high-dimensional sampling problems. This
method, entitled DREAM, runs multiple chains simulta-
neously for global exploration, and automatically tunes the
scale and orientation of the proposal distribution during the
evolution to the posterior distribution. This scheme is an
adaptation of the SCEM-UA global optimization algorithm
(Vrugt et al. 2003) and has the advantage of maintaining
detailed balance and ergodicity while showing excellent
efficiency on complex, highly nonlinear, and multimodal
target distributions (Vrugt et al. 2008a). The code of
DREAM is given below. For convenience, we assemble the
parameters 0, p and p into a single vector Xx.

1. Draw an initial population X of size N, typically N = d
or 2d, using the specified prior distribution. The
symbol d signifies the number of parameters to be
estimated.

2. Compute the density p(xi|Y,¢) of each point of X,
i = 1,...,N using the antilog of Eq. 9.

FORi « 1,...,NDO (CHAIN EVOLUTION)

3. Generate a candidate point, z' in chain i,

7 =x+y(8)- (Zx’U ix’(")) (11)

n=1
where O signifies the number of pairs used to gener-
ate the proposal (candidate point), and r(j), r(n) € {1,...,N};
r(j) # r(n) # i. The value of y depends on the number of
pairs used to create the proposal. By comparison with
random walk metropolis, a good choice for y=
2.38/v/20d,r, with deis = d, but potentially decreased in
the next step.
4. Replace each element, j = 1,....d of the proposal z
with x; using a binomial scheme with crossover
probability CR,
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; {x’: ifUL1—=CR, def=des—1 .
zZ.= : . j=Ly.ed
z! otherwise

(12)

where U € [0,1] is a draw from a uniform distribution.
5. Compute p(z'|Y,¢) and accept the candidate point
with Metropolis acceptance probability, a(x',z'),

alx, 2) { min(SE54 1) ifp(xI¥,4) > 0 (13)
if p(x|Y, ) =0

6. If the candidate point is accepted, move the chain,
x' = z'; otherwise remain at the old location, x

END FOR (CHAIN EVOLUTION)

7. Remove potential outlier chains using the inter-
quartile-range (IQR) statistic.

8. Compute the Gelman-Rubin, Ry, convergence
diagnostic.

9. If Ryu <12, stop, otherwise go to CHAIN
EVOLUTION.

The method starts with an initial population of points to
strategically sample the space of potential solutions. The
use of a number of individual chains with different starting
points enables dealing with multiple regions of highest
attraction, and facilitates the use of a powerful array of
heuristic tests to judge whether convergence of DREAM
has been achieved. The members of X are used to globally
share information about the progress of the search of
the individual chains. Hence, at every individual step, the
points in X contain the most relevant information about the
search. This information exchange enhances the surviv-
ability of individual chains, and facilitates adaptive
updating of the scale and orientation of the proposal dis-
tribution. This series of operations results in a MCMC
sampler that conducts a robust and efficient search of the
parameter space. Convergence of the individual chains is
monitored using the R-statistic of Gelman and Rubin
(1992). Detailed balance and ergodicity of DREAM have
been proved in Vrugt et al. (2008a).

We did not add the error variance a2 to the parameter
vector x. The reason is that the posterior distribution of o2
given the other parameters is known to be inverse chi-
square with n degrees of freedom and scale s with

s2=%<8f(1— 2)+2":5,?). (14)

We can therefore update o2 after step 6 in the DREAM
algorithm by Gibbs sampling, as follows. We draw a value
z from a chi-squared distribution with n degrees of freedom
and calculate (02 =252,
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2.3 Predictive inference using MCMC simulation
with DREAM

The posterior pdf of the model parameters derived with
DREAM contains all required information to summarize
predictive uncertainty. An estimate of the predictive
distribution for f(x,¢) is obtained by evaluating the
model output, Y for each ¥ of J draws derived with
DREAM after convergence has been achieved to a
stationary  distribution. = The  so-obtained  values
[Yj, Jj = 1,...,J} are summarized in the desired way, e.g.
by calculating the 2.5 and 97.5% percentiles of each
individual model prediction, y', i = 1,...,n. This predictive
distribution only includes the effect of parameter
uncertainty. The remaining (unexplained) error is
assumed to be additive and can be summarized as
follows.

