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Inhomogeneous Field Induced Magnetoelectric Effect in Mott Insulators

L.N. Bulaevskii and C.D. Batista!

'Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Dated: September 2, 2008)

We consider a Mott insulator like HoMnO3 whose magnetic lattice is geometrically frustrated and comprises
a 3D array of triangular layers with magnetic moments ordered in a 120° structure. We show that the effect
of a uniform magnetic field gradient, V H |, is to redistribute the electronic charge of the magnetically ordered
phase leading to a uniform electric field gradient. The resulting voltage difference between the crystal edges is
proportional to the square of the crystal thickness, or inter-edge distance, L. It can reach values of several volts
for [VH| ~ 0.01 T/cm and L ~ 1mm, as long as the crystal is free of antiferromagnetic domain walls.

PACS numbers:

The magnetoelectric properties of Mott insulators became
recently the focus of numerous studies due to their potential
for new technological applications [1]. The most interesting
cases are crystals that exhibit simultaneous charge and mag-
netic orderings (multiferroics). Antiferromagnetic (AFM)
Mott insulators can exhibit magnetoelectric effects driven by
magnetic ordering [3]. The low-energy charge response is en-
tirely determined by the spin degrees of freedom and thus sen-
sitive to external magnetic fields. Similarly, the magnetic or-
dering becomes sensitive to an applied electric field.

The minimal Hamiltonian for describing Mott insulators
is the Hubbard model which accounts for a strong on-site
Coulomb repulsion U and hopping terms of amplitude ¢ be-
tween nearest-neighbor sites (i, j):
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The operator a;/, creates an electron with spin o on site i while
n; is the number of electrons on site 2. The Mott insulating
phase only appears at half-filling and for large enough U/t.
In particular, each electron becomes localized on a given site
for ¢ = 0 and the ground state subspace generated by the wave
functions |4, ) is 2"+ fold degenerate with respect to spin ori-
entations (N, is the total number of sites). The excited or
polar states described by wave functions |¢, ) contain m > 1
doubly occupied and empty sites so their energy is mU.

The ground state degeneracy is lifted by any nonzero ¢ that
mixes the wave functions ¢, ) with the polar states |¢, ). The
new set of 2%V low-energy eigenvectors |¢,) generates the
subspace & of magnetic states that are related to the wave-
functions |¢/,,) by a unitary transformation: [¢,) = ¢~ |¢),).
The projection of H into S leads to an effective Heisenberg
spin Hamiltonian H = PeSHe 5 P, where P is the projector
on the subspace S. The magnetic states are responsible for the
low-energy response of the crystal. The non-magnetic states
(states in S*) are separated by a gap of order U. Single elec-
tron transport is only possible if the system is in one of such
high-energy states. Therefore, the system is an insulator due
to the strong on-site Coulomb repulsion. When the insulat-
ing character is driven by this mechanism, the corresponding
material is called Mott insulator.

This classification of the eigenvectors of H into “mag-
netic” states, that are responsible for the magnetic proper-
ties, and high-energy states responsible for the electric re-
sponse is not absolute. For small but nonzero values of
the transfer integral ¢, the magnetic states of Mott insula-
tors are linear combinations of non-polar and polar states,
[1,) = blih,) + 3=, @aléa), and can exhibit low energy elec-
trical properties due the polar contribution. The coefficients
aq are a function of t/U (they vanish for t/U — 0) and the
spin structure of the non-polar state [¢,). In particular, this
polar state contribution can modify the local charge on each
site leading to non-uniform charge distributions that depend
on the magnetic ordering. This phenomenon can lead to mag-
netoelectric effects without involving the spin-orbit relativistic
coupling [2]. Namely, the electronic charge redistribution can
be induced by a magnetic field and while a spin rearrangement
can be induced by an electric field. As it was demonstrated
in Ref. [3], Mott insulators comprising magnetic lattices with
odd hopping loops (odd number of spins in the loop) exhibit
this magnetoelectric behavior.

Here we show that a small uniform magnetic field gradient
leads to an electronic charge redistribution in Mott insulators
that comprise equilateral triangular lattices of magnetic ions
such as HoMnOj3. This phenomenon only occurs in Mott insu-
lators. The lattice unit cells become uniformly charged in the
bulk of the crystal, while the compensating opposite charge
is accumulated in the crystal edge. The uniform electric field
gradient produced by this charge distribution leads to a volt-
age difference between the crystal edges that is quadratic in
crystal length (see Fig. 1). This phenomenon is driven by the
Zeeman energy as electrons try to minimize their energy by
reorienting their spins and moving to sites with stronger mag-
netic field. However, such electronic redistribution is not a
single-particle effect but a collective phenomenon, as it origi-
nates from the dependence of the coefficients a,, on the global
spin structure of the ground state.

