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Quantum thermodynamic cycles and quantum heat engines (II) 

H. T. Quan l 

ITheoretical Division, MS 8213, Los Alamos National Laboratory, Los Alamos, NM, 87545. U.S.A. 

We study the quantum mechanical generalization of pressure or force, and then we extend the classical ther­
modynamic isobaric process to quantum mechanical system. Based on these efforts, we are able to study the 
quantum version of thermodynamic cycles that consist of quantum isobaric process, such as Brayton cycle and 
Diesel cycle. We also consider the implementation of quantum Brayton cycle and quantum Diesel cycle with 
some example systems, such as single particle in 10 box and single-mode radiation field. These studies lay the 
microscopic (quantum mechanical) foundation for Szilard-Zurek single molecule engine. 

PACS numbers: 05.90.+m, 05.70.-a, 03.65.-w, 51.30.+i 

I. INTRODUCTION 

Quantum thermodynamics is the study of heat and work 
dynamics in quantum mechanical systems [1]. In the extreme 
limit of small systems with only a few degrees of freedom, 
both the small size and quantum effects influence the thermo­
dynamic properties dramatically [2-4]. The interplay between 
thermodynamics and quantum physics has been a interesting 
research topic since 19508 [5]. In recent years, with the devel­
opments of nanotechnology and experimental technique, the 
study of the interface between quantum physics and thermo­
dynamics begins to attract more and more attention [7]. Stud­
ies of quantum thermodynamics not only have important po­
tential applications in nanotechnology and quantum informa­
tion processing, but also bring new insights onto some funda­
mental problems of thermodynamics, such as Maxwell's de­
mon and the universality of the second law [6]. Among all 
the studies of quantum thermodynamics, a central concern is 
to make quantum mechanical extension of classical thermo­
dynamic processes and cycles [8]. 

It is well know that in classical thermodynamics, there 
are four basic thermodynamic processes: adiabatic process, 
isothermal processes, isochoric process, and isobaric process 
[9]. These four processes correspond to constant entropy, con­
stant temperature, constant volume, and constant pressure, re­
spectively. From these four basic thermodynamic processes, 
we can construct all kinds of thermodynamic cycles, such as 
C_arnot cycle, Otto cycle, Brayton cycle, et a1 [10]. Among 
all the four kinds of basic thermodynamic processes, quan­
tum version of adiabatic process - quantum adiabatic process 

has been extensively studied ever since the born of quan­
tum mechanics, while no attention has been paid to the quan­
tum mechanical generalization of the remaining three basic 
thermodynamic processes for decades. In recent years the 
development of quantum thermodynamics renews the inter­
ests of quantum thermodynamics processes. In a recent paper 
[8J, one (HTQ) of us and collaborators systematically study 
the quantum mechanical generalization of the isothermal and 
the isochoric process. Base on these studies, the properties 
of quantum Carnot cycle and quantum Otto cycle are clari­
fied. Numerous studies on other quantum thermodynamic cy­
cles are also reported [IIJ. However, as to our best knowl­
edge, the quantum mechanical generalization of isobaric pro­
cess has not been studied systematically so far. Probably, the 

lack of the consideration of quantum isobaric process is due 
to the fact that "pressure" (force) [12] is not a well defined 
observable in a quantum mechanical system. Because of the 
short of a well defined quantum isobaric process, the quan­
tum thermodynamic cycles that consist of quantum isobaric 
process, such as quantum Brayton cycle and quantum Diesel 
cycle, are not well studied. 

