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Vortex Ice in Nanostructured Superconductors

A. Libéal, C.J. Olson Reichhardt, and C. Reichhardt
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Dated: August 26, 2008)

We demonstrate using numerical simulations of nanostructured superconductors that it is possible
to realize vortex ice states that are analogous to square and kagomé ice. The system can be brought
into a state that obeys either global or local ice rules by applying an external current according to an
annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure
array and show that in square ice, topological defects appear along grain boundaries, while in kagomé
ice, individual defects appear. We argue that the vortex system offers significant advantages over

other artificial ice systems.

PACS numbers: 74.25.Qt

Geometric frustration occurs when a system is con-
strained by geometry in such a way that the pairwise
interaction energy cannot be simultaneously minimized
for all constituents, and appears in water ice [1], spin
systems [2, 3|, and a variety of other systems in both
physics [4] and biology [5]. A specific example of frus-
tration occurs in the classical spin ice system where the
constituents of the system are magnetic spins on a grid
of corner-sharing tetrahedra. The spins are constrained
to point along the lines connecting the middle points of
the tetrahedra [2, 3] and pairs of spins can minimize their
energy by adopting a head-to-tail configuration. It is not,
however, possible for the four spins on a tetrahedron to
simultaneously satisfy each of the six pairwise interac-
tions in a head-to-tail fashion; the best the system can
do is to satisfy four interactions out of six, leaving two
pairs in a head-to-head or tail-to-tail configuration. As
a result, in the ground state configuration each tetrahe-
dron obeys the so-called “ice rule” of a two-in two-out
configuration with two spins pointing toward the center
of the tetrahedron and two spins pointing away from it.

Recently, there has been growing interest in creating
model systems that exhibit spin ice behavior [6-12] and
that allow the individual constituents to be imaged di-
rectly, unlike molecular or atomic ices. For example,
Wang et al. [6] created artificial square ice using single-
domain rectangular ferromagnetic islands arranged in a
square lattice such that four islands meet at every ver-
tex point. They found that as the inter-island interac-
tion increased, the system preferentially formed ice-rule-
obeying vertices, but it did not reproduce the known
ground state of two-dimensional spin ice, where the two
“in” magnetic moments are on opposite sides of the ver-
tex. This could be due to the relative weakness of the
magnetic interactions. It has recently been shown that
certain dynamical annealing protocols permit the system
to approach the ground state more closely [7, 8]. Sim-
ilar studies have been performed for a two-dimensional
kagomé ice system [10, 11] where the local ice-rules were
obeyed and defects such as three-in or three-out were ab-
sent [11]. In the colloidal artificial ice system of Ref. [12],
the local dynamics can be accessed easily via video mi-
croscopy; however, the ice arrays in this system are lim-

ited to relatively small sizes in experiment.

Here we propose that a particularly promising artifi-
cial ice system could be created using vortices in super-
conductors with appropriately designed nanostructured
arrays of artificial pinning sites. There has been ex-
tensive experimental work showing that a rich variety
of different pinning array geometries can be fabricated
where the geometry of the individual pinning sites and
the global geometry can be controlled with high accuracy
[13-18]. Various types of experimental techniques exist
for directly imaging vortices in these arrays [15-17, 19].
The vortex system has several advantages over other arti-
ficial ice systems. The vortex-vortex interaction strength
is large, permitting the ground state to be reached much
more readily than in the nanomagnetic systems. An ap-
plied external current permits the straightforward real-
ization of different dynamical annealing protocols. Unlike
in the nanomagnet arrays, new types of defects can be
studied by merely increasing or decreasing the magnetic
field to create vacancies or interstitials that locally break
the ice rules. The vortex system also permits the study of
transport properties and critical currents which are not
accessible in the other systems.

