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Abstract

Genetic data is often used to infer evolutionary relationships among a collection of viruses,
bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic
tree depicts such relationships and provides a visual representation of the estimated branching
order of the OTUs. Tree estimation is unique for several reasons, including: the types of data
used to represent each OTU; the use of probabilistic nucleotide substitution models; the inference
goals involving both tree topology and branch length, and the huge number of possible trees for a -
given sample of a very modest number of OTUs, which implies that finding the best tree(s) to
describe the genetic data for each OTU is computationally demanding.

Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics
that includes study of similarities in genetic data from multiple OTUs. Although research
questions are diverse, a common underlying challenge is to estimate the evolutionary history of
the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in
bioinformatics, available methods and software, and identifies areas for additional research and
development.

INTRODUCTION

Genetic data is often used to infer evolutionary relationships among a collection of viruses,
bacteria, animal or species, or other operational taxonomic units (OTU). A phylogenetic tree
(Figure 1) is a visual representation of either the true or the estimated branching order of the
OTUs, depending on the context. Because the taxa ofien cluster in agreement with auxiliary
information, such as geographic or temporal isolation, one goal associated with tree estimation is
to infer the number of groups (also known as clusters, clades, or subtypes) and group
memberships. For example, one application for trees is to identify viral subtype and new
recombinant subtypes arising from combinations of known subtypes, which both have important
implications for drug and vaccine design [1]: Another application for trees is to use tree shape
[1,2] to infer aspects of population history such as population growth rates or subdivision.

Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics
that includes study of similarities in genetic data from multiple OTUs. Although research
questions are diverse, a common underlying challenge is to estimate the evolutionary history of
the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in
bioinformatics available methods and software, and identifies areas for additional research and
development. ’



Phylogenetic tree estimation and associated inference remains a research topic despite its long
history dating prior to the 1970s when the first quantitative approach was developed [3]. For
example, a search for “phylogenetic tree” in the text or abstract in any article in just one journal
(Bioinformatics) yielded 553 papers from January 2000 through October 2008. Our purpose here
is to review how trees are estimated and used in bioinformatics.

In Figure 1 we show: (A) one of the 105 possible rooted trees for five OTUs, and (B) another
of the possible rooted trees for five OTUs. In (A), OTUs 1-5 are observed (external nodes), while
all other taxa are unobserved (internal nodes), with taxa R being the root (ancestor) node. Time
progresses forward from the root toward the external (present day) OTUs. The number N of

. 7-1
rooted trees grows very rapidly with the number » of OTUs, N = H (25 1) [3]. For n =10, there

k=1
are over three million possible rooted trees, and an exhaustive search of all possible trees is
computationally prohibitive for more than about # =10.

Tree estimation is unique for several reasons, including: the types of data used to represent
each OTU; the use of probabilistic nucleotide substitution models; the inference goals involving
both tree topology and branch length, and the huge number of possible trees for a given sample
of a very modest number of OTUs, which implies that finding the best tree(s) to describe the
genetic data for each OTU is computationally demanding. Factors such as population
subdivision, migration, and changing population size impact the tree representing a sample of
OTUs [2]. Forces such as recombination, mutation, and selection impact the genetic data of a
given tree. As an example of how population history impacts tree shape, Figure 2 (left plot) is
the “best” tree fit to the env region of 100 contemporary human immunodeficiency viruses
(HIV). The right subplots in Figure 2 shows corresponding simulated data. using an
implementation of coalescent theory (TreeEvolve, described in [2]) to illustrate the impact of the
history of the infected population size N, with an exponential growth rate, zero growth, zero
growth period followed by exponential, and a quadratic growth rate, in the top left, top right,
bottom left, and bottom right subplots, respectively. Figure 2 will facilitate discussion of several
topics in this review, including tree estimation and inference, tree shape, nucleotide substitution
models, subtype identification using trees, and coalescent theory.

Tree estimation and interpretation are strongly linked to coalescent theory [4,5], which is a
probabilistic treatment of sample genealogies. Working with a present-day sample of n OTUs,
~ coalescent theory looks backward in time and probabilistically specifies the death process by
which the number of common ancestors represented in the population decreases to n-1, #-2, ...,
and finally to 1.

As an example, coalescent theory together with an assumption of constant mutation rate
(“molecular clock™) over time suggest via the “mitochondrial Eve” theory that all present-day
humans are descendents of a woman living in  Africa  approximately

170,000 years ago [6, 7]. Application of coalescent theory in this case involves samples of
diverse present-day human mitochondrial DNA, which is maternally inherited. Maternal
inheritance simplifies the analysis from diploid (two sets of chromosomes) to haploid (one set of
chromosomes), avoiding complications due to genetic mixing during reproduction. Assumptions
and analyses of this human mitochondrial DNA data continue to be debated, as does the
estimated coalescent time to “Eve.” One of the technical issues involves the method to generate



the best tree and the method used to root the tree; generally, using an outgroup OTU that is
distant, but not too distant from the other OTUs is most effective [7]. The “mitochondrial Eve”
analysis has been widely misinterpreted as pointing to an Eve in the Biblical sense. An inevitable
conclusion of coalescent theory is that all present day OTUs coalesce to a single ancestor who is
one individual among many alive at the time of coalescence, and not an “Eve” in the Biblical
sense of being the only living woman at the time.
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Figure 1. Two of 105 branching patterns for a rooted tree having five taxa (external nodes).
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Figure 2. HIV, env gene region. Consensus trees (of 100 bootstrap samples) using maximum
likelihood for real (the left plot) HIV (env gene) sequences and for coalescent-based simulated
(the four right plots) sequences under different assumptions about the time behavior of the
number of infected individuals N.



