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Brown-rot fungi such as Postia placenta are common inhabitants of forest
ecosystems and are also largely responsible for the destructive decay of wooden
structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-
rot, but the biochemical mechanisms and underlying genetics are poorly
understood. Systematic examination of the P. placenta genome, transcriptome and
secretome revealed unique extracellular enzyme systems, including an unusual
repertoire  of extracellular glycoside hydrolases. Genes encoding
exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic
microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta
was grown in medium containing cellulose as sole carbon source, transcripts
corresponding to many hemicellulases and to a single putative 3-1-4 endoglucanase
were expressed at high levels relative to glucose grown cultures. These transcript
profiles were confirmed by direct identification of peptides by liquid
chromatography-tandem mass spectrometry (LC-MS/MS). Also upregulated during
growth on cellulose medium were putative iron reductases, quinone reductase, and
structurally divergent oxidases potentially involved in extracellular generation of
Fe(Il) and H;O,. These observations are consistent with a biodegradative role for
Fenton chemistry in which Fe(Il) and H,0; react to form hydroxyl radicals, highly
reactive oxidants capable of depolymerizing cellulose. The P. placenta genome
resources provide unparalleled opportunities for investigating such unusual
mechanisms of cellulose conversion. More broadly, the genome offers insight into
the diversification of lignocellulose degrading mechanisms in fungi. Comparisons to
the closely related white-rot fungus Phanerochaete chrysosporium support an
evolutionary shift from white-rot to brown-rot during which the capacity for
efficient depolymerization of lignin was lost.

\body Lignocellulose in vascular plant cell walls is one of the largest sinks for
fixed global carbon and is increasingly eyed as a potential feedstock in biofuels and new
biomaterials portfolios (1). Relatively few organisms can efficiently convert the
recalcitrant polymer blend in lignocellulose to monomeric components (2). The principal
exceptions are basidiomycetes, which attack wood through two main decay types called
white-rot and brown-rot. Wood-decaying basidiomycetes are essential contributors to
carbon cycling in forest soils, and brown-rot fungi are additionally important because
they are a major cause of failure in wooden structures. White-rot fungi degrade all
components of plant cell walls, including cellulose, hemicellulose and lignin. Although
they cannot grow on lignin alone, they have the unique ability to degrade a large
proportion of it completely to CO, and H;O. This biodegradative strategy exposes the
structural polysaccharides of plant cell walls, thus making them susceptible to hydrolysis
by cellulases and hemicellulases. Brown-rot fungi employ a different approach; although
they modify lignin extensively, the products remain in situ as a polymeric residue (3, 4).
Given the incomplete ligninolysis that occurs during brown-rot, it remains unclear how
these fungi gain access to plant cell wall polysaccharides. However, it seems probable
that the two decay types share at least some mechanisms, because molecular phylogeny,
morphological considerations, and substrate preference suggest that brown-rot fungi have
repeatedly evolved from white-rot fungi (5). Indeed, the two major experimental



organisms for studies of brown-rot, Postia placenta and Gloeophyllum trabeum, are
distantly related species that represent independent origins of brown-rot (5). Any
similarities in their decay mechanisms must represent either general mechanisms of wood
decay common to white-rot and brown-rot species, or convergently-evolved brown-rot
mechanisms. Moreover, P. placenta is closely related to the model white-rot fungus,
Phanerochaete chrysosporium, so comparisons between these species may provide
insight into the mechanistic basis of transitions from white-rot to brown-rot.

White-rot fungi produce complex ligninolytic systems that are thought to depend
in part on extracellular oxidative enzymes, especially peroxidases, laccases and other
oxidases. It remains an open question whether brown-rot fungi possess any of these
ligninolytic components. White-rot fungi also secrete complete, synergistically acting
cellulase systems that include both endo- and exo-acting enzymes. These
exocellobiohydrolases and endoglucanases often share architectures that include separate
catalytic and cellulose-binding domains. In contrast, relatively few cellulases have been
described in brown-rot fungi (6), and it has been long recognized that rapid
depolymerization of cellulose appears to occur before the substrate porosity has increased
enough to admit cellulases (7). One possibility is that brown-rot fungi attack cellulose
with low molecular weight oxidants that act in conjunction with a limited set of relatively
small cellulases.

The hydroxyl free radical, generated via Fenton chemistry (H;0, + Fe** + H' —
H,0 + Fe** + -OH), has long been implicated as one of the small oxidants that contributes
to polysaccharide depolymerization during brown-rot. Current models for hydroxyl
radical participation have been reviewed (6), and typically involve generation of this
highly reactive oxidant at or near the substrate. Key requirements for Fenton systems
include mechanisms for extracellular H,O, generation and for reduction of Fe** to Fe”,
which might be accomplished by extracellular fungal metabolites such as hydroquinones,
or by extracellular enzymes such as cellobiose dehydrogenase.

We report here analyses of the P. placenta draft genome together with transcript
profiles and mass spectrometric identification of extracellular proteins. Consistent with a
unique strategy for cellulose degradation, we observed a dramatic absence of
conventional cellulase genes and most class II fungal peroxidases, and a rich diversity of
genes potentially supporting generation of extracellular reactive oxygen species.

Results

Carbohydrate active enzymes. Given the well known efficiency with which brown-rot
fungi rapidly depolymerize and degrade cellulose, the P. placenta genome revealed
remarkably few, if any, conventional cellulases. Of 17,173 proteins predicted in the
dikaryotic genome, 242 unique genes encode potential carbohydrate-active enzymes ((8);
http://www.cazy.org), of which 228 (94%) have at least one potential ortholog (BLASTP
bit score >100) in P. chrysosporium. These putative CAZY genes include 144 glycoside
hydrolases (GH), 10 carbohydrate esterases (CE), 75 glycosyltransferases (GT), 7
expansin-like proteins (EXPN), and 6 polysaccharide lyases (PL) (complete CAZY list in
SI Table 1 within NCBI GEO accession 12540. In distinct contrast to all cellulolytic
fungal aerobes, exocellobiohydrolases CBH2 (GH6) and CBH1 (GH7), as well as
cellulose-binding endoglucanases are missing in the P. placenta genome (Fig.1). Also
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absent are family 1 carbohydrate binding modules (CBM1). These highly conserved
cellulose-binding domains are fused to functionally diverse CAZYs in a wide range of
cellulolytic microbes. Surprisingly then, the repertoire of recognizable cellulolytic
enzymes in P. placenta appears limited to just two potential endoglucanases (1,4-B-
glucanases) and several B-glucosidases. In contrast to cellulolytic saprophytes (e.g.
Trichoderma reesei, Aspergillus spp. or Neurospora crassa) and aggressive plant
pathogens (e.g. Fusarium graminearum or Magnaporthe grisea), the overall number and
distribution of GHs in P. placenta are similar to those in the ectomycorrhizal symbiont
Laccaria bicolor, the human pathogen Cryptococcus neoformans and the biotrophic plant
pathogen Ustilago maydis (SI Table 2). Phylogenetic analyses of P. placenta and P.
chrysosporium genomes indicate that the transition from white-rot to brown-rot has been
associated with multiple independent reductions including the GH families 6, 7, 10, 11
and 61 (Figs. 1 and 2; SI Table 2) Thus, the transition from white-rot to brown-rot has
been associated with multiple independent reductions in the GH families.

Microarrays representing 12,438 unique alleles were used to examine P. placenta
transcript levels in basal salts medium containing either glucose or wood-derived
microcrystalline cellulose as the sole carbon sources. In total, 290 gene models showed
>2 fold transcript accumulation, and of these, 235 increased in cellulose medium and 35
increased in glucose medium (NCBI GEO accession 12540 SI Table 3). Transcripts of 99
GH-encoding genes significantly increased (P<0.01) in the cellulose medium, and of
these, 18 increased >2 fold (Fig. 3). Twenty-one GH transcripts significantly increased in
the glucose-containing medium, but none exceeded a two-fold change. In addition,
shotgun liquid chromatography coupled tandem mass spectrometry (LC-MS/MS)
identified 26 specific CAZYs in the extracellular fluid of P. placenta grown in basal salts
supplemented with ball-milled aspen wood, microcrystalline cellulose, or cotton (SI
Table 4). The CAZY genes expressed in cellulose included laminarases, chitinases, and
various hemicellulases (endoxylanases, B-xylosidases, L-a-arabinofuranosidases, endo-p-
mannanases and P-mannosidases). It is unclear whether any of these enzymes could
directly attack crystalline cellulose.

Extracellular H,O; generation. = Gene models potentially supporting Fenton
chemistry through the generation of extracellular H»O, include copper radical oxidases
and GMC oxidoreductases (SI Table 5). Results summarized here focus on those genes
with expression patterns that are consistent with a role in cellulose depolymerization, and
detailed information for all genes is available in SI Table 6 within GEO 12540.

On the basis of overall sequence similarity to P. chrysosporium glyoxal oxidase
(GLOX) and conservation of catalytic residues (9), three P. placenta models were
identified as copper radical oxidases (CROs). GLOX is one of 7 CROs in P.
chrysosporium and physiologically coupled to lignin peroxidase (LiP) via H,O,
generation. Of particular relevance to potential Fenton systems, CRO genes encoding
proteins Ppl56703 and Ppl130305 are upregulated in microcrystalline cellulose, and
Ppl56703 peptides were detected in aspen-grown cultures. The P. chrysosporium crol
and gix] genes are not closely related, and they do not have orthologs in P. placenta,
which suggests that there have been two independent losses of these CRO lineages in
Postia (Fig. 2). Ppl56703 is orthologous to the cro3-4-5 lineage in P. chrysosporium,
which therefore represents a Phanerochaete-specific expansion of the gene family. As in



the case of the GHs, evolution of brown-rot is associated with a reduced diversity of
'CROs.

Catalytically distinct from CROs, GMC oxidoreductases (InterPro IPR000172)
included various alcohol and sugar oxidases. Among the former, P. placenta protein
model Ppl118723 is similar to G. trabeum methanol oxidase (DQ835989) (> 85% amino
acid identity over full length). Recent immunolocalization studies strongly implicate the
G. trabeum alcohol oxidase as a source of H,O; (10) to support Fenton chemistry.
Suggesting a similar role in P. placenta, microarray analysis revealed high transcript
levels and a sharp increase in transcription of the gene encoding Ppl118723 in cellulose-
grown cultures relative to non-cellulolytic cultures. Comparatively high transcript levels
in cellulose- and glucose-grown cultures were also observed for genes encoding
Ppl128830 and Ppl108489, models tentatively identified as glucose-1-oxidases based on
conserved key residues (11). Peptides corresponding to these putative gox genes were
detected in extracellular filtrates (SI Tables 6 and 11 within GEO 12540). Aryl-alcohol
oxidase, an extracellular GMC oxidoreductase cooperating with aryl-alcohol
dehydrogenases for continuous peroxide supply in some white-rot fungi (11) does not
seem to be involved in cellulose attack by P. placenta since the corresponding models
were not or only slightly upregulated. Another extracellular GMC oxidoreductase,
pyranose-2-oxidase, has been implicated in lignocellulose degradation in P.
chrysosporium (12), but no orthologs were detected in P. placenta.

Iron reduction and homeostasis. Protein model Ppl124517 was identified as a putative
quinone reductase (QRD). In the brown-rot fungus G. trabeum, a QRD may drive
extracellular Fenton systems via redox cycling of secreted fungal quinones (6).
Transcription of the P. placenta QRD gene was significantly upregulated in cellulose
medium (GEO 12540 SI Table 3), which is consistent with a role for cellulolytic Fenton
chemistry involving quinone redox-cycling. In this connection, upregulation of the genes
encoding phenylalanine ammonia lyase (Ppl112824) and a putative quinate transporter
(Ppl44553) may also be relevant by virtue of their respective roles in the biosynthesis and
transport of essential quinones. '

In addition to hydroquinone-based iron reduction systems, low molecular weight
glycoproteins (GLPs) that can act as iron reductases have been hypothesized as
components of extracellular Fenton systems in G. trabeum and P. chrysosporium (13).
Four P. placenta models show significant similarity (>48% amino acid identity) to P.
chrysosporium glpl and glp2, and the gene encoding Ppl128974 is significantly
upregulated on microcrystalline cellulose medium (GEO 12540 SI Table 7). Sequence
corresponding to another fungal protein implicated in Fe** reduction, CDH (6), appears to
be absent in P. placenta.

In addition to its pivotal role in a wide range of cellular processes, iron
homeostasis must play a central role in modulating a functioning Fenton system. The P.
placenta genome features numerous genes potentially involved in iron transport and
redox state (GEO 12540 SI Table 7). In addition to 7 ferric reductases, two iron
permeases were identified one of which lies immediately downstream from a canonical
yeast ferroxidase ortholog (Fet3). Transcripts of these adjacent genes were among the
most highly upregulated in cellulose medium (GEO 12540 SI Table 3).

Modification of lignin and other aromatic compounds. Genes encoding the



class II secretory peroxidases lignin peroxidase (LiP), manganese peroxidase (MnP) and
versatile peroxidase (VP) were not detected in the P. placenta genome (SI Table 5).
Peroxidase model Ppl44056 lacks residues involved in Mn®>* binding and oxidation of
aromatic compounds (14), and superimposition of protein models strongly suggests that
Ppl44056 is a low redox potential peroxidase (SI Fig. 1). Consistent with this structural
evidence, phylogenetic analyses of class Il peroxidase genes from Postia, Phanerochaete,
and other fungal genomes suggest that Ppl44056 is not closely related to LiP and MnP,
but is part of an assemblage of “basal peroxidases™ that includes the novel peroxidase
(NoP) of P. chrysosporium, and peroxidases from Coprinopsis cinerea and L. bicolor
(Fig. 2) (15). The backbone of the class II peroxidase phylogeny is not strongly
supported, but analyses of broadly sampled datasets (15), suggest that the LiP and MnP
gene lineages of P. chrysosporium were independently derived from the basal
peroxidases prior to the divergence of Postia and Phanerochaete. If so, then the absence
of LiP and MnP in P. placenta may reflect additional instances of gene loss.

Laccases have been suggested to play a role in lignin modification by white-rot
fungi, but have not previously been demonstrated in brown-rot fungi. The precise role of
these enzymes remains uncertain, but numerous studies have demonstrated laccase-
catalyzed oxidation of phenolic and nonphenolic lignin model substrates particularly in
the presence of low molecular weight mediators. The results from P. placenta belie the
usual picture of brown-rot in that models Ppl62097 and Ppl111314 are likely laccases
sensu stricto (16) (Fig.2). Transcript levels of the genes encoding Ppl89382 and
Ppl111314 appear differentially regulated by decreasing slightly (-1.08-fold) and
increasing (+2.29-fold), respectively, on cellulose medium relative to glucose medium
(GEO 12540 SI Table 7). These enzymes could contribute to hydroxyl radical generation
by oxidizing hydroquinones as described (17). Interestingly, laccase genes are absent
from the genome of P. chrysosporium (18), suggesting that laccase (sensu stricto) is not a
core component of fungal wood decay mechanisms, and is certainly not essential for
white-rot.

Other upregulated genes potentially involved in quinone redox-cycling, and
oxidation of lignin derived products include those encoding "polyphenol oxidase"
(Ppl114245), i.e. tyrosinase or catechol oxidase related to typical laccases, and various
oxidoreductases of uncertain function (Ppl107061, Ppl28683, Ppl34850, Ppl61437,
Ppl24981) (SI Table 3).

