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Abstract 

Genetic data is often used to infer evolutionary relationships among a collection of viruses, 
bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic 
tree depicts such relationships and provides a visual representation of the estimated branching 
order of the OTUs. Tree estimation is unique for several reasons, including: the types of data 
used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference 
goals involving both tree topology and branch length, and the huge number ofpossible trees for a . 
given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to 
describe the genetic data for each OTU is computationally demanding. 

Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics 
that includes study of similarities in genetic data from multiple OTUs. Although research 
questions are diverse, a common underlying challenge is to estimate the evolutionary history of 
the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in 
bioinformatics, available methods and software, and identifies areas for additional research and 
development. 

INTRODUCTION 

Genetic data is often used to infer evolutionary relationships among a collection of viruses, 
bacteria, animal or species, or other operational taxonomic units (OTU). A phylogenetic tree 
(Figure I) is a visual representation of either the true or the estimated branching order of the 
OTUs, depending on the context. Because the taxa often cluster in agreement with auxiliary 
information, such as geographic or temporal isolation, one goal associated with tree estimation is 
to infer the number of groups (also known as clusters, clades, or subtypes) and group 
memberships. For example, one application for trees is to identifY viral subtype and new 
recombinant subtypes arising from combinations of known subtypes, which both have important 
implications for drug and vaccine design [1]. Another application for trees is to use tree shape 
[1,2] to infer aspects ofpopulation history such as popUlation growth rates or subdivision. 

Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics 
that includes study of similarities in genetic data from multiple OTUs. Although research 
questions are diverse, a common underlying challenge is to estimate the evolutionary history of 
the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in 
bioinformatic, ,yailable methods and software, and identifies areas for additional research and 
development. ; 



Phylogenetic tree estimation and associated inference remains a research topic despite its long 
history dating prior to the 1970s when the first quantitative approach was developed [3]. For 
example, a search for "phylogenetic tree" in the text or abstract in any article in just one journal 
(Bioinformatics) yielded 553 papers from January 2000 through October 2008. Our purpose here 
is to review how trees are estimated and used in bioinformatics. 

In Figure I we show: (A) one of the 105 possible rooted trees for five OTUs, and (B) another 
of the possible rooted trees for five OTUs. In (A), OTUs 1-5 are observed (external nodes), while 
all other taxa are unobserved (internal nodes), with taxa R being the root (ancestor) node. Time 
progresses forward from the root toward the external (present day) OTUs. The number N of 

n-l 

rooted trees grows very rapidly with the number n of OTUs, N = TI (2k -1) [3]. For n =10, there 
k=! 

are over three million possible rooted trees, and an exhaustive search of all possible trees is 
computationally prohibitive for more than about n =10. 

Tree estimation is unique for several reasons, including: the types of data used to represent 
each OTU; the use of probabilistic nucleotide substitution models; the inference goals involving 
both tree topology and branch length, and the huge number of possible trees for a given sample 
of a very modest number of OTUs, which implies that finding the best tree(s) to describe the 
genetic data for each OTU is computationally demanding. Factors such as population 
subdivision, migration, and changing population size impact the tree representing a sample of 
OTUs [2]. Forces such as recombination, mutation, and selection impact the genetic data of a 
given tree. As an example of how population history impacts tree shape, Figure 2 (left plot) is 
the "best" tree fit to the env region of 100 contemporary human immunodeficiency viruses 
(RN). The right subplots in Figure 2 shows corresponding simulated data. using an 
implementation of coalescent theory (TreeEvolve, described in [2]) to illustrate the impact of the 
history of the infected population size N, with an exponential growth rate, zero growth, zero 
growth period followed by exponential, and a quadratic growth rate, in the top left, top right, 
bottom left, and bottom right subplots, respectively. Figure 2 will facilitate discussion of several 
topics in this review, including tree estimation and inference, tree shape, nucleotide substitution 
models, subtype identification using trees, and coalescent theory. 

Tree estimation and interpretation are strongly linked to coalescent theory [4,5], which is a 
probabilistic treatment of sample genealogies. Working with a present-day sample of nOTUs, 
coalescent theory looks backward in time and probabilistically specifies the death process by 
which the number of common ancestors represented in the popUlation decreases to n-l, n-2, '." 
and finally to 1. 

As an example, coalescent theory together with an assumption of constant mutation rate 
("molecular clock") over time, suggest via the "mitochondrial Eve" theory that all present-day 
humans are descendents of a woman living ill Africa approximately 

170,000 years ago [6, 7], Application of coalescent theory in this case involves samples of 
diverse present-day human mitochondrial DNA, which is maternally inherited. Maternal 
inheritance simplifies the analysis from diploid (two sets of chromosomes) to haploid (one set of 
chromosomes), avoiding complications due to genetic mixing during reproduction. Assumptions 
and analyses of this human mitochondrial DNA data continue to be debated, as does the 
estimated coalescent time to "Eve." One of the technical issues involves the method to generate 
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the best tree and the method used to root the tree; generally, using an outgroup OTU that is 
distant, but not too distant from the other OTUs is most effective [7]. The ''mitochondrial Eve" 
analysis has been widely misinterpreted as pointing to an Eve in the Biblical sense. An inevitable 
conclusion of coalescent theory is that all present day OTUs coalesce to a single ancestor who is 
one individual among many alive at the time of coalescence, and not an "Eve" in the Biblical 
sense ofbeing the only living woman at the time. 

R R 
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 1 2 45 3 
(8)(A) 

Figure 1. Two of 105 branching patterns for a rooted tree having five taxa ( external nodes). 

SimL~ated data: 4macro growth rates 

Real HIV (env gene) 

(a)N=~~ (b)N=~ 

(d) N is quadratic 
froml970 to 1990 

Figure 2. HIV, env gene region. Consensus trees (of 100 bootstrap samples) using maximum 
likelihood for real (the left plot) HIV (env gene) sequences and for coalescent-based simulated 
(the four right plots) sequences under different assumptions about the time behavior of the 
number ofinfected individuals N. 