The following sections include additional background, nucleotide substitution models,
inference methods for tree estimation, methods to assign uncertainty to estimated trees, available
software, applications of trees in bioinformatics, current limitations, fundamental limitations,
discussion, and summary.

BACKGROUND

The first quantitative approach to estimate both the branching pattern (topology) and the ratios
of branch lengths used gene frequencies and developed a maximum likelihood method based on
some evolutionary model [3]. It is now common to have deoxyribonucleic acid (DNA) and/or
amino acid data available from one or more regions of the genome of the observed taxa.

We focus on DNA, which usually consists of two complementary chains twisted around each
other to form a right-handed helix. Each chain is a linear polynucleotide consisting of four
nucleotides, two purines: Adenine (A), and Quanine (G), and two pyrimidines: Thymine (T) and
Cytosine (C). In coding regions, each set of 3 nucleotides codes for one of 21 amino acids and
each DNA site is called a codon. Here is example DNA data for the first 20 of the 63 informative
sites from the data in [8].

OTU Code Mutually aligned DNA

1 CCGGGCCTCGGCTGCGCACC...
2 CCGGGCCCTAGCCGTACACC...
3 TCGGGCCCCGGCCGCACACC...
4 TCAGGCCCCGACCGCACATC...
5 CTGAGCCCCGGCCGTATACC...

The basic two concepts in the maximum likelihood (ML) approach for tree estimation are: (1)
for a given topology, find branch lengths that maximize the probability of the data at the external
nodes; and (2) choose the topology whose optimized branch lengths assign maximum probability
to the observed data. It is important to remember that the likelihood of a given tree is not the
probability that that tree is correct. Instead, it is simply the probability of observing the data if the
tree 'and branch lengths are correct. Bayesian arguments are required for estimating the
probability that a given tree topology is correct [8]. In tree estimation, several definition of
“phylogenetic signal” have been suggested, each related in some way(s) to the confidence in the
most likely tree(s) [9].

Tree estimation and interpretation are strongly linked to coalescent theory [1,2,4,5,10-13]. For
example, coalescent theory can provide a prior probability for tree topologies [10-13]. Coalescent
theory also can convert a posterior probability for topologies and branch lengths into inferences
regarding population history [1,11,12] as the four right subplots in Figure 2 suggest might be
possible, because the four population size growth rates each lead to quite different tree structures.
More quantitatively, a skyline plot [12] is a “number of lineages through time” plot that can be
used with coalescent theory to estimate the effective population size as a function of time in the



past. However, coalescent theory makes simplifying assumptions described below, so inference
quality is sometimes unknown.

In some cases, we can apply a somewhat realistic coalescent-based model by defining a
coalescent effective population size N, which allows us to reference the real population to an
equivalent idealized population with nonoverlapping generations and a birth-death process that is
well modeled by specifying the generation time and the average and variance of the number of
offspring per individual. The coalescent-effective population size N, exists only if: (1) there is a
linear, time-independent scaling of time in convergence to a coalescent process [14], and (2) the
birth-death process is not linked to the nucleotide substitution model. Alternatively, perhaps
recent extensions to coalescent theory can provide an acceptable approximation. All of these
coalescent-based extensions make explicit and strong assumptions regarding subdivision, serial
sampling, selection, and recombination. For example, see vCEBL [15].

EVOLUTIONARY MODELS

Any tree estimation method based on likelihood requires a nucleotide substitution model from
which probabilities can be deduced. The most common currently used nucleotide substitution
model specifies u > 0, and nonegative ma, Tc, TG, and 7y, which are the nucleotide relative
frequencies (that sum to 1). The parameter p determines the rate of change, and the time intervals
between changes is assumed to be exponentially distributed with parameter . Equivalently, the
number of changes in a given time is assumed to be Poisson distributed with mean 1/ut. The
assumption that p is constant over time is the well-known “molecular clock™ assumption.
Another parameter, typically denoted «, allows for purine-to-purine or pyrimidine-to-pyrimidine
mutations (called transitions) to be different than purine-to-pyrimidine or pyrimidine-to-purine
(called transversions). The ©’s can be estimated using the observed nucleotide frequencies. The
best way to estimate p requires access to an outgroup OTU, or to the OTUs having a range of
isolation times that is somewhat long compared to p. The ratio of transitions to transversions can
be used to estimate k

A common nucleotide substitution model is as follows. Consider a pair of taxa denoted x and
y. Define Fyy as

RyaPgcP g ar
Reqloclcgher . . . ) .
NF,, = , where N is the number of base pairs (sites) in set of aligned sequences,
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naa is the number of sites with taxa x and y both having an A, nac is the number of sites with taxa
x having an A and taxa y having a C, etc. Sequence alignment is a large topic that is beyond our
scope, but is briefly mentioned in the Discussion section.

