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Quantum thermodynamic cycles and quantum heat engines (II)

H. T. Quan!
! Theoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.

We study the quantum mechanical generalization of pressure or force, and then we extend the classical ther-
modynamic isobaric process to quantum mechanical system. Based on these efforts, we are able to study the
quantum version of thermodynamic cycles that consist of quantum isobaric process, such as Brayton cycle and
Diesel cycle. We also consider the implementation of quantum Brayton cycle and quantum Diesel cycle with
some example systems, such as single particle in 1D box and single-mode radiation field. These studies lay the
microscopic (quantum mechanical) foundation for Szilard-Zurek single molecule engine.

PACS numbers: 05.90.+m, 05.70.-3, 03.65.-w, 51.30.+i

I. INTRODUCTION

Quantum thermodynamics is the study of heat and work
dynamics in quantum mechanical systems [1]. In the extreme
limit of small systems with only a few degrees of freedom,
both the small size and quantum effects influence the thermo-
dynamic properties dramatically [2-4]. The interplay between
thermodynamics and quantum physics has been a interesting
research topic since 1950s [5]. In recent years, with the devel-
opments of nanotechnology and experimental technique, the
study of the interface between quantum physics and thermo-
dynamics begins to attract more and more attention [7]. Stud-
ies of quantum thermodynamics not only have important po-
tential applications in nanotechnology and quantum informa-
tion processing, but also bring new insights onto some funda-
mental problems of thermodynamics, such as Maxwell’s de-
mon and the universality of the second law [6]. Among all
the studies of quantum thermodynamics, a central concern is
to make quantum mechanical extension of classical thermo-
dynamic processes and cycles [8].

It is well know that in classical thermodynamics, there
are four basic thermodynamic processes: adiabatic process,
isothermal processes, isochoric process, and isobaric process
[9]. These four processes correspond to constant entropy, con-
stant temperature, constant volume, and constant pressure, re-
spectively. From these four basic thermodynamic processes,
we can construct all kinds of thermodynamic cycles, such as
Carnot cycle, Otto cycle, Brayton cycle, et al [10]. Among
all the four kinds of basic thermodynamic processes, quan-
tum version of adiabatic process — quantum adiabatic process
— has been extensively studied ever since the born of quan-
tum mechanics, while no attention has been paid to the quan-
tum mechanical generalization of the remaining three basic
thermodynamic processes for decades. In recent years the
development of quantum thermodynamics renews the inter-
ests of quantum thermodynamics processes. In a recent paper
{81, one (HTQ) of us and collaborators systematically study
the quantum mechanical generalization of the isothermal and
the isochoric process. Base on these studies, the properties
of quantum Carnot cycle and quantum Otto cycle are clari-
fied. Numerous studies on other quantum thermodynamic cy-
cles are also reported [11]. However, as to our best knowl-
edge, the quantum mechanical generalization of isobaric pro-
cess has not been studied systematically so far. Probably, the

lack of the consideration of quantum isobaric process is due
to the fact that “pressure” (force) [12] is not a well defined
observable in a quantum mechanical system. Because of the
short of a well defined quantum isobaric process, the quan-
tum thermodynamic cycles that consist of quantum iscbaric
process, such as quantum Brayton cycle and quantum Diesel
cycle, are not well studied.

In this paper, we will focus on the study of the guantum
isobaric process [10] and its related quantum thermodynamic
cycles. We will begin with the definition of “pressure” for
an arbitrary quantum system, and then generalize the classical
isobaric process to quantum mechanical system. After that we
successfully establish the complete mapping between four ba-
sic thermodynamic processes and their quantum counterpart.
Based on these generalizations of thermodynamic processes,
we are able to study an arbitrary thermodynamic cycle con-
structed by any of these four thermodynamic processes. As an
example, we will discuss the Brayton cycle and Diesel cycle
and compare their properties with their classical counterpart.
We notice that some discussions about quantum Brayton cycle
have been reported before [13]. Nevertheless, we found that
their definition of pressure is ambiguous, and in their studies
they cannot bridge the quantum and classical thermodynamic
cycles. On the contrary, we will see that our definition of pres-
sure for a quantum system has clear physical implication and
our study bridges the thermodynamic cycles for quantum and
classical system. Comparisons between these quantum ther-
modynamic cycles and their classical counterpart enable us to
extend our understanding of the thermodynamics at the inter-
face of classical and quantum physics. This paper is organized
as follows: In Sec. II, we define microscopically “pressure”
for aquantum mechanical system and study quantum mechan-
ical generalization of isobaric process; in Sec. I, we study
quantum Brayton cycle and study how the efficiency of Bray-
ton cycle bridges quantum and classical thermodynamic cy-
cles; in Sec. IV we study quantum Diesel cycle in comparison
with their classical counter part; Sec. V is the remarks and
conclusion.
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FIG. 1: Schematic diagram of pressure in quantum mechanical sys-
tem (single particle in 1D box). One wall (A) of the square well is
fixed, while the other one (B) is movable. The force acting on the
wall B by the quantum system can be calculated from Eq. (3)