The following sections include additional background, nucleotide substitution models, 
inference methods for tree estimation, methods to assign uncertainty to estimated trees, available 
software, applications of trees in bioinformatics, current limitations, fundamental limitations, 
discussion, and summary. 

BACKGROUND 

The first quantitative approach to estimate both the branching pattern (topology) and the ratios 
of branch lengths used gene frequencies and developed a maximum likelihood method based on 
some evolutionary model [3]. It is now common to have deoxyribonucleic acid (DNA) and/or 
amino acid data available from one or more regions of the genome ofthe observed taxa. 

We focus on DNA, which usually consists of two complementary chains twisted around each 
other to form a right-handed helix. Each chain is a linear polynucleotide consisting of four 
nucleotides, two purines: Adenine (A), and Quanine (G), and two pyrimidines: Thymine (T) and 
Cytosine (C). In coding regions, each set of 3 nucleotides codes for one of 21 amino acids and 
each DNA site is called a codon. Here is example DNA data for the first 20 of the 63 informative 
sites from the data in [8]. 

OTUCode 

1 
2 
3 
4 
5 

Mutually aligned DNA 

CCGGGCCTCGGCTGCGCACC.. . 
CCGGGCCCTAGCCGTACACC .. . 
TCGGGCCCCGGCCGCACACC .. . 
TCAGGCCCCGACCGCACATC .. . 
CTGAGCCCCGGCCGTATACC .. . 

The basic two concepts in the maximum likelihood (ML) approach for tree estimation are: (1) 
for a given topology, find branch lengths that maximize the probability of the data at the external 
nodes; and (2) choose the topology whose optimized branch lengths assign maximum probability 
to the observed data. It is important to remember that the likelihood of a given tree is not the 
probability that that tree is correct. Instead, it is simply the probability ofobserving the data ifthe 
tree and branch lengths are correct. Bayesian arguments are required for estimating the 
probability that a given tree topology is correct [8]. In tree estimation, several defmition of 
"phylogenetic signal" have been suggested, each related in some way(s) to the confidence in the 
most likely tree(s) [9]. 

Tree estimation and interpretation are strongly linked to coalescent theory [1,2,4,5,10-13]. For 
example, coalescent theory can provide a prior probability for tree topologies [10-13]. Coalescent 
theory also can convert a posterior probability for topologies and branch lengths into inferences 
regarding population history [1,11,12] as the four right subplots in Figure 2 suggest might be 
possible, because the four population size growth rates each lead to quite different tree structures. 
More quantitatively, a skyline plot [12] is a "number of lineages through time" plot that can be 
used with coalescent theory to estimate the effective population size as a function of time in the 



past. However, coalescent theory makes simplifying assumptions described below, so inference 
quality is sometimes unknown. 

In some cases, we can apply a somewhat realistic coalescent-based model by defining a 
coalescent effective population size Ne which allows us to reference the real population to an 
equivalent idealized population with nonoverlapping generations and a birth-death process that is 
well modeled by specifYing the generation time and the average and variance of the number of 
offspring per individual. The coalescent-effective population size Ne exists only if: (1) there is a 
linear, time-independent scaling of time in convergence to a coalescent process [14], and (2) the 
birth-death process is not linked to the nucleotide substitution model. Alternatively, perhaps 
recent extensions to coalescent theory can provide an acceptable approximation. All of these 
coalescent-based extensions make explicit and strong assumptions regarding subdivision, serial 
sampling, selection, and recombination. For example, see vCEBL [IS]. 

EVOLUTIONARY MODELS 

Any tree estimation method based on likelihood requires a nucleotide substitution model from 
which probabilities can be deduced. The most common currently used nucleotide substitution 
model specifies Jl > 0, and nonegative 1tA, 1tc, 1to, and 1tT, which are the nucleotide relative 
frequencies (that sum to 1). The parameter Jl determines the rate of change, and the time intervals 
between changes is assumed to be exponentially distributed with parameter Jl. Equivalently, the 
number of changes in a given time is assumed to be Poisson distributed with mean 1I!l. The 
assumption that Jl is constant over time is the well-known "molecular clock" assumption. 
Another parameter, typically denoted K, allows for purine-to-purine or pyrimidine-to-pyrimidine 
mutations (called transitions) to be different than purine-to-pyrimidine or pyrimidine-to-purine 
(called transversions). The 1t'S can be estimated using the observed nucleotide frequencies. The 
best way to estimate Jl requires access to an outgroup OTU, or to the OTUs having a range of 
isolation times that is somewhat long compared to !l. The ratio of transitions to transversions can 
be used to estimate K 

A common nucleotide substitution model is as follows. Consider a pair of taxa denoted x and 
y. Define Fxy as 

nAAnACnAGnAT 

nCAnCCnCGnCT 
, where N is the number of base pairs (sites) in set of aligned sequences, NFxy = 

nGAnGCnGGnGT 

nTAnTCnTGnTT 

nAA is the number of sites with taxa x and y both having an A, nAC is the number of sites with taxa 
x having an A and taxa y having a C, etc. Sequence aligmnent is a large topic that is beyond our 
scope, but is briefly mentioned in the Discussion section. 