The most general time-reversible model (GTR) for which a distance measure has been defined
[16,17] defines the distance between taxa x and y as d, = -trace{Il log(H'lny)} where [Tis a

diagonal matrix of the average base frequencies in taxa x and y and the trace is the sum of
diagonal elements. The GTR is fully specified by 5 relative rate parameters (@, b, ¢, d, e, f) and 3



relative frequency parameters (7a, Tic, and g with 7p determined via ma+ nic + g + 7y = 1) in the
rate matrix Q defined as

- an. bmy; cmp

Qlu= , where p is the overall nucleotide substitution rate and each
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row sums to 0, so the diagonal entries are determined by the off-diagonal entries.. The rate matrix
Q is related to the nucleotide substitution probability matrix P via Py(f) = ¥, where Py(#) is the
probability of a change from nucleotide i toj in time t and P(t) satisfies the time reversibility and
stationarity criteria: ;P; = m;P;;. Commonly used models such as Jukes-Cantor [16] assume that a
=b=c=d=e=1and np = nc = 7 = nr= 0.25. For the Jukes-Cantor model, it follows that
P;(t) = 0.25 + 0.75¢™" and that the distance between taxa x and y is —3/4 log(1 - 4/3D) where D is
the percentage of sites where x and y differ (regardless of what kind of difference because all
relative substitution rates and base frequencies are assumed to be equal). ’

Important model generalizations include allowing unequal relative frequencies and/or rate
parameters, and to allow the rate p to vary across DNA sites. Allowing p to vary across sites via
a gamma-distributed rate parameter is one way to model the fact that sites often have different
observed rates. If the rate p is assumed to follow a gamma distribution with shape parameter y
then these “gamma distances” can be obtained from the original distances by replacing the
function log(x) with y(1-x™7) in the dyy, = -trace{I1 1og(l'[']ny)} formula [16]. Generally, this rate
heterogeneity and the fact that multiple substitutions at the same site tend to saturate any distance
measure make it a practical challenge to find a metric such that the distance between any two
taxa increases linearly with time. Another generalization is to simply use the most general
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possible from for Q/u, whichis Q/u= , where again each row

sums to O so the diagonal entries are determined by the off-diagonal entries. The total number of
parameters in this model is the 3 relative frequencies (ma, ©ic , mg) plus the 11 relative rate
parameters, a-k, with [ = 1). To our knowledge, [18] is the only published case that used this
most general model; results were indistinguishable from results using the GTR model.

At best, these simple nucleotide substitution models are a useful approximation. For example,
at present, DNA sites are assumed to evolve independently, which is not likely to be true. For
example, in regions that are GC rich or TA rich in the chloropolast genome, the nucleotide
substitution pattern is influenced by the two nucleotides flanking the substitution site [19]. Partly
to avoid context-dependent nucleotide substitution models, some studies use only DNA from
each third position in the 3-codon reading frame that converts DNA to amino acids [16]. Other
effects such as recombination and insertions and deletions can also be important, as mentioned in
the Discussion section and in [20].

A favorable trend in phylogenetic analysis of DNA data is to choose the substitution model
'using goodness of fit or likelihood ratio tests [21]. However, the substitution model is likely to



depend on the region of the genome [5, 22]. For example, DNA regions that code for amino acids
are more constrained over time due to selective pressure and therefore are expected to have a
smaller rate of change than non-coding sequences.

INFERENCE METHODS

There are many tree-building methods in use, but ML remains the most preferred for small or
modest numbers of taxa such as in most of the trees in, for example, an on-line tree database
(http://www.treebase.org/treebase) which contains more than 1000 estimated trees. As a thumb
rule, trees having less than 10, 10 to 100, and more than 100 OTUs are small, medium, and large,
respectively. For 10 or more taxa, heuristic searches attempt to find a high likelihood (probably
not maximum) tree topology, associated branch lengths, and to estimate approximately 2-15
parameters that describe the nucleotide substitution model (see the previous section).

Recently, Bayesian methods have become increasingly used. See Mr. Bayes and a few other
Bayesian method implementations at http://mrbayes.csit.fsu.edu. Bayesian methods are closely
related to ML in that both Bayesian and ML require an explicit nucleotide substitution model. In
order to perform nearly any except the simplest Bayesian analysis, Markov Chain Monte Carlo
(MCMC) is a heavily-used method that uses likelihood ratios for different sets of model
parameters to generate samples from the posterior probability distribution [23]. The result is an
estimated probability distribution on both tree topology (branching order) and branch lengths.

Bayesian methods typically involve the need to specify a prior probability which is updated
using the likelihood to obtain a posterior probability on topology and branch lengths. The default
“noninformative’” prior in this context [8] is that all possible topologies are equally likely, then
given a topology 7, the branching times are uniformly distributed over the range defined by
branch length orderings imposed by 7. And, as in the ML approach, the distribution of
nucleotides at each site in the root node is the stationary distribution given by the natural estimate
of (na, Tc, TG, wr); nucleotides at different sites evolve independently, and evolutionary processes
along different branches are independent.

Having to specify a prior probability distribution is both good and bad. It is good if prior
information is known and should be incorporated into the analysis. It is bad if there is essentially
no apriori information, in which case one should assess sensitivity of the posterior probability to
the prior, even so-called “noninformative” priors. The assumption that all tree topologies are
equally-likely makes Bayesian methods similar to the ML method, but arguably superior in terms
of uncertainty assessment (next section). If prior information is assumed, then coalescent
methods [10] or a birth-death process [24], depending on the context could provide effective
prior probabilities for topologies and branch lengths.

The Bayesian-based estimate of the posterior probability distribution can easily be used to
assess confidence in any desired aspect of the estimated tree, such as whether pre-specified
groups are monophyletic. A group is monophyletic if each of its member OTUs coalesces to a
common ancestor before any OTU from outside the group coalesces to that ancestor. In contrast,
to assign confidence to any desired aspect of the estimated tree using ML, a well-known
resampling technique called the bootstrap is used in conjunction with repeated application of the
ML algorithm. An example is described in the next section.


http:http://mrbayes.csit.fsu.edu
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The main two alternatives to ML or Bayesian methods are distance-based methods and
parsimony methods [16]. For nearly all of the currently used nucleotide substitution models,
there is an associated distance measure. Therefore, if a distance method is required because there
are too many OTUs for a Bayesian method or the ML method, the distance can be chosen on the
basis of the best fitting substitution model, perhaps chosen using a subset of the OTUs if
necessary for computational reasons. The chosen distance measure can be used to compute the
distance between each pair of OTUs and various hierarchical clustering methods can then be
applied. An interesting blend of likelihood and distance-based methods is provided in a weighted
neighborhood method [25].