In this paper, we will focus on the study of the quantum 
isobaric process [10] and its related quantum thermodynamic 
cycles. We will begin with the definition of "pressure" for 
an arbitrary quantum system, and then generalize the classical 
isobaric process to quantum mechanical system. After that we 
successfully establish the complete mapping between four ba­
sic thermodynamic processes and their quantum counterpart. 
Based on these generalizations of thermodynamic processes, 
we are able to study an arbitrary thermodynamic cycle con­
structed by any of these four thermodynamic processes. As an 
example, we will discuss the Brayton cycle and Diesel cycle 
and compare their properties with their classical counterpart. 
We notice that some discussions about quantum Brayton cycle 
have been reported before [13]. Nevertheless, we found that 
their definition of pressure is ambiguous, and in their studies 
they cannot bridge the quantum and classical thermodynamic 
cycles. On the contrary, we will see that our definition of pres­
sure for a quantum system has clear physical implication and 
our study bridges the thermodynamic cycles for quantum and 
classical system. Comparisons between these quantum ther­
modynamic cycles and their classical counterpart enable us to 
extend our understanding of the thermodynamics at the inter­
face ofclassical and quantum physics. This paper is organized 
as follows: In Sec. II, we define microscopically "pressure" 
for a quantum mechanical system and study quantum mechan­
ical generalization of isobaric process; in Sec. III, we study 
quantum Brayton cycle and study how the efficiency of Bray­
ton cycle bridges quantum and classical thermodynamic cy­
cles; in Sec. N we study quantum Diesel cycle in comparison 
with their classical counter part; Sec. V is the remarks and 
conclusion. 
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FIG. I: Schematic diagram of pressure in quantum mechanical sys­
tem (single particle in ID box). One wall (A) of the square well is 
fixed, while the other one (B) is movable. The force acting on the 
wall B by the quantum system can be calculated from Eq. (3) 

II. QUANTUM ISOBARIC PROCESS 

A. Pressure in quantum-mechanical system 

In order to study quantum isobaric process, we must first 
generalize pressure to an arbitrary quantum mechanical sys­
tem. Let us recall that in some previous work [8, 14], heat and 
work have been generalized to quantum mechanical system, 
and the first law of thermodynamics has also been generalized 
to quantum mechanical systems. 

n 

(1) 
n 

n 

where En is the nth eigenenergy of the quantum mechani­
cal system with the Hamiltonian H = L:n En In} (nl under 
consideration and Pn is the occupation probability in the nth 
eigenstate p = I:n Pn In) (nl; In) is the nth eigenstate of 
the Hamiltonian; flQ and flW are the heat exchange and work 
done respectively during a thermodynamic process. From 
classical thermodynamics we know that the first law can be 
expressed as dU = flQ + flW = T dB + I:n YndYn. Here, T 
and S refer to temperature and entropy; Yn is the generalized 
force and Yn is generalized coordinate (displacement under 

the generalized force) corresponding to Yn [15]. Inversely, 
the generalized force can be expressed as 

y. __ flW 
(2)n - dYn' 

For example, when the generalized force is chosen to be 
the pressure P, and its corresponding ' generalized coordi­
nate is the volume V, we have its corresponding pressure 
P = -dWjdV. For a quantum mechanical system, e.g., a 
single particle in 1D box [16] (see Fig. 1), we can also define 
the force (generalized pressure) acting on either wall of the 
potential well. In this case, the generalized coordinate is the 
width L of the potential. Thus, from the definition of work (1) 
we have 

F = _ flW = _ " p dEn (3)
dL ~ n dL' 

n 

This is the expression of pressure in quantum mechanical sys­
tem. Alternatively, the expression of force (3) in a quantum 
mechanical system can be obtained in a statistical-mechanical 
way. 

F = - (8lF) = kT (8InZ) = kT!..!... Le-PEn 
8L r 8L T Z 8L n 

= " (e-
PEn 

) 8En = " p 8En 

~ Z 8L ~ n 8L' 
n n 

(4) 

where IF = -kT In Z is the free energy of the quantum sys­
tem, and Z = I:n e-PEn is the partition function. When 
Pn satisfy Gibbs distribution Pn = ie-PEn, or the system 
is in equilibrium, the expectation value F (3) should gives the 
usual force in classical thermodynamics. We will see later that 
if we consider a single-mode photon field in a cavity instead of 
a single particle in ID box as the working substance, this def­
inition of force agrees with the radiation pressure obtained in 
thermodynamics. Thus our definition of pressure (force) has 
clear physical implication. We would like to mention that the 
definition of force in (3) and (4) is a further step of quantum 
thermodynamics after the identification of heat and work (1), 
and we will see these definitions for a quantum mechanical 
system are self-consistent. 