The most general time-reversible model (GTR) for which a distance measure has been defined 
[16,17] defines the distance between taxa x and y as dxy -trace{TI log(TI-1Fxy)} where TI is a 
diagonal matrix of the average base frequencies in taxa x and y and the trace is the sum of 
diagonal elements. The GTR is fully specified by 5 relative rate parameters (a, b, c, d, e, f) and 3 



relative frequency parameters (1tA' 1tc, and 1tG with 1tT detennined via 1tA+ 1tc + 1tG + 1tT 1) in the 
rate matrix Q defined as 

a1tc b1tG C1rr 

a1rA d1tG e1tr , where ~ is the overall nucleotide substitution rate and each Q/f.l= 
b1tA d1rc / 1rG 

C1rA e1rc / 1rG 

row sums to 0, so the diagonal entries are determined by the off-diagonal entries .. The rate matrix 
Q is related to the nucleotide substitution probability matrix P via Pij(t) = eQt

, where Pij(t) is the 
probability of a change from nucleotide ito j in time t and Pij(t) satisfies the time reversibility and 
stationarity criteria: 1tjPij = 1tj Pjj• Commonly used models such as Jukes-Cantor [16] assume that a 

= b = C = d = eland 1tA 1tc = 1tG = 1tT 0.25. For the Jukes-Cantor model, it follows that 
Pij(t) = 0.25 + 0.75e-l-tt and that the distance between taxa x and y is -3/4 10g(1 - 4/3D) where Dis 
the percentage of sites where x and y differ (regardless of what kind of difference because all 
relative substitution rates and base frequencies are assumed to be equal). 

Important model generalizations include allowing unequal relative frequencies and/or rate 
parameters, and to allow the rate ~ to vary across DNA sites. Allowing ~ to vary across sites via 
a gamma-distributed rate parameter is one way to model the fact that sites often have different 
observed rates. If the rate ~ is assumed to follow a gamma distribution with shape parameter y 
then these "gamma distances" can be obtained from the original distances by replacing the 
function log(x) with y(l-x-lIy

) in the dxy = -trace{IT 10g(ITIFxy)} formula [16J. Generally, this rate 
heterogeneity and the fact that multiple substitutions at the same site tend to saturate any distance 
measure make it a practical challenge to find a metric such that the distance between any two 
taxa increases linearly with time. Another generalization is to simply use the most general 

a1rc b1rG C1rr 

g1rA e1rr , where again each row possible from for Q / f.l , which is Q / f.l = 
h1rA i1rc / 1rG 

j1rA k1rc / 1rG 

sums to 0 so the diagonal entries are determined by the off-diagonal entries. The total number of 
parameters in this model is the 3 relative frequencies (1tA' 1tc , 1tG) plus the 11 relative rate 
parameters, a-Ie, with / = 1). To our knowledge, [18] is the only published case that used this 
most general model; results were indistinguishable from results using the GTR model. 

At best, these simple nucleotide substitution models are a useful approximation. For example, 
at present, DNA sites are assumed to evolve independently, which is not likely to be true. For 
example, in regions that are GC rich or TA rich in the chloropolast genome, the nucleotide 
substitution pattern is influenced by the two nucleotides flanking the substitution site [19J. Partly 
to avoid context-dependent nucleotide substitution models, some studies use only DNA from 
each third position in the 3-codon reading frame that converts DNA to amino acids [16]. Other 
effects such as recombination and insertions and deletions can also be important, as mentioned in 
the Discussion section and in [20]. 

A favorable trend in phylogenetic analysis of DNA data is to choose the substitution model 
using goodness of fit or likelihood ratio tests [21]. However, the substitution model is likely to 



depend on the region of the genome [5, 22]. For example, DNA regions that code for amino acids 
are more constrained over time due to selective pressure and therefore are expected to have a 
smaller rate ofchange than non-coding sequences. 

INFERENCE METHODS 

There are many tree-building methods in use, but ML remains the most preferred for small or 
modest numbers of taxa such as in most of the trees in, for example, an on-line tree database 
(http://www.treebase.orgltreebase) which contains more than 1000 estimated trees. As a thumb 
rule, trees having less than 10, 10 to 100, and more than 100 OTUs are small, medium, and large, 
respectively. For 10 or more taxa, heuristic searches attempt to find a high likelihood (probably 
not maximum) tree topology, associated branch lengths, and to estimate approximately 2-15 
parameters that describe the nucleotide substitution model (see the previous section). 

Recently, Bayesian methods have become increasingly used. See Mr. Bayes and a few other 
Bayesian method implementations at http://mrbayes.csit.fsu.edu. Bayesian methods are closely 
related to ML in that both Bayesian and ML require an explicit nucleotide substitution model. In 
order to perform nearly any except the simplest Bayesian analysis, Markov Chain Monte Carlo 
(MCMC) is a heavily-used method that uses likelihood ratios for different sets of model 
parameters to generate samples from the posterior probability distribution [23]. The result is an 
estimated probability distribution on both tree topology (branching order) and branch lengths. 

Bayesian methods typically involve the need to specify a prior probability which is updated 
using the likelihood to obtain a posterior probability on topology and branch lengths. The default 
"noninformative" prior in this context [8] is that all possible topologies are equally likely, then 
given a topology T, the branching times are uniformly distributed over the range defined by 
branch length orderings imposed by T. And, as in the ML approach, the distribution of 
nucleotides at each site in the root node is the stationary distribution given by the natural estimate 
of ('ItA, 7tc, 'ItG, 'ItT); nucleotides at different sites evolve independently, and evolutionary processes 
along different branches are independent. 

Having to specify a prior probability distribution is both good and bad. It is good if prior 
information is known and should be incorporated into the analysis. It is bad if there is essentially 
no apriori information, in which case one should assess sensitivity of the posterior probability to 
the prior, even so-called "noninformative" priors. The assumption that all tree topologies are 
equally-likely makes Bayesian methods similar to the ML method, but arguably superior in terms 
of uncertainty assessment (next section). If prior information is assumed, then coalescent 
methods [10] or a birth-death process [24], depending on the context could provide effective 
prior probabilities for topologies and branch lengths. 