To form square vortex ice, we propose using an ar-
rangement of elongated double-well pinning sites. Non-
superconducting islands with the double-hump shape il-
lustrated in Fig. 1(a) placed within a superconducting
layer have a pair of potential minima at the highest points
of the island where the superconducting layer is the shal-
lowest. A single vortex trapped over each island will sit
at one of the two minima, depending on the interactions
with nearby vortices. By changing the arrangement of
the islands, different types of ice can be created. For
square ice, shown in Fig. 1(a), four islands come together
at each vertex and the state of each island surrounding
a vertex is defined as “in” if the vortex sits close to the
vertex and “out” if the vortex is far from the vertex.
In Fig. 1(a), the vortices have formed a two-in two-out
ice-rule-obeying ground state configuration. Figure 1(b)
shows a kagomé spin ice arrangement with three islands
surrounding each vertex. In this case, the lowest energy
state has a two-in, one-out or two-out, one-in vortex con-
figuration at each vertex, but there is no overall ordering
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FIG. 1: Schematic of the nanostructured pinning site config-
urations producing ice states. The double-lobed objects are
the pins, formed using nonsuperconducting inclusions, and
the open mesh objects are vortices sitting at potential min-
ima. a) The ground state of the square ice system. b) A
biased ground state of the kagomé ice system.

into a ground state unless a biasing field is applied.

To study the vortex ice, we perform numerical simula-
tions of a two-dimensional sample with periodic bound-
aries containing N, elongated pinning sites in the square
or kagomé configurations illustrated in Fig. 1 and N, =
N, vortices. A vortex i at position R; obeys the following
overdamped equation of motion:

%:ffufguduﬁ (1)
The damping constant n = ¢2d/2n&%pN, where ¢ =
h/2e is the flux quantum, £ is the superconducting co-
herence length, py is the normal state resistivity of
the material, and d is the thickness of the supercon-
ducting crystal. The vortex-vortex interaction force
is given by f'* = Z;V;Zz foKl(Rjj/A)Rij, where K, is
the modified Bessel function appropriate for stiff three-
dimensional vortex lines, A is the London penetration
depth, fo = (]53/(27‘(/1,0/\3), Ri; = R; — Rj|, and Rij =
(R; — Rj)/Ri;. The substrate force f] arises from the
clongated pins, £, = 0" fo(fo/rp)REO(rp — RE)RE +
folFo/ro) REO(ry — REIRE + folfo/D(A — RiL)OU —
R} )R),. Here RE = [R; — R} = Ipf|, Ry = |(R: -
R}) - b4 |, R} is the position of pin &, and f)ﬁ' (p*) is
a unit vector parallel (perpendicular) to the axis of pin
k. Each pin is composed of two half-parabolic wells of
strength f, = 10 and radius r, = 0.4\ separated by an
elongated region of length 2! which confines the super-
conducting vortex perpendicular to the pin axis and has
a repulsive potential or barrier of strength f, parallel to
the axis which pushes the vortex out of the middle of the
pin into one of the ends. We take | = 2/3\ or 5/6A and
vary the lattice constant a of the pinning array between
a = 2.0\ and 8.0\. The driving force f; represents the
Lorentz force from an applied current. The thermal force
! comes from thermal Langevin kicks and is set to zero
except during the annealing of the kagomé ice.

We prepare the square ice system using a dynamical
annealing procedure inspired by the nanomagnetic ice
results. Refs. [7, 8] demonstrated that the protocol of

the dynamical annealing is very importaiit in determin-
ing how closely the system approaches the ground state,
and proposed applying a rotating in-plane magnetic field
with a magnitude that decreases with time. In our sim-
ulations, we place one vortex in each pin at a random
position and then use a similar protocol with a rotating
in-plane applied current of decreasing amplitude, f¢ =
Agc(t)(cos(2mt /T )%k + sin(2nt/T,)y). Here, T, = 1000
simulation time steps, Ag.(t) = £(Ag — JA[t/dt]), Ao =
2.0fop, 6t = 10000 simulation time steps, dA = 0.01 fo,
and the dynamical annealing lasts for 2 x 10% simula-
tion time steps. Every time the magnitude of the force
is decreased, the direction of the force is reversed. We
measure the number of vertices of each type that appear
after the dynamical annealing has completed. For the
kagomé ice system, we obtain the vortex configurations
from standard thermal simulated annealing.