II. QUANTUM ISOBARIC PROCESS
A. Pressure in quantum-mechanical system

In order to study quantum isobaric process, we must first
generalize pressure to an arbitrary quantum mechanical sys-
tem. Let us recall that in some previous work [8, 14], heat and
work have been generalized to quantum mechanical system,
and the first law of thermodynamics has also been generalized
to quantum mechanical systems.

dQ = E.dP,,
AW = P,dE,, )

AU =dQ +dW = (EndP, + PodE,),
n

where E, is the nth eigenenergy of the quantum mechani-
cal system with the Hamiltonian H =} E, |n) (n| under
consideration and P, is the occupation probability in the nth
eigenstate p = Y P, |n) (n|; |n) is the nth eigenstate of
the Hamiltonian; Q) and @W are the heat exchange and work
done respectively during a thermodynamic process. From
classical thermodynamics we know that the first law can be
expressed as AU =dQ +dW = TdS + Y, Ypdy,. Here, T
and S refer to temperature and entropy; Y, is the generalized
force and y,, is generalized coordinate (displacement under

the generalized force) corresponding to Y, [15]. Inversely,
the generalized force can be expressed as

aw

A 1

)

For example, when the generalized force is chosen to be
the pressure P, and its corresponding generalized coordi-
nate is the volume V, we have its corresponding pressure
P = —dW/dV. For a quantum mechanical system, e.g., a
single particle in 1D box [16] (see Fig. 1), we can also define
the force (generalized pressure) acting on either wall of the
potential well. In this case, the generalized coordinate is the
width L of the potential. Thus, from the definition of work (1)
we have

aw

F=-2r~

dE,

= Z P, i (3)
n

This is the expression of pressure in quantum mechanical sys-

tem. Alternatively, the expression of force (3) in a quantum

mechanical system can be obtained in a statistical-mechanical

way. '
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where F = —kT'In Z is the free energy of the quantum sys-
tem, and Z = Y., e PFn is the partition function. When
P,, satisfy Gibbs distribution P, = LePE=, or the system
is in equilibrium, the expectation value F' (3) should gives the
usual force in classical thermodynamics. We will see later that
if we consider a single-mode photon field in a cavity instead of
a single particle in 1D box as the working substance, this def-
inition of force agrees with the radiation pressure obtained in
thermodynamics. Thus our definition of pressure (force) has
clear physical implication. We would like to mention that the
definition of force in (3) and (4) is a further step of quantum
thermodynamics after the identification of heat and work (1),
and we will see these definitions for a quantum mechanical
system are self-consistent.

B. Quantum isobaric process

Having clarified force for a quantum mechanical system, in
the following we will study how to extend classical isobaric
process to a quantum mechanical system. Classical isobaric
process is a thermodynamic process, in which the pressure of
the system remains a constant. The relaxation time scale of the
system with the heat bath is much shorter than the time scale
at which we control the volume of the system [17]. Hence,
we can always assume the system in equilibrium with the heat
bath. In order to achieve a constant pressure during the iso-
baric process, we must carefully control the temperature of the



system, i.e., carefully change the temperature of the heat bath
when we change the volume of the classical system [10]. For
example, in the isobaric process of classical idea gas, the tem-
perature of the system are required to be proportional to the
volume of the gas due to the equation of state of the classical
ideal gas P = nR%. For a quantum mechanical system, how-
ever, the change of the temperature may not be so obvious as
classical ideal gas. Let us consider the quantum isobaric pro-
cess based on a single particle in 1D box. The energy spec-
trum of the system is E, (L) = (whn)?/(2mL?). Here, m
is the mass of the particle, and L is the width of the potential
well (see Fig. 1). For such a quantum mechanical system,
the pressure on the wall (equation of state of the working sub-
stance) can be obtained from Eq. (3)