The Bayesian-based estimate of the posterior probability distribution can easily be used to 
assess confidence in any desired aspect of the estimated tree, such as whether pre-specified 
groups are monophyletic. A group is monophyletic if each of its member OTUs coalesces to a 
common ancestor before any OTU from outside the group coalesces to that ancestor. In contrast, 
to assign confidence to any desired aspect of the estimated tree using ML, a well-known 
res amp ling technique called the bootstrap is used in conjunction with repeated application of the 
ML algorithm. An example is described in the next section. 

http:http://mrbayes.csit.fsu.edu
http://www.treebase.orgltreebase


The main two alternatives to ML or Bayesian methods are distance-based methods and 
parsimony methods [16]. For nearly all of the currently used nucleotide substitution models, 
there is an associated distance measure. Therefore, if a distance method is required because there 
are too many OTUs for a Bayesian method or the ML method, the distance can be chosen on the 
basis of the best fitting substitution model, perhaps chosen using a subset of the OTUs if 
necessary for computational reasons. The chosen distance measure can be used to compute the 
distance between each pair of OTUs and various hierarchical clustering methods can then be 
applied. An interesting blend oflikelihood and distance-based methods is provided in a weighted 
neighborhood method [25]. 

It is important to recognize that the genetic distance between any two OTUs is a function of 
the time since the OTUs shared a common ancestor. This time depends on the population size N, 
and for that reason, many studies simply attempt to estimate the effective mutation rate, N~. 

Maximum parsimony is among the computationally simplest methods. It involves finding the 
topology that corresponds to the smallest number of substitutions required to explain the 
observed DNA data for each OTU [16]. Weighted parsimony methods can also involve 
likelihood by using appropriate weights when counting the required number of substitutions. 

METHODS TO ASSIGN UNCERTAINTY TO ESTIMATED TREES 
The previous section mentioned the use ofML plus bootstrap to assign confidence to various 

aspects of an estimated tree. Or, ifMCMC is used in a Bayesian approach, then any summary of 
the posterior tree distribution will naturally include an uncertainty estimate. Nearly any method 
can at least in principle be combined with bootstrap resampling to estimate confidence in the 
estimated tree. 

Felsenstein [26] introduced the bootstrap for assessing confidence in estimated trees. The 
basic bootstrap strategy is to sample each site with replacement as bootstrap sample 1. Then, 
apply the tree estimation algorithm to each of (typically) 100 to 1000 bootstrap samples and 
summarize results over all bootstrap samples. Several complications with ML plus bootstrap 
arise in practice. First, the number of unrooted or rooted topologies for T taxa grows 
prohibitively large for more than approximately 50 taxa. Therefore, unless there are only a few 
taxa, existing ML algorithms do not evaluate all topologies and choose the topology having ML. 
Instead, heuristic methods limit the search to a sman number of candidate topologies. 
Sophisticated stochastic searches such as those using simulated annealing [27] improve matters, 
but do not remove the complication that the tree-finding algorithm cannot evaluate all topologies. 

A second complication with the bootstrap involves interpretation and performance. Both [28] 
and [29] reported empirical evidence using simulated data that bootstrap proportions provide 
unbiased but imprecise estimates of repeatability but biased estimates of accuracy. If the 
phylogenetic estimation method is consistent, meaning that the estimated topology converges to 
the true topology in the limit as more DNA sites are used, the bootstrap appeared to 
underestimate high accuracies and overestimate low accuracies. Results in [28] and [29] 
indicated an empirically observed bootstrap bias (in the direction of underestimating confidence) 
in simulated data in addition to overdispersion. Results in [30] and [31] presented theoretical 
results to refute the bias claim. However, both [30] and [31] used theoretical arguments, largely 
invoking a simpler situation involving sampling from a normal distribution and inferring whether 
its mean was positive on the basis of the sample mean. For example, these toy but potentially 
insightful examples lead to the conclusion that the ML plus bootstrap based estimate of whether 



a prespecified group is monophyletic can be biased low if the DNA data is highly informative 
and has high probability to correctly identify specified groups. Alternatively, if the DNA data is 
not highly informative, the ML plus bootstrap estimate can be biased high. 

Reference [30] addressed the question of whether the discrete aspect of the topological space 
would render bootstrap estimates unreliable, and concluded that although the standard bootstrap 
could be improved with a very computationally intensive double-stage bootstrap (bootstrapping 
the bootstrap), the bootstrap is still valid (unbiased and not too imprecise) in the discrete space of 
tree topologies and, as [31] also concluded, does not lead to systematic over or under estimate of 
confidence. The discrete nature of the decision space for choosing topology 1 versus topology 2 
means that the estimated topology cannot change in a smooth way as the input sequences vary. 
Newton [32] established a large deviation result for the bootstrap empirical distribution in a fmite 
sample space, thereby validating nonparametric and parametric bootstrapping in some 
phylogenetic inference settings. Previous to this result, existing theory did not support the 
bootstrap because of the discrete nature of the space of tree topologies and because of the types 
ofquestions involved. 

In contrast to the ML plus bootstrap approach, current Bayesian strategies use MCMC to 
search the posterior distribution over branch lengths and topologies. Generallly, both topology 
and branch lengths are estimated and while the concept of uncertainty in branch lengths is 
straightforward, the measure ofcloseness of the estimated topology to the true topology is a large 
topic. Several metrics have been proposed with a tendency to favor metrics that penalize 
mistakes near the root or center of the tree more than mistakes near the tips [33]. One common 
distance metric is the triples distance, defined for two trees each representing the same n OTU s 

as the number of the (;Jtriples for which the trees have different branching order. The triples 

distance is strongly impacted by disagreements near the root between two trees. 

The only comparisons of Bayesian confidence statements with ML + bootstrap confidence 
statements that we are aware of are [34, 35], which both found mild differences in confidence 
estimates in several real and several simulated DNA sequences. We believe that further 
experiments comparing Bayesian confidence measures to bootstrap confidence measures would 
be valuable. Such comparisons were not available when [28-31] were published. Also, reference 
[36] illustrated that in estimating the time to the most recent common ancestor, tMRCA, using the 
"genetic distance" versus "isolation time" approach in [37], tree structure such as distinct clades 
requires a specialized bootstrap that has not been developed. Alternatively, TipDate [38] properly 
accounts for tree structure when estimating tMRcA and associated confidence intervals. For 
example, the estimated confidence interval for tMRCA in simulated data corresponding to real HIV 
sequences using TipDate [38] was much wider and more accurate for the env region of the HIV 
genome than the corresponding bootstrap-based confidence interval estimate applied to the 
"genetic distance" versus "isolation time" approach [36]. 

