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Inhomogeneous Field Induced Magnetoelectric Effect in Mott Insulators 

L.N. Bulaevskii and C.D. Batista' 

JLos Alamos Nalional LaboraJOIY, Los Alamos, New Mexico 87545 
(Dated: September 2, 2008) 

We consider a Mott insulator like HoMn03 whose magnetic lattice is geometrically frustrated and comprises 
a 3D array of triangular layers with magnetic moments ordered in a 1200 structure. We show that the effect 
of a unifonn magnelic field gradienl, VH , is to redistribute the electronic charge of the magnetically ordered 
phase leading to a uniform eleclric field gradienl. The resulting voltage difference between the crystal edges is 
proportional to the square of the crystal thickness, or inter-edge distance, L. It can reach values of several volts 
for IVHI ~ 0.01 T/cm and L ~ 1mm, as long as the crystal is free of antiferromagnetic domain walls. 

PACS numbers: 

The magnetoelectric properties of Mott insulators became 
recently the focus of numerous studies due to their potential 
for new technological applications [1]. The most interesting 
cases are crystals that exhibit simultaneous charge and mag­
netic orderings (multiferroics). Antiferromagnetic (AFM) 
Mott insulators can exhibit magnetoelectric effects driven by 
magnetic ordering [3]. The low-energy charge response is en­
tirely determined by the spin degrees of freedom and thus sen­
sitive to external magnetic fields. Similarly, the magnetic or­
dering becomes sensitive to an applied electric field. 

The minimal Hamiltonian for describing Mott insulators 
is the Hubbard model which accounts for a strong on-site 
Coulomb repulsion U and hopping tenus of amplitude t be­
tween nearest-neighbor sites (i,j): 

H = t L ataj(]" + ¥L(ni _ 1)2, ni = Latai(]"' 
(i,j),(]" j (]" 

(1) 
The operator at creates an electron with spin (J on site i while 
ni is the number of electrons on site i. The Mott insulating 
phase only appears at half-filling and for large enough UIt. 
In particular, each electron becomes localized on a given site 
for t = 0 and the ground state subspace generated by the wave 
functions I ~,,) is 2N• fold degenerate with respect to spin ori­
entations (Ns is the total number of sites). The excited or 
polar states described by wave functions 14>,,) contain m ~ 1 
doubly occupied and empty sites so their energy is mU. 

The ground state degeneracy is lifted by any nonzero t that 
mixes the wave functions I ~,,) with the polar states 14>,,) . The 
new set of 2~ low-energy eigenvectors 1'1/>,,) generates the 
subspace S of magnetic states that are related to the wave­

sfunctions I ~,,) by a unitary transformation: 1'1/>,,) = e- I ~,,)· 
The projection of H into S leads to an effective Heisenberg 
spin Hamiltonian it. = PesHe-s P, where P is the projector 
on the subspace S. The magnetic states are responsible for the 
low-energy response of the crystal. The non-magnetic states 
(states in S.l) are separated by a gap of order U. Single elec­
tron transport is only possible if the system is in one of such 
high-energy states. Therefore, the system is an insulator due 
to the strong on-site Coulomb repulsion. When the insulat­
ing character is driven by this mechanism, the corresponding 
material is called Mott insulator. 

This classification of the eigenvectors of H into "mag­
netic" states, that are responsible for the magnetic proper­
ties, and high-energy states responsible for the electric re­
sponse is not absolute. For small but nonzero values of 
the transfer integral t, the magnetic states of Mott insula­
tors are linear combinations of non-polar and polar states, 
1'1/>,,) = bl~,,) + L:", a", lcP",), and can exhibit low energy elec­
trical properties due the polar contribution. The coefficients 
a", are a function of t/U (they vanish for t/U ~ 0) and the 
spin structure of the non-polar state I~,,). In particular, this 
polar state contribution can modify the local charge on each 
site leading to non-uniform charge distributions that depend 
on the magnetic ordering. This phenomenon can lead to mag­
netoelectric effects without involving the spin-orbit relativistic 
coupling [2]. Namely, the electronic charge redistribution can 
be induced by a magnetic field and while a spin rearrangement 
can be induced by an electric field . As it was demonstrated 
in Ref. [3], Mott insulators comprising magnetic lattices with 
odd hopping loops (odd number of spins in the loop) exhibit 
this magnetoelectric behavior. 

Here we show that a small uniform magnetic field gradient 
leads to an electronic charge redistribution in Mott insulators 
that comprise equilateral triangular lattices of magnetic ions 
such as HoMn03. This phenomenon only occurs in Mott insu­
lators. The lattice unit cells become uniformly charged in the 
bulk of the crystal, while the compensating opposite charge 
is accumulated in the crystal edge. The uniform electric field 
gradient produced by this charge distribution leads to a volt­
age difference between the crystal edges that is quadratic in 
crystal length (see Fig. 1). This phenomenon is driven by the 
Zeeman energy as electrons try to minimize their energy by 
reorienting their spins and moving to sites with stronger mag­
netic field. However, such electronic redistribution is not a 
single-particle effect but a collective phenomenon, as it origi­
nates from the dependence of the coefficients a", on the global 
spin structure of the ground state. 