B. Quantum isobaric process 

Having clarified force for a quantum mechanical system, in 
the following we will study how to extend classical isobaric 
process to a quantum mechanical system. Classical isobaric 
process is a thermodynamic process, in which the pressure of 
the system remains a constant. The relaxation time scale of the 
system with the heat bath is much shorter than the time scale 
at which we control the volume of the system [17]. Hence, 
we can always assume the system in equilibrium with the heat 
bath. In order to achieve a constant pressure during the iso­
baric process, we must carefully control the temperature of the 



system, i.e., carefully change the temperature of the heat bath 
when we change the volume of the classical system [10]. For 
example, in the isobaric process of classical idea gas, the tem­
perature of the system are required to be proportional to the 
volume of the gas due to the equation of state of the classical 
ideal gas P = nRf. For a quantum mechanical system, how­
ever, the change of the temperature may not be so obvious as 
classical ideal gas. Let us consider the quantum isobaric pro­
cess based on a single particle in ID box. The energy spec­
trum of the system is En(L) = (7T1in)2/(2mL2). Here, m 
is the mass of the particle, and L is the width of the potential 
well (see Fig. 1). For such a quantum mechanical system, 
the pressure on the wall (equation of state of the working sub­
stance) can be obtained from Eq. (3) 

F = - ,£Pn(L)dE;lL) 
n 

= _ "exp[-,8(L)En(L)] dEn(L) 

~ Z(L) dL 


n 
2 ~2 2 

exp[-,8(L)~] (-2) 7l'2fi2n2 
= - " 2rnL X -- X --­
~ 1 2rn£2 L 2mL2 
n 2" rrn2{3(L) 

4 7l'fi2,8(L) [ 8 7l'2fi2n2] 
L 2mL2 - 8,8(L) .~ exp[-,8(L) 2mL2 ] 

4 7l'fi2,8(L) [ 8 1 2mL2] 
L 2mL2 8,8(L) 2 7l'fi2,8(L) 

1 
L,8(L) , 

(5) 

where Z(L) En exp[-,8(L)En(L)] is the width­
dependent partition function. The above equation is equiva­
lent to the equation of motion of "classical" one-particle gas 
[16]. That means if we want to keep the pressure as a constant, 
we must control the temperature of the system to be propor­
tional to the width of the potential well when the system in 
the box push one of the walls to perform work. We would 
like to mention that the temperature function of the "volume" 
of the quantum mechanical system is system-dependent. I.e., 
for different systems, the function of the temperature over the 
"volume" differs from one to another. 

In the following we consider a single-mode radiation field 
in a cavity as the working substance of a Brayton cycle, which 
is first proposed in Ref. [3]. We assume that the cavity of 
length L and cross-section A can support only a single mode 
of the field w = slc, where s is an integer. The Hamiltonian 
of the system is equivalent to a quantum harmonic oscillator 

1 
H = ~)n + 2)nw In) (nl, (6) 

n 

From Eq. (3) we know that the radiation force F can be ex­
pressed as the derivative of the work over the length of the 

cavity 


__ " e-{3(L)En (L) dEn(L) 

F - ~ Z(L) dL 

n 

_ 
- -1 _ 

1 " -{3(L)nnw [ 1 ]e-{3(L)nw ~ e (n + 2)nw 1L' (7) 
n 

= [ nw 1]1
e{3(L)nw - 1 + 2nw L 

From Eq. (8) we know that in order to achieve a constant 
force, we must carefully control the temperature of the heat 
bath when the width of the cavity changes 

,8(L) = ~ In 2FL2 + fis7l'c (8)
fis7l'c 2FL2 - fis7l'c 

It can be seen that for the single-mode radiation field, the tem­
perature function (8) is much more complicated than that (5) 
of ID box system in a quantum isobaric process. 