To determine how effectively the dynamical anneal-
ing protocol brings the square ice system to the ground
state, we introduce disorder to the system by replacing
the delta-function distributed barriers f, at the center of
each pinning site with barriers of normally distributed
strength, where the mean strength is f; and the width of
the distribution is o. In Fig. 2 we illustrate the vertices
that have reached the ground state configuration of two-
in, two-out in a square ice sample with a = 2.5\, 1 = 5/6A
and fp = 0.25fy for differing disorder widths o. The dots
represent vertices in the ice-rule obeying ground state,
while the closed black circles indicate higher energy ver-
tices that we term ice-rule defects since they still obey
the two-in, two-out ice rule but have the two “in” vor-
tices adjacent to one another. The open circles mark the
highest energy vertices that we term non-ice-rule defects
since they do not obey the two-in, two-out ice rule but
have, for example, three “in” or four “out” vortices. For
o < 0.1, the system can reach the ordered ground state
as shown in Fig. 2(a). As the central barriers of the pins
become more nonuniform with increasing o, some pin-
ning centers act as nucleation sites for grain boundaries,
as illustrated in Figs. 2(b,c) for ¢ = 0.1 and ¢ = 0.5.
In general, we find that for 0.1 < ¢ < 0.7, all of the
defected vertices form closed loop grain boundaries and
the ratio of ice-rule defects to non-ice-rule defects is 1:1.
For 0 > 0.7, a proliferation of non-ice-rule defects occurs
and the non-ice-rule defects outnumber the ice-rule de-
fects, as shown in Fig. 2(d) for ¢ = 1.0. Here we find
that individual non-ice-rule defects can appear outside
of grain boundaries, while the ice-rule defects always re-
main confined to grain boundaries. This result suggests
that there could be a disorder-induced phase transition
which occurs when the non-ice-rule defects proliferate.
We have also examined disorder effects caused by doubly
occupying one of the pinning sites with two vortices, and
find that this type of defect can also act as a nucleation
site for grain boundaries.

In Figure 3(a), we plot the percentage of vertices Pgg
that are in the ice-rule obeying ground state as a func-
tion of time during the dynamical annealing procedure
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FIG. 2: Grain boundary images in square ice samples with
a = 2.5\, | = 5/6A, and f, = 0.25 for increasing disorder
width o. Dots: ground state two-in two-out ice-rule obeying
vertices with “in” vortices on opposite sides of the vertex.
Filled black circles: ice-rule defects, which are ice-rule obeying
vertices with adjacent “in” vortices. White circles: Non-ice-
rule defects. (a) 0 =0. (b) 0 =0.1. (¢c) 0 =0.5. (d) o = 1.0.

in a sample with a = 2.5\, | = 5/6\, f, = 0.25f,
and different values of 0. At early times, when |Ag|
is close to A, all of the vortices follow the drive and
switch back and forth inside the pinning sites. As |Aqc|
decreases, a transition occurs when the vortices cease to
follow the driving direction and become locked into one
position in the pinning site. For o = 0, this locking tran-
sition is relatively sharp and occurs at |A,.| ~ 0.82f.
Nonzero values of ¢ broaden the transition significantly
and cause some vertices to lock into the ground state
at much earlier times; at the same time, complete lock-
ing of all vertices into the ground state can no longer be
achieved within the finite time of the dynamical anneal-
ing process. We quantify the broadening of the transition
with increasing o by fitting the curves in Fig. 3(a) to the
form Pgs(t) = 1 — exp(t/7). Figure 3(b) shows the fit-
ted relaxation time 7 as a function of ¢ and indicates
the occurrence of an increasingly slow locking process as
the disorder width increases. The dependence of Pgg on
both a and ¢ is summarized in Fig. 3(d) for a system
with f, = 1.0 and [ = 2/3\. Here, Pgs decreases both
with increasing o and with increasing a as the relative
strength of the vortex-vortex interactions decreases.
Depending on the system parameters, it is not al-
ways necessary to perform a dynamical annealing pro-
cedure in order to reach the ground state. To demon-
strate this, we prepare the sample in a random state
and then apply a fixed amplitude rotating drive, fd =
A(cos(2t/T, )% + sin(2nt/T;)¥), with A = 0.01fp and
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FIG. 3: (a) Percentage Pgs of ice-rule obeying ground state
vertices as a function of time during the dynamical annealing
process for different disorder widths o. From upper right to
lower right, ¢ = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.8, and 1.0. Here, a = 2.5\, | = 5/6A, and f = 0.25.
(b) Relaxation time 7 vs o for the same system, obtained
by fitting the curves in (a) to Pes = 1 — exp(t/7). (c) The
final value of Pgs versus f, in samples with no dynamical
annealing that have been subjected to a small shaking field
with A = 0.01f, for 2 x 10° simulation time steps. Here
l = 5/6\, 0 = 0.1, and a = 2.0 (open circles), 2.5 (filled
squares), and 3.0 (open diamonds). (d) Pgs as a function of
both ¢ and a in a sample with f, = 1.0 and [ = 2/3\.