Fe _;PH(L)dEJIEL)
_ zn: eXP[—ﬂZ((LL))En(L)] dEJIEL)
SR
- 1V |5 ;exp[—ﬂ(L)%]}

4 [7h2B(L) o 1 | 2mL?
T LV 2mL? | 88(L) 2\ wh2B(L)

1
T LA(L)
(5)
where Z(L) = 3, exp[—B(L)E,(L)] is the width-

dependent partition function. The above equation is equiva-
lent to the equation of motion of “classical” one-particle gas
[16]. That means if we want to keep the pressure as a constant,
we must control the temperature of the system to be propor-
tional to the width of the potential well when the system in
the box push one of the walls to perform work. We would
like to mention that the temperature function of the “volume”
of the quantum mechanical system is system-dependent. Le.,
for different systems, the function of the temperature over the
“volume” differs from one to another.

In the following we consider a single-mode radiation field
in a cavity as the working substance of a Brayton cycle, which
is first proposed in Ref. [3]. We assume that the cavity of
length L and cross-section A can support only a single mode
of the field w = *7¢, where s is an integer. The Hamiltonian
of the system is equivalent to a quantum harmonic oscillator

H =30+ 3o o) (o, ©®

From Eq. (3) we know that the radiation force F' can be ex-
pressed as the derivative of the work over the length of the

cavity
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From Eq. (8) we know that in order to achieve a constant
force, we must carefully control the temperature of the heat
bath when the width of the cavity changes

L , 2FL? + hsme
" hsme  2FL? — hsme

B(L) ®
It can be seen that for the single-mode radiation field, the tem-
perature function (8) is much more complicated than that (5)
of 1D box system in a quantum isobaric process.

For the convenience of later analysis, we would also like to
calculate the entropy and the internal energy of the two sys-
tems mentioned above. First we consider the single particle

in 1D box. The entropy expression can be obtained from the
above Eq. (1) and Eq. (58) of Ref. [8].

1 1 1 2mL?
2 P o\ =m2B(D)

Comparing with the entropy of classical ideal gas, we can find
that the entropy of classical idea gas gives exactly the entropy
of single-particle in 1D box if we choose N = 1. We plot
the entropy-temperature diagram according to the explicit ex-
pression (9) (See Fig. 4). The internal energy of the single
particle in 1D box during the isobaric process can also be ob-
tained analytically. Because the system is always in thermal
equilibrium with the time-dependent heat bath, we can obtain
the internal energy

S(L) = ks ©)
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(10)

This expression of internal energy verifies the equipartition
theorem [9]. Here we justified the result in Ref. {8] again: the
internal energy of the infinite square potential system depends
only on the temperature. From Eq. (9) and (10) we see that
both the entropy and the internal energy of 1D box system has
the same form as that of classical ideal gas. Moreover, from
Eq. (5) we know that 1D box system has the same equation of
state as that of classical ideal gas. Thus we conclude that 1D
box system is the quantum mechanical counter part of classi-
cal ideal gas. This is basis of the discussion of Szilard-Zurek
single molecule engine [16].



FIG. 2: Isobaric process based on single-mode radiation field (a
quantum harmonic oscillator). Here the width of the potential L
L. En(La), @ = A, B are the nth cigenenergy of the single mode
radiation field with the potential width equals to L,.

Similarly, let us consider the entropy and internal energy
of single-mode radiation field. The entropy and the internal
energy can also be calculated as that in Ref. {3]

Ay hw
T

where (n) = [exp (hw/kT) — 1]~ is the mean photon num-
ber, and the internal energy

S(L) +kIn((n) + 1) (1

fw = ((n) + S)hw  (12)

It is not difficult to find that the entropy (11) and the inter-
nal energy (12) of a single mode radiation field have different
form from that of a single particle in 1D box system (9-10) ,
or from classical ideal gas. The internal energy (12) of single
mode radiation field depends on both the temperature and the
width of the potential well. In addition, the equation of state
(7) of the single mode radiation field differ from from that (5)
of single particle in 1D system, or classical ideal gas. Based
on these observations, we say that the single mode radiation
field has total different thermodynamic properties from that
classical ideal gas. It can be inferred that in contrast to quan-
tum heat engine based on single particle in 1D box, which is
the quantum mechanical counter part of classical ideal gas,
quantum heat engine based on single mode radiation field can
give us new results beyond that of classical ideal gas.