For the convenience of later analysis, we would also like to 
calculate the entropy and the internal energy of the two sys­
tems mentioned above. First we consider the single particle 
in ID box. The entropy expression can be obtained from the 
above Eq. (1) and Eq. (58) of Ref. [8]. 

2mL2 )] (9)
7l'fi2,8(L) 

Comparing with the entropy of classical ideal gas, we can find 
that the entropy of classical idea gas gives exactly the entropy 
of single-particle in ID box if we choose N = 1. We plot 
the entropy-temperature diagram according to the explicit ex­
pression (9) (See Fig. 4). The internal energy of the single 
particle in ID box during the isobaric process can also be ob­
tained analytically. Because the system is always in thermal 
equilibrium with the time-dependent heat bath, we can obtain 
the internal energy 

81nZ(L) 18Z(L) 

U(L) = - 8,8(L) = - Z(L) 8,8(L) 


7l'fi2,8(L) 1 2mL2 (1) 1= -2 ---,--:,';,--'-x­
2mL2 2 7l'fi2,8(L) x -2 ,8(L) 

1 1 

2,8(L) 
(10) 

This expression of internal energy verifies the equipartition 
theorem [9]. Here we justified the result in Ref. [8] again: the 
internal energy of the infinite square potential system depends 
only on the temperature. From Eq. (9) and (10) we see that 
both the entropy and the internal energy of ID box system has 
the same form as that of classical ideal gas. Moreover, from 
Eq. (5) we know that ID box system has the same equation of 
state as that of classical ideal gas. Thus we conclude that ID 
box system is the quantum mechanical counter part of classi­
cal ideal gas. This is basis of the discussion of Szilard-Zurek 
single molecule engine [16]. 
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FIG. 2: Isobaric process based on single-mode radiation field (a 
quantum harmonic oscillator). Here the width of the potential L ex: 
~. En(Lo), a = A, B are the nth eigenenergy of the single mode 
radiation field with the potential width equals to La.. 

Similarly, let us consider the entropy and internal energy 
of single-mode radiation field. The entropy and the internal 
energy can also be calculated as that in Ref. [3] 

(11)S(L) 

where (n) [exp (liw/kT) -lr1 is the mean photon num­
ber, and the internal energy 

1
U(L) + -)Iiw (12)

2 

It is not difficult to find that the entropy (11) and the inter­
nal energy (12) of a single mode radiation field have different 
form from that of a single particle in lD box system (9-10) , 
or from classical ideal gas. The internal energy (12) of single 
mode radiation field depends on both the temperature and the 
width of the potential well. In addition, the equation of state 
(7) of the single mode radiation field differ from from that (5) 
of single particle in ID system, or classical ideal gas. Based 
on these observations, we say that the single mode radiation 
field has total different thermodynamic properties from that 
classical ideal gas. It can be inferred that in contrast to quan­
tum heat engine based on single particle in ID box, which is 
the quantum mechanical counter part of classical ideal gas, 
quantum heat engine based on single mode radiation field can 
give us new results beyond that of classical ideal gas. 

III. QUANTUM BRAYTON CYCLE 

In last section, we successfully extend the classical isobaric 
process to quantum mechanical system based on the defini­
tion of pressure (3) in a quantum mechanical system. In this 
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FIG. 3: Force-Displacement (Pressure-Volume) F - L diagram of a 
quantum Brayton cycle based on a single particle in 1 D box or single 
mode radiation field. A --. B represents an isobaric expansion 
process with a constant force F 1 ; B --. C represents an adiabatic 
expansion process with constant entropy 8 1 ; C D represents an 
isobaric compression process with constant pressure Fo; D --+ A 
is another adiabatic compression process with constant entropy 80. 
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FIG. 4: Temperature-Entorpy T - 8 diagram of Brayton cycle (see 
Fig. 3). In two adiabatic processes, B --. C and D A the 
entropy remains a constant. 