We consider the half-filled Hubbard model, Eq.(l), on a tri­
angular lattice. The perturbative calculation of it. up to second 
order in t leads to the Heisenberg Hamiltonian: 

it. = L J(Si ' Sj -1/4) - MLHi · Si, (2) 
(i,j) 
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FIG. I: (color online) Charge density and the electric field inside the 
crystal in presence of a uniform magnetic field gradient. The charge 
is positive inside the crystal and the negative compensating charge is 
accumulated at the crystal edge. For such charge configuration, the 
electric field increases linearly with x inside the crystal. 

where J = 4t2 /U is the exchange interaction between 
nearest-neighbor sites (i, j ), M is the magnetic moment of 
each 5=112 spin, S i , and H i is the magnetic field on the site 
i . In general, the projection of any observable 0 into the low­
energy subspace of magnetic states leads to an effective oper­
ator 6 = P eS Oe-s P that only depends on the spin operators 
S i . 10 particular, as it was shown in Ref. [3], the effective op­
erator for the local electron number operator n i deviates from 
one to third order in t / U: 

t3 

ii;-1=8 L(Si ,Sj+ Si ,Sk -2Sj ,Skl· (3)U3 
(j ,k;i) 

(j, k; i) indicates that the sum runs over the sites j, k that share 
a triangle with the site i. The effective operators iij and iik for 
a triangle (i, j, k) are obtained by cyclic permutations of the 
indices i, j, k. The operator iii - 1 vanishes to second order in 
t / U because iii is a scalar under a spin-rotation and the only 
bilinear spin scalar is Si . Sj . From charge conservation we 
have iii + iij = 2, while the spatial symmetry i t-t j implies 
that iii = 1. The scalar combination of three spins presented 
in Eq. (3) becomes nonero to third order t/U due to a three­
hopping process on a triangular loop. We note that iii = 1 on 
a bipartite lattice to any order in t /U [4]. 

The expression for the effective operator iii remains the 
same for any spin 5 due to the following symmetry consid­
erations: it must be a scalar, it must vanish when the three 
spins are ferromagnetic ally aligned, and it must be symmetric 
under the permutation j t-t k. Only the numerical prefactor (8 
for 5 = 1/2) depends on the spin 5. 10 addition, the constant 
1/4 of Eq. (2) must be replaced by 52. 

Eq. (3) leads to an increase of the electron density on the 
two sites of a single triangle whose spins have a stronger sin­
glet character (t < 0) . This simple notion shows that spin 
bond-orerings that make the sites inequivalent (in addition to 
the bonds) are accompanied by an electronic charge redistri-

FIG. 2: (color online) Positions of oxygen ions 0 2 
- (open circles) 

and Mn3+ ions (full circles) in the basal plane. The arrows indicate 
the ordering of the Mn spins . The labels inside the dashed line denote 
the different Mn spins inside the magnetic unit cell k . 

bution (the ions also move due to magnetostriction) or charge 
density wave (COW) that may have a net electric polarization 
if allowed by the broken symmetry. We will see that while 
a uniform magnetic field induces a COW without net electric 
polarization in a C3 symmetric crystal, a uniform magnetic 
field gradient induces a uniform electric field gradient. 

We consider HoMn03 as an example of a layered crystal 
of magnetic ions Mn3+ (5 = 2) . These ions are located 
inside oxygen pyramids, while the small magnetic moment 
Ho ions lie between layers and order at temperatures well be­
low the Neel temperature TN of the Mn ions. The positions 
of the Mn and the most important oxygen ions in the basal 
plane are depicted in Fig. 2. This figure also shows the spin 
ordering for the phase below below TN = 72 K and above 
the transition temperature T SR ~ 40 K to a different mag­
netic structure. From now on we will label the spin sites and 
unit cells as it is shown in Fig. 3. We assume a strong easy­
plane ani sotropy and treat the spins as 20 classical vectors 
of magnitude 5 and phase '{Ink, where k labels magnetic unit 
cell along the x axis, and n labels the six sites inside each 
unit cell (n = 11 , 12, 13,21 ,22, 23). The zero field mag­
netic ordering comprises a three sublattice structure with an­
gles '{IO,12 = -'{IO,13 = Jr/3 and '{IO, ll = Jr relative to the 
x-axis of the basal plane. The spin ordering of the next layer 
is obtained by changing the signs of '{IO,12 and '{1o , 13· The 
magnetic sites of the next layer are shifted by a/ J3 along the 
y-axis, where a is the distance between neigboring sites along 
the x-axis. 