Oxalate metabolism. In addition to pH effects on a wide range of enzymes, extracellular
accumulation of oxalate by P. placenta may affect ferric iron availability and thereby
impact hydroxyl radical formation (19; reviewed in ref. 6). A metabolic shunt between
the citric acid and glyoxylate cycles is central to oxalic acid accumulation by the brown-
rot fungus Fomitopsis palustris (20). Analysis of the P. placenta genome demonstrates a
functional glyoxylate shunt and substantially extends our understanding of the number,
structure, and transcription of key genes (SI Fig.2; SI text; GEO 12540 SI Table 8).

Cytochrome P450 monooxygenases. P450s have various roles in secondary metabolism
and thought to be involved in biodegradation of lignin as well as various xenobiotic
compounds. The P. placenta genome features an impressive set of 236 P450 genes (SI
text, GEO 12540 SI Fig. 3), compared to 149 in P. chrysosporium, and expansions of



certain families (CYP64, CYP503, CYP5031 and CYP617) were observed. Genes
encoding Ppl110015 (CYP53) and Ppl128850 (CYP503) were significantly upregulated
in cellulose medium (GEO 12540 SI Table 3). The former is highly conserved in fungi
and thought to catalyze benzoate hydroxylation.

Other. The genome was systematically examined for genes involved in oxidative
phosphorylation, stress-related genes, signal transduction and regulatory genes,
particularly those potentially controlling glycoside hydrolase expression and mating type
(complete listings and analysis in SI text, GEO 12540 Figs 5-7).

Discussion

Analysis of the P. placenta genome elucidated a repertoire of genes and
expression patterns distinct from those of other known cellulose-degrading microbes.
The overall number of CAZY-encoding genes in P. placenta, 242, is not particularly low,
and among these, the number of glycosyl transferases, 75, is fairly typical. However, the
genome completely lacks cellulose-binding domains and the number of GHs is relatively
low owing in part to the paucity of cellulases. No exocellobiohydrolases and only two
potential f-1,4 endoglucanase genes were identified. One putative EG (Ppl115648) is
expressed at relatively high levels and may correspond to previously characterized
carboxymethylcellulose-active enzymes (21).

Comparisons with genomes of other cellulolytic microbes reveal a strikingly
distinct set of glycoside hydrolases in the P. placenta genome. Among aerobes, only the
cellulolytic gliding bacterium, Cytophaga hutchinsonii lacks exocellobiohydrolases and
endoglucanases fused to cellulose-binding domains (22). The precise mechanism
employed by C. hutchinsonii is somewhat mysterious, but it has been suggested that
cellulose chains are peeled away from the polymer and transported into the periplasm
(23). There, non-processive endoglucanases might readily degrade the cellulose. Such a
mechanism seems unlikely in P. placenta because all evidence suggests that cellulose
depolymerization by brown-rot fungi occurs at a distance from the advancing hyphae. In
contrast, C. hutchinsonii is in direct contact with cellulose. Also unlike C. hutchinsonii,
the P. placenta genome does not feature any of the GH9 cellulases often associated with
processive endoglucanase activity.

Possibly, the CBM-less B-1-4-endoglucanase Ppl115648, which is clearly
expressed in cellulose-containing media (Fig. 3), may possess processive activity that
enables it to liberate the cellobiose that B-glucosidases then hydrolyze to assimilable
glucose. Indeed, the accumulation of putative B-glucosidase transcripts and the
corresponding proteins that we observed are consistent with the availability of cellobiose
in our cultures. Precedents for crystalline cellulose hydrolysis by B-1,4-endoglucanases
within GH family 5 have been reported (24, 25), but it seems unlikely that the Ppl115648
endoglucanase alone can account for the efficient cellulose depolymerization by P.
placenta. Other GHs and/or hypothetical proteins, perhaps some of those expressed in
microcrystalline cellulose cultures (Fig. 3; GEO 12540 SI Table 1), may be necessary for
the complete breakdown of cellulose.



Many investigations of white-rot and brown-rot mechanisms have implicated the
participation of low molecular weight oxidants, particularly Fenton-generated hydroxyl
radicals. As recently reviewed (6), three somewhat overlapping mechanisms of oxidative
degradation have been advanced. One view emphasizes the importance of CDH. In the
case of P. placenta, CDH is absent. Another view invokes the role of low molecular
weight glycopeptides that catalyze extracellular iron reduction. Initially identified in P.
chrysosporium (13), potential orthologs of these glycopeptide-encoding genes were
identified in P. placenta, and in one case, increased transcript levels were observed in
cellulose medium. Accordingly, a role for these glycoproteins in a P. placenta Fenton
system is possible. The third mechanism involves extracellular quinone redox cycling
(26). Evidence supporting this system includes cellulose induction of genes encoding
QRD, quinate transporter, phenylalanine ammonia lyase and laccase. However, the
importance of hydroquinone-driven Fenton chemistry in P. placenta remains unclear
because this fungus secretes high levels of oxalate (27), and Fe**-oxalate chelates are
poorly reducible by hydroquinones (28).

The elevated expression in cellulose medium of Fet3 and Ftrl, components of the
high affinity iron uptake system, may be at least partially explained by such chelates.
While cellulose itself may sequester Fe** (29), the generation of Fe*'—oxalate and
potentially other redox active iron-chelates might also contribute to lower the effective
concentration of bioavailable iron that is accessible to the organism. Thus, cellulolytic
conditions might turn on the high-affinity iron uptake system to ensure proper levels of
intracellular iron.

Also compatible with Fenton mechanisms is the observed cellulose-induced
expression of structurally divergent oxidases (e.g. copper radical oxidases, glucose-1-
oxidases and methanol oxidases) and putative iron reductases. Given the significant
number of secreted hemicellulases observed, wood decay by P. placenta likely involves
attack by oxidative and hydrolytic mechanisms. Elevated hemicellulase expression may
reflect increased substrate exposure and availability, relative to cellulose and lignin,
especially early in the decay process. Products of the hydrolytic attack could in turn serve
as candidate substrates for copper radical oxidases and GMC oxidoreductases, thereby
generating extracellular H>O,. Similarly, methanol released via demethoxylation of lignin
(3, 4) may play an important role in H,O, generation as a substrate for methanol oxidase.
Such a role is consistent with our observed expression patterns and with previous
investigations with G. trabeum (10). Of course hydroxyl radical may also play an
important role early in decay, and it has been demonstrated to preferentially attack
hemicellulose in wood (30). Interestingly, *OH attack on cellulose oxidizes chain ends
(31) and the depolymerized material becomes less amenable to cellulase action (30),
providing a plausible explanation for the lack of exocellobiohydrolase genes in this
fungus.

Comparison of the P. placenta and P. chrysosporium genomes indicates that the
derivation of brown-rot is characterized largely by the contraction or loss of multiple
gene families that are thought to be important in typical white-rot, such as cellulases,
LiPs, MnPs, CROs, CDH, and pyranose-2-oxidase. This general pattern of simplification
is consistent with the view (32) that brown-rot fungi, having evolved novel mechanisms
for initiating cellulose depolymerization, have cast off much of the energetically costly
lignocellulose-degrading apparatus that is retained in white-rot fungi, such as P.



chrysosporium.

Materials and Methods

Genome sequencing, assembly and annotation. A pure whole genome shotgun
approach was used to sequence P. placenta strain MAD-698-R (USDA, Forest Mycology
Center, Madison, WI). The 7.2X coverage assembly was produced from sequenced
paired reads using JAZZ assembler. Using an array of gene predictors in the JGI
annotation pipeline, a total of 17,173 gene models were predicted and annotated for this
dikaryotic fungus. Predicted genes, supporting evidence, annotations, and analyses are
available through interactive visualization and analysis tools from the JGI genome portal
(http://genome.jgi-psf.org/Pospl1/Pospll .home.html). Detail regarding the assembly,
repetitive elements, ESTs and annotation, are provided separately (SI text).

Mass spectrometry. Soluble extracellular protein was concentrated from shake cultures
containing ball-milled aspen, microcrystalline cellulose (Avicel) or de-waxed cotton as
previously reported (33). Sample preparation and LC-MS/MS analysis were performed as
described (www.biotech.wisc.edu/ServicesResearch/MassSpec/ingel.htm.). Peptides were
identified using a Mascot search engine (Matrix Science, London, UK) against protein
sequences of 17,173 predicted gene models described above. Complete listings of
CAZYs and oxidative enzymes, including peptide sequences and scores, are provided in
SI text and in NCBI’s GEO under series accession GSE12540 SI Table 11).

Expression microarrays. Roche NimbleGen (Madison, WI) arrays were designed to
assess expression of 12,438 genes during growth on microcrystalline cellulose or on
glucose as sole carbon sources. The corresponding set of coding regions was manually
annotated to include only the ‘best allelic model’ among CAZY-encoding genes (GEO
GSE12540 SI Table 1). Methods are detailed in SI text, and all data deposited under
GEO accession GSE12540.
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Figure Legends

Fig. 1. Distribution of various CAZymes in P. placenta (inner ring), T. reesei (middle
ring), and P. chrysosporium (outer ring). Abbreviations: CBM|1, family 1 carbohydrate
binding modules; GH#, modules within individual glycoside hydrolase families; GHS
(CBM1), glycoside hydrolase family 5 modules associated with family 1 carbohydrate
binding modules; GT, glycosyl transferases; CE, carbohydrate esterases; PL,
polysaccharide lyases; EXPN, expansin-related proteins. Enzymes not found in P.
placenta are underlined. Comparisons with additional species are list listed in SI Table 2.

Fig. 2. Phylogenies of glycoside hydrolase (GH 61, GH10), glyoxal oxidase/copper
radical oxidase (GLOX), laccase (LAC) and related multicopper oxidase, and low redox
peroxidase (LRP) and related class II fungal peroxidases, from complete genomes of P.
placenta (Pospll), P. chrysosporium (Phchrl), C. cinerea (CC1G), L. bicolor (Lacbil),
C. neoformans (CNAG), U. maydis (UM), M. grisea (MGG), Stagonospora nodorum
(SNOQG), T. reesei (Trire2) and Pichia stipitis (Picst3). Datasets were assembled using
BLAST (with qUniProtKB query sequences QS5SXXES5, 060206, P36218, Q00023,
014405, Q01772 and Q12718), with a cut-off value of E-06. Parsimony (PAUP* 4.0;
10,000 heuristic searches, 1000 bootstrap replicates), maximum likelihood (RAXML;
1000 bootstrap replicates, with models suggested by ProtTest), and Bayesian (MrBayes
v3.1.2; two runs of four chains, 10 million generations each, with mixed protein models)
support values are indicated in the order MP/PP/ML. Topologies shown are from
Bayesian phylogenetic analyses. An alternative topology from parsimony analysis is
shown for part of the GH10 phylogeny. Inferred gene losses, duplication events
(paralogy), and speciation events (orthology) are indicated within Postia and
Phanerochaete only.

Fig. 3. Expression profile of 144 glycoside hydrolase-encoding genes in media
containing glucose versus microcrystalline cellulose as sole carbon sources (Part A). In
Part B, a cluster of 24 of highly expressed genes is expanded and the color scale re-
calibrated to illustrate differences in transcript accumulation. Expression ratios were
derived from comparisons of glucose-grown versus cellulose-grown mycelia. Analysis is
based on three biological replicates per culture medium. Quantile normalization and
robust multi-array averaging (RMA) were applied to the entire dataset. ANOVA showed
120 GH-encoding genes, including all 24 above, were significantly regulated (P<0.01).
Reciprocals of ratios <1.0 are multiplied by -1. Asterisks indicate proteins identified by
LC-MS/MS. Detailed listing of CAZYs with statistical analyses of expression data is
presented in SI Tablel under GEO accession GSE12540. ‘
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Description Model Family Fold reg.

Endog lucanase 121 191 GH12 -1.51
Chitinase 119 525 * GHI18 +1.35
Endo -b-1,4 -end oglucana se 115 648 * GHS +1.43
Endo -b-1,4 -mannos ida se 121 831 * GHS5 +1.93
b-1,3 -glucanosy ltra nsfe rase 117 860 * GH72 +1.37
a-amy lase/a-gluca n syn thase 127 907 GH13 +1.39
b-gala ctosidasé 127 993 GH35 +1.23
_.|b-glucana se/b-gluca n syn thetase 115 248 GH16 +1.08
|Endo -b-1.4 -end oglucana se 117 690 GH5 -1.05
Endo -1,3(4) -b-glucana se 112 923 GHI16 +1.13
|a-glucos idase 134924 * GH31 +1.16
Gl ycos ide hydrolase 116 700 GH16 -1.10
. |Glu coamy lase 117 345 * GHIS5 +2.28

_|Chitinase 126 595 * GH18 +1.97
Gl ycos ide hydrolase 135 050 * GH30 +1.89
b-mannos idase 114 395 GH2 +2.27
1Gl ycos ide hydrolase 113 893 GH16 +1.59
Gl ycos ide hydrolase 120 595 GHI16 +1.48
b-hexo saminidase 112 369 GH20 +1.52
© " la-galactosidase 134 790 GH2 7 +2.07
Gl ycos ide hydrolase 121 713 GH5 +2.36
Endo -1,3(4) -b-glucana se 112 941 * GHI16 +3.95
Glu can 1,3 -b-glucos idase 116 267 * GHS55 +3.15
Glu can 1,3 -b-glucos idase 105 490 GHS5 +5.38

7.5 +15.0 +12.1 +15.0



Supporting Information
Figure legends

SI Fig. 1. 3D-model for the hypothetical Postia placenta peroxidase Ppl44056 (PP, light
brown) obtained by homology modeling, superimposed with the crystal structure of
versatile peroxidase (VP) from Pleurotus eryngii (green). A) Protein backbones
indicating the position of tryptophan residues present in these peroxidases (as van der
Waals spheres), one of them being common to both proteins (middle) whereas the two
other are characteristic of VP (left) and PP (right). The position of heme cofactor in a
central pocket is also indicated. B) Detail of the propionates side of the heme pocket
where the Mn-oxidation site is located in VP formed by two glutamate and one aspartate
residues (two of them being substituted by Asn and Gly residues in PP). From A it is
possible to conclude that P. placenta PP lacks the catalytic tryptophan responsible for
oxidation of high redox-potential aromatic substrates by P. eryngii VP (and
Phanerochaete chrysosporium lignin peroxidase) (1), located near the heme cofactor at
the left side of the figure. From B it is possible to conclude that P. placenta PP lacks a
Mn-oxidation site near the internal propionate of heme as found in P. eryngii VP (and P.
chrysosporium Mn-peroxidase) crystal structure (2). This structural comparison and the
corresponding sequence alignments indicate that the P. placenta peroxidase is not a
ligninolytic peroxidase (as LiP, MnP or VP) but more closely allied to Coprinopsis
cinerea peroxidase (CIP) and could oxidize low redox-potential dyes and phenols at the
edge of the main heme access channel.

SI Fig. 2. Putative components of TCA cycle, GLOX cycle and oxalate metabolism.
Colored bars indicate microarray-derived expression results from glucose-grown (left
panel) and cellulose-grown (right panel) mycelia. Manual inspection of malate
dehydrogenase model Ppl106934 revealed several inaccuracies upon which microarray
60mers were based. Reliable expression results are therefore not available. Model details
and microarray results are listed in SI_table 8.xls under NCBI-GEO series accession
GSE12540.