section and next section, we will study two kinds of thermo­
dynamic cycles consisting of quantum isobaric processes, and 
compare them with their classical counterpart. We first con­
sider a quantum Brayton cycle based on a single particle in 
ID box, and compare it with a classical Brayton cycle. A 
quantum Brayton cycle is an quantum mechanical analogue 
of classical Brayton cycle, which consists of two quantum iso­



baric processes and two quantum aidabatic processes. Similar 
to or previous work, we give aT - 8 diagram of the quantum 
Brayton cycle (See Fig. 4). According to our definition of 
heat exchange in quantum mechanical system (1), we obtain 
the heat absorbed by the system from a time-dependent heat 
bath during the quantum isobaric expansion process A B 

rLB [~En(L)dPn(L)l dL
JLA n dL 

= ~ l:B [[En(L)Pn(L)]' - dE;lL) Pn(L)] dL 

~[En(LB)Pn(LB) En(LA)Pn(LA)] 
n 

+ l:B F(L)dL 

=2"1 
[FiLB - FiLA] T FI(LB - LA) 

(LB - LA)'
2 

(13) 

Similarly, we can obtain the heat released to the time­
dependent low temperature entropy sink 

3 
dQCD = 2Fo(Lc LD)' (14) 

Hence, the efficiency of the quantum Brayton cycle based on 
a single particle in ID box can be expressed as 

"I = 1 _ Fo(Lc LD) (IS)
FI(L B - LA) 

Due to the equation of motion (5) and (10) FI L B /2 
U(LB), FoLc /2 U(La), and the relation of internal en­
ergy in the quantum adiabatic process B ----4 C 

U(LB) = (Lc)2 (16)
UCLa) LB 

we have 

(17) 

for the quantum adiabatic process B C. Through a simi­
lar analysis we obtain 

(18)FI = (~:r 
for another quantum adiabatic process. Based on the above 
result (IS), (17), and (18), we obtain the efficiency 

(19)"1=1- (::)~ 
From Eq. (9) we know that in quantum adiabatic process 
(8 const), we have T L2 const. As a result the adi­
abatic exponent I = 3 is obtained through comparison with 

T L ,-I = const for adiabatic process. We would like to men­
tion that in classical Brayton cycle, the efficiency of a classical 

Brayton cycle is "I = 1 - (~) 1-* [10], where I is the clas­

sical adiabatic exponent. Thus our study bridges the quantum 
Brayton cycle and classical Brayton cycle by the efficiency 
(19) and the adiabatic exponent (r 3). Hence our defi­
nition of pressure for a quantum mechanical system is self­
consistent. 

In the following we consider a Brayton cycle based on a 
single-mode radiation fieldd. Similar to the above analysis, we 
calculate the heat absorbed by the system during the quantum 
isobaric expansion process A ----4 B (see Fig. 3) 

(20) 

where we have used the identity in the quantum isobaric pro­
cess (A ----4 B) 

Fl == U(LA) (21)
LA 

Similarly, we obtain the heat released to the low temperature 
entropy sink in another quantum isobaric process C ----4 D. 

dQCD Fo x (Lc - L D) (22) 

The efficiency of the quantum Brayton cycle based on a 
single-mode radiation field can be expressed as 

Fo(Lc - LD)
TI 1 (23)

Fl(LB - LA)' 

Through a similar argument to that for a single particle in a 
1D box, from Eqs. (7) and (12) we have (8) and (11) FI x 
LB = UCLa), Fo x Lc = U(Lc), and (in quantum adiabatic 
process) the relation of internal energy 

U(LB) 
U(Lc) 

Lc 
LB' 

(24) 

we have 

:~ = (~~r (25) 

Hence, from Eqs. (23) and (25) we obtain the expression of 
efficiency (23) of a quantum Brayton cycle based on a quan­
tum harmonic oscillator 

(26) 



From Eq. (11) we know that in a quantum adiabatic process, 
T L const or 'Y 2 for single-mode radiation field. It 
can be seen that the efficiency of a quantum Brayton cycle 
obtained here (26) is the same as that of a classical Brayton 
cycle. 