Reference [39] showed that use ofa wrong substitution model leads to underdispersion and/or 
bias. As an example, it is well known that "long branches attract," which means the long 
branches tend to be grouped together regardless ofwhether that is the correct topology. This 
phenomenon will impact any method (Bayesian or ML plus bootstrap) so [34] deliberately 
avoided it in simulated data by using the same model to estimate the tree as to simulate the 
sequences. However, one can never be sure it is not in effect with real data because real data 



never follow any model exactly. As mentioned, it is now more common for likelihood ratio tests 
or Bayes factors to be used to select models [16,22,40], but even in the best of real-data cases, we 
expect at least some degree ofmodel misspecification. 

One difficulty in evaluating related publications is that methods perform differently according 
to how closely the assumed model agrees with the actual model. For example, a ML method 
using the "wrong model" leads to biases, which favor recovering certain favored topologies (such 
as long branches tending to group together). Ifthe true topology happens to agree with one of 
these "favored" topologies then the variation among ML fits on bootstrap samples will be 
unrealistically low. Therefore, [34] used the same model (the F84 model [16] with no rate 
heterogeneity and a constant substitution rate over time ("molecular clock")) in BAMBE [41] for 
a Bayesian method via MCMC and DNAMLk (for ML plus boottstrap in the PHYLIP suite of 
codes [42]) to estimate the phylogeny and also in the SeqGen code [43] to generate the data for a 
given topology. This means that the results with the simulated data represented a safe comparison 
and results on real data are as safe as possible with real data. 

One main summary of a ML plus bootstrap analysis is a "consensus tree," which can be 
defined in several reasonable ways. The most conservative defmition is a strict consensus tree 
that contains only groups that are exactly represented in each tree (each tree arises from a 
different bootstrap sample). Similarly, the Bayesian posterior can be summarized by finding a 
maximum posterior tree and confidence region. The confidence region could include only trees 
that are within a specified distance, as defined for example using the triples distance of the 
maximum posterior tree. 

Another common summary of a tree estimation application is whether a prespecified group is 
monophyletic. Again, the ML plus bootstrap or the Bayesian posterior can be used to assign 
confidence in whether a group is monophyletic [34,44]. 

AVAILABLE SOFTWARE 

The main software tools for performing ML tree estimation (such as DNALMk [42]) have 
several known limitations: (1) they use relatively restrictive substitution models; (2) they make 
no attempt to find the global maximum because of the so-called NP-completeness of the search; 
and (3) there are no diagnostics given to judge how close the estimates are to the global 
maximum. Nevertheless, likelihood methods are generally preferred because they: (1) have the 
ability to model a variety of factors thought to affect nucleotide sequence evolution; (2) have 
some robustness to violations of its model assumptions; and (3) have more resistance to long 
branch attraction than does parsimony [45]. Likelihood also makes use of more information in 
the data than do other optimality criteria. Also, if researchers have access to parallel computing 
platforms, parallel versions of FastDNAML or of PAxML [45] have been applied to ML tree 
estimation using up to 1000 OTUs. 

The main software tools for Bayesian estimation (which also involves the likelihood 
calculation) include BAMBE [41], BEAST [46], and Mr Bayes [48]. It appears that Mr Bayes 
has overtaken BAMBE in terms of ease of use and range of available nucleotide substitution 
models. 



BENCHMARK DATA SETS 

The relative lack of real benchmark data sets for which the true branching order is at least 
approximately known is a current limitation for pylogenetic study. Available data sets for which 
the true branching order is known or approximately known include: (1) a lab-generated 
phylogeny using T7 bacteriophage which has been analyzed in several publications [49]; (2) 
protein-coding portion consisting of 12,234 base pairs of the mitochondrial genome of 19 OTUs 
whoe interrelationships (true branching order) are widely accepted [50] (3) an HlV transmission 
chain having known transmission history due to impressive contact tracing; this "known" 
transmission history refers to the sexual contact history rather than to the actual branching order 
of the sampled HlV genes [20]. Differences in the branching order of the genes and the 
corresponding sexual history are analogous to differences in gene versus species trees, and (4) an 
HlV transmission chain that is partially known due to established links between a Florida dentist 
and several patients who were deliberately infected during surgery [51]. 

Dozens of published studies have evaluated tree estimation methods using simulated data 
sets. To our knowledge, all such simulations follow the assumed "independent sites" substitution 
models. 

APPLICATIONS OF PHYLOGENETIC TREES IN BIOINFORMATICS 

Trees have many applications in bioinformatics, including enabling estimation of evolutionary 
history, population history, transmission history, rates of evolution, disease origins, identification 
of viral subtype, and prediction of sequence function. 

A) Estimation of Evolutionary History 

Simply put, a phylogenetic tree estimate acknowledges the non-independence of the DNA 
sequence data among OTUs due to their shared evolutionary history. Some publications use 
shortcut analyses that ignore the correlations among the sequences, or at least attempt to use 
sequences that are relatively independent by virtue of approach on "opposite sides of the 
estimated tree" [52]. Tree structure acknowledges shared evolution and the corresponding 
correlations. Reference [52] is another assessment of the coalescent time to the human Eve, but it 
reports much larger uncertainty in the estimate than do most other studies. 

B) Estimation of Population History 

Coalescent theory has provided tremendous insights and generated many research questions 
regarding interpretation of tree shape. The four right subplots in Figure 2 show examples that 
suggest how tree shape might be used, for example, to infer population history in terms of 
effective population size over time for the population from which a set ofOTUs was sampled. 

