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A STABLE AND EFFICIENT NUMERICAL ALGORITHM FOR 
UNCONFINED AQUIFER ANALYSIS 

Elizabeth Keating and Zyvoloski 

Abstract 

of equations governing flow in unconfined aquifers poses challenges for 
numerical models, particularly in applications. methods are often unstable, 

or require extremely small time modeling as 
automated calibration and Monte analysis typically 

performance is essential to 
propose a new improvements in and and is relatively tolerant 
coarse grids. It a to that in the MOD FLOW code to solution Richard's 
Equation with a grid-dependent relationship. method a contrast 
between horizontal and vertical permeability in gridblocks containing the water table. We establish 
the accuracy the method by comparison to an analytical solution radial flow to a I in an 
unconfined with delayed yield. Using a suite oftest problems, we demonstrate the 

In and accuracy over and improved lity when compared to 
MODFLOW. The advantages applications to transient unconfined analysis are 

our examples. also applicability to mixed 
zone including transport, and find that method shows of 
problem, as well. 

Introduction 

and accurate methods for groundwater flow in unconfined aquifers 
are required applications. Analytical methods are for specific 

as pump test analysis 1972, etc.). In shallow flow is primarily 
horizontal, Dupuit approximation Cherry (1979) analytic methods 
(Strack, J 989) have used successfully. More methods avai for simulating flow 

arbitrary boundary conditions and aquifer heterogeneity include MODFLOW (Harbaugh et aI., 
2000)), coupled (InHM Kwaak (1999), MIKESHE 
(MIKESHE, 2008) and multi-phase codes as TOUGH2 (Preuss, 2004) and FEHM 
(Zyvoloski,2007) important advantage of the MODFLOW is ability to 
approximate water table location at sub-grid allows simulation of unconfined aquifer 
problems at (kilometers) without requiring prohibitively large numbers of 
Disadvantages numerical lity (Naff et 2003) and errors when the water table is steep 

crosses hydrostratigraphic boundaries. In addition, vadose zone processes cannot simulated. 
Other methods, in contrast, the advantage of more representation both saturated 
unsaturated zone physics, yet very small grid blocks and time steps which are frequently 
prohibitive in simulations. additional computational burden required simulating 
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unsaturated flow is rarely justified if saturated, unconfined flow is the primary focus. For example, 
Neuman (1972) showed that for simulating drawdown in pumped unconfined aquifers, considering 
unsaturated flow theory is unnecessary. For all of these reasons and others, multi-phase codes are 
rarely used in site-scale or basin-scale unconfined aquifer analysis. There remains a need, however, to 
develop new numerical methods which tolerate large gridblocks and time-steps necessary for site- and 
basin-scale applications, can locate the water table at a sub-grid scale, yet are numerically stable. We 
first review existing methods. 

Perhaps the most widely used method for solving unconfined aquifer problems is that 
employed by MODFLOW. Depending on whether a grid block is entirely saturated or contains the 
water table, this code either solves the confined aquifer flow equation (I) or the unconfined flow 
equation (2) (we omit sinks and sources for simplicity) 

where h= hydraulic head (m), t is time (s), K = hydraulic conductivity (m/s), Ss is specific 
storage (11m), b is saturated thickness in a water table cell (m). A grid cell containing the water table 
is conceptualized as having a saturated thickness b derived from the calculated head in the cell , as 
shown in Figure 1. Vertical conductivity is either unaffected (BCF package) or varies with 
saturation (LCF package). If the saturation becomes 0 (dry cell) the cell is changed to " inactive" 
status which can only be reactivated at a later time under specific set of conditions. The selection of 
the BCF or the LCF package can have a profound effect on the numerical convergence of a water table 
problem. 

This explicit formulation can be numerically unstable in large problems with many grid cells 
and large fluctuations (over many gridblocks) in water table elevations. Non-unique solutions can be 
a problem under some conditions, as well (Banta et at, 2006, Naff et al 2003). These problems are, in 
part , due to the Picard iteration solution and lack of upwinding of saturation-dependent hydraulic 
conductivities (Peaceman, 1977). Another source of instability is the inherently explicit formulation 
whereby recharge sources must be always be applied in water table grid blocks and so as the water 
table moves into new grid blocks the source terms must be moved as well (Harbaugh et aI. , 2000). 