IV. QUANTUM DIESEL CYCLE 

Except for the above thermodynamic cycles consisting of 
two pair of basic thermodynamic processes, there are some 
thermodynamic cycles consisting of more than two kinds of 
thermodynamic processes, such as Diesel cycle, which con­
sists of two adiabatic processes, one isobaric processes and 
one isochcoric process (10] (see Fig. 5). In the following we 

F 

L 

FIG. 5: Force-Displacement (Pressure-Volume) F L diagram of a 
quantum Diesel cycle based on a single particle in ID box and single 
mode radiation field. A --> B represents an isobaric expansion pro­
cess with a constant pressure B --> C represents an adiabatic 
expansion process with constant entropy; C --> D represents an 
isochoric compression process with constant volume L 1 ; D A 
is another adiabatic compression process. 

will consider implementing quantum Diesel cycle in single 
particle in ID box system and in single mode radiation field. 
First we consider the I D box system. The input and output 
energy can be calculated as 

Qin = Cp(TB TA) 
(27)

Qout = Cv(To TD) 

Thus the efficiency of the quantum Diesel cycle can be ex­
pressed in terms of specific heat and temperature 

Cv(Tc - TD ) (28)
Cp(TB TA)' 

It is convenient to express this efficiency in terms of com­
pression ration TO ~ (see Fig. 5) and the expansion ra­

tio TE ~ (see Fig. 5). Now using the equation of state 

F L kT (5) and g; 'Y = 3 for a single particle in a box. 
The efficiency can be rewritten as 

1 (FoLo - FDLD) 
(29)

'rl = 1- 3" (FBLB - FALA)' 

By utilizing the fact Lo LD = L1, and FA = FB FI 
(see Fig. 5), we further simplify the Eq. (29) to 

(30) 

Finally by making use of the adiabatic condition F L3 
canst in B ----7 C and D A 

(31) 

the efficiency can be written as 

1 
1] = 1- --"'--= = 1 (32) 

3TE - TO 

This efficiency for a Diesel cycle based on a single-particle in 
ID box agrees with that of a classical Diesel cycle. Similarly 
we obtain the efficiency for single radiation field with the only 
change of I from 3 to 2 

(33)1] 1 

Before concluding this section, we would like to mention 
that we can also discuss a quantum brayton cycle and quan­
tum Diesel cycle based on any quantum system, such as black 
body radiation field or a spin-II2 in an external magnetic field 
with the Hamiltonian H = ~B(O"z). As we have mentioned 
before, the efficiency of quantum Brayton cycle and quantum 
Diesel cycle is the same as their classical counter part. As 
long as we get the adiabatic exponent, we obtain the explicit 
expression of their efficiency. For a spin-1I2, we choose the 
inverse of the magnetic field strength as the generalized coor­
dinate L = i. It can be proved that the adiabatic exponent 
for such a system is I = 2. As a result, the efficiency of a 
Brayton cycle based on a spin-1I2 is the same as that based on 
a single-mode radiation field (26). The efficiency for Brayton 
cycle and Diesel cycle based on radiation field can be obtained 
straightforwardly by the adiabatic exponent. In Table II we list 
the working efficiency for several typical thermodynamic cy­
cles based on different kinds of quantum working substance. 

V. REMARKS AND CONCLUSIONS 

In this paper, we study the quantum mechanical analogue of 
isobaric processes based on a microscopic definition of force, 
and make quantum mechanical generalization of some typ­
ical thermodynamic cycles based on quantum isobaric pro­
cesses. The properties of these quantum thermodynamic pro­
cesses and cycles are clarified. Through the comparison of 



TABLE I: Typical classical thennodynamic processes and their quantum counterparts. Here the classical thennodynarnic processes are studied 
based on classical ideal gas, and the quantum thennodynamic processes are studied based on the I D infinite square potential system. We 
illustrate the equation of state for the four basic thennodynamic processes and we also indicate the invariant or varying observable in these 
processes. 