SI Fig. 3. Neighbor-Joining tree of the cytochrome P450 contingent (P450ome) of P.
placenta. The tree shows 254 P450 proteins clustered into 11 fungal clans (indicated by
different clan specific color at the branch point). The unrooted phylogenetic tree was
constructed using MEGA4 phylogenetic analyses program with 1000 bootstrap
replications. Evolutionary distances were computed using the Poisson correction method
and are in the units of the number of amino acid substitutions per site. All positions
containing gaps and missing data were eliminated from the dataset. This large jpeg image
is linked as “SI_figure 3.jpg” under NCBI-GEO series accession GSE12540.

SI Fig. 4. Scatter plot showing expression of 12,438 P. placenta genes in cultures
containing glucose or microcrystalline cellulose as sole carbon source. Data normalized
and shown as log; scale. Middle solid green line is identity (x=y). Outside green lines
delineate 290 genes with >2-fold change in intensity in one data set. Details for these
regulated genes in SI Table 3. Dashed purple line is best fit linear regression. Values for



all genes, together with ANOVA results are listed under NCBI-GEQO series accession
GSE12540.

SI Fig. 5. Analysis of P. placenta B-mating locus. Panel A: Schematic representation of
the B-mating type locus. Clusters and groups within clusters are given according to the
phylogenetic proximity of the respective gene models to their orthologs in C. cinerea.
Closely related pheromone precursors (as revealed by phylogenetic analysis, panel C) are
depicted in identical colours and those lacking close neighbours are shown in black.
Complete microarray results are listed in NCBI-GEO series accession GSE12540, where
Ppl94656 and Ppl51963 are represented by earlier incomplete models Ppl32692 and
Ppl32709, respectively. (Oligonucleotide specificity is retained in the improved models.)
Panel B: Phylogenetic analysis of G-protein coupled receptors and their orthologs in C.
cinerea. Sequences used are derived from the C. cinerea strain Okayama 7 genome
(http://www.broad.mit.edu/annotation/genome/coprinus_cinereus/Home.html). These
sequences are: CC1G_02129 = CcSTE3.1, CC1G_02136 = CcSTE3.2a and CcSTE3.2b
(previously known as Rcb2 B43, AAQ96345), CC1G 02137 = CcSTE3.3 (previously
known as Rcb3 B43; AAQ96346), CC1G_02151 = CcSTE3-2151, CC1G_02153 =
CcSTE3-2153 and CC1G_07395 = CcSTE3-7395). Panel C: Phylogenetic analysis of
putative a-type peptide pheromone precursors of P. placenta. For both trees, sequence
alignments were performed using ClustalX (1.81) (3) and the alignment was manually
adjusted by the aid of Genedoc. Phylogenetic analysis was performed with MEGA 4.0 (4)
using the minimum evolution approach. The reliability of the nodes was estimated by
minimum evolution bootstrap percentages obtained after 1000 pseudoreplications.

SI Fig. 6. Phylogenetic analysis of G-protein a subunits. Abbreviation are as follows:
Trichoderma reesei (Hypocrea jecorina) (TR), Saccharomyces cerevisiae (SC),
Schizosaccharomyces pombe (SP), Neurospora crassa (NC), Aspergillus fumigatus (AF),
Gibberella zeae (GZ), Fusarium oxysporum (FO), Magnaporthe grisea (MG),
Cryphonectria parasitica (CP), Rattus norvegicus (RN), Canis familiaris (CF),
Drosophila melanogaster (DM), Oryza sativa (OS), Pisum sativum (PS), Glycine max
(GM) and Ustilago maydis (UM). The analysis was performed as described with SI Fig.
5.

SI Fig. 7. Schematic representation of putative MAP-kinase pathways in P. placenta.
Cascades and upstream factors were deduced from Gustin ef al., 1998 (5) and similarity
of the respective P. placenta predicted proteins as suggested by BLASTP-searches
restricted to Saccharomyces cerevisiae.
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SI Text
1. Methods.

Genome sequencing and assembly. A pure whole genome shotgun approach was used
to sequence dikaryotic Postia placenta strain MAD-698 (USDA, Forest Mycology
Center, Madison, WI). Genomic DNA was randomly sheared and size fractionated, and
libraries of approximately 3 kb and 8 kb were constructed. The assembly was constructed
with the JGI assembler, JAZZ, using paired end sequencing reads at a coverage of 7.23X.
After trimming for vector and quality, 574,631 reads assembled into 1243 scaffolds
totaling 90.9 Mbp. Completeness of the assembly can be estimated in part by the
observation that 98.7% of 38,114 ESTs aligned to the assembly with >50% coverage.

Since P. placenta has been shown to be highly polymorphic with a polymorphism
rate of 3-4%, this particular assembly uses extra stringent parameters that should only
assemble sections of the genome that are more than 99% identical. The entire assembly is
available through the JGI portal (http://genome.jgi-
~ psf.org/Pospll/Pospll.download.fip.html) and has been deposited (Accession
ABWF00000000). Summarizing assembly features:

Scaffold Total 1243
Scaffold Sequence Total 90.9 MB
Scaffold N50 85

Estimated Depth 7.23 +/-0.13

EST sequencing and analysis. P. placenta MAD-698 total RNA was purified after 5
days growth on three media: rich media (2% w/v malt extract, 2% glucose, 0.5%
peptone), basal salts (6) with 0.5% glucose, and basal salts with 0.5% wood-derived
microcrystalline cellulose (Avicel). The Qiagen RNeasy Maxi Purification kit was used
according to the manufacturer’s instructions. c¢DNA synthesis and cloning was a
modified procedure based on the SuperScript plasmid system with Gateway technology
for cDNA synthesis and cloning (Invitrogen, Carsbad, CA). 1-2 ug of poly A+ RNA,
reverse transcriptase SuperScript II (Invitrogen) and oligo dT-Notl primer (5' -
GACTAGTTCTAGATCGCGAGCGGCCGCCCTISVN -3) were used to synthesize
first strand cDNA. Second strand synthesis was performed with E. coli DNA ligase,
polymerase I, and RNaseH followed by end repair using T4 DNA polymerase. The Sall
adaptor (5'- TCGACCCACGCGTCCG -3' and 5'- CGGACGCGTGGG -3') was ligated to
each cDNA, digested with Notl (New England Biolabs, Ipswich, MA), and subsequently
size selected by gel electrophoresis (1.1% agarose). Two size ranges of cDNA from each
of the three RNA samples were cut out of the gel, 0.6kb-2kb for the smaller insert size
range cDNA libraries and 2kb-10kb for the larger size range ¢cDNA libraries. For the
glucose and microcrystalline cellulose samples, the cDNA inserts were directionally
ligated into the Sall and Notl digested vector pMCL200-cDNA. Likewise, the rich media



sample was ligated into both pMCL200-cDNA and pCUGI21. The ligations were all
transformed into ElectroMAX DH10B cells (Invitrogen).

Library quality was first assessed by randomly selecting 24 clones and PCR
amplifying the cDNA inserts with the primers M13-F (5’-GTAAAACGACGGCCAGT--
3" and M13-R (5’-AGGAAACAGCTATGACCAT-3") to determine the fraction of
clones without inserts. Colonies from each library were plated onto agarose plates
(254mm plates from Teknova, Hollister, CA) at a density of approximately 1000 colonies
per plate. Plates were grown at 37 C for 18 hours, then individual colonies were picked
and each used to inoculate a well containing LB media with appropriate antibiotic in a
384 well plate (Nunc, Rochester, NY). Clones in 384 well plates were grown at 37 C for
18 hours. Contained plasmid DNA for sequencing was produced by rolling circle
amplification ((7), Templiphi, GE Healthcare, Piscataway, NJ). Subclone inserts were
sequenced from both ends using primers complimentary to the flanking vector sequence
(Fw: 5’-AGGAAACAGCTATGACCAT--3', Rv: 5’-
GTTTTCCCAGTCACGACGTTGTA-3") using Big Dye terminator chemistry and then
run on ABI 3730 instruments (Applied Biosystems, Foster City, CA). A total of 44,520
Expressed Sequence Tags (ESTs) were sequenced from the three RNA samples with an
average read length of 710.

The 44,520 ESTs, including 33,792 from rich medium, 1,536 from glucose, and
9,216 from microcrystalline cellulose, were processed through the JGI EST pipeline
(ESTs generated in pairs, a 5° and 3’ end read from each cDNA clone). The Phred
software (8, 9) was used to call the bases and generate quality scores. Vector, linker,
adapter, poly-A/T, and other artifact sequences were removed using the Cross_match
software, and an internally developed short pattern finder. Low quality regions of the
read were identified using internally developed software, masking regions with a
combined quality score of less than 15. The longest high quality region of each read was
considered the EST. ESTs shorter than 150 bp were removed from the data set. ESTs
containing common contaminants such as E. coli, common vectors, and sequencing
standards were also removed from the data set.

EST clustering was performed ab-initio, based on alignments between pairs of
trimmed, high quality ESTs yielding 29,763, 7,454, and 897 each from rich media,
microcrystalline cellulose, and glucose, respectively (GenBank accessions FL595400
through FL633513). Pair-wise EST alignments were generated using internally developed
alignment software. ESTs sharing an alignment of at least 99% identity and 150 bp
overlap were assigned to the same cluster. Furthermore, ESTs not sharing alignments
were assigned to the same cluster if they were derived from the same cDNA clone.
Clusters of ESTs were assembled into consensus sequences, contigs or singlets using
Phrap software. A total of 7,251 clusters (including 1,145 singlet EST clusters) were
generated and further assembled into 10,716 consensus sequences using Phrap.

Automated Genome Annotation. Following assembly, P. placenta genes were predicted
and annotated using the JGI annotation pipeline. After masking transposons using
RepeatMasker, we used several gene predictors including ab initio Fgenesh (10),
homology-based, Fgenesh+ (10), and Genewise (11). Fgenesh was trained on a set of
available mRNAs, full-length genes derived from EST clusters, and reliable homology-



based gene models. GeneWise models were extended when possible to include start and
stop codons. When possible, available ESTs were used to extend the predicted protein
coding regions into full-length genes by adding 3’ and 5° UTRs. When multiple models
were predicted at the same locus, the model with best homology (including coverage in
both model and hit sequences) and EST support was selected for the non-redundant set of
genes called ‘BestModels, v2.0’ containing 17,173 gene models. Genes have been
annotated and classified according to GO (gene ontology consortium
http://www.geneontology.org/), eukaryotic orthologous groups (KOGs (12)), and KEGG
metabolic pathways (13).

Annotation summary:

Number gene models 17,173
Models/Mbp 189
Multi-exon genes 94%
Supported by ESTs 29%

KEGG 3,424 (20%)
KOG 9,321 (54%)
GO 8,198 (48%)

Allelic variants. The haplotype assembly presented unique problems in candidate allele
pair assignment. An initial manual analysis revealed two potential confounding factors:
the first, that there was the possibility that some recent duplication in some gene families
may confuse simplistic approaches (e.g., best hit equals allele), the second, a sample of
genes are likely not represented as an allele pair (i.e., there is no difference in nucleotide
sequence at all between allele pairs). To ensure appropriate stringency, 500 bp of
upstream sequence in addition to exon and intron sequence for each gene was aligned
using BLASTN. Then mutual best hit pairs that were not on the same scaffold were
selected as candidate alleles if they were more than 92% identical (allowing for gaps in
the assembly). With this method 4946 allele pairs were detected, resulting in 12,227 total
unique genes. To create a final unique gene set, the allele from the largest scaffold was
kept, to create the longest continuous regions of haplotype pairs.

Manual curation. Automatically predicted genes and functions were further refined by
user community-wide manual curation efforts wusing web-based tools at
www.jgi.doe.gov/postia. The latest version gene set containing manually curated genes is
called GeneCatalog.

To detect carbohydrate active genes, each protein model was BLASTed against
the library of approximately 100,000 individual CAZY modules using a database size
parameter identical to that of the NCBI non-redundant database (14);
http://www.cazy.org). All models that gave an e-value better than 0.1 were automatically
kept and manually analyzed. Manual analysis involved examination of the alignment of
the model with the various members of each family (whether of catalytic or non-catalytic
modules), with a search of the conserved signatures/motifs characteristic of each family.
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The presence of the catalytic machinery was verified for borderline cases whenever
known in the family. The models that displayed the usual features that would lead to their
inclusion in the CAZY database were kept for annotation and classified in the appropriate
class and family.

Detection of genes potentially involved in peroxide generation, iron homeostasis,
lignin modification, and oxalate metabolism involved BLASTP and TBLASTN queries
using orthologs from related fungi. Additional genes were detected by their InterPro
domains. P. placenta genes identified in this manner were used as queries for reiterative
BLASTN and TBLASTN searches. To establish allelic relationships, gene sequences plus
flanking regions (>400nt) were BLASTed against the genome. Pairs exhibiting >99%
identity were mapped as alleles on the browser. Manual inspection of the identity and
transcriptional orientation of surrounding genes affirmed allelic pairs (Supplemental
Tables).

Repeats. The P. placenta genome is particularly rich in repetitive elements, many of
which resemble remnants of class I transposable elements (TEs). P. placenta specific
retroelements (labeled VC_TErepeats#) were discovered by aligning the genome to a
manually curated database of known repeats with blastn. Related sequence elements
were clustered using MCL (118) . Clustered elements were then aligned with clustalw
(119) to produce a consensus sequence that could be later used in repeat masking. Other
transposons are available via RepBase (http://www.girinst.org/). All repeats are mapped
to the assembly with RepeatMasker (http://www.repeatmasker.org) and appear within a
separate track accessible through the JGI Genome Portal at http://jgi.doe.gov/Postia. In
aggregate, the simple repeats, known fungal TEs, and 29 extracted retroelements exceed
5% of the genome and all were masked prior to annotation.

Element # in genome Total length (bp)
VC_TErepeats1 881 1454578
VC_TErepeats2 669 691844
VC _TErepeats3 292 451090
VC_TErepeats4 461 549715
VC_TErepeats5 160 169497
VC_TErepeats6 277 314361
VC_TErepeats7 119 174741
VC_TErepeats8 127 105777
VC_TErepeats9 88 76440
VC_TErepeats10 25 25093
VC_TErepeats11 74 145248
VC_TErepeats12 36 54510
VC_TErepeats13 114 136888
VC_TErepeats14 33 65118
VC_TErepeats15 19 10335
VC_TErepeats16 32 14762
VC_TErepeats17 67 28030
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VC_TErepeats18
VC_TErepeats19
VC_TErepeats20
VC_TErepeats22
VC_TErepeats23
VC_TErepeats24
VC_TErepeats25
VC_TErepeats26
VC TErepeats27
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Gypsy and Copia retroelements (15-17) are particularly abundant, although the
vast majority are inactive remnants and/or present as ‘solo’ LTRs (long terminal repeats)
(18, 19). Typical of repetitive sequences, many of the elements lie at scaffold ends or are
excluded from the shotgun assembly. The 1947 nt repeat designated VC-TErepeats 25 is
structurally related to Coprina-Pcl, a Penelope-like retroelement (20). In C. cinerea and
P. chrysosporium these elements are associated with the telomeric repeat, (TAAACCC),.
This telomeric repeat is not observed in P. placenta, but (TTAGG)n is associated with the
elements and possibly represents a divergent telomeric repeat (21). Analysis of tandem
repeats (Tandem Repeat Finder; http://tandem.bu.edu/trf/trf.html) revealed 16 separate
locations where the motif’s array length exceeded 150 copies, and all arrays were located

at scaffold termini or adjacent to gapped regions.
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Mass spectrometry. Soluble extracellular protein was concentrated from shake cultures
containing ball-milled aspen, wood-derived cellulose (microcrystalline cellulose) or de-
waxed cotton as previously reported (22, 23). Following SDS-PAGE fractionation, ‘in
gel” digestion and mass spectrometric analysis were performed as described
(www.biotech.wisc.edu/ServicesResearch/MassSpec/ingel.htm) An in-house licensed
Mascot search engine (Matrix Science, London, UK) identified peptides using the dataset
of 17,173 gene models described above. To identify potential coding regions not
represented in the current gene model set, a second database of all translated ORFs was
queried. Complete listing of CAZYs and oxidative enzymes, including peptide sequences
and scores are detailed in SI table 11.xls under NCBI-GEO series accession GSE12540.
Throughout, protein similarity scores are based on the Smith-Waterman algorithm (24)
using the BLOSUMG62 matrix.