It is important to recognize that the genetic distance between any two OTUs is a function of
the time since the OTUs shared a common ancestor. This time depends on the population size N,
and for that reason, many studies simply attempt to estimate the effective mutation rate, Ny.

Maximum parsimony is among the computationally simplest methods. It involves finding the
topology that corresponds to the smallest number of substitutions required to explain the
observed DNA data for each OTU [16]. Weighted parsimony methods can also involve
likelihood by using appropriate weights when counting the required number of substitutions.

METHODS TO ASSIGN UNCERTAINTY TO ESTIMATED TREES

The previous section mentioned the use of ML plus bootstrap to assign confidence to various
aspects of an estimated tree. Or, if MCMC is used in a Bayesian approach, then any summary of
the posterior tree distribution will naturally include an uncertainty estimate. Nearly any method
can at least in principle be combined with bootstrap resampling to estimate confidence in the
estimated tree.

Felsenstein [26] introduced the bootstrap for assessing confidence in estimated trees. The
basic bootstrap strategy is to sample each site with replacement as bootstrap sample 1. Then,
apply the tree estimation algorithm to each of (typically) 100 to 1000 bootstrap samples and
summarize results over all bootstrap samples. Several complications with ML plus bootstrap
arise in practice. First, the number of unrooted or rooted topologies for T taxa grows
prohibitively large for more than approximately 50 taxa. Therefore, unless there are only a few
taxa, existing ML algorithms do not evaluate all topologies and choose the topology having ML.
Instead, heuristic methods limit the search to a small number of candidate topologies.
Sophisticated stochastic searches such as those using simulated annealing [27] improve matters,
but do not remove the complication that the tree-finding algorithm cannot evaluate all topologies.

A second complication with the bootstrap involves interpretation and performance. Both [28]
and [29] reported empirical evidence using simulated data that bootstrap proportions provide
unbiased but imprecise estimates of repeatability but biased estimates of accuracy. If the
phylogenetic estimation method is consistent, meaning that the estimated topology converges to
the true topology in the limit as more DNA sites are used, the bootstrap appeared to
underestimate high accuracies and overestimate low accuracies. Results in [28] and [29]
indicated an empirically observed bootstrap bias (in the direction of underestimating confidence)
in simulated data in addition to overdispersion. Results in [30] and [31] presented theoretical
results to refute the bias claim. However, both [30] and [31] used theoretical arguments, largely
invoking a simpler situation involving sampling from a normal distribution and inferring whether
its mean was positive on the basis of the sample mean. For example, these toy but potentially
insightful examples lead to the conclusion that the ML plus bootstrap based estimate of whether



a prespecified group is monophyletic can be biased low if the DNA data is highly informative
and has high probability to correctly identify specified groups. Alternatively, if the DNA data is
not highly informative, the ML plus bootstrap estimate can be biased high.

Reference [30] addressed the question of whether the discrete aspect of the topological space
would render bootstrap estimates unreliable, and concluded that although the standard bootstrap
could be improved with a very computationally intensive double-stage bootstrap (bootstrapping
the bootstrap), the bootstrap is still valid (unbiased and not too imprecise) in the discrete space of
tree topologies and, as [31] also concluded, does not lead to systematic over or under estimate of
confidence. The discrete nature of the decision space for choosing topology 1 versus topology 2
means that the estimated topology cannot change in a smooth way as the input sequences vary.
Newton [32] established a large deviation result for the bootstrap empirical distribution in a finite
sample space, thereby validating nonparametric and parametric bootstrapping in some
phylogenetic inference settings. Previous to this result, existing theory did not support the
bootstrap because of the discrete nature of the space of tree topologies and because of the types
of questions involved.

In contrast to the ML plus bootstrap approach, current Bayesian strategies use MCMC to
search the posterior distribution over branch lengths and topologies. Generallly, both topology
and branch lengths are estimated and while the concept of uncertainty in branch lengths is
straightforward, the measure of closeness of the estimated topology to the true topology is a large
topic. Several metrics have been proposed with a tendency to favor metrics that penalize
mistakes near the root or center of the tree more than mistakes near the tips [33]. One common
distance metric is the triples distance, defined for two trees each representing the same » OTUs

as the number of the {:] triples for which the trees have different branching order. The triples

distance is strongly impacted by disagreements near the root between two trees.

The only comparisons of Bayesian confidence statements with ML + bootstrap confidence
statements that we are aware of are [34, 35], which both found mild differences in confidence
estimates in several real and several simulated DNA sequences. We believe that further
experiments comparing Bayesian confidence measures to bootstrap confidence measures would
be valuable. Such comparisons were not available when [28-31] were published. Also, reference
[36] illustrated that in estimating the time to the most recent common ancestor, \grca, using the
“genetic distance” versus “isolation time” approach in [37], tree structure such as distinct clades
requires a specialized bootstrap that has not been developed. Alternatively, TipDate [38] properly
accounts for tree structure when estimating fyrca and associated confidence intervals. For
example, the estimated confidence interval for fyrca in simulated data corresponding to real HIV
sequences using TipDate [38] was much wider and more accurate for the env region of the HIV
genome than the corresponding bootstrap-based confidence interval estimate applied to the
“genetic distance” versus “isolation time” approach [36].

