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Vortex Ice in Nanostructured Superconductors 

A. LibaJ, C.J. Olson Reichhardt, and C. Reichhardt 
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 

(Dated: August 26, 2008) 

We demonstrate using numerical simulations of nanostructured superconductors that it is possible 
to realize vortex ice states that are analogous to square and kagome ice. The system can be brought 
into a state that obeys either global or local ice rules by applying an external current according to an 
annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure 
array and show that in square ice, topological defects appear along grain boundaries, while in kagome 
ice, individual defects appear. We argue that the vortex system offers significant advantages over 
other artificial ice systems. 

PACS numbers: 74.25.Qt 

Geometric frustration occurs when a system is con­
strained by geometry in such a way that the pairwise 
interaction energy cannot be simultaneously minimized 
for all constituents, and appears in water ice [1], spin 
systems [2, 3], and a variety of other systems in both 
physics [4] and biology [5]. A specific example of frus­
tration occurs in the classical spin ice system where the 
constituents of the system are magnetic spins on a grid 
of corner-sharing tetrahedra. The spins are constrained 
to point along the lines connecting the middle points of 
the tetrahedra [2, 3] and pairs of spins can minimize their 
energy by adopting a head-to-tail configuration. It is not, 
however, possible for the four spins on a tetrahedron to 
simultaneously satisfy each of the six pairwise interac­
tions in a head-to-tail fashion; the best the system can 
do is to satisfy four interactions out of six, leaving two 
pairs in a head-to-head or tail-to-tail configuration. As 
a result, in the ground state configuration each tetrahe­
dron obeys the so-called "ice rule" of a two-in two-out 
configuration with two spins pointing toward the center 
of the tetrahedron and two spins pointing away from it. 

Recently, there has been growing interest in creating 
model systems that exhibit spin ice behavior [6--12] and 
that allow the individual constituents to be imaged di­
rectly, unlike molecular or atomic ices. For example, 
Wang et at. [6] created artificial square ice using single­
domain rectangular ferromagnetic islands arranged in a 
square lattice such that four islands meet at every ver­
tex point. They found that as the inter-island interac­
tion increased, the system preferentially formed ice-rule­
obeying vertices, but it did not reproduce the known 
ground state of two-dimensional spin ice, where the two 
"in" magnetic moments are on opposite sides of the ver­
tex. This could be due to the relative weakness of the 
magnetic interactions. It has recently been shown that 
certain dynamical annealing protocols permit the system 
to approach the ground state more closely [7, 8]. Sim­
ilar studies have been performed for a two-dimensional 
kagome ice system [10, 11] where the local ice-rules were 
obeyed and defects such as three-in or three-out were ab­
sent [11]. In the colloidal artificial ice system of Ref. [12], 
the local dynamics can be accessed easily via video mi­
croscopy; however, the ice arrays in this system are lim­

ited to relatively small sizes in experiment. 
Here we propose that a particularly promising artifi­

cial ice system could be created using vortices in super­
conductors with appropriately designed nanostructured 
arrays of artificial pinning sites. There has been ex­
tensive experimental work showing that a rich variety 
of different pinning array geometries can be fabricated 
where the geometry of the individual pinning sites and 
the global geometry can be controlled with high accuracy 
[13- 18]. Various types of experimental techniques exist 
for directly imaging vortices in these arrays [15- 17, 19]. 
The vortex system has several advantages over other arti­
ficial ice systems. The vortex-vortex interaction strength 
is large, permitting the ground state to be reached much 
more readily than in the nanomagnetic systems. An ap­
plied external current permits the straightforward real­
ization of different dynamical annealing protocols. Unlike 
in the nanomagnet arrays, new types of defects can be 
studied by merely increasing or decreasing the magnetic 
field to create vacancies or interstitials that locally break 
the ice rules. The vortex system also permits the study of 
transport properties and critical currents which are not 
accessible in the other systems. 