Expression microarrays. From a data set of 12,438 unique alleles, each Roche
NimbleGen (Madison, WI) array featured 10 unique 60mer probes per gene, all in
triplicate. The dataset was manually annotated to include only the ‘best allelic model’
among CAZY-encoding genes. The listing of all CAZY models (SI_table 1.xls) as well
as complete design detail are available as platform GPL7187 within NCBI GEO series
GSE12540 (http://www.ncbi.nlm.nih.gov/geo/index.cgi).

Total RNA was purified from 5-day old cultures containing microcrystalline
cellulose (Avicel) or glucose as sole carbon source. In short, cultures were harvested by
filtering through Miracloth (Calbiochem, EMD Biosciences, Gibbstown, NJ), squeeze
dried and snap frozen in liquid nitrogen. Pellets were stored at -80 C until use. Extraction
buffer was prepared by combining 10 ml 690 mM para-aminosalicylic acid (sodium salt)
(Sigma-Aldrich, St. Louis, MO) with 10 ml 56 mM triisopropylnapthalene sulfonic acid
(sodium salt) (Sigma-Aldrich), and placed on ice. To this was added 5 ml 5X RNB (1.0
M Tris, 1.25 M NaCl, 0.25 M EGTA). The pH of the 5X RNB was adjusted to 8.5 with
NaOH. The mixture was kept on ice and shaken just before use.

Frozen fungal pellets were ground to a fine powder with liquid nitrogen in an acid
washed, pre-chilled mortar and pestle. The ground mycelia were transferred to Falcon
2059 tubes (VWR International, West Chester, PA), and extraction buffer was added to
make a thick slurry. The samples were vortexed vigorously and placed on ice until all
samples were processed. One half volume TE-saturated phenol (Sigma-Aldrich) and Y
volume chloroform (Sigma-Aldrich) were added to each sample and vortexed vigorously.
Samples were spun at 2940 x g in a fixed-angle rotor for 5 minutes. The aqueous layer
was removed to a new tube, and phenol:chloroform extractions were repeated until the
interface between the aqueous and organic layers was clear. The final aqueous extractions
were placed in clean 2059 tubes, to which was added 0.1 volume 3M sodium acetate, pH
5.2, (DEPC-treated) and 2 volumes absolute ethanol. The tubes were shaken vigorously
and stored overnight at -20°C.

The tubes were spun 1 hour at 2940 x g, the supernatants were decanted, and the
pellets were resuspended in 4 ml RNase-free H,O. Total RNA was purified using the
RNeasy Maxi kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol for
RNA cleanup. RNAs were eluted from the RNeasy spin columns using two spins, for a
final volume of 2 ml. The eluted RNAs were ethanol precipitated and stored overnight at
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-20C. The RNAs were spun 1 hour at 2940 x g, washed 1x with 70% ethanol, and
resuspended in 50-100ul RNase-free H,O. Three biological replicates per medium were
used (6 separate arrays).

RNA was converted to double-strand cDNA and labeled with the Cy3 fluorophore
sample for hybridization to the array by Roche NimbleGen (Iceland). In brief, 10ug of
total RNA was incubated with 1X first strand buffer, 10 mM DTT, 0.5mM dNTPs, 100
pM oligo T7 d(T)z4 primer, and 400U of SuperScript II (Invitrogen) for 60 min at 42C.
Second strand cDNA was synthesized by incubation with 1X second strand buffer,
0.2mM dNTPs, 0.07U/ul DNA ligase (Invitrogen), 0.27U/ul DNA polymerase I
(Invitrogen), 0.013U/ul RNase H (Invitrogen), at 16C for 2 hours. Immediately
following, 10U T4 DNA polymerase (Invitrogen) was added for additional 5 minute
incubation at 16C. Double-stranded cDNA was treated with 27ng/ul of RNase A
(EpiCenter Technologies) for 10 minutes at 37C. Treated cDNA was purified using an
equal volume of phenol:chloroform:isoamyl alcohol (Ambion), ethanol precipitated,
washed with 80% ethanol, and resuspended in 20ul water. One ug of each cDNA sample
was amplified and labeled with 1 unit per ul of Klenow Fragment (New England
BioLabs) and 1 O.D unit of Cy3 fluorophore (TriLink Biotechnologies, Inc.) for 2 hours
at 37C. Array hybridization was carried out with 6ug of labeled cDNA suspended in
NimbleGen hybridization solution for 17 hours at 42C. Arrays were scanned on the
Axon4000B Scanner (Molecular Dynamics) and data was extracted from the scanned
image using NimbleScan v2.4. DNASTAR ArrayStar v2.1 (Madison,WI) software was
used to quantify and visualize data. A scatterplot of results is shown in SI Fig. 4.. All
MIAME compliant (25) microarray expression data has been deposited in NCBI’s Gene
Expression Omnibus (26) and accessible through GEO Series accession number
GSE12540.

2. Extracellular peroxide generation.

We identified a large number of gene models potentially supporting Fenton chemistry
through the generation of extracellular H,O, (summarized in SI Table 5) and Fe(Il) (see
next section). Among the former are members of the GMC oxidoreductase family
(InterPro IPR000172) with substantial similarity to known alcohol oxidases (EC
1.1.3.13), aryl-alcohol oxidases (AAQ; EC 1.1.3.7) and glucose oxidases (EC 1.1.3.4).

The P. placenta protein model Ppl118723 is similar to G. trabeum alcohol
(methanol) oxidase (DQ835989) and orthologs in P. chrysosporium (protein ID 126879)
and in C. cinerea (CC1G_07964) (> 85% amino acid identity). Unique among known
alcohol oxidases, these four sequences contain a conserved 23-24 residue carboxy
extension, possibly involved in translocating the proteins to the hyphal surface. As
discussed in the main paper, methanol oxidase has been shown as a source of hydrogen
peroxide in G. trabeum (27). Suggesting a similar role in P. placenta, microarray analysis
revealed a sharp transcript increase for the gene encoding Ppl118723 in cellulose-grown
cultures relative to non-cellulolytic cultures (SI table 6.xls under GEO accession
GSE12540).

Extracellular AAOs together with mycelial aryl alcohol dehydrogenases (AADs)
may produce peroxide by redox-cycling of anisyl metabolites in white rot fungi (28, 29).


http:1.1.3.13

Overall sequence similarity and conservation of key catalytic residues (30) identified
several GMC oxidoreductases as AAQO. Amino acid sequences of Ppl55496, Ppl44654
and Ppl54008 are similar to Pleurotus eryngii AAO, and less related to the P.
chrysosporium AAQO-type protein. There are also at least 15 putative AADs (EC 1.1.190),
four of which are localized within a 33 kb region of scaffold 116. However, arguing
against an important role for AAO and AAD, their transcripts are not (or only slightly)
increased in cultures containing microcrystalline cellulose relative to glucose-grown
cultures (SI table 6.xls under GEO accession GSE12540).

Eight additional GMC oxidoreductases with similarity to known glucose-1-
oxidase genes were identified, and manually inspected alignments showed conservation
of key residues (31) in models Ppl44331, Ppl63190, Ppl128558, Ppl128830 and
Ppl108489. The latter sequence is most closely related to the glucose-1-oxidase-like
protein detected in cellulose-grown P. chrysosporium cultures (23). Transcript levels of
the genes encoding Ppl128830 and Ppl108489 were relatively high in both glucose- and
cellulose-grown cultures and their corresponding peptides were detected in extracellular
filtrates (SI_table 6.xls and SI_table 11.xls under GEO accession GSE12540). Pyranose-
2-oxidase has been implicated in lignocellulose degradation in P. chrysosporium (32), but
no orthologs were detected in P. placenta.

Genes encoding copper radical oxidases (CROs), catalytically distinct from the
FAD-binding GMC oxidoreductases, are present in the P. placenta genome. One such
CRO enzyme from P. chrysosporium, glyoxal oxidase, is physiologically coupled to the
peroxidases of P. chrysosporium via peroxide generation. Substrates include small
carbonyl and a-hydroxycarbonyl compounds (one to three carbons long) that could be
derived from oxidative fragmentation of lignocellulose. On the basis of overall sequence
similarity to glyoxal oxidase and conservation of five catalytic residues (33, 34), three
models were identified as copper radical oxidases. Protein models Ppl64380, Ppl56703,
and Ppl130305 have 20-22 amino acid secretion signals, and their deduced amino acid
sequences are most closely related to P. chrysosporium genes cro6, cro3 and cro2,
respectively (35). Ppl130305 is also similar to the membrane-bound U. maydis protein
GLOl, a protein involved in filamentous growth and pathogencity (36). P. chrysosporium
cro2, U. maydis GLOI1, and two hypothetical proteins each from L. bicolor and C.
cinerea grouped together based on phylogenetic analysis (Fig.. 2 in main paper), and all
members of this clade feature carboxy terminal transmembrane helices. Like its P.
chrysosporium orthologs cro3, cro4 and cro3, the N-terminal sequence of Ppl56703
contains direct repeats of a conserved WSC domain (InterPro domain IPR00288). The
function of this domain is unknown but may be involved in carbohydrate binding. Of
particular relevance to potential Fenton systems, the genes encoding Ppl56703 and
Ppl130305 are upregulated in cultures grown on microcrystalline cellulose, and Ppl56703
peptides were detected in aspen-grown cultures along with the abovementioned glucose-
1-oxidase-like proteins (SI_table 6.xls under GEO accession GSE12540). As mentioned
in the main paper, the P. chrysosporium crol and glx/ genes are not closely related, and
they do not have orthologs in P. placenta, which suggests that there have been two
independent losses of these CRO lineages in Postia (Fig. 2 in main paper). Ppl56703 is
orthologous to the cro3-4-5 lineage in P. chrysosporium, which therefore represents a
Phanerochaete-specific expansion of the gene family. As in the case of the GHs,
evolution of brown-rot is associated with a reduced diversity in P. placenta CROs
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relative to P. chrysosporium.

3. Iron reduction and homeostasis.

Several genes potentially involved in the Fe(II) production required for Fenton chemistry
were found (SI Table 5 and SI table 7.xls under GEO accession GSE12540 ). One of
these (present in 2 allelic variants, with protein IDs Ppl124517 and Ppl64069) encodes a
putative quinone reductase (QRD; EC 1.6.5.5). In the brown-rot fungus G. trabeum, a
QRD may drive extracellular Fenton systems via redox cycling of secreted fungal
quinones (37). P. placenta produces extracellular hydroquinones (38) and its QRD
sequence is highly similar to four P. chrysosporium genes (39) and to at least two genes
from G. trabeum (40). Transcription of the P. placenta QRD gene was significantly
upregulated in cellulose medium (SI table 3.xls under GEO accession GSE12540),
which is consistent with a role for cellulolytic Fenton chemistry that is driven by quinone
redox-cycling. In this connection, substantial upregulation of the genes encoding
phenylalanine ammonia lyase (Ppl112824) and a putative quinate transporter (Ppl44553)
may also be relevant by virtue of their respective roles in the biosynthesis and transport
of essential quinones.

A hydroquinone-based iron reduction system may not be the only mechanism
driving Fenton chemistry in P. placenta. Low molecular weight glycoproteins that can act
as iron reductases have been hypothesized as a component of extracellular Fenton
systems of G. trabeum (41), P. chrysosporium (42) and various other lignocellulolytic
fungi. Four P. placenta models show significant similarity (>48% amino acid identity) to
P. chrysosporium glycoproteins encoded by gip! (AB236889) and glp2 (AB236890)
(42). The P. placenta genes are predicted to encode proteins with well-defined secretion
signals. The genes corresponding to protein models Ppl128974 and Ppl28976 are
tandemly oriented on scaffold 183, and the former is significantly upregulated on
microcrystalline cellulose medium (SI_table 7.xls under GEO accession GSE12540).
Models Ppl95887 and Ppl95888 lack EST support and the corresponding transcripts show
slight decreases in transcript levels under cellulose induction. A gene encoding another
fungal protein often implicated in Fe®* reduction, cellobiose dehydrogenase (37, 43),
appears to be absent in P. placenta.

In addition to its pivotal role in a wide range of cellular processes, iron
homeostasis must play a central role in modulating any functioning Fenton system. The
P. placenta genome features numerous genes potentially involved in iron transport and
redox state (SI table 7.xls under GEO accession GSE12540). Generally, iron
homeostasis is generally divided into reductive and non-reductive systems (44-46).

3.1 Reductive pathway

3.1.1. Iron reductases. The manual inspection of the P. placenta genome database
allows the identification of at least seven putative ferric reductase-encoding genes, and
those encoding proteins Ppl98469 and Ppl98470 are tandemly arranged. The gene
encoding ferric reductase protein Ppl134648 lies immediately adjacent to a putative
copper transporter gene (protein model Ppl134650), an arrangement apparently conserved
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in the basidiomycetes P. chrysosporium, L. bicolor and U. maydis. Such ferric reductases
could play a direct role in Fe** generation for Fenton reactions through the reduction of
Fe’* chelates.

Interestingly, clustering can be observed in many of the aforementioned gene
models. A clear example lies on Scaffold 52, where 7 out of 8 gene models encoding for
putative iron reductases are located. In U. maydis, only one iron reductase has been
described, while in S. cerevisiae one siderophore reductase (FRE 3) and 2 other genes
(FRE 4 to 5) probably encode for iron reductases (47, 48). BLASTP searches of the
Phanerochaete genome revealed at least 11 gene models automatically annotated as iron
reductases, all of which show a considerable similarity to the P. placenta sequences.

3.1.2. CTR copper transporters. At least one copper transporter gene was identified by
sequence similarity to the corresponding yeast gene (49, 50). This putative CTR copper
transporter gene lies immediately adjacent to an iron reductase gene on scaffold 171 (SI
Table 7). Proteins models for the transporter (Ppl134650) and reductase (Ppl134648)
were supported by EST evidence and manually annotated. A second putative CTR copper
transporter protein model, Ppl89573, lacks EST support and was not corrected. Typical of
CTR-related proteins, Ppl134650 contains 3 transmembrane domains and a GXXXG
motif in the third transmembrane domain.

The significance of clustering between the putative iron reductase and CTR
copper transporter remains uncertain. Interestingly, the same kind of “metal-gene cluster”
is observed in P. chrysosporium, where the pairing is observed on two separate scaffolds
(numbers 7 and 9). While Ustilago also shows a CTR clustered next to a
metalloreductase encoding gene, the same was not observed in C. cinerea.

3.1.3. Fet3 sequences. Fet3 proteins are multicopper oxidases (MCO) involved in iron
homeostasis. Functionally coupled with iron reductases, they oxidize iron (II), which then
enters the cell through the Ftrl iron permease. Model Ppl109824 is a typical ferroxidase
exhibiting substantial similarity to known Fet3 proteins and possessing a C-terminal
transmembrane domain. The P. placenta Fet3 is among the most highly upregulated
genes, showing a 5.4-fold increased accumulation in microcrystalline cellulose relative to
glucose medium (SI_table 3.xls under GEO accession GSE12540).