Reference [39] showed that use of a wrong substitution model leads to underdispersion and/or
bias. As an example, it is well known that “long branches attract,” which means the long
branches tend to be grouped together regardless of whether that is the correct topology. This
phenomenon will impact any method (Bayesian or ML plus bootstrap) so [34] deliberately
avoided it in simulated data by using the same model to estimate the tree as to simulate the
sequences. However, one can never be sure it is not in effect with real data because real data



never follow any model exactly. As mentioned, it is now more common for likelihood ratio tests
or Bayes factors to be used to select models [16,22,40], but even in the best of real-data cases, we
expect at least some degree of model misspecification.

One difficulty in evaluating related publications is that methods perform differently according
to how closely the assumed model agrees with the actual model. For example, a ML method ‘
using the “wrong model” leads to biases, which favor recovering certain favored topologies (such
as long branches tending to group together). If the true topology happens to agree with one of
these “favored” topologies then the variation among ML fits on bootstrap samples will be
unrealistically low. Therefore, [34] used the same model (the F84 model [16] with no rate
heterogeneity and a constant substitution rate over time (“molecular clock™)) in BAMBE [41] for
a Bayesian method via MCMC and DNAMLK (for ML plus boottstrap in the PHYLIP suite of
codes [42]) to estimate the phylogeny and also in the SeqGen code [43] to generate the data for a
given topology. This means that the results with the simulated data represented a safe comparison
and results on real data are as safe as possible with real data.

One main summary of a ML plus bootstrap analysis is a “consensus tree,” which can be
defined in several reasonable ways. The most conservative definition is a strict consensus tree
that contains only groups that are exactly represented in each tree (each tree arises from a
different bootstrap sample). Similarly, the Bayesian posterior can be summarized by finding a
maximum posterior tree and confidence region. The confidence region could include only trees
that are within a specified distance, as defined for example using the triples distance of the
maximum posterior tree.

Another common summary of a tree estimation application is whether a prespecified group is
monophyletic. Again, the ML plus bootstrap or the Bayesian posterior can be used to assign
confidence in whether a group is monophyletic [34,44].

AVAILABLE SOFTWARE

The main software tools for performing ML tree estimation (such as DNALMk [42]) have
several known limitations: (1) they use relatively restrictive substitution models; (2) they make
no attempt to find the global maximum because of the so-called NP-completeness of the search;
and (3) there are no diagnostics given to judge how close the estimates are to the global
maximum. Nevertheless, likelihood methods are generally preferred because they: (1) have the
ability to model a variety of factors thought to affect nucleotide sequence evolution; (2) have
some robustness to violations of its model assumptions; and (3) have more resistance to long
branch attraction than does parsimony [45]. Likelihood also makes use of more information in
the data than do other optimality criteria. Also, if researchers have access to parallel computing
platforms, parallel versions of FastDNAML or of PAXML [45] have been applied to ML tree
estimation using up to 1000 OTUs. ‘

The main software tools for Bayesian estimation (which also involves the likelihood
calculation) include BAMBE [41], BEAST [46], and Mr Bayes [48]. It appears that Mr Bayes
has overtaken BAMBE in terms of ease of use and range of available nucleotide substitution
models.



BENCHMARK DATA SETS

The relative lack of real benchmark data sets for which the true branching order is at least
approximately known is a current limitation for pylogenetic study. Available data sets for which
the true branching order is known or approximately known include: (1) a lab-generated
phylogeny using T7 bacteriophage which has been analyzed in several publications [49]; (2)
protein-coding portion consisting of 12,234 base pairs of the mitochondrial genome of 19 OTUs
whoe interrelationships (true branching order) are widely accepted [50] (3) an HIV transmission
chain having known transmission history due to impressive contact tracing; this “known”
transmission history refers to the sexual contact history rather than to the actual branching order
of the sampled HIV genes [20]. Differences in the branching order of the genes and the
corresponding sexual history are analogous to differences in gene versus species trees, and (4) an
HIV transmission chain that is partially known due to established links between a Florida dentist
and several patients who were deliberately infected during surgery [51].

Dozens of published studies have evaluated tree estimation methods using simulated data
sets. To our knowledge, all such simulations follow the assumed “independent sites™ substitution
models.

APPLICATIONS OF PHYLOGENETIC TREES IN BIOINFORMATICS

Trees have many applications in bioinformatics, including enabling estimation of evolutionary
history, population history, transmission history, rates of evolution, disease origins, identification
of viral subtype, and prediction of sequence function.

A) Estimation of Evolutionary History

Simply put, a phylogenetic tree estimate acknowledges the non-independence of the DNA
sequence data among OTUs due to their shared evolutionary history. Some publications use
shortcut analyses that ignore the correlations among the sequences, or at least attempt to use
sequences that are relatively independent by virtue of approach on “opposite sides of the
estimated tree” [52]. Tree structure acknowledges shared evolution and the corresponding
correlations. Reference [52] is another assessment of the coalescent time to the human Eve, but it
reports much larger uncertainty in the estimate than do most other studies.

B) Estimation of Population History

Coalescent theory has provided tremendous insights and generated many research questions
regarding interpretation of tree shape. The four right subplots in Figure 2 show examples that
suggest how tree shape might be used, for example, to infer population history in terms of
effective population size over time for the population from which a set of OTUs was sampled.

The basic concept for using tree shape to infer aspects of population history is as follows. The
distribution of DNA sequences in a sample from a population involves the coalescent process,
population history, and the nucleotide substitution model specifying how genetic data changes
probabilistically over time. Most genetic data analyses rely on a forward model that specifies
evolutionary forces and associated probabilities describing how offspring are generated. For
simulating samples from a population, the state of art invokes coalescent theory [4], which uses



simplified models of the forward evolutionary process. These simplifications allow inverse
analytical solutions and corresponding simulation software [2, 4, 42], commensurate with
relatively low computational overhead. This is done in order to avoid having to simulate directly
from the forward model and track the evolutionary histories. Sample genealogies can instead be
simulated by running time from the present toward the past and tracking probabilistically when
lineages coalesce to share a common ancestor. These coalescent-based simulated sample units
are then used to infer how a population is evolving using features of the associated phylogenetic
tree [46].