While considerable progress has been made in the control of oscillations (Doherty 200 I , Banta 
2006), this control is dependent on four input parameters (WETFCT, IHDWET, IWETIT, WETDRY) 
that are mildly to strongly problem dependent. A frequently used strategy to improve convergence is 
to design the grid, using sloping layers and /or very thick layers , such that the water table never moves 
out of a single layer. However, sloping grids introduce errors associated with missing terms in finite 
difference stencil. Errors associated with these approaches have been discussed in Zyvoloski and 
Vessilinov (2006). 

Numerical methods developed primarily for multiphase flow applications can, in theory, be 
used to simulate unconfined aquifers as well as vadose zone processes above the water table. Mass 
conservation equations are expressed for each phase, as follows : 

(3) 
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Where the subscript m refers to the phase (air or water). For groundwater flow applications 
where air and water are the two phases of interest, two simultaneous equations representing the 
conservation of air and water mass are solved. Air pressure, Pa, and water saturation B". are typically 

the two primary variables. Additional equations defining relatively permeability for each phase, and 
capillary pressure, pc = pa - pw, are also required (Forsyth, 1988). Above the water table a simplifying 
assumption of constant air pressure can be invoked to reduce the computational burden; this is 
equivalent to solving Richard's Equation. 

Neglecting the air phase and considering only the water balance, the solution of Equation (3) 
for both unsaturated and saturated flow is still numerically challenging, particularly at the interface 
between the two flow regimes (the water table). Freeze (1971) developed a formulation that used 
pressure head (\11 = p/ pg) as the independent variable both above and below the water table. He noted 
that functional continuity was maintained as the pressure head transitioned from negative values in the 
unsaturated region to positive values in the saturated zone. Alternative approaches have been 
developed which employ variable switching (Forsyth et. ai, 1995, Kirkham and Hillis (1991, and 
Huyakorn and Pinder, 1983). In these methods, saturation and pressure are independent variables in 
the unsaturated and saturated regions respectively. Forsyth et. ai, (1995) reported that switching 
variables between pressure and water content could be more efficient that using a for problems with 
very dry initial conditions and very high capillary pressures. 

Numerical schemes using Newton Raphson iterations are generally more stable and converge 
fasted than those using Piccard iterations, but they require continuous derivatives to achieve 
theoretical (second order) convergence rates. This is problematic near the water table, where there are 
discontinuities in the derivatives of the saturation - pressure head relationship as well as the storage 
term. These discontinuities often cause excessive iterations when a grid block is converting from a 
partially saturated to a saturated condition (or vice versa); the severity of this problem is strongly 
dependent on the form of the saturation/pressure relationship for a particular soil. 

Strictly speaking, these methods that solve both saturated and unsaturated flow equations can 
identify the elevation of the water table with accuracy no greater than the vertical dimension of one 
grid block. Once a gridblock becomes partially saturated, it experiences relative permeabil ity and 
capi Ilary pressure effects and water flow is reduced compared to saturated flow. This is not an 
important limitation for many vadose zone applications, especially those where small vertical grid 
discretization is possible. This issue will be clearly illustrated in the following sections when we 
compare mixed unsaturated/saturated flow equations results with our new method . 

New formulation 

Here we present a new approach which combines features of the coupled unsaturated / 
saturated flow equation solution methodology first reported by Forsyth (1988) and the approximation 
to sub-gridblock-scale water table evaluation used in MODFLOW. We use an existing code 
developed for multiphase flow (FEHM, Zyvoloski, 2007) which solves the numerical analogue of 
equation (3) 

(5) 

Zyvoloski Page 3 8/26/2008 



summation 
some inter-nodal 

to neighboring nodes,j, connected to node i. ( 
of nonlinear part hydraulic conductivity term. The 

term khar refers to of the permeability if gridblocks i j. 

term¥; is volume of the 

internodal area divided 
evaluation can 

upwinded facilitates 
(Peaceman, I 

(AIJI tldij) to the 

and (flow) 
conductivity term. 
multiphase 

Our new approach equation (5), pw as the primary variable and assumes 
couple Equation 5 with a linear 

elevation at sub-gridblock 
Z1 and Z2, 

Raphson directly from block pressure, or equivalently, of (h = z), as follows: 
pg 