For each model outcome, {Y/, j = 1,...,J} the residual
error & ~ N(O,(o'f)j/(l—(pz)’)) is added to the prediction.
The desired output percentiles can be summarized in a
similar way as described in the previous paragraph.
A slightly more efficient approach is to draw the out-
come variable y for each x/ directly from a Student
distribution with n degrees of freedom, mean f(x/,¢)
and variance s2/(1—(p2)’), where s° is calculated for the
current draw using Eq. 14. An even more precise
approach for obtaining the 95% prediction uncertainty
intervals including parameter, model and measurement
error is presented in the Appendix.

3 Case study

We compare formal (DREAM) and informal (GLUE)
Bayesian inference to parameter and model output uncer-
tainty estimation by application to streamflow forecasting
using the HYMOD conceptual watershed model. This
study is used to demonstrate that formal and informal
Bayesian approaches can yield very similar estimates of
total predictive uncertainty.

3.1 Rainfall-runoff modeling

In this study, we use the HYMOD conceptual watershed
model which is schematically presented in Fig. 2. HYMOD
is a hierarchical and parsimonious rainfall-runoff model
whose parameters are thought to vary between watersheds.
This model has been used in a number of studies in the past
and has five parameters that need to be specified by the user
(Table 1). Inputs to the model include mean areal
precipitation (MAP), and potential evapotranspiration
(PET), while the outputs are estimated channel inflow. The
HYMOD model has been discussed extensively in many
previous papers that study streamflow forecasting and
automatic model calibration (Boyle 2000; Wagener et al.
2001; Vrugt et al. 2003). Details of the model can be found
therein.

To compare GLUE and DREAM we use historical data
from the Leaf River (1,950 kmz) and French Broad
(767 kmz) watersheds in the USA. The data consists of

Fig. 2 Schematic Rainfall
representation of the HYMOD PET
conceptual watershed model
c t Alpha
bGXp Rs RS RS
S Streamflow
° — -
A

Table 1 Prior ranges and i < :
description of the hydralogic Parameter Description Minimum Maximum
model.(HYMOD.) Rarameters Cinax (mm) Maximum storage in watershed 1.00 500.00
and rainfall multipliers . . . .

bexp Spatial variability of soil moisture storage 0.10 2.00

Alpha Distribution factor between two reservoirs 0.10 0.99

R; (days) Residence time slow flow reservoir 0.001 0.10

R, (days) Residence time quick flow reservoir 0.10 0.99

p First-order correlation coefficient —1.00 1.00

g = Liee X Rainfall multipliers 0.25 2.50

@ Springer
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MAP (mm/day), PET (mm/day), and streamflow (m3/s).
For both catchments 5 years of data is used for model
calibration, whereas the remainder of the data is used for
evaluation purposes. The calibration data set consists of
October 1, 1953 to September 30, 1958 for the Leaf River
and spans the period of October 1, 1954 to September 30,
1959 for the French Broad river. In this 5-year calibration
time series, a total of Y = 57 and Y = 59 storm events are
identified for the Leaf River (October 1, 1954-September
30, 1959) and French Broad (October 1, 1953-September
30, 1958) watersheds, respectively. This results in a total of
d = 63 (Leaf River) and d = 65 (French Broad) parame-
ters to be estimated within the formal Bayesian inference
procedure using DREAM. The upper and lower bounds
that define the prior uncertainty ranges of the HYMOD
model parameters, first-order correlation coefficient and
rainfall multipliers are given in Table |. These ranges are
based on previous work (HYMOD parameters), mathe-
matics (correlation coefficients) or analysis of rain-gauge
data (multipliers) to make sure that the parameter values
remain hydrologically realistic.