From now on we will only consider the intra-layer ex­
change and assume that there is a C3-invariant single-ion 
anisotropy term of amplitude D that leads to three easy-axes 
in the x, y plane. The electron number on each site is equal to 
one «(fink) = 1) at zero field because all the bonds are equiva­
lent. A nonzero magnetic field induces small deviations, ank, 

relative to the zero field angles '{Ion' We assume that the field 
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values Hi are small enough to have a local Zeeman energy 
much smaller than the anisotropy energy: j-LHi « DS. We 
first consider that the magnetic field is applied along the x ­
axis. By expressing the Hamiltonian in terms of the deviations 
ank and minimizing with respect to these variables, we obtain 
linearized equations for ank « 1: 

(6 + d)aJ 1,k - a12,k - a13, k - 2a21k - 2a23,k- l = hi k> 

(6 + d)a12,k - all,k - a13,k - 2a21,k - 2a22,k = h2k' 

(6 + d)a13,k - all, k+l - a12,k - 2a22,k - 2a23,k+l = h3k' 

(6 + d)a21 ,k - ~l1 , k - a12,k - a22,k - 2a23,k-l = h~k> 

(6 + d)a22 ,k - ~12,k - 20!13,k - a21 ,k - 0!23 ,k = h~k ' 

(6 + d) a23,k - ~l1,k+ l - 2a13.k-l - all.k - a22,k = h~k' 
(4) 

Here d = D / J is a dimensionless anysotropy parameter, 
while hnk = (k + n - l )hg and h~k = (k + n - 1/ 2)hg, 
with hg = j-La'V Hd JS being a dimensionless magnetic field 
gradient. _The angle devi~tion auk leads to a spin change 
OSnk = SOnank, where SOn = ±S(- sin <pOn, cos <POn) is 
perpendicular to the zero-field spin orientation SOn. The lo­
cal charges on each magnetic site are obtained by expressing 
Eg. (3) as a function of the deviations ank that result from 
Eg. (4) . Finally, the electric field inside the crystal is deter­
mined by the Maxwell equation EJE,,jEJx = 41fen(x). 

A uniform magnetic field H only redistributes the elec­
tronic charge inside the magnetic unit celL For H II x, we ob­
tain (ii12,k)-1 = - ((ii13,k)-1) = -6V3Aj-LH/( JS). There 
is no net polarization due to the C3 symmetry of the angle de­
viations with respect to any spin site. Thus, the induced COW 
follows the symmetry of the zero field magnetic structure. The 
effect of an inhomogeneous magnetic field is drastically dif­
ferent because its spatial variation eliminates the symmetries 
of the spin ordering that exclude an electric polarization vec­
tor. If a uniform magnetic field gradient is applied along the x ­
axis, the angles ank increase linearly with k. For a big enough 
number N of magnetic unit cells along the x -axis, the bulk 
solution (deep inside the crystal) is ank = i nk + 9", with 
ill = /22 = 0 and h 2 = 123 = - i13 = - hI = hg /V3. 
The coefficients 9n are of order unity and the net charge of 
each magnetic unit cell does not depend on them. The corre­
sponding change of the electronic charge of the magnetic unit 
cell k is 

Qk = 3V3Ae(an.k - a lJ ,k+l/3 - 2all ,k-J/3 + Q;13,k­

a l3,k-l - a21,k + a21.k+l - a23,k- l + a23,k) = -3Aehg. 

The charge that compensates this variations and keeps the sys­
tem neutral is accumulated on the right edge (near Nth unit 
cell) where the magnetic field is strongest (t < 0). The same 
result holds for the second layer in the 30 magnetic unit celL 
Hence, the contributions to the electric polarization of the two 
different layers do not compensate each other. 

The electric field inside the crystal induced by such a charge 
distribution has a constant gradient: 

(5) 

H VH 


FIG. 3: (color online) Tilting of spins relative to their zero field ori­
entations (full big arrows) induced by the applied magnetic field gra­
dient (open big arrows). The double-line bonds become stronger and 
the electron density is consequently bigger. The oxygen ions are 
shifted towards these bonds as shown by the small arrows. 

where b is the interlayer distance. This field generates a volt­
age difference between the crystal edges 

where D.H = aN'VxHx is the the magnetic field differ­
ence between the crystal edges. In the right hand side of 
Eqs. (5) and (6), we introduced the dielectric constant fO (of 
order 10) to account for the electric polarization due to ions 
and other electrons. This result corresponds to a charge shift 
on ~ 12e( j-La'V H /U)(t/U) k from the magnetic cell k to the 
neighboring cell in the gradient direction. For the case of 
HoMn03, a charge of ~ 0.05e would be accumulated on the 
right edge of the crystal for D.H = 10 G. This corresponds 
to a voltage V ~ 1 V between the edges of a mm-size crystal 
free of AFM domain walls. Similar results are obtained for a 
uniform magnetic field gradient along the y-direction. In this 
case, the numerical coefficient of Eq. (5) is 20/ V3 instead of 
12 and the induced electric field is parallel to the y-axis. 