To form square vortex ice, we propose using an ar­
rangement of elongated double-well pinning sites. Non­
superconducting islands with the double-hump shape il­
lustrated in Fig. l(a) placed within a superconducting 
layer have a pair of potential minima at the highest points 
of the island where the superconducting layer is the shal­
lowest. A single vortex trapped over each island will sit 
at one of the two minima, depending on the interactions 
with nearby vortices. By changing the arrangement of 
the islands, different types of ice can be created. For 
square ice, shown in Fig. l(a), four islands come together 
at each vertex and the state of each island surrounding 
a vertex is defined as "in" if the vortex sits close to the 
vertex and "out" if the vortex is far from the vertex. 
In Fig. l(a), the vortices have formed a two-in two-out 
ice-rule-obeying ground state configuration. Figure 1 (b) 
shows a kagome spin ice arrangement with three islands 
surrounding each vertex. In this case, the lowest energy 
state has a two-in, one-out or two-out, one-in vortex con­
figuration at each vertex, but there is no overall ordering 
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FIG. 1: Schematic of the nanostructured pinning site config­
urations producing ice states. The double-lobed objects are 
the pins, formed using nonsuperconducting inclusions, and 
the open mesh objects are vortices sitting at potential min­
ima. a) The ground state of the square ice system. b) A 
biased ground state of the kagome ice system. 

into a ground state unless a biasing field is applied. 
To study the vortex ice, we perform numerical simula­

tions of a two-dimensional sample with periodic bound­
aries containing Np elongated pinning sites in the square 
or kagome configurations illustrated in Fig. 1 and Nv = 
Np vortices. A vortex i at position ~ obeys the following 
overdamped equation of motion: 

dR 
1] --' = fVV + f8 + fd + e (1)dt " , . 

The damping constant 1] = <p~d/21ff,2PN, where <Po = 
h/2e is the flux quantum, f, is the superconducting co­
herence length, PN is the normal state resistivity of 
the material, and d is the thickness of the supercon­
ducting crystal. The vortex-vortex interaction force 
is given by fr = 2:.~';doKl(J4j/)..)~j, where Kl is 
the modified Bessel function appropriate for stiff three­
dimensional vortex lines, ).. is the London penetration 
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depth, fo - <Po/(21f/-lo).. ), J4j = I~ - Rjl, and Rij = 
(Ri - R j ) / J4j. The substrate force ft arises from the 

elongated pins, fA = 2:.:1
' foUp/rp)R"/k8(rp- RtJJR"/k+ 

foUp/rp)Rfk8(rp - Rfk)Rfk + fOUb/ l)(l - R!lk)8(l ­
R!lk)R!lk· Here R"/k = IRi - R~ ± If>~I, R~,II = I(Ri ­

R~) . f>i,lIl, R~ is the position of pin k, and f>~ (f>1J is 
a unit vector parallel (perpendicular) to the axis of pin 
k. Each pin is composed of two half-parabolic wells of 
strength fp = 10 and radius rp = 0.4)" separated by an 
elongated region of length 2l which confines the super­
conducting vortex perpendicular to the pin axis and has 
a repulsive potential or barrier of strength fb parallel to 
the axis which pushes the vortex out of the middle of the 
pin into one of the ends. We take l = 2/3)" or 5/6)" and 
vary the lattice constant a of the pinning array between 
a = 2.0)" and 8.0)". The driving force fd represents the 
Lorentz force from an applied current. The thermal force 
fT comes from thermal Langevin kicks and is set to zero 
except during the annealing of the kagome ice. 

We prepare the square ice system using a dynamical 
annealing procedure inspired by the nanomagnetic ice 
results. Refs. [7, 8] demonstrated that the protocol of 
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the dynamical annealing is very importatlt in determin­
ing how closely the system approaches the ground state, 
and proposed applying a rotating in-plane magnetic field 
with a magnitude that decreases with time. In our sim­
ulations, we place one vortex in each pin at a random 
position and then use a similar protocol with a rotating 
in-plane applied current of decreasing amplitude, fd = 
Aac(t)(cos(21ft/Tr)x + sin(21ft/Tr )Y). Here, Tr = 1000 
simulation time steps, Aac(t) = ±(Ao - 8ALt/cStJ), Ao = 
2.0fo , cSt = 10000 simulation time steps, 8A = O.Olfo, 
and the dynamical annealing lasts for 2 x 106 simula­
tion time steps. Every time the magnitude of the force 
is decreased, the direction of the force is reversed. We 
measure the number of vertices of each type that appear 
after the dynamical annealing has completed. For the 
kagome ice system, we obtain the vortex configurations 
from standard thermal simulated annealing. 