3.1.4. Ftrl sequences. Firl genes encode a membrane-bound iron permease that is
critical for iron homeostasis. Transcription and translation occurs in coordination with its
functional partner, Fet3. Two protein models, Ppl118556 and Ppl4639, were identified by
BLASTP searches with P. chrysosporium Firl. Both Ftrl-like proteins contain 7
transmembrane domains. The Ftrl gene encoding protein model Ppl118556 is
upregulated in microcrystalline cellulose (3.5-fold). The gene lies downstream of the
highly upregulated Fet3 gene (protein model Ppl109824) (SI table 7.xIs under GEO
accession GSE12540), an arrangement commonly seen in ascomycete and basidiomycete
fet3-firl genes. In contrast, Ftrl gene (protein model Ppl46394) is slightly downregulated
under these same culture conditions.

3.1.5. Other sequences. ATX1 from S. cerevisiae is a copper chaperone that plays an

important role in the transport of copper to the Golgi apparatus (51). It is a key protein for
the acquisition of copper by the Fet3 multicopper oxidase, and thus, it is also implicated
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in iron homeostasis. For example, although it plays a role in copper transport, the ATX1
gene is regulated by iron availability. Protein model Ppl134640 is distantly related to S.
cerevisiae ATX1 (SI table 7.xls under GEO accession GSE12540). Microarray
experiments showed a 1.459-fold increase of the transcripts in microcrystalline cellulose
medium relative to glucose medium.

Model Ppl113226 is highly similar (74% amino acid identity over full protein
length) to T. versicolor ctaA (52), a P-type ATPase involved in copper trafficking. In
yeast, the Ccc2 ortholog has been shown to be involved in the iron homeostasis tightly
linked to ATX1. CCC2 participates in the transport of copper inside the Golgi apparatus.
It is required, as well as ATX1, for copper insertion into Fet3 proteins. CCC2 takes
copper from ATX1 (53). Although CCC2 plays an important role in copper transport, the
CCC2 gene is also regulated by iron availability (54). We observed a modest
accumulation of P. placenta transcripts in microcrystalline cellulose (SI table 7.xls
under GEO accession GSE12540).

3.2. Non-reductive pathway

3.2.1. Sidl-like genes. The siderophore-iron transporters are major components of non-
reductive iron uptake pathways. Sidl (L-ornithine-NS5-monooxygenase) in U. maydis
encodes for the first committed step (first enzyme) in the hydroxamate siderophore
synthesis (55). Orthologs of this gene have been identified in several fungal species, but
no gene model was identified in the Postia genome. Sid-like non-ribosomal peptide
synthetases (NRPS) may include Postia protein models Ppl42034, Ppl54642, Ppl95930
and Ppl127746.

3.2.2. Fer-like sequences from U. maydis. To date, three fungal peptide synthetases
genes involved in siderophore biosynthesis have been functionally characterized: Sid2
from U. maydis, SidC from A. nidulans and Sibl from S. pombe. In addition, sequences
with homology to these siderophore peptide synthetases have been identified in several
genomes. These proteins have, in general, lengths close to 4500 aa, and multiple core
motifs (composed of e.g. adenylation, peptidyl carrier and condensation domains), which
are characteristic for NRPS giving them a modular structure (45).

When Sid2 or Fsol from Omphalotus olearius were BLASTed against the
genome, several models showed homology with these sequences. Nevertheless, all
encoded putative proteins of about only 1000 aa. For example, protein model Ppl111174
gives the highest E value for Sid2, but it is only 1019 amino acid residues. The model is
supported by EST data at the C-terminal region, and NCBI BLASTP revealed that the
most closely related proteins were of similar length but designated ‘hypothetical’ (e.g.
EAU85234).

Thorough studies conducted in U. maydis have helped to characterize the
molecular elements responsible for the non-reductive uptake of iron in fungi. In this
organism the sidl and sid2 genes responsible for siderophore synthesis are clustered,
while other genes involved in the transport and modification of these molecules are
located in a different chromosome but also clustered (47). For example, 8 fer (Fe
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regulated) genes, potentially involved in the production and transport of ferrichrome A,
are clustered. All these genes have been BLASTed against the Postia genome and several
models were identified. Nevertheless, no clear evidence of clustering of some of these
models has been observed. In O. olearius the siderophore peptide synthetase is tightly
clustered with an acyltransferase and a L-ornithine-N5-monooxygenase (the sidl-like
gene not identified).

Two siderophores (ferrichrome and ferrichrome A) have been biochemically
characterized in U. maydis. Ferrichrome-complexed iron is taken up and is believed to
serve as an internal reservoir for this metal, while ferrichrome A is thought to present the
iron to a membrane-bound iron reductase. Thus, only some of the siderophore-mediated
iron uptake is conducted through transporters, while the other one also involves a
reduction step (47).

One of the genes present in an “iron-responsive cluster” in U. maydis corresponds
to fer8, which encodes for a conserved protein of unknown function. Interestingly, the
Jfer8 homolog of P. placenta (protein model Ppl55666: 31% identity) is slightly
upregulated in microcrystalline cellulose medium (1.26 up). In contrast, the fer6 homolog
(protein model Ppl112613) shows no significant increase in transcript levels.

Thus, although biochemical studies have suggested the presence of siderophores
in P. placenta (56), no clear homologs of the U. maydis sidl or sid2 (directly involved in
siderophore biosynthesis) could be identified in P. placenta. While the brown rot G.
trabeum is one of the few exception in which the isolated siderophores are not
hydroxymate-based (57), the nature of the putative iron siderophores has not been yet
explored in P. placenta. It is plausible then, that phenolates or organic acid-iron
complexes could also be biologically relevant as part of the high affinity iron-uptake
system in the latter organism.

4. Lignin modification.

Genes encoding the class II secretory peroxidases lignin peroxidase (LiP) and manganese
peroxidase (MnP) were not detected in the P. placenta genome, although they are
typically found in lignin degrading white-rot fungi such as P. chrysosporium, which
contains ten LiP genes and five MnP genes (SI Table 5). Model Ppl44056 showed over
52% amino acid sequence identity to a Pleurotus ostreatus manganese-dependent lignin
peroxidase isozyme (MnP3) and to a Coprinopsis cinerea peroxidase (CIP; EC 1.11.1.7),
but it lacks residues involved in Mn binding and oxidation of aromatic compounds (58),
and superimposition of models strongly suggests that Ppl44056 corresponds to a low
redox potential peroxidase (SI Fig. 1). Consistent with this structural evidence,
phylogenetic analyses of class II peroxidase genes from Postia, Phanerochaete, and other
fungal genomes suggest that Ppl44056 is not closely related to LiP and MnP, but is part
of an assemblage of “basal peroxidases” that includes the “novel peroxidase” of P.
chrysosporium (59), the C. cinerea CIP, and a peroxidase from the mycorrhizal
mushroom L. bicolor (Fig. 2 in main paper) (60). The backbone of the class II peroxidase
phylogeny is not strongly supported, but optimal trees suggest that the LiP and MnP gene
lineages of P. chrysosporium were independently derived from the basal peroxidases
prior to the divergence of Postia and Phanerochaete. If so, then the absence of LiP and
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MnP in P. placenta may reflect additional instances of gene loss.

Five P. placenta models contained chloroperoxidase (CPO) domains
(IPR000028), one of which (Ppl93549) features a putative transmembrane helix and is
substantially upregulated in cellulose medium (SI table 7.xls under GEO accession
GSE12540). These sequences were distantly related to the CPO of the ascomycete
Leptoxyphium fumago (P04963) and more closely related to homologs from the
basidiomycetes P. chrysosporium and Agaricus bisporus. Chlorination of lignin and
lignin-related aromatic compounds has been attributed to CPOs from a wide range of
fungi (61), and all five predicted P. placenta CPOs showed sequence similarity to
peptides of Agrocybe aegerita haloperoxidase-peroxygenase, an enzyme capable of
hydroxylating aromatic substrates (62). Finally, model Ppl116475 was closely related to
cytochrome-c peroxidase (EC 1.11.1.5) of S. cerevisiae, and contains a mitochondrial
targeting sequence (TargetP, http://www.cbs.dtu.dk/services/TargetP/).

Laccases have been suggested to play a role in lignin modification by white-rot
fungi, but have not previously been demonstrated in brown-rot fungi. The precise role of
these enzymes remains uncertain, but numerous studies have demonstrated laccase-
catalyzed oxidation of phenolic and nonphenolic lignin model substrates particularly in
the presence of low molecular weight mediators. The results from P. placenta belie the
usual picture of brown-rot in that models Ppl62097 and Ppli11314 are likely laccases
sensu stricto (63) (Fig. 2 in main paper), showing 62% and 58% identity, respectively, to
T. villosa laccase 5 (SwissProt 18281739). Transcript levels of the genes encoding
Ppl89382 and Ppl111314 appear differentially regulated by decreasing slightly (-1.08-
fold) and increasing (+2.29-fold), respectively, on cellulose medium relative to glucose
medium (SI_table 7.xls under GEO accession GSE12540). These enzymes could
contribute to hydroxyl radical generation by quinone redox-cycling, the semiquinone
radicals formed being able to reduce ferric iron and activate oxygen to hydrogen peroxide
(64). Interestingly, laccase genes are absent from the genome of P. chrysosporium (39,
63), suggesting that laccase is not a core component of fungal wood decay mechanisms,
and is certainly not essential for white-rot.

The P. placenta genome also contains a single “ferroxidase/laccase” sequence
(63), first described in P. chrysosporium and, later identified in almost all fungal
genomes. Like other members of this group, Ppl47589 contains residues required for
ferroxidase activity but lacks the characteristic C-terminal transmembrane domain of
Fet3. Based on the significant similarity to P. chrysosporium MCOI1 (>53% identity)
(65), strong ferroxidase activity but weak phenol oxidase activity would be expected for
the Ppl47589 protein.

Other upregulated genes potentially involved in quinone redox-cycling (see
previous section), and oxidation of lignin-derived products include those encoding a
"polyphenol oxidase" (Ppl114245), i.c. tyrosinase (EC 1.14.18.1) or catechol oxidase (EC
1.10.3.1) related to typical laccases, and various oxidoreductases of uncertain function
(Ppl107061, Ppl28682, Ppl34850, Ppl61437, Ppl24981) (SI table 3.xIs under GEO
accession GSE12540).

5. Regulatory aspects of cellulose degradation by P. placenta
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Carbon catabolite repression is a central mechanism by which microbes adjust gene
expression in relation to the complexity of degradation of a carbon source. In the model
ascomycete Aspergillus nidulans, this regulatory circuit is known to involve the C2H2-
type zinc finger transcriptional repressor CreA; the C-terminal deubiquinating peptidase
CreB; the WDA40 repeat protein CreC; and the arrestin domains and PY motifs containing
protein CreD (66, 67). In addition, the serine/threonine protein kinase SnfA has been
shown to be necessary for activation of CreA (68). Putative orthologs of all these genes
could be identified in the genome of P. placenta, thus suggesting that carbon catabolite
repression is also likely to occur in this (and other) basidiomycete(s). In support of this,
we detected the consensus element for binding of CreA (5’-SYGGRG-3’) in several of
the promoters of genes encoding glycosyl hydrolases, although - in contrast to
ascomycetous genes — in most cases only as single sites. Putative orthologs include CreA,
Ppl101488; CreB, Ppl63810; CreC, Ppl105086; Ppl90866; CreD, Ppl130178 and Snfl,
Ppl49893.

Transcriptional regulation of cellulase and hemicellulase formation has been best
studied in the ascomycete Hypocrea jecorina (=T. reesei), where it involves the binding
of two transcriptional activators (XYR1, ACE2) and one transcriptional repressor
(ACE1) (69). An ortholog of XYR1 (=XInR) has also been shown to function in
Aspergillus niger, whereas orthologs for ace2 are absent from other fungal genera, and
acel — while present in other genera — has not yet been studied. A screening for the
presence of genes orthologous to xyrl, acel and ace2 in P. placenta failed to detect any
candidates, and this absence is also supported by the lack of detection of consensus
binding sites for XYR1/ACE2 (5’-GGNTAA-3") in 12 promoters of glycosyl hydrolases
which were upregulated more than 2-fold on cellulose (SI_table 3.xls under GEO
accession GSE12540). The 12 upregulated GH-encoded genes encode proteins
Ppl105490, Ppl112941, Ppl59600, Ppl54405, Ppl105534, Ppl116267, Ppl109743,
Ppl129476, Ppl121713, Ppl128099, Ppl135021 and Ppl90501.

A comparison of 1000 bp of the same genes by RSA-tools
(http://rsat.ulb.ac.be/rsat) identified the consensus sequence 5’-GCNTNA-3’ to be present
in all of them with an average of four copies per promoter. We conclude that P. placenta
has likely developed different transcriptional proteins and DNA-binding motifs for the
regulation of its cellulose degrading genes.

6. Mating system.

Sexual development in basidiomycetes is governed by two types of homeodomain
transcription factors with distinct DNA-binding domains (HD1 and HD2) and by a
pheromone and pheromone receptor system (70). In tetrapolar species, these functions are
encoded in two unlinked mating-type loci (mostly called 4 and B), whereas in bipolar
species these two classes of genes are either closely linked in one inheritable mating-type
locus (e.g., (71)) or only one of the two loci has retained mating type function (e.g., (72)).
P. placenta is reported to have a bipolar mating system (73). Searches with mating type
proteins from other Agaricomycete species such as C. cinerea or L. bicolor revealed a
candidate B mating type locus with pheromone and pheromone receptor genes (see
section on G-protein coupled receptors below) but no 4 mating type locus with genes for

>

16


http://rsat.ulb.ac.be/rsat

homeodomain transcription factors. In other species, the 4 mating type locus has been
shown to be flanked by a mip gene for a mitochondrial intermediate peptidase and by a
gene f-fg for a conserved fungal protein of unknown function (74-76). Allelic copies of a
mip gene and a S-fg gene were found in the P. placenta genome at a distance from each
other of about 7 kb on scaffold 8 and about 20 kb on scaffold 166, respectively. Sequence
analysis of the enlarged region in scaffold 166 suggests that the larger size of the locus is
caused by an insertion of a retrotransposon of a type occurring in multiple copies in the
P. placenta genome. Insertion of a transposon has not been reported previously in any 4
mating type locus. Indeed, the 4 mating type locus and the surrounding regions in L.
bicolor and C. cinerea appear to be somehow protected against such intrusion (76).

Ab initio models in the regions in between the mip and the f-fg alleles of P.
placenta did not resemble HD1 or HD2 genes from other fungi. Because of low sequence
conservation between genes of species and between alleles of the same species, in L.
bicolor and C. cinerea various ab initio models of 4 mating type genes were incorrectly
annotated or overlooked (76). Therefore, we tested the sequences in between the mip and
p-fg genes for the presence of homeodomain transcription factor genes by translating the
DNA into protein sequences and manually searching for introns using positional
information from genes of other species.

Using this approach, one HD2 gene was found in both allelic loci (scaffolds 8 and
166) of P. placenta but the absence of overlapping EST sequences leaves the 3" ends of
the genes uncertain. The N-termini of the protein models Ppl135105 (652 aa) from
scaffold 166 and Ppl135106 (508 aa) from scaffold 8 have over a length of about 300 -
400 aa about 40% similarity to the N-terminal regions of HD2 proteins from C. cinerea,
Coprinellus disseminatus and Pleurotus djamor. This level of similarity is common
between A mating type proteins of different species and also between allelic proteins of
the same species (77). Regions of similarity cover the HD2 homeodomain and the N-
terminal domain determining allele specificity of mating type proteins (78).