C) Estimation of Transmission History: HIV Example

Reference [20] reports results of the best four of seven common nonBayesian phylogenetic
tree estimation methods applied to HIV sequences for patients linked by a known HIV
transmission history. The results are encouraging in that the best fitting tree(s) are quite close to
the true true. For example, some of the results in [20] were partially duplicated for this review.
Figure 3 is the ML plus bootstrap consensus tree and Figure 4 is the maximum Bayesian
posterior tree using BAMBE,. Figure 5 is the known true tree. Disagreements are relatively minor.
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Figure 3. ML plus bootstrap consensus tree for a known HIV transmission history.
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Figure 4. Maximum Bayesian posterior probability tree for a known HIV

transmission history.
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Figure 5. True tree corresponding to Figures 3 and 4.

D) Estimation of Nucleotide Substitution Rates

The nucleotide substitution model describing how DNA sequences evolve specifies the
probability for various base pair substitutions as a function of the time since a given pair of
OTUs shared a common ancestor. This time to a common ancestor is unknown. But, of course, a
main goal in tree estimation is to estimate the branch lengths separating each OTU pair.
Reference [53] used Monte Carlo (MC) sampling to address the problem of simultaneously
estimating the tree topology and branch lengths and the nucleotide substitution model. The MC
sampling needs to be incorporated into the standard ML + bootstrap to properly inflate variance



estimates for model parameters to account for having to estimate the topology, branch lengths,
and nucleotide substitution models.

Alternatively, the BEAST implementation of Bayesian MCMC combines all model
parameters into the MCMC, and clearly distinguishes five components of the full estimation
problem: the nucleotide substitution model parameters (whose number depends on which model
is used); the model for substitution rate variation among sites; the model for rate variation among
tree branches (lineages) and branch lengths; the tree topology, and the prior probability for tree
topology and branch lengths.

When the goal is tree estimation only, having to estimate the parameters of the nucleotide
substitution model is a nuisance source of variation. However, model selection, interpretation,
and associated parameter estimation are key goals of bioinformatics that are enabled by tree
estimation. Currently, Modeltest [40] is probably the most common way to choose among
candidate substitution models using likelihood ratio testing. The analogous test in Bayesian
methods is the Bayes factor to choose among models [54, 55]. Modeltest currently can use trees
created by ML, weighbor, or Mr Bayes.

E) Estimation of Disease Origins

Phylogenetic analysis suggests that HIV made at least two cross species transmissions from
monkeys (simian immunodeficiency virus) to human resulting in HIV types 1 and 2 [56]. HIV-1
is closest to SIV strains isolated from chimpanzees and HIV-2 is most closely related to SIV
from sooty mangabeys. Within HIV-1, phylogenetic analyses identified approximately 10 major
subtypes (A-D, F, H, J, and K) found globally [57]. Within HIV-2, subtypes A and B are
epidemic and subtypes C-G are nonepidemic.

Estimation of the timing of the cross-species transmissions is more problematic and has
caused considerable confusion, analogous to the “mitochondrial Eve” confusion. For example,
approximately 100 sequences spanning from approximately 1985 to 2000 isolated from HIV-1
subtype M patients have been shown in several studies to suggest a that furca is approximately
1930 [36, 57]. However, an estimate of fyrca is no indication when the cross-species
transmission occurred. It has long been suggested that the rate of non-synonymous substitutions
might increase after cross-species transmission of a pathogen, reflecting adaptation to the new
host. A synonymous mutation is a “silent” DNA mutation that does not change the amino acid
due to redundancy in the amino acid code, with only 21 amino acids codes for in codon triples.
However, reference [58] attempted to use the rate of synonymous mutations to non-synonymous
mutations to date the cross species transmission, but found ambiguous results.

F) Identification of Viral Subtype

Identification of viral subtypes in circulation and of circulating recombinants is crucial for
disease mitigation strategy development such as antiviral drugs and/or vaccine [1]. Historically,
tree estimates and reasonable but ad hoc methods were used to choose the number of subtypes
(groups) [56],. A model-based clustering method has been investigated to choose the number of
clusters (subtypes) and cluster memberships in the context of investigating how many subtypes
might occur in a simulated HIV-type epidemic [5, 59]. ‘



Given a collection of subtypes defined by prior analysis such as model-based clustering [59],
reference [60] showed how branch lengths can be used to determine whether newly acquired
DNA sequences from test OTUs belong to existing subtypes or represent a new circulating
recombinant form.

G) Prediction of Sequence Function

Generally, cross-species comparisons are thought to reveal regulatory regions of genomes.
This belief is based on the hypothesis that non-coding genomic sequences having a sequence-
specific function will be preferentially conserved and so have a slower substitution rate. More
specifically, phylogenetic footprinting is a method to identify transcription factor binding sites
within a non-coding region of DNA [61]. Such footprinting assumes that regulatory elements in
non-coding genome regions are subject to purifying selection, so will be more conserved than
surrounding neutral regions.

Within the conserved regions, one can screen for individual transcription factor binding sites
for example [61]. A successful sequence alignment is required to align homologous (having the
same ancestral site) sites and then phylogenetic analysis allows hypotheses to be generated and
tested regarding gene/protein function and relationship.