(6) 

If h< ,e 0 

if the calculated below the of the bottom 
in the grid block or 

O.5tlz). resulting / saturation is shown in Figure 2. In 
partially saturated cells, this is very similar to solving Equation 3 with a linear capillary pressure 

that water pressure is negative in cells with zero saturation. value 
is strictly dependent does not a physical capillary 

pressure. As will shown in the final example numerical are 
gained by particular pressure / relationship both unconfined 
problems and coupled unsaturated / saturated flow problems. 

In our approach, the permeability in a partially-saturated contammg water table is 
modified in a fashion to that employed by MODFLOW. Horizontal permeability is scaled by 
saturation. The model 1) requires vertical lity in the partially 

cell discontinuity 
problem convergence 

typically I < 
factor. The 

containing the water 
conceptual 

k' 8 

k'z=min(l 8) 

Zyvoloski 

and the 
1). The 

stronger the 
below it and 

equations are as follows: 

4 

formulation is to our 
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The importance of A as with of the block. As will shown 
a value often works well most problems. 
The Newton-Raphson method is well suited to water problems because the implicit 

accounting at iteration of the nonlinear terms. It is much less prone to oscillatory behavior of 
the iteration process. Newton-Raphson method requires one parameter: solution 

We both arithmetic and upwinded weighting interbJock hydraulic 
conductivity term. all easiest problems, this term was for 

We use a preconditioned Krylov space with factorization as 
Zyvoioski (1986), Van Vorst (1992»). 

is a formulation does not require cells to they can 
continue to conduct flow according to Richard's Equation coupled with a linear pressure! saturation 
relationship (Equation 5). A very advantageous this is sources can be 

statically in such as ground surface, than artificially moved down to 
water table such as is required in MODFLOW. Our formulation uses a variable, pw, 
both and to the of 
formu its example, we 
the accuracy of our methodology by comparison to an analytical solution (Neuman, 1972) 
flow to a in an aquifer. this example, we in 

efficiency and numerical by to a two-phase (air!water) flow 
methodology for the approach been against a 

variety of problems (Forsyth et aL 1 Forsyth, 1988). this and all the foHowing 
examples, the two-phase simulations assume a simple linear relative model with no residual 
and zero capillary pressure at all saturations. This corresponds to the conceptual model a water 

unaffected by Ilary as would be the case in aquifers. 
We demonstrate in stability by comparison to a solution of the unconfined 

pumping using MODFLOW. In the second example, we simulation of a simple 
unconfined by high and low rates in large fluctuations 
water elevation. Using a high-resolution simulation as we the 

numerical of our formulation during water fall 
size. Finally, we present a simulation of flow transport 

an unconfined This comparison i potential utility 
despite the contradiction between our conceptual model 

(Figure I), intended to a continuously saturated water column, and zone flow. 
In all example problems, the water table location was calculated analyzing the water content 

in vertical column gridblocks as follows. column of gridblocks, lowest 
partially gridblock was identified. head calculated in this was 
the water table elevation ly saturated grid block immediately above was taken to 
water table elevation, as shown in 1. 

Radial flow to a well in an unconfined aquifer 

an analytical solution to Neuman (1972) 
in an unconfined solution highlights 
water is primarily 

from 
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drainage is the dominant mechanism. His expression calculates drawdown (dh(x,y)) as a function of 
pumping rate (Q), aquifer thickness (D), Specific storage (Ss), Specific yield (Sy), Hydraulic 
conductivity (Kx), and the ratio of vertical to horizontal conductivity (KxlKy). 

For parameters listed in Table 1, we developed a radial flow model shown in Figure 3. A 
pumping well is at r=0. The analytical solution is shown in Figure 4. For comparison, a Theis 
solution and a "instantaneous drainage" solution are also shown. We compare this analytical solution 
with the solution from our new single phase algorithm and an exact two-phase (air/water) solution for 
four grid with varying resolutions in the z direction. The single phase method agrees very well with 
the analytical solution for all four grid resolutions. There are small discrepancies at very early times. 
The two-phase provides a less accurate solution even at the finest grid resolution, and requires an order 
of magnitude more computational effort (see Table 2). At the coarsest grid resolution, the early time 
drawdown is particularly problematic. The relatively poor performance of the two-phase model is 
worth consideration. In the absence of capillary forces, the two-phase model will only be able to 
resolve the water table to within one grid block. This induces a granularity to the solution of a moving 
water table problem that compromises the accuracy ofthis method for this type of application. 