Evidence for sequences related to known HDI genes of other basidiomycetes was
also found in both putative 4 mating-type loci in between the HD2 genes and the f-fg
genes in the divergently transcribed arrangement typical of HDI-HD2 gene pairs in the
basidiomycetes (79). We were however unable to deduce from the available sequences of
the two scaffolds complete protein models containing a HD1 homeodomain in their N-
terminal half as found in HDI1 transcription factors of other species. Nevertheless,
translated sequences from the 5’end of the proposed genes align perfectly over the length
with up to 55 % similarity to the N-terminal domains of HD1 proteins of L. bicolor and
C. cinerea, the region responsible for protein specificity (78). The translated 3”
sequences also align over large regions with 40 — 48 % similarity with the C-terminal
sequences of the L. bicolor and C. cinerea proteins. These C-terminal regions have been
shown to function in C. cinerea as transactivation domains (78). Currently, we do not
know whether the genes encoding HD1 homeodomains in P. placenta are degenerate or
functional. In the future, sequences of the putative 4 mating-type locus will have to be
verified and mating type function tested. Such experimental verification was reported for
the bipolar species Coprinellus disseminatus by progeny analysis and by functional
analysis of subcloned genes in heterologous transformable hosts such as C. cinerea (72).

Finally, one interesting observation regarding the putative 4 mating type locus of
P. placenta concerns the relative arrangement of mating type genes in comparison to mip
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and f-fg. In all published 4 mating type loci of the Agaricales, the mip gene situates tail-
to-tail next to an HDI gene (74, 76). As in P. chrysosporium (unpublished observation),
the P. placenta the HD2 gene is positioned tail-to-tail with the mip gene (ignoring in case
of scaffold 166 the inserted retrotransposon). Possibly, there has been an inversion of the
locus since the divergence of the Agaricales and Polyporales.

With regard to the B mating type locus in tetrapolar species (76, 80), there is one
locus within the haploid genome of P. placenta that contains several STE3-like
pheromone receptor genes and mating type pheromone genes similar to the a-type
pheromone precursors of S. cerevisiae (SI Fig. 5).

The genome includes linked genes for STE3-type G-protein coupled pheromone
receptors (GPCRs) on allelic scaffolds 32 (6 genes) and 33 (7 genes) (SI Fig. 5, panel A).
These likely present a locus of B mating type function in mating and/or sexual
reproduction (compare the analysis of the B mating-type-like genes in the bipolar species
C. disseminatus; (72)). The clustering of STE3 GPCRs has also been observed in C.
cinerea (81), Laccaria bicolor (16), and Phanerochaete chrysosporium (39). Although
this pheromone receptor gene cluster is likely to function in mating, its presence in
bipolar species, such as P. chrysosporium and P. placenta, suggests that the genes may
not be part of the mating type locus. Two additional STE3-like GPCRs, which most
likely represent allelic variants, have been detected on scaffold 39 (protein models
Ppl43609 and Ppl126003). Comparison with GPCR representatives from the three
paralogous B mating type gene groups in the B mating type locus of C. cinerea suggests
that the GPCRs in P. placenta are ancestral duplications of proteins with demonstrated
function in mating (SI Fig. 5, panel B).

B mating type function in C. cinerea is governed by three paralogous clusters of
one gene for a pheromone receptor and various genes for pheromones (80). Phylogeny of
all STE3-type GPCRs of P. placenta along with orthologs in C. cinerea (SI Fig. 5, panel
B) revealed that the STE3-type GPCRs of P. placenta predominantly belong to the three
independent subfamilies of STE3-like receptors known to be involved in mating in C.
cinerea (80). The allelic pair corresponding to protein models Ppl127842 and Ppl94660
could not be grouped into the abovementioned subfamilies. Therefore, the products of
these genes could represent either new subtypes of receptors for mating type
determination or receptors not involved in mating. Evidence for GPCR genes of non-
mating type function are available in other Agaricomycetes (72, 74, 76). Strikingly, the
pheromone receptor genes on scaffold 39 have no pheromone genes in close vicinity (3
kb up- and downstream). EST mapping (www.jgi.doe.gov/postia) and microarray
analysis (GEO accession GSE12540 and SI Fig. 6) demonstrated transcription of all these
GPCR genes, except the gene encoding Ppl94657. (Microarray design did not include the
Ppl94657 as a target.)

Phylogenetic analysis of the predicted lipopeptide pheromone precursors of P.
placenta (SI Fig. 5, panel C) reveals the corresponding allelic variants for some of these
pheromone precursors and suggests possible duplications within the same locus (SI Fig.
5). In all cases except the gene encoding Ppl94657, putative pheromone precursor genes
are located in close proximity to the pheromone receptors. Besides pheromone genes for
products showing characteristic .features of lipopeptide pheromone precursors of other
Agaricomycetes (similarity of the outermost N-terminal precursor sequence, protease
processing site, CaaX-motif), we also detected genes for small CaaX-domain proteins
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within this locus which are more distantly related (protein models Ppl135125, Ppl135029,
Ppl135044 and Ppl135025).

7. Signal transduction.

Based on in silico analysis of the genome, P. placenta appears to sense its environment in
a manner profoundly different from what is known from other fungi (82). The complexity
of G-protein coupled receptors is relatively low. However, the characteristics of the
members of the two component signal transduction systems suggest that this signaling
mechanism might at least partially have compensated for the lack of G-protein
complexity. Also, the increased number of members of the MAPkinase cascades suggests
a higher flexibility within these signaling cascades relative to other fungi.

7.1. G-protein coupled receptors

The most conspicuous finding is that one type of G-protein coupled receptor (GPCR) has
predominantly been identified in the genome of P. placenta; specifically, the STE3-type
pheromone receptors located within the B-locus (scaffolds 32 and 33) and additionally on
scaffold 39 (see above). Otherwise, only one further candidate with distant similarity to
mPR-like GPCRs was detected, protein model Ppl127104 (allelic variant =Ppl130083).

7.2. Heterotrimeric G-proteins

Interestingly, the P. placenta system of heterotrimeric G-proteins seems typical among
fungi (83), with three G-a subunits (Ppl122782, Ppl5128 and Ppl113593), one G-
subunit (Ppl117250) and one G-y subunit (Pp159950).

In addition to the three G-a subunits, which share considerable homologies to
other fungal sequences, 12 additional models with the characteristic G-a protein subunits
were detected. All showed highest similarity to the U. maydis G-protein a subunit Gpad
(84). The function(s) of this G-a subunit are unclear.

Phylogenetic analysis of the putative G-a subunits of P. placenta confirmed the
prediction of the three G-a subunits with homologs in other fungi. However, the
additional putative G-a subunits clustered outside of this group and most of them only
with low bootstrap support even to the U. maydis G-a protein (SI Fig. 6).

As with U. maydis, all these proteins show alterations in both the GTP binding
domains as well as the GTPase domains. In one case, Ppl118240, the respective
alterations include exchanges of glycine for alanine (both neutral, uncharged amino
acids) within the GTP binding domain and glutamine for serine (both uncharged, polar
residues) within the GTPase domain. It therefore seems likely that this protein functions
as G-a subunit.

Also detected were five WD40 repeat proteins with considerable similarity to the
Podospora anserina vegetative incompatibility protein HET-E2C (Ppl57682, Ppl57670,
Ppl128228, Ppl54617 and Ppl25239). Intriguingly, expansions of the number of these
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proteins might have taken place, since loci with duplicated genes have been found on at
least three scaffolds. Considering that the abovementioned group of pheromone receptors
has also likely expanded, processes related to mating may be of particular importance to
P. placenta. Further analysis along these lines will require careful manual annotation and
c¢DNA sequencing to improve model confidence.

7.3. MAPKinases

The MAPKinase machinery of Postia seems comparable to other fungi (5, 85), although
there might be more than three pathways. However, these pathways do not correspond to
the five pathways detected for S. cerevisiae. An STE7 homolog (MAPKK, pheromone
response MAPK pathway) was not detected (SI Fig. 7).

Three FUS3-homologs, predicted to have a function in pheromone response (86),
were detected; an observation again in accordance with an increased importance of this
process in P. placenta. Also, the other MAP-kinase pathways are likely to be extended,
thereby enhancing the flexibility of this signaling mechanism. Moreover, the two
component phosphorelay pathway likely to act upstream of the osmosensing HOGI-
pathway comprises 4 potential group VI hybrid histidine kinases, two histidine
phosphotransferases and the response regulator homolog Ppi134813. Thus, the
mechanisms acting upstream of the MAP-kinases also reflect the increased complexity of
this branch of the signal transduction cascade.

7.4. Two component phosphorelay systems

Signaling via two component phosphorelay systems in response to an environmental
signal is initiated by ATP-dependent autophosphorylation of the histidine kinase (HK) at
a conserved histidine residue. This phosphate is transferred to a conserved aspartic acid
within a response regulator (RR) domain, which ultimately causes a change in
transcription of the respective target gene or regulation of a mitogen-activated protein
kinase pathway (87). Two different types of two component signaling have been
described: with the simple histidine kinases the sensor histidine kinase and the regulator
receiver are separate proteins, whereas hybrid histidine kinases contain both HK and RR
domains on the same protein and generally require additional rounds of phosphorelay
through a histidine phosphotransferase (HPt) and another RR protein. To date, only
hybrid histidine kinases have been identified in fungi, and in general are predominant in
eukaryotes, while simple HKs are predominant in prokaryotes.

The P. placenta genome contains 6 predicted histidine kinases, all of them hybrid
histidine kinases, 3 predicted response regulator receiver proteins and a histidine

phosphotransferase. Summarizing on the basis of the classification system of Catlett et al.
(88):

Type ID Group Transmembrane
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domains

Histidine kinase : Ppl101025 I S5
Ppl189890 11 none
Ppl106926 VI - 5
Ppl126760 VI 5
Ppl51297 VIII none
Ppl128265 X none
Response regulator receiver Ppl107196 related to Rim15p
Ppl127182 related to Skn7p
Ppl134813 related to Ssklp

Histidine phosphotransferase Ppl45959

The histidine kinases reveal several interesting features. The study of Catlett et
al., (88) described a core set of histidine kinases found in every euascomycete analyzed
(groups III, V, VI, VIII, IX and X). The P. placenta genome has only four groups (III,
VI, VIII, and X). Additionally, one member of group I, the function of which has not yet
been determined, has been detected. Interestingly, 3 of the 6 histidine kinases of P.
placenta can be predicted to have a function in osmosensing (members of groups III and
VI). In group VI, two putative members have been detected, which comprise partial
MYHT-domains (IPR005330) as well as 5 transmembrane domains. These MYHT-
domains are thought to function as sensor domains in bacterial signaling proteins. They
consist of six predicted transmembrane domains. The MYHT domain has been found in
several phylogenetically distinct bacteria, either as separate, single domain or in
combination with other domains, similar to the signaling histidine kinase domains for the
two proteins described here. Thus, this appears be the first report of MYHT domains in
fungi. Moreover, this finding would provide an explanation for the lack of GPCRs other
than pheromone receptors. Since both group VI histidine kinases can be predicted to have
transmembrane domains, these proteins could fulfill the task of sensing extracellular
stimuli instead of GPCRs. This group of histidine kinases is also likely to target the
HOG1-MAP kinase cascade, which is more complex and interesting than expected.
While the function of the remaining group X histidine kinase is not known, the group
VIII histidine kinase is predicted to represent the phytochrome of P. placenta and thus
indicates that this fungus is able to perceive and react to red light. With regard to the
response regulator receiver (RR) proteins, P. placenta contains homologs to all three
expected RR proteins (Ssk1lp, Skn7 and Rim15p). Finally, our initial analyses identified a
putative histidine phosphotransferase gene (protein model Ppl45959 and allelic variant
Ppl55453). A closely related model (Ppl124576), lacking a clear allele, was located as
sole gene model on scaffold 2623. Although multiple histidine phosphotransferases are
known in E. coli and A. thaliana (88), fungi typically contain a single gene. If both genes
are confirmed as functional, this may indicate a more sophisticated relay network in P.
placenta. Firm conclusions regarding the function of these putative signalling proteins
would require additional study.
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7.5. PAS domain proteins/Light response

In order to react to the harmful effects of light, P. placenta apparently relies on a
single DNA photolyase (Ppl119113). It does not contain cryptochromes. A potential
homolog to A. nidulans protein veA (89), involved in red light sensing and numerous
other processes, has been identified (Ppl104508), but the similarity between these two
proteins is rather weak. '

In addition to the putative the phytochrome listed above (Ppl51297), screening the
genome for potential photoreceptors yielded a protein with predicted PAS-domain, model
Ppl105827. This sequence is distantly related to the Phycomyces blakesleeanus
photoreceptor White Collar A. Other than Ppl105827, no protein likely to function as
photoreceptor was detected. No close homologs of the Neurospora crassa PAS-domain
proteins White Collar 2 (WC-2) or VIVID were detected by BLASTP. However,
TBLASTN queries revealed potential translations distantly related to L. bicolor white
collar photoreceptor like protein (EDR14883) and N. crassa WC-2 (P78714) on scaffold
83 (between coordinates 259975-261292) and in the corresponding allelic region on
scaffold 281 (between coordinates 49826-51146). Model Ppl113058 features a PAS
domain as well as a zinc finger domain, but since it did not show similarities to
characterized proteins, a function could not be assigned.

7.6. Calcium signaling

One calcium calmodulin protein (CAMI1) and three closely related sequences
(Ppl112896, Ppl129253 and Ppl63783) were detected. Moreover, P. placenta has one
calcium calmodulin dependent protein phosphatase regulatory subunit (CARI,

calcineurin-family) and at least 6 calcium calmodulin dependent phosphatase catalytic
subunits of the calcineurin family.

7.7. cAMP metabolism

cAMP metabolism did not reveal striking peculiarities, except that there was only a weak
homolog for adenylyl cyclase (Ppl19012). Two hypothetical adenylyl cyclase associated
proteins (Ppl127413 and Ppl95708), one cAMP-dependent protein kinase regulatory
subunit (Ppl123625) and three cAMP-dependent protein kinase catalytic subunits were
identified.

7.8. Other groups

A B-arrestin domain protein (Ppl130178), may function as a regulator of G-protein
coupled receptors. Phosducin-like proteins were not detected.

8. Oxidative phosphorylation (OXPHOS) nuclear genes in P. placenta

The OXPHOS system, consisting of the mitochondrial respiratory pathway and ATP
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synthase, is the main mitochondrial function and one of the most ancient and conserved
functions of all aerobic organisms (90). The OXPHOS system is unique because it
contains large enzyme complexes formed by a combination of subunits encoded by both
the mitochondrial and nuclear genomes (91, 92). The OXPHOS system is organized in
five multipolypeptide complexes embedded in the lipid bilayer of the inner mitochondrial
membrane: NADH dehydrogenase (Complex I), succinate dehydrogenase (Complex II),
cytochrome bcl (Complex III), cytochrome ¢ oxidase (Complex IV), and ATP synthase
(Complex V). Mitochondrial genomes encode only a limited number of the essential
components of Complexes I, III, IV and V (93, 94). Fungal mitochondria frequently have
additional OXPHOS components such as an alternative oxidase (AOX) and/or alternative
NAD(P)H dehydrogenases (95).