III. QUANTUM BRAYTON CYCLE

In last section, we successfully extend the classical isobaric
process to quantum mechanical system based on the defini-
tion of pressure (3) in a quantum mechanical system. In this

FIG. 3: Force-Displacement (Pressure-Volume) F' — L diagram of a
quantum Brayton cycle based on a single particle in 1D box or single
mode radiation field. A — B represents an isobaric expansion
process with a constant force Fy; B — C represents an adiabatic
expansion process with constant entropy 5;; €' — D represents an
isobaric compression process with constant pressure Fy; ) — A
is another adiabatic compression process with constant entropy So.
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FIG. 4: Temperature-Entorpy T — § diagram of Brayton cycle (see
Fig. 3). In two adiabatic processes, B — C and D — A the
entropy remains a constant.

section and next section, we will study two kinds of thermo-
dynamic cycles consisting of quantum isobaric processes, and
compare them with their classical counterpart. We first con-
sider a quantum Brayton cycle based on a single particle in
1D box, and compare it with a classical Brayton cycle. A
quantum Brayton cycle is an quantum mechanical analogue
of classical Brayton cycle, which consists of two quantum iso-



baric processes and two quantum aidabatic processes. Similar
to or previous work, we give a 7" — § diagram of the quantum
Brayton cycle (See Fig. 4). According to our definition of
heat exchange in quantum mechanical system (1), we obtain
the heat absorbed by the system from a time-dependent heat
bath during the quantum isobaric expansion process A — B

Lp
aQus = [ [ZEAL)@%{Q L

-3 / v [ o) - B p ) ar
-Z

B)Po(Lp) — En(La)Pn(La)]

Lp
+ | Ry
La
1
‘é[FlLB—FlLA]'?'Fl(LB LA)
3
F1(LB — La).

(13)

Similarly, we can obtain the heat released to the time-
dependent low temperature entropy sink

3
dQcp = §F0(Lc - Lp). 14

Hence, the efficiency of the quantum Brayton cycle based on
a single particle in 1D box can be expressed as

Fo(Le ~ Lp)
Fi\(Lpg —La)’
Due to the equation of motion (5) and (10) F1Lg/2 =

U(Lg), FoL¢ /2 = U{L), and the relation of internal en-
ergy in the quantum adiabatic process B — C

n=1- (15)

U(Lg) _(Lc\*
U(Lc) ‘(L_B) ! (1o
we have
F, Le\®

for the quantum adiabatic process B —— C. Through a simi-
lar analysis we obtain
Fy Lp\’
| e 18
7 ( LA) (18)

for another quantum adiabatic process. Based on the above
result (15), (17), and (18), we obtain the efficiency

7):1—(%)3. (19)

From Eq. (9) we know that in quantum adiabatic process
(S = const), we have TL? = const. As a result the adi-
abatic exponent v = 3 is obtained through comparison with

TL*1 = const for adiabatic process. We would like to men-
tion that in classical Brayton cycle, the efficiency of a classical

o [10], where + is the clas-

sical adiabatic exponent. Thus our study bridges the quantum
Brayton cycle and classical Brayton cycle by the efficiency
(19) and the adiabatic exponent (v = 3). Hence our defi-
nition of pressure for a quantum mechanical system is self-
consistent.

In the following we consider a Brayton cycle based on a
single-mode radiation fieldd. Similar to the above analysis, we
calculate the heat absorbed by the system during the quantum
isobaric expansion process A — B (see Fig. 3)

dQAB-f {ZETL(L P

Lg
U(La)]+ Fd(L)

La

_ hwg  hwg
T\ Blsthws —1 2

Fuws 4 fiw 4
BLahwa _1 ' 9

ZFI(LB - LA)7

Braytoncycleisp =1 — (%

=[U(Lg) -

) + Fr(Lp — La)

20

where we have used the identity in the quantum isobaric pro-
cess (A — B)

U(La) _ U(Lp)
La Lg

Similarly, we obtain the heat released to the low temperature
entropy sink in another quantum isobaric process C — D.

dQcp = Fy x (Lc — Lp) (22)

The efficiency of the quantum Brayton cycle based on a
single-mode radiation field can be expressed as

Fo(Lc — Lp)

H

F= 2D

(23)

Through a similar argument to that for a single particle in a
1D box, from Eqs. (7) and (12) we have (8) and (11) I x
Lg =U(Lp), Fy x Le = U(L¢), and (in quantum adiabatic
process) the relation of internal energy
ULs) _ Lc
UlL¢) Lp

L [(Lc\?