To determine how effectively the dynamical anneal­
ing protocol brings the square ice system to the ground 
state, we introduce disorder to the system by replacing 
the delta-function distributed barriers fb at the center of 
each pinning site with barriers of normally distributed 
strength, where the mean strength is fb and the width of 
the distribution is a. In Fig. 2 we illustrate the vertices 
that have reached the ground state configuration of two­
in, two-out in a square ice sample with a = 2.5)", l = 5/6)" 
and fb = 0.25fo for differing disorder widths a. The dots 
represent vertices in the ice-rule obeying ground state, 
while the closed black circles indicate higher energy ver­
tices that we term ice-rule defects since they still obey 
the two-in, two-out ice rule but have the two "in" vor­
tices adjacent to one another. The open circles mark the 
highest energy vertices that we term non-ice-rule defects 
since they do not obey the two-in, two-out ice rule but 
have, for example, three "in" or four "out" vortices. For 
a < 0.1, the system can reach the ordered ground state 
as shown in Fig. 2(a). As the central barriers of the pins 
become more nonuniform with increasing a, some pin­
ning centers act as nucleation sites for grain boundaries, 
as illustrated in Figs. 2(b,c) for a = 0.1 and a = 0.5 . 
In general, we find that for 0.1 < a < 0.7, all of the 
defected vertices form closed loop grain boundaries and 
the ratio of ice-rule defects to non-ice-rule defects is 1:1. 
For a ~ 0.7, a proliferation of non-ice-rule defects occurs 
and the non-ice-rule defects outnumber the ice-rule de­
fects, as shown in Fig. 2( d) for a = 1.0. Here we find 
that individual non-ice-rule defects can appear outside 
of grain boundaries, while the ice-rule defects always re­
main confined to grain boundaries. This result suggests 
that there could be a disorder-induced phase transition 
which occurs when the non-ice-rule defects proliferate. 
We have also examined disorder effects caused by doubly 
occupying one of the pinning sites with two vortices, and 
find that this type of defect can also act as a nucleation 
site for grain boundaries. 

In Figure 3(a), we plot the percentage of vertices Pes 
that are in the ice-rule obeying ground state as a func­
tion of time during the dynamical annealing procedure 
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FIG. 2: Grain boundary images in square ice samples with 
a = 2.5.A, l = 5/6.A, and fb = 0.25 for increasing disorder 
width (T. Dots: ground state two-in two-out ice-rule obeying 
vertices with "in" vortices on opposite sides of the vertex . 
Filled black circles: ice-rule defects, which are ice-rule obeying 
vertices with adjacent "in" vortices. White circles: Non-ice­
rule defects . (a) (T = O. (b) (T = 0.1. (c) (T = 0.5. (d) (T = 1.0. 

in a sample with a = 2.5A, l = 5/6A, Ib = 0.25/0, 
and different values of a. At early times, when IAael 
is close to Ao, all of the vortices follow the drive and 
switch back and forth inside the pinning sites. As IAael 
decreases, a transition occurs when the vortices cease to 
follow the driving direction and become locked into one 
position in the pinning site. For a = 0, this locking tran­
sition is relatively sharp and occurs at IAael ~ 0.82/0. 
Nonzero values of a broaden the transition significantly 
and cause some vertices to lock into the ground state 
at much earlier times; at the same time, complete lock­
ing of all vertices into the ground state can no longer be 
achieved within the finite time of the dynamical anneal­
ing process. We quantify the broadening of the transition 
with increasing a by fitting the curves in Fig. 3(a) to the 
form Pcs(t) = 1 - exp(t/T). Figure 3(b) shows the fit­
ted relaxation time T as a function of a and indicates 
the occurrence of an increasingly slow locking process as 
the disorder width increases. The dependence of Pes on 
both a and a is summarized in Fig. 3(d) for a system 
with Ib = 1.0 and l = 2/3A. Here, Pes decreases both 
with increasing a and with increasing a as the relative 
strength of the vortex-vortex interactions decreases. 

Depending on the system parameters, it is not al­
ways necessary to perform a dynamical annealing pro­
cedure in order to reach the ground state. To demon­
strate this, we prepare the sample in a random state 
and then apply a fixed amplitude rotating drive, fd = 
A(cos(27rt/Tr)x + sin(27rt/Tr )y), with A = 0.01/0 and 
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FIG. 3: (a) Percentage Pas of ice-rule obeying ground state 
vertices as a function of time during the dynamical annealing 
process for different disorder widths (T . From upper right to 
lower right, (T = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.8, and 1.0. Here, a = 2.5.A, l = 5/6.A, and fb = 0.25. 
(b) Relaxation time r vs (T for the same system, obtained 
by fitting the curves in (a) to Pas = 1 - exp(t/r). (c) The 
final value of Pas versus fb in samples with no dynamical 
annealing that have been subjected to a small shaking field 
with A = O.Olfo for 2 x 106 simulation time steps . Here 
l = 5/6.A, = 0.1, and a = 2.0 (open circles), 2.5 (filled (T 

squares), and 3.0 (open diamonds). (d) Pas as a function of 
both (T and a in a sample with fb = 1.0 and l = 2/3.A. 