To approximate the posterior pdf of the HYMOD model
parameters, storm multipliers and first-order correlation
coefficient in the likelihood function of Eq. 9, a total of
2,000,000 HYMOD model evaluations are performed with
DREAM using uniform prior ranges over the hypercube

with a value of 7 = 1 in the informal likelihood function of
Eq. 10 and cutoff threshold in step (3) as the best 1% of the
sample. These are rather standard settings with GLUE and
in the present context will result in a total of & = 1,000
different behavioral solutions present in D. Similar results
with GLUE and DREAM are obtained for larger sample
sizes.

To stabilize the total error variance, 0'3 and reduce
heteroscedasticity we use a Box—Cox transformation (Box
and Cox 1964) of the simulated and measured streamflow
data:

oY, i) = {(Y"' —1)/i ifi#0

In(Y) ifi=0 (15)

using £ = 0.3, which is consistent with previous studies
(Misirli et al. 2003; Vrugt et al. 2003, 2006).

Figure 3 presents histograms of the HYMOD model
parameters using the formal (top panels) and informal
(bottom panels) Bayesian inference considered here for
the Leaf River streamflow time series. The x-axis in each
graph is fixed to the prior range of each individual
parameter, to facilitate pairwise comparison of the results
of the formal and informal Bayesian approaches. For
DREAM, the last 20% of the samples in each individual
chain are used to compute and summarize the marginal
densities, whereas for GLUE the marginal frequencies

specified in Table 1. We use N = 100 different Markov ~ of the k = 1,000 different behavioral solutions are
chains. In GLUE, a sample size of N = 100,000 is used  plotted.
Formad B ayesian Approach Using DREAM
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Fig. 3 Histograms of the HYMOD model parameters inferred using a
formal likelihood function (top panels a—e) which explicitly considers
input, parameter, and model structural error, and informal likelihood
function (bottom panels f-j) that maps all uncertainty onto the
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parameter space. The model parameters are much better identifiable
when using a formal Bayesian approach for statistical inference and
analysis. Is equifinality the outcome of a weak inference procedure
that lumps all uncertainty onto the model parameters?
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The histograms in the top panels show that formal
Bayesian inference results in parameter distributions that
are well identified and encompass only a relatively small
region interior to the prior uncertainty bounds. Note that
the recession parameters of the quick and slow flow tanks
are particularly well defined with very small dispersion
around the mode of their respective distributions. Hence,
this is relative to the prior uncertainty ranges. Nevertheless,
these results demonstrate that the explicit treatment of
forcing data error and model structural inadequacies
through the use of d = 58 additional parameters (Y = 57
storm multipliers and one first-order correlation coeffi-
cient) in the definition of the likelihood function in Eq. 9
does not negatively affect the identifiability of the
HYMOD model parameters. They remain well calibrated
with relatively tight uncertainty bounds, and small corre-
lation among the individual parameters (not shown). On the
contrary, using an informal Bayesian approach with GLUE
results in parameter distributions that are much wider and
almost cover the entire prior defined hypercube of the
individual parameters. Implicit projection of forcing and
structural uncertainty onto the HYMOD model parameters
gives rise to what Beven et al. in a series of papers since
1992 have called equifinality (Beven 1993). Qualitatively

similar findings, as presented here, are also found for the
French Broad watershed.

Although not further demonstrate herein, the optimized
distributions of the first-order correlation coefficient are
approximately Gaussian with 95% uncertainty bounds
ranging between (.76 and 0.85 for the Leaf River and 0.39
and 0.48 for the French Broad watershed. These values of p
confirm the presence of significant autocorrelation between
the error residuals, and establish a clear need for explicit
modeling of the (non-random) input and model structural
errors. The finding that p is relatively well defined is
encouraging as it provides support for the claim that within
the context of our assumptions model structural and input
error are identifiable from the observed streamflow time
series. Separating these two error sources is necessary to be
able to understand if, and what parts of, the model can be
improved. This is the key to improving hydrologic theory.