We consider the half-filled Hubbard model, Eq.(1), on a tri-
angular lattice. The perturbative calculation of H up to second
order in ¢ leads to the Heisenberg Hamiltonian:
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FIG. 1: (color online) Charge density and the electric field inside the
crystal in presence of a uniform magnetic field gradient. The charge
is positive inside the crystal and the negative compensating charge is
accumulated at the crystal edge. For such charge configuration, the
electric field increases linearly with z inside the crystal.

where J = 4t2/U is the exchange interaction between
nearest-neighbor sites (i, j), p is the magnetic moment of
each S=1/2 spin, S;, and H; is the magnetic field on the site
1. In general, the projection of any observable O into the low-
energy subspace of magnetic states leads to an effective oper-
ator O = Pe® Qe P that only depends on the spin operators
S;. In particular, as it was shown in Ref. [3], the effective op-
erator for the local electron number operator 7; deviates from
one to third order in t/U:
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(4, k; i) indicates that the sum runs over the sites j, k that share
a triangle with the site ¢. The effective operators 72; and 7. for
a triangle (i, 7, k) are obtained by cyclic permutations of the
indices 7, 7, k. The operator 7; — 1 vanishes to second order in
t/U because 7; is a scalar under a spin-rotation and the only
bilinear spin scalar is S; - S;. From charge conservation we
have 7n; + n; = 2, while the spatial symmetry i < j implies
that 2; = 1. The scalar combination of three spins presented
in Eq. (3) becomes nonero to third order /U due to a three-
hopping process on a triangular loop. We note that 72; = 1 on
a bipartite lattice to any order in t/U [4].

The expression for the effective operator 7; remains the
same for any spin .S due to the following symmetry consid-
erations: it must be a scalar, it must vanish when the three
spins are ferromagnetically aligned, and it must be symmetric
under the permutation j < k. Only the numerical prefactor (8
for S = 1/2) depends on the spin S. In addition, the constant
1/4 of Eq. (2) must be replaced by S2.

Eq. (3) leads to an increase of the electron density on the
two sites of a single triangle whose spins have a stronger sin-
glet character ({ < 0). This simple notion shows that spin
bond-orerings that make the sites inequivalent (in addition to
the bonds) are accompanied by an electronic charge redistri-

FIG. 2: (color online) Positions of oxygen ions O?~ (open circles)
and Mn®*" ions (full circles) in the basal plane. The arrows indicate
the ordering of the Mn spins. The labels inside the dashed line denote
the different Mn spins inside the magnetic unit cell k.

bution (the ions also move due to magnetostriction) or charge
density wave (CDW) that may have a net electric polarization
if allowed by the broken symmetry. We will see that while
a uniform magnetic field induces a CDW without net electric
polarization in a C3 symmetric crystal, a uniform magnetic
field gradient induces a uniform electric field gradient.

We consider HoMnO3 as an example of a layered crystal
of magnetic ions Mn3t (S = 2). These ions are located
inside oxygen pyramids, while the small magnetic moment
Ho ions lie between layers and order at temperatures well be-
low the Neel temperature Ty of the Mn ions. The positions
of the Mn and the most important oxygen ions in the basal
plane are depicted in Fig. 2. This figure also shows the spin
ordering for the phase below below Ty = 72 K and above
the transition temperature 7sg ~ 40 K to a different mag-
netic structure. From now on we will label the spin sites and
unit cells as it is shown in Fig. 3. We assume a strong easy-
plane anisotropy and treat the spins as 2D classical vectors
of magnitude S and phase ¢, where % labels magnetic unit
cell along the z axis, and n labels the six sites inside each
unit cell (n = 11,12,13,21,22,23). The zero field mag-
netic ordering comprises a three sublattice structure with an-
gles wo12 = —o,13 = 7/3 and @ 11 = 7 relative to the
z-axis of the basal plane. The spin ordering of the next layer
is obtained by changing the signs of g 12 and @g, 13. The
magnetic sites of the next layer are shifted by a/+/3 along the
y-axis, where a is the distance between neigboring sites along
the z-axis.