Classical 

Quantum 

Isothennal (T == To) 

P(V)V = const; 
VRA: S, V, P; INV: T 

F(L)L = const; 
VRA: S, En, Pn; INV: T 

= const; 
P 'INV:E 

T const; 
VRA:S T E R' 

Adiabatic (8 == 8 0 ) 

P(T)V (T) == const; 
VRA: V, T P; INV: S 
F(T)L (T) const; 

VRA: En, T; INV: ,Pn S 

TABLE II: Typical classical thennodynamic cycles and their quantum counterparts. Different working substance are considered here. It can 
be seen that both quantum thennodynamic cycles and classical thennodynamic cycles has the same efficiency up to a the adiabatic exponent 
"y. Adiabatic exponent for classical idea gas can be found in [20]. It can be seen that perfonnance of the Carnot cycle is independent of the 
working substance, while the perfonnance of other cycles, in general, depend on the properties of the working substance. 

1'/=I-2J:2.TH 

Monoatomic classical idea gas ("y ~) 'f/=I-2J:2.TH 

Classical Diatomic classical idea gas ("y k) 1'/=I-2J:2.TH 

Poly atomic classical idea gas ("( ~) 'f/=1-2J:2.TH 

Single particle in ID box ("y 3) 1'/=1-;; 

Single particle in 2D box ("y 2) 'f/=I-;; 

Single particle in 30 box ("( 1'/=I-2J:2.TH 

Single mode photon field ("( 2) 'f/=I-;; 

Quantum Black body radiation fi 1'/=1-;; 

10 harmonic oscillator ("( 2) 1'/=1-;; 

20 harmonic oscillator ("y ~) 'f/=I-2J:2.TH 

30 hannonic oscillator ("y ~) 1'/=I-2J:2.
TH 

spin-112 (2-level system) ("y 2) 1'/=1-;; 

tto ray n lese 
(two isochoric+ (two isobaric + two (isochoric + isobaric + two 
two adiabatic) adiabatic) isobaric) 

1'/=1 (~r-l 'f/ 1- (~r-* 'f/=1 
l(?)"' (~r 
"( 

2 

(~)~'f/=1 (~r 'f/ 1'/=1 

2 2 

1'/=1-(~)5 1'/=l-(~r 1'/=1­

1 1 

'f/=1-(~)3 'f/ 1- (~r 

(~r 
2 

'f/=1 'f/ 1_(~)3 

'f/=1 (~r 1'/=l-(~t 
2 2 

1'/=1 (~) 3 'f/=l-(~r 

'f/=I-(~r 1'/=I-(~t 
1 

1'/=1 'f/ 1- (~r 1'/=1 

1'/=1 1'/ 1- (~) t 1'/=1 

1 j. 

1'/ 1 (~r 1'/=1-(~)3 1'/ 1 

1 1 

7] (~r 7]=I-(~r 7]=1 
!.J. 
V 

1'/=1 (~r 'f/=I-(~r 1 1 -ya
7] 2" ~ 

L 

quantum thermodynamics with classical thermodynamics, we 
find that the properties of these quantum thermodynamic pro­
cesses and cycles agrees well with those thermodynamic pro­
cesses and cycles based on classical ideal gas. We give the mi­
croscopic (quantum mechanical) explanation of Szilard-Zurek 
single molecule engine (operating in a different therrnody­

namic cycle). 

Before concluding this work, we would like to mention that 
in our current work we focus on the quantum single-particle 
system. and its related quantum mechanical generalization of 
heat, work, pressure. We also notice some work about quan­
tum heat engine with quantum many body system as the work­



ing substance [18]. For real quantum many body system, e.g., 
ideal bosonic gas or ideal fermionic gas, the mechanic ob­
servable, such as heat work, pressure, are well defined and 
their equation of state as well as their expression of internal 
energy [19] deviate from that of the classical ideal gas. As a 
result, the quantum thermodynamic cycles based on the quan­
tum many-body system deviate from that of cla<;sical ideal gas 
due to quantum degeneracy. Our current discussion focus on 
ideal thermodynamic cycle only. That is, we consider only 
quasi-static process. Similar to the discussion about finite­
power Carnot engine [21], Dinite-power analysis of Brayton 

cycle and Diesel cycle will be given later 
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