To provide more insights into the values of the rainfall
multipliers, consider Fig. 4, which presents boxplots of the
sampled rainfall multipliers for the Leaf River (top panel)
and French Broad (bottom panel) catchments. These box-
plots are created using the last 200,000 samples generated
with DREAM in the N = 100 parallel chains. The marginal
pdfs of the multipliers vary widely between individual
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Fig. 4 Marginal posterior distribution of the rainfall multipliers for
the a Leaf River, and b French Broad watersheds. These results are
derived with DREAM using a total of 2,000,000 function evaluations.

Stom event

The solid black lines indicate no adjustment to the observed rainfall
depths with multiplier values of 1 across both plots
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storm events. Some events are very well defined, while
others show considerable uncertainty. For instance, com-
pare the boxplots of 146 and 47 for the Leaf River, and p4
and g5 for the French Broad watershed. These adjacent
storms differ substantially in their posterior width, but
exhibit approximately similar mean values. The overall
mean posterior value of the storm multipliers is 7t = 0.99)
for the Leaf River and 1 = 0.93 for the French Broad
watershed. This shows that, on average our inferred rainfall
from the streamflow data is in close correspondence with
the observed rainfall amounts from the rain-gauge data.
Detailed analysis further demonstrates that the rainfall
multipliers exhibit small temporal autocorrelation, and
show no obvious time or seasonality pattern. Furthermore,
the d-dimensional correlation matrix of the posterior
demonstrates that correlation among the multipliers is
small. This confirms our earlier finding that observed daily
streamflow data contain sufficient information to warrant
the identification of an additional Y =57 and Y = 59
storm multipliers, simultaneous with the five HYMOD
model parameters and first-order correlation coefficient.
Most of the storm multipliers are clustered in the
vicinity of 1 for both catchments. This illustrates that the
measured rainfall is on average unbiased and generally
consistent in pattern and depth with the estimated rainfall
record derived from the streamflow data. This is an
important diagnostic and provides support for the claim

that the rain-gauge data, albeit having a very small spatial
support, provide a good proxy of whole-catchment pre-
cipitation for both watersheds.

Up to now, we have only discussed the parameter dis-
tributions as a main interest of the Bayesian inference,
without recourse to examining the predictive uncertainty of
the HYMOD model. Figure 5 illustrates how the marginal
posterior pdf of the parameters (p(x|Y, }): DREAM) and
behavioral solutions (D: GLUE) translates into 95%
streamflow predictive uncertainty for a representative
portion of the calibration (left column) and evaluation
(right column) period for the Leaf River watershed. In the
case of DREAM (top panels), the 95% prediction uncer-
tainty of the HYMOD model predictions due to parameter
uncertainty is indicated with the dark gray region, whereas
the remaining prediction error is represented with the light
gray region. For GLUE (bottom panels) only total error
(due to parameter uncertainty) is assessed, and the
streamflow uncertainty ranges denote 95% prediction
quantiles.

The HYMOD model forecasts generally track the
streamflow observations very well, especially when using
the formal Bayesian inference. This is to be expected
because individual rainfall events can be perturbed in their
precipitation amounts to better match the hydrograph.
Qualitatively, there is a strong agreement between the
estimates of streamflow prediction uncertainty derived with