CURRENT LIMITATIONS

Currently there are shortcomings or limitations of all aspects of tree estimation which we
briefly describe next.

| A) Limitations of Models

One of the most obvious limitations of current base substitution models is that nucleotides at
different sites are assumed to evolve independently. Also, models for insertions and deletions are
used during sequence alignment, but typically not during tree estimation.

When tree estimation results from different genome regions and/or different analyses of the
same genome region are in conflict, it is natural to consider whether systematic estimation error
due to poorly specified models is partly to blame (16, 62 ).

B) Limitations of Inference Methods

The most accepted inference methods use an explicit model for the nucleotide substitution
process and some model comparison method such as ModelTest to choose the best available
substitution model. This explicit use of a likelihood leads to either ML + bootstrap or Bayesian
analysis and estimation via MCMC.

‘The ML + bootstrap, particularly if augmented with Monte Carlo as described in [salter] to
account for the need to simultaneously estimate the tree topology and the nucleotide substitution,
is limited to modest-sized trees of at most a few hundred taxa. Efforts to speed up and parallelize
ML have been reported, and great speed gains have been achieved [42, 44].

Bayesian methods that use MCMC are also limited in practice to modest-sized trees. And,
although uncertainty estimation is an inherent component of an MCMC calculation of the



Bayesian posterior, users must consider diagnostics to provide evidence that the MCMC chain
has converged to a true realization from the desired posterior probability. The need for
convergence diagnostics is not unique to tree estimation, but [63] has shown that for tree
estimation, convergence can be very slow.

Finally, although the finding seems to have not drawn the attention of practitioners,
reference [64] showed a nonidentifiability issue involving the use of the gamma model to
accommodate rate variation across DNA sites. Nonidentifiability is problematic because it means
that two or more sets of parameter values have the same likelihood. Users typically report the
- results of a likelihood ratio test comparing the “constant rates across sites” model to the “variable
rates across sites” model and often reject the “constant rates across sites” model.

C) Limitations of Coalescent Models used to Infer Population Histories From Trees
Limitations of the coalescent techniques include: (a) Little is known concerning accuracy
and robustness of coalescent theory’s restrictive assumptions in many settings, although some
forward models are known not to be well approximated by any coalescent model (depending on
the relative time scales of various evolutionary effects such as drift, migration, and selection)
[ref], and (b) Inference methods [2,9] invoke coalescent approximations to estimate the
probability of candidate branching orders as part of the inference process. This leads to the
undesirable situation of forcing a zero mismatch between the inference method’s assumptions
and the assumptions regarding how the population is evolving.
Tree estimates support inferences regarding, for example, whether a virus strain appears to be
a natural branch from historical strains, or whether the strain seems to have made an unnatural
leap indicating bioengineering. However, key coalescent assumptions that are violated by, for
example, both HIV and influenza viruses are that all subtypes are equally transmissible and there
is no recombination. Therefore, although to a limited extent and under restrictive assumptions,
extensions [15] to coalescent theory have been made to accommodate recombination, selection,
overlapping generations, and population subdivision, there are cases where the theory is either
inadequate or the sensitivity of its conclusions to its assumptions is unknown. The corresponding
inference quality using estimated trees is also unknown; the state of the art is therefore to
quantify precision, but not accuracy, of inferences using coalescent theory.
The forward model is a key component of total uncertainty associated with population
genetics inferences. The current approach is: specify an amenable-to-coalescent-theory forward
model for how a population is evolving that includes for example, population size, structure, and
“selection effects; identify the coalescent effective population size N, [14] in the nearest available
coalescent model, which is often a complicated task; use the closest coalescent model to simulate
sample genealogies under restrictive assumptions about the population and the sampling process.
Coalescent theory was originally applied to macroscopic populations (such as plants and
animals); more recently, it has been applied to microscopic populations such as virus populations
such as HIV as mentioned and other viruses as described in [65]. Coalescent methods focus on
histories of samples and provide a probabilistic description of sample genealogies for example by
assuming a sample of nonrecombining sequences from a population with nonoverlapping
generations that mixes randomly with no selection. Coalescent theory will continue to provide
insight into evolutionary processes; however, there is no way to assess how robust our inferences
are with respect to model violations.



It would be good to consider the extent to which growth rates, effective population sizes,
selection effects, population bottlenecks, etc., can be inferred from molecular data, regardless of
whether coalescent-based simulated data or our tool’s simulated data is used. An example [5]
involves whether the 8 to 10 approximately equidistant subtypes of HIV-1 (type M) could have
arisen under available models of how HIV is evolving (left plot in Figure 2). To examine this, we
used coalescent theory with questionable assumptions to simulate DNA data from a forward
model of how HIV is evolving at both the macro and micro levels. This provided a reference
distribution against which to compare the data. If the observed data is in the tail of the
coalescent-theory-based reference distribution, then forward model used to simulate the data is
not credible. A proposed new and better way to simulate sequences is to track each HIV case by
geographic region including all known transmission routes such as sex, needles, blood
transfusions, and mother-to-child, and track the genealogy of each case. We then sample ~100
simulated sequences from around the world or in specified regions at a snapshot in time, or
distributed in time, and distributed spatially in either case. With careful bookkeeping we could
deduce the sample genealogy (which 2 samples coalesced first to their most recent common
ancestor (MRCA), which samples coalesced next, etc.) back in time until all 100 sequences
coalesced to the single MRCA. This would produce 99 coalescent times and sample identities,
which define the genealogy of the sample. This genealogy could also be thought of as the true
evolutionary tree for the sample to be compared to coalescent-based genealogies.