The basic concept for using tree shape to infer aspects ofpopUlation history is as follows. The 
distribution of DNA sequences in a sample from a population involves the coalescent process, 
population history, and the nucleotide substitution model specifying how genetic data changes 
probabilistically over time. Most genetic data analyses rely on a forward model that specifies 
evolutionary forces and associated probabilities describing how offspring are generated. For 
simulating samples from a population, the state of art invokes coalescent theory [4], which uses 



simplified models of the forward evolutionary process. These simplifications allow inverse 
analytical solutions and corresponding simulation software [2, 4, 42], commensurate with 
relatively low computational overhead. This isdone in order to avoid having to simulate directly 
from the forward model and track the evolutionary histories. Sample genealogies can instead be 
simulated by running time from the present toward the past and tracking probabilistically when 
lineages coalesce to share a common ancestor. These coalescent-based simulated sample units 
are then used to infer how a population is evolving using features of the associated phylogenetic 
tree [46]. 

C) Estimation of Transmission History: HIV Example 

Reference [20] reports results of the best four of seven common nonBayesian phylogenetic 
tree estimation methods applied to HIV sequences for patients linked by a known HIV 
transmission history. The results are encouraging in that the best fitting tree( s) are quite close to 
the true true. For example, some of the results in [20] were partially duplicated for this review. 
Figure 3 is the ML plus bootstrap consensus tree and Figure 4 is the maximum Bayesian 
posterior tree using BAMBE. Figure 5 is the known true tree. Disagreements are relatively minor. 
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Figure 3. ML plus bootstrap consensus tree for a known HIV transmission history. 
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Figure 4. Maximum Bayesian posterior probability tree for a known DIY 
transmission history. 
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Figure 5. True tree corresponding to Figures 3 and 4. 

D) Estimation of Nucleotide Substitution Rates 

The nucleotide substitution model describing how DNA sequences evolve specifies the 
probability for various base pair substitutions as a function of the time since a given pair of 
OTUs shared a common ancestor. This time to a common ancestor is unknown. But, of course, a 
main goal in tree estimation is to estimate the branch lengths separating each OTU pair. 
Reference [53] used Monte Carlo (MC) sampling to address the problem of simultaneously 
estimating the tree topology and branch lengths and the nucleotide substitution model. The MC 
sampling needs to be incorporated into the standard ML + bootstrap to properly inflate variance 



estimates for model parameters to account for having to estimate the topology, branch lengths, 
and nucleotide substitution models. 

Alternatively, the BEAST implementation of Bayesian MCMC combines all model 
parameters into the MCMC, and clearly distinguishes five components of the full estimation 
problem: the nucleotide substitution model parameters (whose number depends on which model 
is used); the model for substitution rate variation among sites; the model for rate variation among 
tree branches (lineages) and branch lengths; the tree topology, and the prior probability for tree 
topology and branch lengths. 

When the goal is tree estimation only, having to estimate the parameters of the nucleotide 
substitution model is a nuisance source of variation. However, model selection, interpretation, 
and associated parameter estimation are key goals of bioinformatics that are enabled by tree 
estimation. Currently, Modeltest [40] is probably the most common way to choose among 
candidate substitution models using likelihood ratio testing. The analogous test in Bayesian 
methods is the Bayes factor to choose among models [54, 55]. Modeltest currently can use trees 
created by ML, weighbor, or Mr Bayes. 

E) Estimation of Disease Origins 

Phylogenetic analysis suggests that HN made at least two cross species transmissions from 
monkeys (simian immunodeficiency virus) to human resulting in HN types 1 and 2 [56]. HN-l 
is closest to SN strains isolated from chimpanzees and HN-2 is most closely related to SN 
from sooty mangabeys. Within HN-1, phylogenetic analyses identified approximately 10 major 
subtypes (A-D, F, H, J, and K) found globally [57]. Within HN-2, subtypes A and B are 
epidemic and subtypes C-G are nonepidemic. 

Estimation of the timing of the cross-species transmissions is more problematic and has 
caused considerable confusion, analogous to the "mitochondrial Eve" confusion. For example, 
approximately 100 sequences spanning from approximately 1985 to 2000 isolated from HN-l 
subtype M patients have been shown in several studies to suggest a that tMRCA is approximately 
1930 [36, 57]. However, an estimate of tMRCA is no indication when the cross-species 
transmission occurred. It has long been suggested that the rate of non-synonymous substitutions 
might increase after cross-species transmission of a pathogen, reflecting adaptation to the new 
host. A synonymous mutation is a "silent" DNA mutation that does not change the amino acid 
due to redundancy in the amino acid code, with only 21 amino acids codes for in codon triples. 
However, reference [58] attempted to use the rate of synonymous mutations to non-synonymous 
mutations to date the cross species transmission, but found ambiguous results. 

F) Identification of Viral Subtype 

Identification of viral subtypes in circulation and of circulating recombinants is crucial for 
disease mitigation strategy development such as antiviral drugs andJor vaccine [1]. Historically, 
tree estimates and reasonable but ad hoc methods were used to choose the number of subtypes 
(groups) [56],. A model-based clustering method has been investigated to choose the number of 
clusters (subtypes) and cluster memberships in the context of investigating how many subtypes 
might occur in a simulated HN-type epidemic [5, 59]. . 



Given a collection of subtypes defined by prior analysis such as model-based clustering [59], 
reference [60] showed how branch lengths can be used to determine whether newly acquired 
DNA sequences from test OTUs belong to existing subtypes or represent a new circulating 
recombinant form. 

G) Prediction of Sequence Function 

Generally, cross-species comparisons are thought to reveal regulatory regions of genomes. 
This belief is based on the hypothesis that non-coding genomic sequences having a sequence­
specific function will be preferentially conserved and so have a slower substitution rate. More 
specifically, phylogenetic footprinting is a method to identify transcription factor binding sites 
within a non-coding region of DNA [61]. Such footprinting assumes that regulatory elements in 
non-coding genome regions are subject to purifying selection, so will be more conserved than 
surrounding neutral regions. 

Within the conserved regions, one can screen for individual transcription factor binding sites 
for example [61]. A successful sequence alignment is required to align homologous (having the 
same ancestral site) sites and then phylogenetic analysis allows hypotheses to be generated and 
tested regarding gene/protein function and relationship. 