Formd B ayesian Approach Using DREAM: Ledf River Watershed
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Fig. 5 Streamflow prediction uncertainty ranges derived with
DREAM (top panels) and GLUE (bottom panels) for a representative
portion of the calibration (left column) and evaluation period (right
column) for the Leaf River watershed. In each DREAM graph, the
dark gray region represents the 95% confidence intervals of the
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uncertainty. For GLUE the 95% prediction quantiles are presented.
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DREAM and GLUE, although the streamflow ranges of
DREAM are slightly smaller and provide a better coverage
at various rainfall events. For instance, consider the three
storm events in the evaluation period between days 185 and
220. The informal Bayesian approach severely underesti-
mates the actual streamflow data because error in rainfall is
not explicitly considered within GLUE. This is an inter-
esting result, because GLUE has often been criticized in
the literature for grossly overestimating the actual uncer-
tainty observed in the calibration data. Thus, GLUE can
significantly underestimate total predictive uncertainty
when input errors are large.

The formal Bayesian approach is less prone to errors in
the measured forcing data, because these errors are
explicitly considered through MCMC. When using
DREAM, parameter uncertainty appears to be a rather
small contribution to total uncertainty, with the exception
of certain rainfall events during the evaluation period. This
is because of incomplete knowledge of the rainfall multi-
pliers outside the calibration period. These multipliers are
assigned prior to each individual storm event by drawing
from a specified probability distribution. The properties of
this distribution are inferred using the calibration stream-
flow time series. How this is done is discussed below.

Figure 6 presents a scatter plot of the standard deviation
of the rainfall multipliers as a function of the observed
rainfall for the 5-year calibration period of the (a) Leaf
River, and (b) French Broad watersheds. The standard
deviation of the multipliers for each individual rainfall
event is computed using the last 25 samples generated in
each individual chain. This results in a total of J = 2,500
draws of multipliers from the posterior distribution. Both
scatter plots depict a strongly nonlinear hyperbolic rela-
tionship between the actual measured precipitation and the
standard deviation of the multipliers. Low precipitation
amounts are generally associated with relatively high

uncertainty, whereas higher rainfall amounts appear to be
better defined with smaller variation among the multipliers.
This finding is consistent with the recent work by Villarini
and Krajewski (2008) who, for the Brue catchment in
Southwest England, have shown that the standard deviation
of the spatial sampling error decreases with increasing
rainfall intensity. Note that we arrive at this conclusion
based on the observed streamflow data only. This high-
lights the strength of a (formal) Bayesian approach that
disentangles various error sources. To further benchmark
the reasonableness of the rainfall error characteristics in
Fig. 6, future work should include analysis of the spatial
variability of rain-gauge measurements in both watersheds,
as well as a comparison of the optimized rainfall depths
against radar data. This is beyond the scope of the current
paper.

The dotted black lines in Fig. 6a and b present the
average standard deviation, ¢, of all values of the multi-
pliers. This information, albeit a bit crude is used to
generate an ensemble of rainfall records during the evalu-
ation period. To this end, we first draw 2,500 different
rainfall multipliers for each individual storm event in the
evaluation period of both watersheds using a Gaussian
distribution with mean nu, and standard deviation
6, N(#i, 0,). Using the information from Figs. 4 and 6, we
use 7 =0.99 and ¢, = 0.18 for the Leaf River, and i =
0.93 and 6, = 0.13 for the French Broad watershed. We
then combine each of these 2,500 multiplier vectors for
both watersheds with the observed rainfall record, which
results in an ensemble of 2,500 different rainfall hyeto-
graphs for the evaluation period for the Leaf River and
French Broad. Finally, each rainfall hyetograph is assigned
a posterior combination of the HYMOD model parameters
and first-order correlation coefficient derived from cali-
bration to create an ensemble of 2,500 different streamflow
hydrographs for both data sets. Note that by setting 7 equal

Fig. 6 The DREAM inferred %7 (" A) Loat River Watershed
standard deviation of the rainfall

multipliers as a function of the 08

observed rainfall for the a Leaf #

River, and b French Broad i

watersheds. The dorted black
line denotes the average
standard deviation that is used
to generate ensembles of
precipitation records during the
evaluation period

Std. of Rainfall Multipliers
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to the overall posterior mean of the multipliers found
during the calibration period, any potential bias in the
measured rain gauge data is removed.