Comparison with MODFLOW 

Using the same model application, we compare our method to that employed by MODFLOW 
Version 1.15 (Harbaugh et al. 2000). Aquifer parameters (Ss, Sy, and permeability , Table 1) were 
converted to MODFLOW units and specified accordingly . To ease the numerical comparison, we 
place the pumping well in the center of a symmetric 3-D grid, 125.4 m by 125.4 m by 10m. Grid 
spacing expands geometrically from a minimum of 0.5 m in the x and y directions at the center of the 
grid, where the pumping occurs, to a maximum of 4.2 m at lateral boundary. A uniform grid spacing 
in the vertical direction of 1 m was used. Grids for FEHM and MODFLOW were identical. Lateral 
boundaries are specified head . Pumping was simulated in the bottom 6 layers at a total rate 0.5 kg/s 
(evenly distributed among the layers) for 100 days followed by a recovery period of 100 days . 
Variable-length timesteps were used in both pumping and recovery periods, geometrically increasing 
from an initial step of 5.2 seconds (this is FEHM only, right?). For the MODFLOW simulations, we 
used the BCF package, which maintains a constant vertical hydraulic conductivity in cells containing 
the water table. The WETDRY parameter was set to -0.1 For the FEHM simulations, a value of 10 
was set for parameter A (Equation 7). 

Simulated heads at x=3.57, y=3.57, z=4.5 (the well is at x=y=0.25m) are presented in Figure 5. 
There is excellent agreement between FEHM and MODFLOW results . There were, however, 
significant differences in performance, as summarized in Figure 6. The MOD FLOW simulations 
required more iterations per time step during the drawdown phase. MODFLOW required up to 22 
iterations per time step, significantly more during drawdown than during recovery. FEHM only 
required 2-3 (or 1 ?), and had fairly similar requirements during drawdown and recovery. The lower 
number of iterations did not, however, result in lower total CPU run times. This is partially due to 
upwinding, which produces an asymmetric system of algebraic equations requiring more CPU time 
per iteration to solve. In contrast, MOD FLOW utilizes arithmetic or harmonic averaging (Pohll, 2006) 
and a Picard-type iteration. The net effect was that the total simulation CPU times for the two codes 
were very similar (within 1-5%). 

The instability of the Picard iteration methodology is evident in the oscillatory behavior during 
drawdown, shown in Figure 6a. This worsened when the pumping rate was increased from 0.5 kg/s to 
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0.8 kg/s. The MODFLOW simulation failed to converge 40 days into the simulation, despite allowing 
up to 200 iterations per time step. FEHM was able to converge at this higher pumping rate with the 
same number of timesteps and a low number of iterations per time step. This is noteworthy since, as 
shown in Figure 6b, the number of cells converting from saturated to partially saturated was roughly 
double in the higher pumping rate scenario. In addition to the obvious consequences of non­
convergence, the determination and control of numerical truncation errors associated with grid size 
would be impossible for the MODFLOW simulations in this case. 

3-D flow with transient recharge (wetting and drying) 

This example is intended to test the performance of the algorithm in a 3-D flow problem with 
transient recharge. The dimension of the problem is 10000 by 10000 by 1000 m, as shown in Figure 
8. A line of constant-head nodes is placed at an elevation of900m, extending from x = 5000 - 10000 
mat y = 5000 m. The initial condition is uniform head = 900 m (flat water table). Permeability is 
uniform, 10- 12 m2

, porosity is 0.25, and there is no elastic storage At the start of the simulation, 2100 
kg/s recharge is applied uniformly across the top of the model for 5000 days. To test sensitivity to 
grid resolution, we developed three grids, described in Table 4. 