T, = 1000 simulation time steps, for 2 x 10 simulation
time steps. When the central barrier in the pin f; is
weak, the system can reach the ordered ground state un-
der the weak external shaking. For larger f, the system
cannot reach the ordered ground state without dynami-
cal annealing. This is shown in Fig. 3(c), where we plot
the final Pgs at the end of the simulation time versus
fv for samples with ¢ = 0.01 and varied pinning lat-
tice constant a = 2.0, 2.5\, and 3.0\. For large fp,
the sample is immediately frozen into the disordered ini-
tial configuration, and Pgs &~ 0.125, consistent with the
value expected in a completely random sample. As f
is lowered, a spontaneous rearrangement into a partially
ordered state becomes possible and Pgg > 0.125. The
value of f, at which the spontaneous ordering begins to
appear increases with decreasing a, indicating that as the
vortex-vortex interactions become stronger in the denser
pinning arrays, the ordered ground state becomes much
more energetically favored.

The kagomé lattice illustrated in Fig. 1(b) has a dis-
tinct set of ice rules from the square lattice considered up
until now. In a sample with a kagomé pinning arrange-
ment, high energy vertices with 0 “in” vortices or 3 “in”
vortices are avoided in favor of the kagomé-ice-rule obey-
ing vertices with 1 “in” or 2 “in” vortices. It is possible
for this system to form an ordered ground state, but only
in the presence of an external biasing field. In Fig. 4(a)
we show the biased ordered ground state for a kagomé
lattice with f; = 1.0 and ¢ = 0 obtained by applying a
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FIG. 4: (a) Ordered biased ground state in a sample with
kagomé pinning, f, = 1.0, = 2/3\, and a = 3\. Open circles:
vertices with 1 “in” vortex; shaded circles: vertices with 2 “in”
vortices. (b) Percentage Py of each vertex type as a function
of a. Crosses: vertices with 0 “in” vortices; open circles:
vertices with 1 “in” vortex; shaded circles: vertices with 2
“in” vortices; filled squares: vertices with 3 “in” vortices. (c)
Vertex configuration after thermal annealing in a sample with
a = 3.5\, 1l =2/3, and f, = 1.0. Symbols are the same as in
panel (b).

constant drive £¢ = 0.01 fo(X 4+ ¥) along a lattice symme-
try direction while performing simulated annealing. In
the absence of the biasing force, some high energy de-
fect vertices which take the form of monopoles form in
the system and there is no overall order, as illustrated in
Fig. 4(c). We find that the kagomé ice is more robust
against the effects of disorder than the square ice, which

is in agreement with experimental findings for ndénomag-
netic kagomé ice [11]. Additionally, the topological de-
fect patterns are distinct from the square ice since no
grain boundary state forms for the kagomé ice. Although
Fig. 4(c) shows that there is some tendency for the de-
fected vertices to form pairs, there are no extended defect
patterns of the type seen in Fig. 2. Since the ice rules
in this system are enforced by the vortex-vortex interac-
tion energies, we can weaken the enforcement of the ice
rules by increasing the spacing a between pinning sites.
Figure 4(b) shows that as a increases, the system passes
from a limit in which only kagomé-ice-rule obeying vor-
tices appear for a < 4\ to a limit @ > 8\ where the
vertices assume a completely random arrangement. In
the random limit we expect to find each of the two types
of defect vertices with probability 1/8 and each of the two
kagomé-ice-rule obeying vertices with probability 3/8.
In summary, we propose that square and kagomé vor-
tex ice can be realized in nanostructured superconduc-
tors. By using an annealing protocol of a rotating exter-
nally applied current, the system can be brought into or
close to the square ice ground state. In the presence of
quenched disorder, topological defects appear in a back-
ground of the ordered ground state. For moderate disor-
der in the square ice system, all of the defects are bound
to grain boundaries, while for strong disorder, individ-
ual high energy vertices proliferate. For kagomé ice, we
find no grain boundary phase in the presence of disor-
der. We predict that if the barrier for vortex motion
from one side of each artificial pinning site to the other
is sufficiently week, the system will spontaneously orga-
nize into a partially ordered state even without use of an
annealing protocol. This system could have interesting
transport and memory effects which may manifest them-
selves as changes in the critical current, an effect which
can not be accessed readily in other artificial ice systems.
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