The complete set of nuclear genes coding for mitochondrial proteins that
participate in OXPHOS (Complexes I-V, alternative oxidases and alternative NAD(P)H
dehydrogenases) have been identified in P. placenta. The approach used to identify
OXPHOS nuclear genes in P. placenta was as described (96). Briefly, detection of
orthologs was determined by BLASTP based on the reciprocal best hits of the P. placenta
nuclear genome against the S. cerevisiae, N. crassa, C. neoformans and Yarrowia
lipolytica OXPHOS proteins used as query. When an OXPHOS ortholog was lacking in
P. placenta, the nuclear genome sequence was investigated using TBLASTN.

P. placenta contains at least 59 nuclear genes coding for OXPHOS components. In
addition to the 7 central subunits making up the eukaryotic core Complex I encoded in
the nucleus (NDUFS1, NDUFS2, NDUFS3, NDUFS7, NDUFS8, NDUFVI1 and
NDUFV2), this fungus has 21 accessory subunits that are nuclear-encoded (NDUFS4,
NDUFS6, NDUFA1I/MWFE, NUDFA2, NDUFA4, NDUFA5, NDUFA6, NDUFAS,
NDUFA9, NDUFAIll, NDUFAI12/DAP13, NDUFA13/GRIM19, NDUFABI/ACP,
NDUFB7, NDUFB8, NDUFB9, NDUFB11, NUXM, NUWM, NUZM and NI9M).
NDUFA4 appears to be a Complex I accessory subunit specific to basidiomycetes and
zygomycetes (96). The accessory subunits NURM, NUVM and 10.4 are fungus-specific
subunits of Complex I (97) but they are absent from all the available nuclear genomes of
Basidiomycetes (U. maydis, L. bicolour, P. chrysosporium, Cryptococcus neoformans
and P. placenta). The accessory subunit NUWM is only present in the basidiomycete P.
placenta and in three Saccharomycotina species (P. stipitis, Debaryomyces hansenii and
Y. lipolytica).

Nuclear genes coding for cytochrome ¢ (CYTC) and the four subunits of Complex II
(SDH1-SDH4) are present in P. placenta. The core proteins QCR1 and QCR2, the
cytochrome ¢; (CYT1), the Ryeske iron-sulfur protein (RIP1) and the additional subunits
QCR6-QCR9 of Complex III are also nuclearly encoded in P. placenta. Orthologs of 6
nuclearly encoded subunits of Complex IV (COX4, COX5A, COX5B, COX6A, COX6B
and COX9) are also present in P. placenta. However, P. placenta is the unique
basidiomycete that lacks a nuclear gene coding for the QCR10 additional subunit of
Complex III.

Complex V separates into Fy and F; subcomplexes (98). Four essential subunits of
each subcomplex (ATP4, ATPS, ATP7 and ATP17 of subcomplex Fy; and ATP1, ATP2,
ATP3 and ATP16 of subcomplex F;) are nuclearly encoded in P. placenta. However, the
nuclear genes coding for the essential subunits ATP14 (subcomplex Fo) are absent from
all the basidiomycetes. C. neoformans and P. placenta are the unique basidiomycetes that
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lack a nuclear gene coding for the essential subunit ATP15 (subcomplex F)). In addition,
two additional subunits of Complex V (ATP18 and ATP20) are nuclearly encoded in P.
placenta, and the additional subunits ATP19, STF1 and STF2 are absent from all the
basidiomycetes.

In addition, the nuclear genome of P. placenta contains an alternative AOX and an
alternative NAD(P)H dehydrogenase. It is noteworthy that there is only one NAD(P)H
dehydrogenase, whereas in other basidiomycetes there are more (two in C. cinerea and
three in the others).

Summarizing this analysis, the complete set of OXPHOS nuclear genes have been
identified in P. placenta. This fungus contains at least 59 OXPHOS components encoded
in the nucleus. Comparison of P. placenta with other basidiomycetes reveals a high
conservation of the OXPHOS system in this fungal phylum. In particular, specific
subunits of OXPHOS complexes are absent in all the nuclear genomes of basidiomycetes:
the NURM, NUVM and 10.4 accessory subunits of Complex I, the essential subunits
ATP14 and the additional subunits ATP19, STF1 and STF2 of Complex V.

9, Oxalate metabolism.

In addition to pH effects on a wide range of enzymes, extracellular accumulation of
oxalate by P. placenta may affect ferric iron availability and thereby impact hydroxyl
radical formation (99) reviewed in (37, 100). A metabolic shunt between the citric acid
and glyoxylate cycles is central to oxalic acid accumulation by the brown-rot fungus
Fomitopsis palustris (101). Key enzyme components are compartmentalized in
mitochondria, peroxisomes and the cytosol, and the F. palustris gene encoding
peroxisomal isocitrate lyase was recently characterized (102). Our analysis of the P.
placenta genome demonstrates a functional glyoxylate shunt and substantially extends
our understanding of the number, structure and transcription of key genes (SI_table 8.xls
under GEO accession GSE12540 and SI Fig.2). Based on overall sequence similarity to
known genes and on the presence of a C-terminal tripeptide (~SKL) targeting motif, we
identified sequences encoding putative peroxisomal enzymes directly involved in the
GLOX cycle (malate dehydrogenase Ppl106934; citrate synthase Ppl112712; malate
synthase, Ppl119506). All these protein models have EST support, as did a putative
glycolate oxidase (Ppl121561) which may provide an additional route to oxalate (103).
The other route, experimentally supported in F. palustris, involves cytosolic oxaloacetase
(Ppl112832), to which over 127 filtered EST reads were mapped. High OXA activity
would generate acetate, and consistent with these observations, a highly transcribed
cytosolic acetyl-CoA synthetase (Ppl107062) was found. The highly expressed glycolate
oxidase and oxaloacetase genes lie approximately 1.3kb apart, and this arrangement
appears conserved in P. chrysosporium. Separate genes with putative mitochondrial
targeting sequences include those encoding malate dehydrogenase (Ppl118718), citrate
synthases (Ppl43991, Ppl110627), fumarase (Ppl127563), isocitrate dehydrogenases
(Ppl119064, Ppl119048) and 2-oxoglutarate dehydrogenase (Ppl107068). A
mitochondrial-targeted aconitate dehydratase with minimal EST support was also
observed, as was a putative cytosolic form, Ppl121891, represented by 43 EST reads.
Mitochondrial and cytosolic forms of aconitase have been characterized in S. cerevisiae,

24



where they are thought to participate in the TCA and glyoxylate shunt, respectively.
Interestingly, the yeast aconitase isozymes are encoded by a single gene, acol, followed
by uneven cellular distribution (104),

However, the suggestion that oxalic acid production is due to low levels of 2-
oxoglutarate dehydrogenase and isocitrate dehydrogenases in brown-rot fungi (101) is not
directly supported by the presence and EST patterns of the corresponding P. placenta
genes. However, the compartmentalization of the components of the glyoxylic acid shunt
and the extent to which TCA cycle components can be transported out of the
mitochondria could diminish the overall activity of the TCA cycle and result in the
excretion of oxalic acid.

Subsequent metabolism of extracellular oxalate remains unclear. Models
Ppl46778, Ppl43912 and Ppl43635 showed high similarity (>51% amino acid identity) to
known oxalate oxidases or decarboxylases of the bicupin family. The one glutamate and
three histidines that coordinate the manganese ion are conserved in the cupin domains of
all three translated genes (105). Oxalate oxidase (EC 1.2.3.4) uses oxygen to convert
oxalate to two carbon dioxide molecules and hydrogen peroxide, whereas oxalate
decarboxylase (EC 4.1.1.2) cleaves oxalate into formate and carbon dioxide. Based on
amino acid sequence alone it is difficult to distinguish the oxalate oxidases from the
oxalate decarboxylases. However, the similarity of an important pentapeptide S(E/D)DST
following the second cupin motif to known oxalate decarboxylases suggests that the three
genes in P. placenta all encode oxalate decarboxylases (106). Previous reports suggest
these putative oxalate decarboxylases are associated with the mycelium (107). SignalP
predicts with high confidence an N-terminal secretion signal of 20-24 amino acids for all
of the gene products. Transcripts of the gene encoding Ppl46778 substantially increased
in cellulose media relative to glucose (+2.41-fold). Suggesting a physiological
connection, genes involved in formate metabolism (putative formate transporter
Ppl128726; formate dehydrogenases Ppl129190, Ppl119730, Ppl98518) were also
upregulated.

10. Cytochrome P450 monooxygenases.

Cytochrome P450 monooxygenases represent a superfamily of heme-thiolate proteins
distributed across phyla. In fungi, P450 proteins act as terminal oxidases of the
monooxygenase system and play an important role in the metabolism of a wide variety of
endogenous compounds. In filamentous fungi, P450s are part of the secondary
metabolism pathways and are involved in the synthesis of biologically active compounds
such as aflatoxins and gibberellins. P450s in saprophytic fungi such as wood-rotting
basidiomycetes P. chrysosporium and P. placenta, are believed to be involved in the
biodegradation process of lignin, one of the most recalcitrant polymers found in nature,
and in the degradation of anthropogenic and xenobiotic compounds such as polycyclic
aromatic hydrocarbons (PAHs) and alkanes, among others.

Available genome sequence information on four basidiomycetous fungi has
revealed 149 P450 genes in P. chrysosporium (39, 108), 101 in C. cinerea, 30 in Puccinia
graminis, and 3 (to date) in U. maydis. Here, we report the P450 genes and their alleles in
the fifth basidiomycete fungus, P. placenta (brown-rot) and discuss the phylogenomic
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aspects of its P450ome.

10.1. Methodology for P450 analysis

A total of 326 DNA and protein sequences were downloaded from the JGI website
(http://jgi.doe.gov/Postia) that were initially predicted as P450s. A custom Per] script was
written that identified the two conserved domains of cytochrome P450 proteins, namely
ERR triad motif (EXXR) and the oxygen-binding motif (CXG) to reconfirm their
prediction. There were 274 P450s that had these signature domains. A multiple alignment
file was generated for the entire set of the 326 P450 protein sequences using the
CLUSTALX program with the program default options. Next, a sequence identity matrix
file was created from this alignment file using the sequence editor program BioEdit.
Sequences were grouped based on a set cut-off percent identity of their aa sequences for
family classification. This kind of family grouping was further refined by generating
phylogenetic trees using the MEGA 4 software (109). For this, Neighbor-Joining method
of clustering was used with 1000 bootstrap replications (110). Sites with alignment gaps
and missing data were not included in the analysis. The above two motifs were in the
expected relative positions to each other in only 254 P450s, which were finally used as an
input for the phylogenetic tree generating program. For the fused P450 proteins (fused
P450 monooxygenase and P450 reductase polypeptides) only the P450 portion of the
protein sequence was used. Similarly, family/clan names were assigned to the Postia
P450ome based on their protein homology to the P450s of the white rot fungus, P.
chrysosporium.

The P450 proteins were grouped based on their aa similarity using three cut-off
percentages, 70%, 80% and 90% identity scores. Next, using the mRNA-to-genomic
DNA alignment program Spidey, the intron-exon junction and the number of exons were
compared for the grouped P450s. In addition, the 100 bp 3° UTR sequences (downstream
of the predicted P450 CDS) for each of these P450s were extracted from the whole
genome sequence and were aligned to compare their percent similarity. Highly similar
pair of P450s based on the above three comparison criteria were defined as allelic pairs
only when they had the same structural organization (number and length of exons and
introns), belonged to different scaffolds on the genome, and had their UTR regions
matching 90-100%.

10.2. Gene numbers.

The 326 gene sequences that were initially identified as “P450-like” based on BLAST
homology searches were further analyzed for confirmation and P450 classification based
on (i) domain and phylogeny analysis, and (ii) amino acid homology criteria. Based on
the domain analysis, only 274 genes were found to have the two conserved functional
domains ERR triad motif (EXXR) and the oxygen binding motif (CXG) that are typical
of a P450 protein. Of these 274 P450s, only 254 genes showed optimal alignment based
on the relative position of the above two functional domains and thus were used for
generation of the phylogenetic tree (SI_figure 3.jpg under GEO accession GSE12540)
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for family/clan level classification as discussed below. Subsequently, based on the
conventional amino acid homology criterion for family classification (genes showing
>40% homology belong to the same P450 family), an additional 14 P450 genes including
5 from the 274 list and 9 from the other genes in the original 326 P450-like sequences
could also be sorted into P450 families/clans, raising the number of classifiable genes to a
total of 268 (254 + 14 = 268). The remaining 15 of the 274 P450s (274-254-5 = 15) could
not be sorted out for classification based on the above criteria. In essence, our overall
analysis based on a combination of the above criteria confirmed 283 genes (268 + 15) as
P450s out of the 326 P450-like gene sequences originally detected in the assembled
genome based on BLAST homology search. Of the abovementioned P450 genes, 47

genes have identifiable alleles.

Allele 1
Protein ID Gene model

1 105546  fgenesh3 pg.138_ 3

2 89741 fgenesh3 pm.9_ 21

3 121666  estExt_Genewisel.C_530047

4 52903 e gwl.65.31.1

5 52821 e gwl.65.24.1

6 52780 e pwl.65.79.1

7 112203  estExt_GenewiseiPlus.C_150097
8 57109 e pwl 931.1

9 44435 e gwl.112.9.1

10 105719 fgenesh3 pg.10_ 27

11 45371 e gwl.80.17.1

12 48082 e gwl.193.16.1

13 44960 e pwl.48.75.1

14 48638 e_gwl.163.64.1

15 89499 fgenesh3 _pm.55_ 7

16 20385 gwl.96.11.1

17 126035  estExt_fgenesh3 pg.C_10061
18 123864  estExt_Genewisel.C_3520008
19 100048  fgenesh3 _pg36 76

20 125663  estExt_Genewisel.C 240104
21 87307 fgenesh3_kg.144 2 3669380:1
22 97267 fgenesh3_pg.15 57

23 97921 fgenesh3 pg.160 15

24 126573  estExt_fgenesh3 pg.C_900043
25 93392 fgenesh3 pgd4l 44

26 97505 fgenesh3 pg.94 12

27 115931  estExt GenewiselPlus.C_570065
28 89096 fgenesh3 pm.65_ 14

29 43853 e gwl.1.157.1|Pospll

30 108714  estExt_GenewiselPlus.C_10138
31 44433 e gwl.112.8.1

32 51753 e gwl.117.34.1

33 49676 e gwl.1334.1

34 51017 e gwl.154.10.1

35 52482 e gwl.65.83.1

36 48648 e_gwi.163.51.1

37 48656 e gwl.163.47.1

38 127929  estExt_fgenesh3 pg.C 3090005
39 56875 e_gwl.27.40.1

40 31744 gwl.34.105.1

27

Allele 2
Protein ID _Gene model
91027 fgenesh3 pg8 29
87960 fgenesh3 pm.129 4
124807  estExt_Genewisel.C_450096
112332 estExt_GenewiselPlus.C_940018
110751  estExt_GenewiselPlus.C_1630051
119475  estExt Genewisel.C 1630018
60038 e gwl.70.15.1
62768 e gwl.75.15.1
62479 e gwl.95.36.1
92340 fgenesh3 pg.80 39
105726 fgenesh3 pg.10__ 34
56013 e gwl.2.64.1
44724 e pwl.2681.1
52830 e pwl.65.118.1
98989 fgenesh3 pg.245_ 12
51235 e gwl.544.1
109545 estExt_Genewise!Plus.C_600011
46863 e gwl.18.87.1
110469  estExt_GenewiselPlus.C_430068
126564  estExt fgenesh3 pg.C 900031
22365 gw1.208.7.1
102772 fgenesh3 pg.171__16
127097  estExt_fgenesh3 pg.C 3200003
130416  estExt_fgenesh3 pg.C_240078
60471 e gwl.4.65.1|Pospll
97728 fgenesh3 pg.65__ 49
97538 fgenesh3 pg.94 45
21309 gwl.107.11.1
54877 gwl.162.29.1
49051 e gwl.126.34.1
105138 fgenesh3 pg95 46
63327 e gwl.173.20.1
113167  estExt_GenewiseiPlus.C_340126
35865 gwl.1716.1.1
48612 e gwl.163.17.1
52844 e gwl.65.75.1
52906 e _gwl.65.23.1
114275  estExt_GenewiselPlus.C 1770038
94692 fgenesh3 pg.33 90
95454 fgenesh3 pg.133_ 7




41 55867 e gwl.36.51.1 48020 e gwl.43.59.1

42 60489 e gwl.436.1 46717 e gwldal.17.1

43 116084  estExt GenewiselPlus.C 450099 112932 estExt _GenewiselPlus.C_530041
44 95422 fgenesh3_pg478 1 99629 fgenesh3 pg.142_ 25

45 89660 fgenesh3_pm.21 12 55398 e gwl.142.6.1

46 51586 e gwl.46.29.1 47044 e gwl.157.11.1

47 93354 fgenesh3_pgdl 6 103594  fgenesh3 pg4 206

10.3. Gene characteristics.

The average P450 coding sequence size was 1.0 — 1.8 kb; however, for certain gene
models such as  fgenesh3_pg281 11, estExt fgenesh3 pg.C_950043  and
estExt _fgenesh3 pg.C 500027, the apparent coding sequence spanned as long as 4-5 kb,
and needs further analysis to detect any fused sequences. The number of introns varied
widely, ranging from as low as no intron (gwl.18.227.1) or a single intron
(e gwl.168.41.1, fgenesh3 pgd43 49, gwl.36.69.1) to as high as 31 introns
(estExt_fgenesh3 pg.C 500027). Most ranged from 7 to 13 introns per gene.