LR L 25

a (L) 05)
Hence, from Eqgs. (23) and (25) we obtain the expression of

efficiency (23) of a quantum Brayton cycle based on a quan-
tum harmonic oscillator

(24)

we have

Iz
p=1- ?‘1’ (26)



From Eq. (11) we know that in a quantum adiabatic process,
TL = const or v = 2 for single-mode radiation field. It
can be seen that the efficiency of a quantum Brayton cycle
obtained here (26) is the same as that of a classical Brayton
cycle.

IV. QUANTUM DIESEL CYCLE

Except for the above thermodynamic cycles consisting of
two pair of basic thermodynamic processes, there are some
thermodynamic cycles consisting of more than two kinds of
thermodynamic processes, such as Diesel cycle, which con-
sists of two adiabatic processes, one isobaric processes and
one isochcoric process [10] (see Fig. 5). In the following we

FIG. 5: Force-Displacement (Pressure-Volume) F' — L diagram of a
quantum Diesel cycle based on a single particle in 1D box and single
mode radiation field. A — B represents an isobaric expansion pro-
cess with a constant pressure Fy; B — C represents an adiabatic
expansion process with constant entropy; C — D represents an
isochoric compression process with constant volume Ly; D — A
is another adiabatic compression process.

will consider implementing quantum Diesel cycle in single
particle in 1D box system and in single mode radiation field.
First we consider the 1D box system. The input and output
energy can be calculated as

Qin =Cp(Tp —Ta)

27
Qout = Cv(Tc — Tp) @7

Thus the efficiency of the quantum Diesel cycle can be ex-
pressed in terms of specific heat and temperature

7= Qin —'Qout =1 CV(TC - TD}

Qin Cp(Tg —Ta)’

It is convenient to express this efficiency in terms of com-
pression ration r¢ = % (see Fig. 5) and the expansion ra-

(28)

tiorg = & (see Fig. 5). Now using the equation of state

FL = kT (5) and g& = v = 3 for a single particle in a box.

The efficiency can be rewritten as

B l {(FeLe — FpLp)
3 (FgLp — FaLys)’

By utilizing the fact Lo = Lp = Ly, and Fq4 = Fg = F
(see Fig. 5), we further simplify the Eq. (29) to

n=1 (29)

F F
1 —F_‘IQ“FI)

1 Li(Fc—Fp) . 1
3 (T‘Ef—?‘c)

=1l e TP
K 3F(Lp — L)

(30)

Finally by making use of the adiabatic condition FL? =
constinB— Cand D — A

Fo _(Ls\' _
Fy L, B

3 G
Fp _ (L' _ ;
F Ly @
the efficiency can be written as
173 —rd 1
n=l-gi i f 1o g4t trd). G

This efficiency for a Diesel cycle based on a single-particle in
1D box agrees with that of a classical Diesel cycle. Similarly
we obtain the efficiency for single radiation field with the only
change of -y from 3 {o 2

2 2
lrg—re

1
g=1 =1—§(TE+7'C) (33)

27 —1ro

Before concluding this section, we would like to mention
that we can also discuss a quantum brayton cycle and quan-
tum Diesel cycle based on any quantum system, such as black
body radiation field or a spin-1/2 in an external magnetic field
with the Hamiltonian H = 1B(c,). As we have mentioned
before, the efficiency of quantum Brayton cycle and quantum
Diesel cycle is the same as their classical counter part. As
long as we get the adiabatic exponent, we obtain the explicit
expression of their efficiency. For a spin-1/2, we choose the
inverse of the magnetic field strength as the generalized coor-
dinate [ = %‘ It can be proved that the adiabatic exponent
for such a system is v = 2. As a result, the efficiency of a
Brayton cycle based on a spin-1/2 is the same as that based on
a single-mode radiation field (26). The efficiency for Brayton
cycle and Diesel cycle based on radiation field can be obtained
straightforwardly by the adiabatic exponent. In Table II we list
the working efficiency for several typical thermodynamic cy-
cles based on different kinds of quantum working substance.