Figure 7 presents streamflow prediction uncertainty
bounds derived with the formal (top row) and informal
(bottom row) Bayesian approaches for the French Broad
watershed. The left column depicts the results for the cal-
ibration period, whereas the right two plots correspond to
the evaluation period. The results presented here are
qualitatively very similar to those previously presented in
Fig. 5 for the Leaf River watershed. The HYMOD pre-
dictions generally provide a good fit to the observed
streamflow time series, and the total uncertainty ranges
derived with DREAM and GLUE show a relatively close
correspondence. Notice, however that GLUE has a ten-
dency to overestimate the actual streamflow uncertainty
during rainfall events. This is clearly visible in the evalu-
ation period between days 160 and 180. Although, the
formal and informal Bayesian approaches used here differ
fundamentally in their underlying philosophy and repre-
sentation of error, both methods receive quite similar
performance in terms of ensemble spread and forecast.

This is further demonstrated in Table 2 that summarizes
the probabilistic properties of the streamflow ensemble
derived with the formal and informal Bayesian analyses
considered herein. The coverage (%) measures the per-
centage of streamflow observations contained in the 95%

Forma Bayesian Approach Using DR EAM: French Brood Watershed

Table 2 Coverage (%) and spread (m3/s) of the 95% streamflow
prediction ranges associated with the total uncertainty estimated with
DREAM (consisting of parameter and remaining residual error) and
GLUE (parameter error only) for the Leaf River and French Broad
watersheds. A distinction is made between the calibration and eval-
uation periods

Method Leaf River watershed French Broad watershed
Coverage Spread Coverage Spread
Calibration period
DREAM  94.2 18.2 94.8 15.9
GLUE 76.9 20.6 88.4 17.1
Evaluation period
DREAM 922 30.3 93.2 18.4
GLUE 72.1 30.9 88.8 22.8

uncertainty bounds (DREAM) or 95% prediction quantiles
(GLUE), whereas the spread (m%/s) quantifies the width of
the prediction uncertainty intervals. A significant departure
from a 95% coverage would indicate that the predictive
uncertainty is either under- or overestimated, and would
call into question the validity of the modeling approach for
performing accurate probabilistic streamflow forecasting.
The results presented in this Table highlight a number of
interesting results. The ensemble spread derived with the
formal Bayesian approach is statistically coherent with a
coverage of the streamflow observations that ranges
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Fig. 7 Streamflow prediction uncertainty ranges derived with
DREAM (top panels) and GLUE (bottom panels) for a representative
portion of the calibration (left column) and evaluation period (right
column) for the French Broad watershed. In each DREAM graph, the
dark gray region represents the 95% confidence intervals of the
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output prediction due to parameter uncertainty, whereas the light gray
region represents the additional 95% ranges of the prediction
uncertainty. For GLUE the 95% prediction quantiles are presented.
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between 92 and 95% at the 95% prediction level. This is an
encouraging result, because it illustrates that our charac-
terization of rainfall error during the evaluation period is
consistent with the statistical properties of the streamflow
observations. On the contrary, the prediction quantiles
derived with GLUE underestimate the actual uncertainty in
the streamflow measurements with a coverage that ranges
between 72 and 89%. This seems counter-intuitive because
the widths of the streamflow uncertainty bounds are, on
average, about 10% larger with GLUE than with DREAM.
The predictive pdf generated with DREAM is simply
sharper and encompasses a larger percentage of the
streamflow observations. This is a desirable characteristic
for streamflow forecasting.

The results presented here warrant the conclusion that
formal and informal Bayesian methods can receive very
similar estimates of total predictive uncertainty. This is a
rather unexpected result, considering that both methods
rely on completely different philosophies and mathematical
rigor. The formal Bayesian approach has its roots within
classical statistical theory and applies formal mathematics
and MCMC simulation to infer parameter and predictive
distributions. The informal Bayesian approach (GLUE)
makes use of subjective likelihood measures or probabili-
ties and uses simple Monte Carlo sampling to estimate
parameter and predictive uncertainty.