From now on we will only consider the intra-layer ex-
change and assume that there is a Cj-invariant single-ion
anisotropy term of amplitude D that leads to three easy-axes
in the z, y plane. The electron number on each site is equal to
one ({(f,k) = 1) at zero field because all the bonds are equiva-
lent. A nonzero magnetic field induces small deviations, o,
relative to the zero field angles ¢g,,. We assume that the field



values H; are small enough to have a local Zeeman energy
much smaller than the anisotropy energy: uH; < DS. We
first consider that the magnetic field is applied along the z-
axis. By expressing the Hamiltonian in terms of the deviations
v,k and minimizing with respect to these variables, we obtain
linearized equations for v, < 1:

(64 d)arr g — aior — @13k — 20018 — 20023 k-1 = Mg,

(6 4+ d)aigr — a1k — @13k — 2001k — 20002, = Doy,

(6 + d)aisp — 1kt — Qrok — 2009k — 2093 k1 = hag,
(6 +d)ovor k — 1k — a2k — Q22 k — 2093 k—1 = Ry,
(6 +d)aoor — 2k — 2013,k — Q21,k — @23k = hop,

(6 +d)ask — u1,k41 — 20013, k-1 — Q11 k — Q22 k = Ry

“

Here d = D/J is a dimensionless anysotropy parameter,
while h,p = (k+n — 1)hg and b, = (kK +n — 1/2)h,,
with hy = paVH;/.JS being a dimensionless magnetic field
gradient. The angle deviation ., leads to a spin change
5Snk = Sonnk, where Sg, = +5(— sin @on, €oS Yon) is
perpendicular to the zero-field spin orientation Sg,,. The lo-
cal charges on each magnetic site are obtained by expressing
Eq. (3) as a function of the deviations v, that result from
Eq. (4). Finally, the electric field inside the crystal is deter-
mined by the Maxwell equation OE,. /0x = 4wen(x).

A uniform magnetic field H only redistributes the elec-
tronic charge inside the magnetic unit cell. For H || X, we ob-
tain (fi19.k)—1 = —((fl1s k) —1) = —6v/3AuH/(JS). There
is no net polarization due to the C's symmetry of the angle de-
viations with respect to any spin site. Thus, the induced CDW
follows the symmetry of the zero field magnetic structure. The
effect of an inhomogeneous magnetic field is drastically dif-
ferent because its spatial variation eliminates the symmetries
of the spin ordering that exclude an electric polarization vec-
tor. If a uniform magnetic field gradient is applied along the x-
axis, the angles v, increase linearly with k. For a big enough
number N of magnetic unit cells along the z-axis, the bulk
solution (deep inside the crystal) is o, = fuk + gn, with
fit = foo = 0and fio = fo3 = —fi13 = —far = hy/V3.
The coefficients g, are of order unity and the net charge of
each magnetic unit cell does not depend on them. The corre-
sponding change of the electronic charge of the magnetic unit
cell £ is

Qk = 3V3Ae(ar1k — a1 k1/3 — 2001 k—1/3 + Q13 k—
Q13 k-1 — 001k + Q21 k1 — 023 k—1 + Qo3k) = —3Aehy,.

The charge that compensates this variations and keeps the sys-
tem neutral is accumulated on the right edge (near Nth unit
cell) where the magnetic field is strongest (¢ < (). The same
result holds for the second layer in the 3D magnetic unit cell.
Hence, the contributions to the electric polarization of the two
different layers do not compensate each other.

The electric field inside the crystal induced by such a charge
distribution has a constant gradient:

E,(k) = (12weg Ahge/ab)k, (5)

1 3

FIG. 3: (color online) Tilting of spins relative to their zero field ori-
entations (full big arrows) induced by the applied magnetic field gra-
dient (open big arrows). The double-line bonds become stronger and
the electron density is consequently bigger. The oxygen ions are
shifted towards these bonds as shown by the small arrows.

where b is the interlayer distance. This field generates a volt-
age difference between the crystal edges

eV = 6mAe’h,N? = 6meg ANe2uAH/(bJS),  (6)

where AH = aNV_ H, is the the magnetic field differ-
ence between the crystal edges. In the right hand side of
Egs. (5) and (6), we introduced the dielectric constant €g (of
order 10) to account for the electric polarization due to ions
and other electrons. This result corresponds to a charge shift
on =~ 12e(uaVH/U)(t/U)k from the magnetic cell k to the
neighboring cell in the gradient direction. For the case of
HoMnOg, a charge of ~ 0.05¢ would be accumulated on the
right edge of the crystal for AH = 10 G. This corresponds
to a voltage V' ~ 1 V between the edges of a mm-size crystal
free of AFM domain walls. Similar results are obtained for a
uniform magnetic field gradient along the y-direction. In this
case, the numerical coefficient of Eq. (5) is 20/ V3 instead of
12 and the induced electric field is parallel to the y-axis.