V. REMARKS AND CONCLUSIONS

In this paper, we study the quantum mechanical analogue of
isobaric processes based on a microscopic definition of force,
and make quantum mechanical generalization of some typ-
ical thermodynamic cycles based on quantum isobaric pro-
cesses. The properties of these quantum thermodynamic pro-
cesses and cycles are clarified. Through the comparison of



TABLE I: Typical classical thermodynamic processes and their quantum counterparts. Here the classical thermodynamic processes are studied
based on classical ideal gas, and the quantum thermodynamic processes are studied based on the 1D infinite square potential system. We
illustrate the equation of state for the four basic thermodynamic processes and we also indicate the invariant or varying observable in these

processes.
. Isochoric Isobaric . . —
Isothermal (T = Tp) V =VoorL = Lo) (P=Pyor F = Fy) Adiabatic (5 = 5)
Classical P(V)V = const, ﬂfrl = const; w = const; P(T)VS(T) = const;
VRA:S, V,PINV: T VRA:S, TP INV: V VRA:S. T, V;INV: P, VRA:V, TP, INV: §
Quantum F(L)L = const; EST—— = const, -{i%,,ﬂ = const; F(TYL*(T) = const;
VRA:S, By, Po; INVIT | VRA:S, TP INV. E, VRA:S. T, Ep, Py VRA: E,, T, INV:, P, §

TABLE IL Typical classical thermodynamic cycles and their quanfum counterparts. Different working substance are considered here. It can
be seen that both quantum thermodynamic cycles and classical thermodynamic cycles has the same efficiency up to a the adiabatic exponent
~. Adiabatic exponent for classical idea gas can be found in [20]. It can be seen that performance of the Carnot cycle is independent of the
working substance, while the performance of other cycles, in general, depend on the properties of the working substance.

Carnot Otie Brayton Diesel
(two isothermal | (two isochoric+ | (two isobaric + two | (isochoric + isobaric + two
+ two adiabatic) two adiabatic) " adiabatic) isobaric)'

T
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() ()"
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2 F] Va3 _(va)3
Monoatomic classical idea gas (y = §)| n=1-72 72=1—(%;‘f)3 ﬂ—1—<§§)5 n=1-2% v)]‘)~ g%
2 2 V2yE . (¥a)E
Classical Diatonﬁcclassicalideagas(qf:%) 7= _% ??=1—(%)5 nzl_(f_;?)v 3:1—%%
1 1 Vo3 /Vayi
Polyatomic classical ideagas (y = 3) | n=1- % np=1- (%)3 n=1- (%) flp=1-2 (‘?‘;)“Eﬁg
1 1
Single particle in 1D box (v = 3 1T | po1o () | po1o (R) Lo (B -()
gepanicein IDbox (=8 | n=1-7 | n=1-(&8) | 2=1-(&)" |n=1- 3 hyay
. L 1 1 2 (R
Single particle in 2D box (v = 2) n:l—% 77=1—(%%> 17:1._(%1)2 ,7:1_%( 31%1) _(;J
3 F] VvayE . (Va3
Single particle in 3D box (y = 3) nzlm% ﬂ=1—(%)§ 7721_(%1)5 77=1—%( Lv)'{‘ _%:;;)
R 1 1 Laye (Lay~
Single mode photon field (v = 2) 17:1——;*'—% 7;:1_.(%111) 77=1—(%‘})2 7’1=1—%<er!? -E%)
i 1 VaNE (Va3
Quantum| Black body radiation field (v = $) 73=1~-33—:§ n:l—(-}%)a 1;:1_(’_;!11)4 nzl_%%
] 1
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1 1 S {53
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i i
1 1 V 3_ V. 3
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1 3 L2y _(Lay*
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quantum thermodynamics with classical thermodynamics, we
find that the properties of these quantum thermodynamic pro-
cesses and cycles agrees well with those thermodynamic pro-
cesses and cycles based on classical ideal gas. We give the mi-
croscopic (quantum mechanical) explanation of Szilard-Zurek
single molecule engine (operating in a different thermody-

namic cycle).

Before concluding this work, we would like to mention that
in our current work we focus on the quantum single-particle
system, and its related quantum mechanical generalization of
heat, work, pressure. We also notice some work about quan-
tumn heat engine with quantum many body system as the work-



ing substance [18]. For real quantum many body system, e.g.,
ideal bosonic gas or ideal fermionic gas, the mechanic ob-
servable, such as heat work, pressure, are well defined and
their equation of state as well as their expression of internal
energy |19] deviate from that of the classical ideal gas. As a
result, the quantum thermodynamic cycles based on the quan-
tum many-body system deviate from that of classical ideal gas
due to quantum degeneracy. Our current discussion focus on
ideal thermodynamic cycle only. That is, we consider only
quasi-static process. Similar to the discussion about finite-
power Carnot engine [21], Dinite-power analysis of Brayton

cycle and Diesel cycle will be given later
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