Changes in the calculated elevation of the water table as a function of time are shown in Figure 
9, comparing the single-phase and two-phase solutions, at three different grid resolutions. For the two 
finest grids (A and B), the two solution methods are comparable, although the single-phase solution is 
much smoother. The granularity in the two-phase solution (with zero capillary pressure) is due, at least 
in part, to the fact that the water pressure in a grid block is constrained to be at atmospheric pressure 
until the gridblock is fully saturated. This means there will be no lateral water flow between two 
partially saturated grid blocks. In contrast, the single-phase formulation allows water to flow from the 
gridblock with high saturation (and higher pressure) to the gridblock with lower saturation. It is 
evident in Figure _ The single-phase solution degrades somewhat at the coarsest grid resolution (errors 
up to I-2m); and the two-phase solution has very significant errors (up to 20m). 

In Figure 10 we show cross-sections of the water table at time=5000 days (maximum water 
table elevation) at two values ofx. Here we see large differences in the smoothness of the water 
table. In Table 3 we compare numerical performance of the two methods. In the two finer grids (A 
and B), the single-phase solution is approximately twice as efficient. Efficiency is comparable in the 
coarsest grid, but the accuracy of the two-phase solution was very poor. 

Extension to mixed vadose / saturated zone simulations 

Finally, we test this formulation in a mixed vadose 1 saturated zone flow and transport 
application. In this two dimensional example problem we simulate recharge through a heterogeneous 
vadose zone, including a perching aquitard, into an unconfined aquifer. Like the previous example, 
this example test the ability of our algorithm to efficiently "flow" water through relatively dry 
gridblocks which separate the recharge source area and the water table. It also tests the ability of this 
formulation to simulated perched aquifers which are quite difficult to simulate with MODFLOW (Naff 
et al. 2003). 

Initial conditions consisted of a water table at 600m height in hydrostatic equil ibrium. A water 
table caused by recharge (total inflow = 0.5 kg/s) and inflow and outflow on the side boundaries was 
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with an increasing step until a new steady-state was reached, defined by 
in outflow rates than J kg/so consider impact resolution, 

three different grids were used.(Table 5). 
steady-state saturations for and two-phase formulations, grid, 

are 11 and 12. The total water table change from to 
depending on location relative to source and boundaries. The water table configuration 
IS in botb models. model, however, shows significant granu in the water 
table surface 

in Table 6. performance 
with a total-run of approximately 3 for the 

coarse and approximately 30 for finest grid. While part of improved performance can be 
attributed to two-phase solution solves for two variables while the single-phase 

only one, the smoothness of formulation, as evidenced by lower iteration 
factor. 

Our final comparison is a simulation transport a conservative solute from the 
source to several observation points in the unconfined aquifer. In this application, we solve the 
advection-dispersion equation (Freeze (l A is for the days the 
simulation. A of 1 m longitudinal and transverse no diffusion, a value of 0.1 

porosity were used. use the (Table 5) comparison. 
calcu lated breakthrough curves computed at two locations, in Its 

are In 13 and 14. For the low observation point at the water table, the 
and phase formulations nearly identical At the observation near the 
aquifer outlet, the bi-model breakthrough curves simulated by both methods are nearly 
identical. comparison demonstrates the potential utility approach for not only 
flow but transport simulations. 

Discussion and conclusions 

presented an efficient, stable to transient flow in unconfined 
part the formulation is the identification of a saturation-pressure relationship that 

relates saturation in a grid block to the water level in gridblock relative to gridblock length 
in the direction of Flowing area in horizontal direction is proportional to saturation. It is 
equivalent to Equation with a relation 

and saturation and, as can be used to simulate unsaturated and 
ly to method in the available MODFLOW code unconfined 

groundwater simulations. The vertical coupling in MODFLOW method is obtained by 
introducing anisotropic relative permeabilities with the relative permeability assigned a 
typicalJy 10 horizontal relative permeability. In this sense, our formulation replicates some 

of package in MODFLOW. method is more stable than the MODFLOW 
lation and much more numerically efficient than two-phase simulations. The enhanced stability 

over the MODFLOW formulation is due to stability of Newton-Raphson iteration 
the elimination of the requirement to "convert" from wet to dry vice-versa, and the 
elimination of the to move recharge sources as water table moves. One on the consequences 

Newton-Raphson iteration in our formulation is lack of problem-dependent parameters. The 
formulation has one the vertical conductivity multiplier 
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Unlike two-phase simulation methods, the ability to estimate the water table elevation is not 
strongly dependent on vertical grid spacing and so can be used for practical , field-scale applications. 
Unlike Richard's Equation coupled to a general pressure / saturation relationship, the pressure at zero 
saturation is strictly grid-size dependent. This offers significant numerical advantages over more 
general approaches, but limits its applicability to vadose zone problems with general capillary pressure 
relationships. 