These results where obtained in the linear response approx-
imation, i.e., for hyN <« D/J. Under this condition, the
energy of the induced electric field, o (E,N)? /8, can be ne-
glected because it is much smaller than the anisotropy energy
N D. The sign of the induced electric polarization depends on
the sign of the average spins. Hence, opposite AFM domains
have opposite polarizations leading to a cancellation of the net
electric field.

We will discuss now the magnetostrictive effect, i.e., the
ion displacements produced by the applied magnetic field. A
uniform magnetic field results in ionic shifts consistent with
the CDW that we found for the electronic charge redistribu-
tion. However, a unifrorm magnetic field gradient induces a
uniform electric field inside the crystal that corresponds to a
voltage difference eV, ~ pAH.

We use the label m for the oxygen ions shown in Fig. 3
to expand the exchange integrals .J;; in the ion displacements
u,, and account for the corresponding elastic energy. The



additional contribution to the Hamiltonian of Eq. (2) is

Har = 3 _IKUZ /24 (W -V, Jij)(Si-S; =S, (D)
m ij

where K is the elastic module that we assume isotropic for
simplicity. The dependence of the ionic displacements u,,
on the spin structure is determined by minimizing the total
energy. We split u,, into three components that are perpen-
dicular to the sides of triangle (1,2,3) as shown in Fig. 3:
w,,(123) = un(12) + upn(13) + u,n,(23), ie., w,(ij) is
perpendicular to the side (77). The final result is:

u,,(23) = C(S;S2 + S1S3 — 2S,S3), (8)

with C = K_lvum(gg).]ij, and similar expressions hold for
u,,(12) and u,,,(13) with the same coefficient C' ~ a.J/U ~
10~3a due to the C3 symmetry of our system. The oxygen
ions are displaced toward the side with lowest exchange en-
ergy, i.e., where the angle between spins is closer to 7. The
ion displacements along the x and y-axis, 2u;,, = u,(23) —
1,(12) and wp,, = —u,(13), are shown in Fig. 3. The contri-
bution of the oxygen ion to the polarization of the unit cell &
is

P.(k) = (V3eC/2)[T(ak — 01 ky1) + 3(021 k41 — 021 1))

Finally, we obtain that the net polarization of the crystal due
to magnetostriction is:

P = (3V/3CehyN/(2a2b) = 3V3Ce(uAH/2abJ), (9)

where the boundary effect has been neglected. Thus, the net
ionic polarization (as well as the voltage difference between
the crystal edges) is proportional to the crystal length along
the magnetic field gradient. Though C' is bigger than A by
a large factor (U/t), the even larger factor N/2 does not ap-
pear in the ionic polarization. Hence, the ionic contribution to
the electric polarization is negligible in comparison with the
electronic contribution for a long enough crystal size. This
remmarkable result is simply a consequence of the fact that
the same effective spin operator determines the change of the
electronic charge density [Eq.(3)] and the shift of the oxigen
ions [Eq.(8)]. While a uniform ionic displacement produces a
uniform polarization or electric field, a uniform charge density
incudes a uniform electric field gradient.

Although our results for the induced electric field were ob-
tained for a static magnetic field, they hold for time depen-
dent magnetic fields as long as the characteristic frequency is

4

much smaller than the gap A = (JD)'/? in the spectrum of
magnetic excitations. It is also instructive to compare the re-
sponse of a Mott insulator to a uniform magnetic field gradient
with that of a fully polarized metal (itinerant ferromagnet). In
the latter case, the electrons also move to the edge with high-
est magnetic field due to the Zeeman energy gradient. How-
ever, the induced electric field compensates the Zeeman force
and the net result is a uniform electric field induced inside the
sample. This different behavior results from the the fact that
quasiparticles are free to move in a metal. Although this free
motion does not exist in a Mott insulator, there is still a partial
electronic delocalization that depends on the spin degrees of
freedom. The charge distribution that results from this partial
delocalization minimizes the sum of the exchange, Zeeman
and electrostatic energies.

In conclusion, we have shown that a uniform magnetic field
gradient induces a uniform electric field gradient in Mott insu-
lators on a triangular lattice. This is the result of an electronic
charge redistribution that only occurs on lattices containing
odd numbers of sites in the hopping loops (geometric frus-
tration) and for non-collinear zero field magnetic orderings.
We note that weak next-nearest-neighbor exchange interac-
tions on a square lattice result in a nonzero 7; — 1, but still
(rn;) = 1 because the spin ordering is collinear for H = 0.
The voltage difference between the crystal edges that results
from the magnetolectric effect described in this letter is pro-
portional to the square of the crystal length. This novel effect
can be used for measuring magnetic field gradients.
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