These results where obtained in the linear response approx­
imation, i.e., for hgN « D / J . Under this condition, the 
energy of the induced electric field, fo(ExN )2 /87r, can be ne­
glected because it is much smaller than the anisotropy energy 
N D. The sign of the induced electric polarization depends on 
the sign of the average spins. Hence, opposite AFM domains 
have opposite polarizations leading to a cancellation of the net 
electric field. 

We will discuss now the magnetostrictive effect, i.e., the 
ion displacements produced by the applied magnetic field . A 
uniform magnetic field results in ionic shifts consistent with 
the COW that we found for the electronic charge redistribu­
tion. However, a unifrorm magnetic field gradient induces a 
uniforn] electric field inside the crystal that corresponds to a 
voltage difference eVstr ~ j-LD.H. 

We use the label m for the oxygen ions shown in Fig. 3 
to expand the exchange integrals Jij in the ion displacements 
U m and account for the corresponding elastic energy. The 
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additional contribution to the Hamiltonian of Eq. (2) is 

m i j 

where K is the elastic module that we assume isotropic for 
simplicity. The dependence of the ionic displacements U m 

on the spin structure is determined by minimizing the total 
energy. We split U m into three components that are perpen­
dicular to the sides of triangle (1,2,3) as shown in Fig. 3: 
u m (123) = u m (12) + u m (13) + u m (23) , i.e., um(ij) is 
perpendicular to the side (ij). The final result is: 

with C = K-l 'V u m (23 ) J i j , and similar expressions hold for 
u m (12) and u m (13) with the same coefficient C ~ aJ/ U ~ 
1O- 3a due to the C3 symmetry of our system. The oxygen 
ions are displaced toward the side with lowest exchange en­
ergy, i.e., where the angle between spins is closer to 7r. The 
ion displacements along the x and y-axis, 2umx = u x (23) ­
ux (12) and umy = - uy(13), are shown in Fig. 3. The contri­
bution of the oxygen ion to the polarization of the unit cell k 
is 

Finally, we obtain that the net polarization of the crystal due 
to magnetostriction is: 

where the boundary effect has been neglected. Thus, the net 
ionic polarization (as well as the voltage difference between 
the crystal edges) is proportional to the crystal length along 
the magnetic field gradient. Though C is bigger than A by 
a large factor (U/t), the even larger factor N / 2 does not ap­
pear in the ionic polarization. Hence, the ionic contribution to 
the electric polarization is negligible in comparison with the 
electronic contribution for a long enough crystal size. This 
remmarkable result is simply a consequence of the fact that 
the same effective spin operator determines the change of the 
electronic charge density [Eq.(3)] and the shift of the oxigen 
ions [Eq.(8)]. While a uniform ionic displacement produces a 
uniform polarization or electric field, a uniform charge density 
incudes a uniform electric field gradient. 

Although our results for the induced electric field were ob­
tained for a static magnetic field, they hold for time depen­
dent magnetic fields as long as the characteristic frequency is 

.. 


much smaller than the gap ,6. ~ (JD)1/ 2 in the spectrum of 
magnetic excitations. It is also instructive to compare the re­
sponse of a Mott insulator to a uniform magnetic field gradient 
with that of a fully polarized metal (itinerant ferromagnet). In 
the latter case, the electrons also move to the edge with high­
est magnetic field due to the Zeeman energy gradient. How­
ever, the induced electric field compensates the Zeeman force 
and the net result is a uniform electric field induced inside the 
sample. This different behavior results from the the fact that 
quasiparticles are free to move in a metal. Although this free 
motion does not exist in a Mott insulator, there is still a partial 
electronic delocalization that depends on the spin degrees of 
freedom. The charge distribution that results from this partial 
delocalization minimizes the sum of the exchange, Zeeman 
and electrostatic energies. 

In conclusion, we have shown that a uniform magnetic field 
gradient induces a uniform electric field gradient in Mott insu­
lators on a triangular lattice. This is the result of an electronic 
charge redistribution that only occurs on lattices containing 
odd numbers of sites in the hopping loops (geometric frus­
tration) and for non-collinear zero field magnetic orderings. 
We note that weak next-nearest-neighbor exchange interac­
tions on a square lattice result in a nonzero ni - 1, but still 
(ni) = 1 because the spin ordering is collinear for H = O. 
The voltage difference between the crystal edges that results 
from the magnetolectric effect described in this letter is pro­
portional to the square of the crystal length. This novel effect 
can be used for measuring magnetic field gradients. 
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