If the interest is in estimating total predictive uncer-
tainty, there are several advantages in using GLUE over

Formd B ayesian Approach Using DREAM
; (B)

more formal Bayesian approaches. The method is very easy
to implement and use, and is computationally efficient. For
instance, in the examples considered here, GLUE is about
20 times more efficient than MCMC simulation with
DREAM. The main disadvantage of GLUE, however is
that it does not attempt to separate the effects of forcing,
parameter and structural error on total predictive uncer-
tainty. This makes it impossible to pinpoint what elements
of the model are most uncertain and require improvement.
Rather, the user of GLUE is left with a total estimate of
uncertainty.

Figure 8 presents sample autocorrelation functions of
the residuals for the evaluation period using the formal (top
panels) and informal (bottom panels) Bayesian approaches
for statistical inference of model parameter and output
predictions. The mean posterior residuals are used. Similar
to our previous graphs, the left two panels illustrate the
results for the Leaf River, whereas the right two panels plot
the results for the French Broad watershed. Note that the
results are quite similar for both watersheds. Significant
autocorrelation between the error residuals at the first lag
(between 0.50 and 0.75) is found for GLUE. In the case of
DREAM, the AR-1 model reduces the temporal correlation
between the residuals.

Finally, Table 3 presents summary statistics of the one-
day-ahead streamflow forecasts of the HYMOD model
using the formal (DREAM) and informal (GLUE) Bayes-
ian analyses for the Leaf River and French Broad
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Fig. 8 Autocorrelation functions of the residuals of the mean
ensemble streamflow forecasts and the verifying streamflow obser-
vations for the Leaf River (left column) and French Broad (right
column) watersheds during the evaluation period. The top panels

lag

show the results using a formal Bayesian inference with DREAM,
whereas the bottom results correspond to GLUE. The dotted lines in
each of the individual panels denote the 95% confidence intervals for
a series of uncorrelated and normally distributed residuals
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Table 3 Summary statistics of the streamflow forecasts for the Leaf River and French Broad watersheds using formal (DREAM with MCMC

simulation) and informal (GLUE) Bayesian inference

Leaf River watershed

French Broad watershed

Calibration Evaluation

Calibration Evaluation

WY (1954-1958) WY (1959-1963)

WY (1953-1957) WY (1958-1962)

RMSE CORR BIAS RMSE CORR BIAS RMSE CORR BIAS RMSE CORR BIAS
DREAM 13.46 0.95 =172 28.38 0.93 1.36 6.72 0.94 -1.33 7.83 0.93 0.09
GLUE 22.05 0.88 —4.21 34.82 0.91 —4.88 7.37 0.92 0.52 7.86 0.93 5.69

Units of RMSE, CORR, and BIAS are m*/s, —, and %, respectively

RMSE root mean square error, CORR correlation coefficient, BIAS bias

watersheds. The statistics correspond to the mean ensemble
forecast and distinguish between the calibration and eval-
uation period. The results in this Table show that the
formal Bayesian approach consistently receives the best
performance. This is not very surprising for the calibration
period because rainfall and model structural inadequacies
are explicitly inferred with the storm multipliers and first-
order autoregressive (AR-1) scheme. This allows the HY-
MOD model to more closely track the streamflow
observations. Yet, the difference in performance between
the formal and informal Bayesian approach is generally
smaller for the evaluation period. This is because our
knowledge of precipitation multipliers for future events is
at best incomplete. The difference in performance between
DREAM and GLUE is most significant for the Leaf River,
whereas a minor difference in RMSE, CORR and BIAS is
found for the French Broad watershed. The rainfall record
for the French Broad is structurally more consistent with
the observed streamflow data, and cannot be improved
much with storm multipliers. Indeed, their values reside in
the vicinity of 1.