CURRENT LIMITATIONS 

Currently there are shortcomings or limitations of all aspects of tree estimation which we 
briefly describe next. 

A) Limitations ofModels 

One of the most obvious limitations of current base substitution models is that nucleotides at 
different sites are assumed to evolve independently. Also, models for insertions and deletions are 
used during sequence alignment, but typically not during tree estimation. 

When tree estimation results from different genome regions and/or different analyses of the 
same genome region are in conflict, it is natural to consider whether systematic estimation error 
due to poorly specified models is partly to blame (16, 62). 

B) Limitations of Inference Methods 

The most accepted inference methods use an explicit model for the nucleotide substitution 
process and some model comparison method such as ModelTest to choose the best available 
substitution model. This explicit use of a likelihood leads to either ML + bootstrap or Bayesian 
analysis and estimation via MCMC. 

The ML + bootstrap, particularly if augmented with Monte Carlo as described in [saIter] to 
account for the need to simultaneously estimate the tree topology and the nucleotide substitution, 
is limited to modest-sized trees of at most a few hundred taxa. Efforts to speed up and parallelize 
ML have been reported, and great speed gains have been achieved [42,44]. 

Bayesian methods that use MCMC are also limited in practice to modest-sized trees. And, 
although uncertainty estimation is an inherent component of an MCMC calculation of the 



Bayesian posterior, users must consider diagnostics to provide evidence that the MCMC chain 
has converged to a true realization from the desired posterior probability. The need for 
convergence diagnostics is not unique to tree estimation, but [63] has shown that for tree 
estimation, convergence can be very slow. 

Finally, although the finding seems to have not drawn the attention of practitioners, 
reference [64] showed a nonidentifiability issue involving the use of the gamma model to 
accommodate rate variation across DNA sites. Nonidentifiability is problematic because it means 
that two or more sets of parameter values have the same likelihood. Users typically report the 
results of a likelihood ratio test comparing the "constant rates across sites" model to the "variable 
rates across sites" model and often reject the "constant rates across sites" model. 

C) Limitations of Coalescent Models used to Infer Population Histories From Trees 
Limitations of the coalescent techniques include: (a) Little is known concerning accuracy 

and robustness ofcoalescent theory's restrictive assumptions in many settings, although some 
forward models are known not to be well approximated by any coalescent model (depending on 
the relative time scales ofvarious evolutionary effects such as drift, migration, and selection) 
[ref], and (b) Inference methods [2,9] invoke coalescent approximations to estimate the 
probability ofcandidate branching orders as part of the inference process. This leads to the 
undesirable situation of forcing a zero mismatch between the inference method's assumptions 
and the assumptio11:s regarding how the popUlation is evolving. 

Tree estimates support inferences regarding, for example, whether a virus strain appears to be 
a natural branch from historical strains, or whether the strain seems to have made an unnatural 
leap indicating bioengineering. However, key coalescent assumptions that are violated by, for 
example, both HIV and influenza viruses are that all subtypes are equally transmissible and there 
is no recombination. Therefore, although to a limited extent and under restrictive assumptions, 
extensions [15] to coalescent theory have been made to accommodate recombination, selection, 
overlapping generations, and population subdivision, there are cases where the theory is either 
inadequate or the sensitivity of its conclusions to its assumptions is unknown. The corresponding 
inference quality using estimated trees is also unknown; the state of the art is therefore to 
quantify precision, but not accuracy, ofinferences using coalescent theory. 

The forward model is a key component of total uncertainty associated with popUlation 
genetics inferences. The current approach is: specify an amenable-to-coalescent-theory forward 
model for how a popUlation is evolving that includes for example, population size, structure, and 

. selection effects; identify the coalescent effective population size Ne [14] in the nearest available 
coalescent model, which is often a complicated task; use the closest coalescent model to simulate 
sample genealogies under restrictive assumptions about the population and the sampling process. 
Coalescent theory was originally applied to macroscopic populations (such as plants and 
animals); more recently, it has been applied to microscopic populations such as virus populations 
such as HIV as mentioned and other viruses as described in [65]. Coalescent methods focus on 
histories of samples and provide a probabilistic description of sample genealogies for example by 
assuming a sample of nonrecombining sequences from a population with nonoverlapping 
generations that mixes randomly with no selection. Coalescent theory will continue to provide 
insight into evolutionary processes; however, there is no way to assess how robust our inferences 
are with respect to model violations. 



It would be good to consider the extent to which growth rates, effective population sizes, 
selection effects, population bottlenecks, etc., can be inferred from molecular data, regardless of 
whether coalescent-based simulated data or our tool's simulated data is used. An example [5] 
involves whether the 8 to 10 approximately equidistant subtypes of HIV-1 (type M) could have 
arisen under available models ofhow HIV is evolving (left plot in Figure 2). To examine this, we 
used coalescent theory with questionable assumptions to simulate DNA data from a forward 
model of how HIV is evolving at both the macro and micro levels. This provided a reference 
distribution against which to compare the data. If the observed data is in the tail of the 
coalescent-theory-based reference distribution, then forward model used to simulate the data is 
not credible. A proposed new and better way to simulate sequences is to track each HIV case by 
geographic region including all known transmission routes such as sex, needles, blood 
transfusions, and mother-to-child, and track the genealogy of each case. We then sample ~100 
simulated sequences from around the world or in specified regions at a snapshot in time, or 
distributed in time, and distributed spatially in either case. With careful bookkeeping we could 
deduce the sample genealogy (which 2 samples coalesced first to their most recent common 
ancestor (MRCA), which samples coalesced next, etc.) back in time until all 100 sequences 
coalesced to the single MRCA. This would produce 99 coalescent times and sample identities, 
which define the genealogy of the sample. This genealogy could also be thought of as the true 
evolutionary tree for the sample to be compared to coalescent-based genealogies. 