Tr = 1000 simulation time steps, for 2 x 106 simulation 
time steps. When the central barrier in the pin Ib is 
weak, the system can reach the ordered ground state un­
der the weak external shaking. For larger Ib, the system 
cannot reach the ordered ground state without dynami­
cal annealing. This is shown in Fig. 3(c), where we plot 
the final Pes at the end of the simulation time versus 
Ib for samples with a = 0.01 and varied pinning lat­
tice constant a = 2.0A, 2.5A, and 3.0A. For large Ib, 
the sample is immediately frozen into the disordered ini­
tial configuration, and Pes ~ 0.125, consistent with the 
value expected in a completely random sample. As Ib 
is lowered, a spontaneous rearrangement into a partially 
ordered state becomes possible and Pes> 0.125. The 
value of Ib at which the spontaneous ordering begins to 
appear increases with decreasing a, indicating that as the 
vortex-vortex interactions become stronger in the denser 
pinning arrays, the ordered ground state becomes much 
more energetically favored. 

The kagome lattice illustrated in Fig. l(b) has a dis­
tinct set of ice rules from the square lattice considered up 
until now. In a sample with a kagome pinning arrange­
ment, high energy vertices with 0 "in" vortices or 3 "in" 
vortices are avoided in favor of the kagome-ice-rule obey­
ing vertices with 1 "in" or 2 "in" vortices. It is possible 
for this system to form an ordered ground state, but only 
in the presence of an external biasing field. In Fig. 4(a) 
we show the biased ordered ground state for a kagome 
lattice with Ib = 1.0 and a = 0 obtained by applying a 
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FIG. 4: (a) Ordered biased ground state in a sample with 
kagome pinning, jb = 1.0, i = 2/3)", and a = 3)". Open circles: 
vertices with 1 "in" vortex; shaded circles: vertices with 2 "in" 
vortices. (b) Percentage Pv of each vertex type as a function 
of a. Crosses: vertices with 0 "in" vortices; open circles: 
vertices with 1 "in" vortex; shaded circles: vertices with 2 
"in" vortices; filled squares: vertices with 3 "in" vortices. (c) 
Vertex configuration after thermal annealing in a sample with 
a = 3.5)", i = 2/3, and jb = 1.0. Symbols are the same as in 
panel (b). 

constant drive fd = O.Olfo(x +y) along a lattice symme­
try direction while performing simulated annealing. In 
the absence of the biasing force, some high energy de­
fect vertices which take the form of monopoles form in 
the system and there is no overall order, as illustrated in 
Fig. 4(c). We find that the kagome ice is more robust 
against the effects of disorder than the square ice, which 

is in agreement with experimental findings for nitnomag­
netic kagome ice [11]. Additionally, the topological de­
fect patterns are distinct from the square ice since no 
grain boundary state forms for the kagome ice. Although 
Fig. 4(c) shows that there is some tendency for the de­
fected vertices to form pairs, there are no extended defect 
patterns of the type seen in Fig. 2. Since the ice rules 
in this system are enforced by the vortex-vortex interac­
tion energies, we can weaken the enforcement of the ice 
rules by increasing the spacing a between pinning sites. 
Figure 4(b) shows that as a increases, the system passes 
from a limit in which only kagome-ice-rule obeying vor­
tices appear for a ~ 4>. to a limit a ~ 8>' where the 
vertices assume a completely random arrangement. In 
the random limit we expect to find each of the two types 
of defect vertices with probability 1/8 and each of the two 
kagome-ice-rule obeying vertices with probability 3/8. 

In summary, we propose that square and kagome vor­
tex ice can be realized in nanostructured superconduc­
tors. By using an annealing protocol of a rotating exter­
nally applied current, the system can be brought into or 
close to the square ice ground state. In the presence of 
quenched disorder, topological defects appear in a back­
ground of the ordered ground state. For moderate disor­
der in the square ice system, all of the defects are bound 
to grain boundaries, while for strong disorder, individ­
ual high energy vertices proliferate. For kagome ice, we 
find no grain boundary phase in the presence of disor­
der. We predict that if the barrier for vortex motion 
from one side of each artificial pinning site to the other 
is sufficiently week, the system will spontaneously orga­
nize into a partially ordered state even without use of an 
annealing protocol. This system could have interesting 
transport and memory effects which may manifest them­
selves as changes in the critical current, an effect which 
can not be accessed readily in other artificial ice systems. 

We thank C. Nisoli for a useful discussion. This work 
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U.S. DoE at LANL under Contract No. DE-AC52­
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