We like to emphasize that the findings presented in this
paper are insensitive to the choice and length of the cali-
bration time series. In all our calculations presented in this
paper, we use 7 =1 in Eq. 10. This is a standard setting
that is most often used in GLUE applications. Larger val-
ues of T will increase the peakiness of the informal
likelihood function in Eq. 10 and therefore reduce the
parameter and output prediction (streamflow) uncertainty.

4 Summary and conclusions

In recent years, a strong debate has emerged in the
hydrologic literature whether an uncertainty framework
should have its roots within a proper statistical (Bayesian)
context, or whether such a framework should implement
informal measures and procedures to extract the informa-
tion from the calibration data and summarize parameter
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and predictive distributions. The goal of this paper was to
establish some common ground between these two differ-
ent approaches, and compare GLUE with the more formal
DREAM algorithm. This method implements Bayesian
statistics, and uses state-of-the-art MCMC simulation to
approximate the posterior probability distribution of the
model parameter and output predictions. Our results dem-
onstrate that:

e Formal Bayesian approaches that make very strong
assumptions about the nature of the statistical proper-
ties of the residuals can generate very similar estimates
of total predictive uncertainty as informal Bayesian
approaches (such as GLUE used herein) that are based
on a completely different philosophy of error represen-
tation. The debate that currently exits in the hydrologic
literature between supporters of statistically coherent
approaches for uncertainty estimation and champions
of less formal approaches therefore might need serious
reconsideration.

e The Bayesian method considered in this paper, has a
somewhat smaller spread of the streamflow prediction
uncertainty bounds than GLUE and better coverage of
the streamflow observations.

e The GLUE procedure can reveal when no model can
reproduce the observations given the available input
data without compensation by a statistical error model
or input adjustments. This is an important part of the
learning process in hydrological modeling since it
requires that model structure, input data or observations
be questioned.

e Parameter uncertainty is made especially large in most
GLUE applications because it includes implicit repre-
sentation of model error. One should therefore be
particularly careful in drawing conclusions about
equifinality.

e The inability of GLUE to separate between individual
error sources impairs our ability to identify structural
deficiencies in models.
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e Formal Bayesian approaches attempt to disentangle the
effect of input, output, parameter and model structural
error, which is key to improving our hydrologic theory
of how water flows through watersheds. Note, however
that formal Bayes law suffers from interaction between
these individual error sources, which makes statistical
inference difficult, and therefore results should be
carefully interpreted.

e Low precipitation amounts are generally associated
with relatively high uncertainty, whereas higher rainfall
events are well defined with relatively small variation
among the multipliers. This finding, made possible
through analysis of streamflow data with a formal
Bayesian approach, is consistent with papers in the
literature that have analyzed the spatial variability and
measurement error of rain-gauge data.

The source codes of GLUE and DREAM are written in
MATLAB and can be obtained from the first author
(vrugt@1lanl.gov) upon request.
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Appendix

Calculation of predictive uncertainty from MCMC
simulation

Assume that for each MCMC draw ¥’ the distribution of
each model outcome y;, i =1,.,n is F and that
F(c) = Pr(y < clx’) can be calculated exactly for any value
of ¢. For example, from the MCMC runs using Eq. 9 and
AR-1 normally distributed model and measurement error
as in Eq. 6, F is a Student distribution #,(z, ¢%) with v = n,
i=f®, ) and o = s*/(1—p?) with s*> in Eq. 14. Now
Pr(y < c) can be estimated from the / MCMC draws using
the average of Pr(y < clx’). To estimate a 100a% percentile
we thus need to find ¢ such that:

J
;ZPr(y<c|xj) =a (16)
j=1

This can be done numerically by a root-finding
algorithm. A 95% confidence interval is constructed
by calculating the 25 and 97.5% percentile,
respectively.
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