The proposed method to track the transmission history of all units having offspring in the 
population is a huge computational challenge. So, we expect that coalescent theory with its 
unrealistic assumptions will continue in the indefinite future to provide the computational 
shortcut. However, we have coded an initial "brute-force" approach in Matlab and results are 
presented in [36], plus we are aware of a related first effort using C++lPython [66]. Still, this 
approach might not be sufficient, because for example with HIV, each patient carries many viral 
strains or sUb-species and it might be important to model the bottleneck effects during 
transmission events. Also, we do not want to make the restrictive exchangeability assumption 
that all genotypes are equally transmissible. Therefore, it would be better to link the macro and 
micro in an explicit model that tracks viral strains within all infected individuals. 

Improved models should track the macroscopic progression of infection in a host popUlation, 
while also maintaining a microscopic model of pathogen evolution, giving a fidelity and 
capability not previously available in this area. Note that to provide a sampling option (either 
sampling at one time or at multiple times), one needs clever bookkeeping in order to know the 
true genealogy. One computational savings is that taxa that do not have offspring are killed and 
not tracked further. 

D) Limitations of Available Software 

For tree estimation and/or coalescent modeling, there is an impressive amount ofshareware 
software written almost entirely by university or laboratory staff, often without direct support of 
"professional" programmers. Good web sites are evolution.genetics.washington.eduJphylip.html, 
evolve.zoo.ox.ac.uk, beast.bio.ed.ac.uklMain_Page, and mrbayes.net, and many ofthe links from 
those sites. 

Typical limitations of available tree estimation software include a limited range of available 
nucleotide substitution models, and a relatively low upper limit for the number of OTUs. Also, 

http:mrbayes.net
http:evolve.zoo.ox.ac.uk


model selection software is still in its infancy, although ModelTest is a very good first step [40]. 
Model selection research is ongoing in all areas of Bayesian analysis; for example, see [54]. 
Limitations of coalescent theory software implementations are as described in the previous 
section. We emphasize that many extensions to coalescent theory are available [2, 67, 68, 69], 
but not yet in a comprehensive software tool That is, currently, no coalescent-based software 
includes all of the now standard evolutionary factors such as overlapping generations, selection, 
serial sampling, recombination, and geographic isolation. 

FUNDAMENTAL LIMITATIONS 

There are of course fundamental limitations in phylogenetics, including: (a) ambiguous 
phylogenetic signal due to recombination or horizontal gene transfer; (b) possible mismatch 
between gene and species trees; (c) inability to infer transmission direction; (d) inability to infer 
when cross species transmission occurred; (e) additional uncertainty due to the need to align 
sequences into homologous positions by allowing insertion and deletion events; 

A) Ambiguous phylogenetic signal due to recombination or horizontal gene transfer 

It is well known that recombination or horizontal gene transfer cause ambiguity in tree 
estimation. Qualitatively, such events imply that there is not just one true tree for the DNA region 
of interest, which obviously confuses the analysis. Typically, recombinant sites are identified 
manually and avoided, or trees are fit to different sub-regions of the region of interest and tests 
for tree similarity [33] are used. Some of the effects of recombination are quantified in [70]. 

B) Possible mismatch between gene and species trees 

One goal in tree estimation is sometimes to infer the branching order of various species. Of 
course the estimated tree actually estimates the branching order of the sampled genes, which 
could disagree with the branching order of the species [20]. 

C) Inability to infer transmission direction 

Reference [20is a rich example involving estimation ofa known transmission history 

among sexually linked HIV individuals in Sweden. Reference [50] is another good example 
involving a partially known transmission history linking an HIV dentist to some ofhis patients. It 
is important to realize however that there is nothing in phylogenetic tree estimation that enables 
inference of the direction of transmission. 

D) Inability to infer when cross species transmission occurred 

The subsection on Estimation of Disease Origins mentioned that the 1930 estimate of tMRCA 

for HIV -1 subtype M does not help infer when HIV jumped from chimpanzees to humans. 
Related analyses involving the relative rates of synonymous and non-synonymous substitutions 
are believed to provide some signal for estimating the date of the jump, but [58] provided a brief 
analysis suggesting there was no detection signal in the example of interest. 



E) Additional uncertainty due to the need to align sequences into homologous positions by 
allowing insertion and deletion event 

Reference [71] is one example of an analysis that considers both alignment and phylogenetic 
analysis simultaneously. Typically, an alignment is done first allowing insertion and deletion 
events, and although the possibility of alignment errors is well recognized, the second step 
involving phylogenetic tree estimation proceeds as if there are no alignment errors. Alignment 
errors will always be a possibility, but allowing for insertion and deletions in the nucleotide 
substitution model might be worth pursuing as a way to combine the linked tasks of alignment 
and tree estimation. 

DISCUSSION 

It is important to distinguish fundamental limitations from current limitations. We must 
always consider the extent to which growth rates, effective population sizes, selection effects, 
tMRCA, population bottlenecks, etc., can be inferred from molecular data, regardless of what 
inference approaches are used. 

Despite the somewhat pessimistic list of inference and model flaws in phylogenetics, the 
successes have been steady and promising for decades. Particularly in the last decade when 
MCMC implementations have flourished, analyses can begin to more completely consider all 
relevant effects and noise sources associated with phylogenetic inference. For the few known or 
approximately known phylogenies, inference methods have performed reasonably well, perhaps 
as well as possible for the inference goals and sample sizes as defined by both the number of 
OTUs and the number ofDNA sites [8, 16]. 

Having more real benchmark data sets with known phylogenies would be welcome. 
Software to simulate known phylogenies could also benefit from more realistic forward models 
that relax some ofthe coalescent theory assumptions. 

SUMMARY 

Phylogenetic tree estimation is central to population genetics and all aspects of 
bioinformatics that depend in any way on evolutionary history. The attempts to model evolution 
expose both our knowledge and our ignorance, and point us toward ways to improve our 
understanding of evolution. 
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