The proposed method to track the transmission history of all units having offspring in the
population is a huge computational challenge. So, we expect that coalescent theory with its
unrealistic assumptions will continue in the indefinite future to provide the computational
shortcut. However, we have coded an initial “brute-force” approach in Matlab and results are -
presented in [36], plus we are aware of a related first effort using C++/Python [66]. Still, this
approach might not be sufficient, because for example with HIV, each patient carries many viral
strains or sub-species and it might be important to model the bottleneck effects during
transmission events. Also, we do not want to make the restrictive exchangeability assumption
that all genotypes are equally transmissible. Therefore, it would be better to link the macro and
micro in an explicit model that tracks viral strains within all infected individuals.

Improved models should track the macroscopic progression of infection in a host population,
while also maintaining a microscopic model of pathogen evolution, giving a fidelity and
capability not previously available in this area. Note that to provide a sampling option (either
sampling at one time or at multiple times), one needs clever bookkeeping in order to know the
true genealogy. One computational savings is that taxa that do not have offspring are killed and
not tracked further.

D) Limitations of Available Software

For tree estimation and/or coalescent modeling, there is an impressive amount of shareware
software written almost entirely by university or laboratory staff, often without direct support of
“professional” programmers. Good web sites are evolution.genetics.washington.edu/phylip.html,
evolve.zoo.0x.ac.uk, beast.bio.ed.ac.uk/Main Page, and mrbayes.net, and many of the links from
those sites.

Typical limitations of available tree estimation software include a limited range of available
nucleotide substitution models, and a relatively low upper limit for the number of OTUs. Also,


http:mrbayes.net
http:evolve.zoo.ox.ac.uk

model selection software is still in its infancy, although ModelTest is a very good first step [40].
Model selection research is ongoing in all areas of Bayesian analysis; for example, see [54].
Limitations of coalescent theory software implementations are as described in the previous
section. We emphasize that many extensions to coalescent theory are available [2, 67, 68, 69],
but not yet in a comprehensive software tool That is, currently, no coalescent-based software
includes all of the now standard evolutionary factors such as overlapping generations, selection,
serial sampling, recombination, and geographic isolation.

FUNDAMENTAL LIMITATIONS

There are of course fundamental limitations in phylogenetics, including: (a) ambiguous
phylogenetic signal due to recombination or horizontal gene transfer; (b) possible mismatch
between gene and species trees; (¢) inability to infer transmission direction; (d) inability to infer
when cross species transmission occurred; (¢) additional uncertainty due to the need to align
sequences into homologous positions by allowing insertion and deletion events;

A) Ambiguous phylogenetic signal due to recombination or horizontal gene transfer

It is well known that recombination or horizontal gene transfer cause ambiguity in tree
estimation. Qualitatively, such events imply that there is not just one true tree for the DNA region
of interest, which obviously confuses the analysis. Typically, recombinant sites are identified
manually and avoided, or trees are fit to different sub-regions of the region of interest and tests
for tree similarity [33] are used. Some of the effects of recombination are quantified in [70].

B) Possible mismatch between gene and species trees

One goal in tree estimation is sometimes to infer the branching order of various species. Of
course the estimated tree actually estimates the branching order of the sampled genes, which
could disagree with the branching order of the species [20].

C) Inability to infer transmission direction
Reference [20is a rich example involving estimation of a known transmission history

among sexually linked HIV individuals in Sweden. Reference [50] is another good example
involving a partially known transmission history linking an HIV dentist to some of his patients. It
is important to realize however that there is nothing in phylogenetic tree estimation that enables
inference of the direction of transmission.

D) Inability to infer when cross species transmission occurred

The subsection on Estimation of Disease Origins mentioned that the 1930 estimate of fyrca
for HIV-1 subtype M does not help infer when HIV jumped from chimpanzees to humans.

- - Related analyses involving the relative rates of synonymous and non-synonymous substitutions

are believed to provide some signal for estimating the date of the jump, but [58] provided a brief
analysis suggesting there was no detection signal in the example of interest.



E) Additional uncertainty due to the need to align sequences into homologous positions by
allowing insertion and deletion event

Reference [71] is one example of an analysis that considers both alignment and phylogenetic
analysis simultaneously. Typically, an alignment is done first allowing insertion and deletion
events, and although the possibility of alignment errors is well recognized, the second step
involving phylogenetic tree estimation proceeds as if there are no alignment errors. Alignment
errors will always be a possibility, but allowing for insertion and deletions in the nucleotide
substitution model might be worth pursuing as a way to combine the linked tasks of alignment
and tree estimation.

DISCUSSION

It is important to distinguish fundamental limitations from current limitations. We must
always consider the extent to which growth rates, effective population sizes, selection effects,
tmrca, population bottlenecks, etc., can be inferred from molecular data, regardless of what
inference approaches are used.

Despite the somewhat pessimistic list of inference and model flaws in phylogenetics, the
successes have been steady and promising for decades. Particularly in the last decade when
MCMC implementations have flourished, analyses can begin to more completely consider all
relevant effects and noise sources associated with phylogenetic inference. For the few known or
approximately known phylogenies, inference methods have performed reasonably well, perhaps
as well as possible for the inference goals and sample sizes as defined by both the number of
OTUs and the number of DNA sites [8, 16].

Having more real benchmark data sets with known phylogenies would be welcome.
Software to simulate known phylogenies could also benefit from more realistic forward models
that relax some of the coalescent theory assumptions.

SUMMARY

Phylogenetic tree estimation is central to population genetics and all aspects of

- bioinformatics that depend in any way on evolutionary history. The attempts to model evolution

expose both our knowledge and our ignorance, and point us toward ways to improve our
understanding of evolution.
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