10.4. Homology grouping and phylogenetic analysis (tree construction SI Fig. 3).

We performed an overall sequence similarity-based initial grouping of the 326 P.
placenta P450 genes with the P. chrysosporium P450ome from a previous study (111).
This led to the identification of a strong grouping for the core fungal P450 clans CYP51,
CYP52, CYP61, and CYP62. This pattern for Clan- and Family- based classification
became apparent when the phylogenetic tree was analyzed. In Postia, 11 fungal Clans
(CYPS51, CYP52, CYP53, CYP54, CYP61, CYP62, CYP64, CYP67, CYP503, CYP505,
CYP547) and 29 Families were identified. CYP 64 was the largest Clan as in the P.
chrysosporium genome; a new family CYP530, with multiple members that show high
homology to the members in Ascomycetous fungi (Aspergillus spp., Magnaporthe grisea
and Fusarium graminearum), was identifiable as a part of this clan.

P450 Clan Member families in each Number genes in each
family clan (arbitrarily numbered) family
CYP51 1 2
CYPS52 I 8
CYP53 1 1
1I 3
I 9
v 4
CYP54 I 21
1I 2
CYP61 I 2
CYP62 I 2
CYP64 I 39
II 1

28



III 1
v 3
\Y 3
VI 17
VII 14
VIII 24
IX ’ 6
X 22
CYP67 I 5
- CYP505 I 3
CYP534 I 5
Il 3
CYP547 I 11
II 14
1T 4
v 36
Unresolved | 3

10.5. Brown-rot vs White-rot.

Overall, the P. placenta genome revealed a higher number of P450 genes (283 genes
including 47 alleles) than P. chrysosporium (149 genes). Similar to P. chrysosporium,
clustering of the P450 genes on the Postia genome was observed, with a similar
distribution pattern. The number of P450s in fungal families such as CYP51, CYP52,
CYP61 and CYP62, was the same as P. chrysosporium. However, families such as
CYP505 (Foxy, fused proteins), CYP58 (CYP53 clan) and CYP67 show reductions
compared to P. chrysosporium. On the other hand, families such as CYP64, CYP503, and
CYP5031 and CYP617 (clan 547) showed expansion when compared to P.
chrysosporium. '

The genes encoding P450 proteins Ppl110015 and Ppl128850 were upregulated
2.49-fold and 2.23-fold, respectively, in cellulose grown cultures relative to glucose
grown cells (SI_table 3.xls under GEO accession GSE12540). Ppl110015 shares >66%
amino acid identity with CYP53s (benzoate-para-hydroxylase) that are known to be
upregulated by benzoate in P. chrysosporium and Aspergillus. Ppl128850 has limited
sequence similarity to P. chrysosporium P450s, but is more closely related to members of
the CYPS503 clan. This clan contains P450 genes associated with secondary metabolism
in fungi, including white rot fungus gene CYP512A1 in T. versicolor (111). Upregulation
of these genes in cellulose and their homology with the P450 genes in the lignin-
degrading white rot fungi suggest potential role(s) in lignocellulose conversions.

11. Stress related genes
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11.1. Superoxide dismutases.

Superoxide dismutase (SOD) is thought to be an important component of the oxidative
stress response system of P. chrysosporium (112, 113). Three putative SOD-encoding
genes were detected in P. placenta. Ppl111797 belongs to the Cuw/Zn SOD group
(InterPro 001424) and its full-length amino acid sequence is 68% identical to P.
chrysosporium protein model number 128732. Transcripts accumulate 1.404-fold in
microcrystalline cellulose medium relative to glucose medium (GEO accession
GSE12540). Ppl120789 and Ppl130297 are classified as Mn-containing SODs (InterPro
001189) and show substantial sequence similarity to predicted proteins from
Taiwanofungus camphorates (70% identity to AAQ16628) and from P. chrysosporium
(87% identity to AAKS2369), respectively. N-terminus sequence analysis
(www.cbs.dtu.dk/services/TargetP/) strongly predicts mitochondrial targeting of
Ppl130297, and transcript levels increase 1.541 fold in cellulose medium. No targeting is
predicted for Ppl120789, and transcript levels decrease 1.314-fold in cellulose (under
GEO accession GSE12540).

11.2. Catalases.

Also associated with oxidative stress (114), four putative catalase-encoding genes were
identified in P. placenta. On the basis of sequence similarity, these correspond to 4 genes
previously characterized in C. neoformans and classified as spore specific (CAT1 and
"CAT3), peroxisomal (CAT2) and cytosolic (CAT4). The 4 Postia catalases are:
Ppl116667 (CAT1/CAT3-like), Ppl99098 (CATI1/CAT3-like), Ppl112311 (CAT2-like)
and Ppl123169 (CAT4-like). None were substantially upregulated in microcrystalline
cellulose medium.

11.3. NADPH Oxidases.

The NOX family of NADPH oxidases function in electron transport and the generation of
reactive oxygen species (ROS). First characterized in mammalian organisms, NOX
enzymes are widely distributed. While they are not found in prokaryotes and most
unicellular eukaryotes, they are present in fungi, plants and animals. It has been proposed
that these enzymes are a signature of multicellular organisms, having a crucial role in
developmental processes. Thus, though they are present in many ascomycetes they are
absent in Candida or S. cerevisiae yeast (115, 116). They have generated increasing
attention as a clear and abundant source of reactive oxygen species, and appear to be
developmentally regulated in P. anserina (117). Two models, both with substantial EST
support, were identified in P. placenta; Ppl109097 and Ppl110233. In microcrystalline
cellulose medium, transcripts increased 1.446-fold and 2.496-fold, respectively. The
presence of two NOX genes has also been observed in P. anserina and N. crassa.
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SI Table 2. Distribution of putative CAZyme modules in sequenced fungal genomes'

Species GH | GH5 | GH5 | GH6 | GH7 | GHIO | GHI11 | GH12 | GH43 | GH51 | GH61 | GT | CBM | CBM1 | CE | PL | EXPN
(CBM1)
M. oryzae 231 | 13 1 3 6 5 5 3 19 3 17 92 | 60 21 47 1 1 1
G. zeae 243 | 15 1 1 2 5 3 2 16 2 13 [102] 6l 12 42 | 20 5
T. reesei 192 | 11 2 1 2 1 4 | 2 0 3 87 | 35 14 15| 3 4
C. neoformans | 75 12 0 0 0 0 0 0 0 1 1 68 10 0 9 3 1
U. maydis 98 | 12 0 0 0 2 1 0 4 2 0 64 9 0 19 ] 1 8
L. bicolor 163 | 22 1 0 0 0 0 3 0 0 8 88 | 26 1 19 | 7 12
P. 180 | 20 4 1 8 6 1 2 4 2 13 68 | 45 30 19 | 4 11
chrysosporium
C.cinereus |211] 27 1 5 7 5 6 1 4 33 72 | 89 46 51 | 13 14
P. placenta 144 | 20 0 0 0 3 0 2 i 1 2 75 6 0 0] 6 7

'As defined by Henrissat and coworkers ( http://afmb.cnrs.mrs.fr/CAZY/index.html). Abbreviations: GH, total number glycoside hydrolase

modules; GH#, modules within individual glycoside hydrolase families; GH5 (CBM1), glycoside hydrolase family 5 modules associated with

family 1 carbohydrate binding module; GT, glycosyl transferase modules; CBM, carbohydrate binding modules; CBM1, family 1 carbohydrate
binding modules; CE, carbohydrate esterases; PL, polysaccharide lyases; EXPN, expansins. Family 1 carbohydrate binding modules confer
cellulose binding.



http://afmb.cnrs.mrs.fr/CAZY/index.html

SI Table 4. Extracellular CAZY peptides sequenced by LC-MS/MS

Alleles’ Description ESTs* Microarray’ LC-MS/MS Peptides”
Total/unique/score

Total/Avicel P value Fold change Aspen Avicel Cotton

88470/90501 GH not yet assigned to 0 2.24E-7 224 1/1/46 - -

family
105534/none GH10 xylanase 9/0 1.93E-11 3.69 5/4/299 - -
113670/134787 GH10 xylanase 2/2 1.84E-6 145 2/2/90 - -
(90657)
113112/117345 GH15 glucoamylase 2/1 9.25E-10 2.28 6/4/390 - -
112941/61809 GH16 endo-1,3-B- 5/4 1.98E-12 3.95 - 2/1/181 2//1/141
lucanase

124498/126595 GH 18 chitinase 16/8 1.50E-8 1.97 1/1/79 - -

119525/120960 GH 18 chitinase 38/12 2.45E-6 1.35 1/1/44 - -

56576/57564 GH2 B -mannosidase 0 0.0093 1.074 1/1/49 - -

130398/134907 GH20 [ -hexosaminidase 2/0 0.0063 -1.20 4/2/227 - -

(134894)

128150/98662 GH27 o. -galactosidase 212 0.00023 1.27 | 3/2/198* - -

107557/none GH3 B -glucosidase 373 0.00014 1.15 12/5/803 5/3/385 2/1/144

127469/51213 GH3 B -xylosidase 6/2 8.75E-6 1.18 7/5/382

135050/45962 GH30 12/3 1.46E-9 2.30 1/1/46 - -

(122151)

60599/93878 GH31 « -glucosidase 0 0.00003 1.16 4/3/241 - -

(134924) (maltase)

127993/128101 GH35 [ -galactosidase 1272 0.00007 1.23 5/4/264 3/2/155%* 1/1/48

61292/none GH37 trehalase 1/0 000182 1.14 4/3/237 - -

97540/115929 GH37 trehalase 72 .0086 1.06 - 2/2/95 1/1/49

115593/134925 GH47 o -mannosidase 1/1 2.94E-7 -1.89 3/3/149 - -

121831/134772 GHS endo- B -14- 6/6 4.13E-9 1.93 7121551 - -

(57321) mannosidase

115648/108962 GHS endo- B -1,4- 6/4 7.80E-7 1.43 4/3/232 - -

endoglucanase




127046/100251 GHS51 (o - 8/0 0082 1.10 | 3/1/239* 2/1/134 5/1/491*
arabinofuranosidase)

119394/105490 GHS55 1,3-glucanase 4/4 2.14E-12 5.38 | 18/6/1233 4/2/393* 6/3/487

108648/116267 GHSS5 1,3-glucanase 16/14 2.07E-11 3.15 | 14/5/1103 2/2/203* | 13/3/1053

117860/118950 GH72 B-1,3- 50/17 2.00E-6 1.37 1/1/64
glucanosyltransferase

126692/111332 GH79 endo- f3 - 3/3 2.06E-7 1.86 7141461 - -
glucuronidase

112047/116992 GH92 o -1,2-mannosidase 4/4 0.0052 -1.15 3/2/198 - 2/1/148

'Protein model identification number. Underlined model number selected as microarray target. Alternative models shown
parenthetically. Total number of ESTs derived from all media/number of ESTs from medium with microcrystalline cellulose
(Avicel) as sole carbon source. *Expression ratios derived from comparisons of glucose-grown versus cellulose-grown mycelia.
Analysis of variance P values based on 3 full biological replicates per culture medium. Quantile normalization and robust multi-array
averaging (RMA) applied to entire dataset. Reciprocals of ratios <1.0 are multiplied by -1. *Total soluble extracellular protein
fractionated and analyzed by one-dimensional SDS-PAGE and LC-MS/MS. Total number of peptides/number of unique
peptides/Mascot score. Asterisks indicate identification of all allele-specific peptide sequences, all of which are listed with scoring in
SI_table _11.xls under GEO accession 12540.




SI Table 5. Summary of oxidoreductases potentially involved in
lignoclellulose degradation by P.placenta (Ppl) and P.chrysosporium
(Pch)

Putative function EC class Ppl Pch Gene; (Ref.)
Peroxide generation
Methanol oxidase 1.1.3.13  1* 1 moxl; (25)
Aryl alcohol oxidase 1.1.3.7 3 3 aox; (28)
Glucose oxidase 1.1.3.14  >5" >4 gox; (29)
Pyranose-2-oxidase 1.1.3.10 0O | poxl; (30)
Copper radical oxidase - 3** 5% cro; (33)
Iron reduction and homeostasis
Quinone reductase 1.6.5.5 1* 4 grd; (37)
Glycoprotein iron reductase - 4* 2 glp; (40)
Cellobiose dehydrogenase 1.1.99.18 0 1" cdhl; (37)
Iron ferroxidase 1.16.3.1  1* 1 fetl; (48)

Ligin modification

Lignin peroxidase 1.11.1.13 O 10 lip; (37)

Manganese peroxidase 1.11.1.16 O 5 mnp; (37)
Low redox peroxidase 1.L11.1.7 1 1 Irpl; (44)
Chloroperoxidase 1.11.1.10 5% 3 cpo; (43)

Laccase 1.10.3.2 3* 0 lac; (48)

'Detailed information on all genes in SI_table_6.xls and SI_table_7.xls
under GEO accession 12540.

*Gene, or member(s) of the gene family, with significant (P<.01; >2-
fold) transcript accumulation in cultures of P. placenta containing
microcrystalline cellulose as sole carbon source relative to glucose-grown
cultures. (Comparable microarray data not available for P.
chrysosporium.)

*Peptides  identified in culture supernatants by LC-MS/MS
(SI_table_11.xls under GEO accession 12540).


http:1.11.1.10
http:1.11.1.16
http:1.11.1.13
http:1.1.99.18
http:1.1.3.10
http:1.1.3.14
http:1.1.3.13