In the examples presented above we have shown the validity of this formulation, compared to 
an analytical solution (Neuman, 1972), and have demonstrated significant advantages in both accuracy 
and efficiency over a two-phase formulation. We have also demonstrated enhanced stability when 
compared to the MODFLOW approach; this is due to several factors, most notably a fully implicit 
numerical scheme that utilizes upwinding. There is a modest additional CPU requirement, which is 
likely a consequence of unstructured connectivity While the grid in this application is clearly 
orthogonal , we are paying a price for the indirect addressing associated with finite element methods)) 
used in the FEHM code. This disadvantage, while minor, could be eliminated if the method was 
implemented in a structured-grid code like MODFLOW. We expect that this new method is much 
more efficient than solving Richard's Equation with a general capillary pressure / saturation 
relationship, without variable switching, since in the latter case continuous pressure/saturation 
derivatives would not be guaranteed at the transition between a partially saturated and fully saturated 
cell. Using FEHM, we have compared it to a variable-switching scheme for solving Richard's 
Equation with an equivalent capillary pressure / saturation relationship and found it to be equal to or 
more efficient. 

Despite the grid-dependent pressure / saturation relationship, it provides a reasonable 
approximation to vadose zone pressures, saturations, and consequent solute transport, as demonstrated 
by comparison with 2-phase simulations. For more general mixed vadose zone / saturated zone 
applications, errors would have to be evaluated on a case-by-case basis and would be largely 
dependent on the departure of the "true" saturation / pressure relationship measured in the porous 
medium from the linear saturation / pressure relationship inherent this method. If departures were 
large, a more general capillary pressure model would be required and numerical performance would 
presumably decline. 

Ongoing research efforts to couple models developed using FEHM and MODFLOW such as 
Dickenson et aJ. (2007) should benefit from the similarity of the water table formulations in the two 
codes. 
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coarse .536 7.95 32 J I 1 
medium .534 7.41 671 7728 7 
fine .535 7.34 2469 I 1 1741 
Single-

coarse .541 7.13 0.4 
medium .539 7.16 113 2 
fine .534 7.22 268 7229 55 
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Figure 1. Two blocks. The lower is Ily saturated; 
water table. z! and are the upper and lower 

block. b is the saturated thickness. 
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Figure 2. Pressure / saturation relationship in a ceJI with head <= zl. Saturation is 
a variable. 
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Figure Computational (grid B, table 1) for flow 
problem and water table configuration time::: 0 and 50 

Well location and observation point by white 
figures. 
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Figure 4. of unconfined pumping problem for four comparing 
single phase and b) two phase. Solid lines are analytical solutions, Theis and 

and Neuman (1972) 
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recovery. Analytical solution for drawdown portion 
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Figure 8. Computational mesh for 3-D problem, showing saturated thickness at 
time = 44781 days. Dark black lines are head contours at 10 meter intervals. 
White line shows location of constant head nodes. 



950 f-- -- ----- ----
940 I-b: 
930 

I----- a ' 

- - - - - - I -~ - - - - -

920 . 
c: 
0 

:.-::; 
910 C'tI 

> 
Q) 

Qi 
900 Q) 

:0 
J!l 890 -.... 
Q) -C'tI 

~ 880 . 

- - - - - - - - - - - - - - - - - -- , 
870 

860 

850 
o 20000 40000 60000 80000 100000 

Days 

Two-phase 

950 

945 - --A 

940 . - ---- 8 

- - - - C 
935 

I: 
0 

:;:: 
930 C'tI 

> 
Q) 

Qi 
Q) 925 
:0 
J!l 920 .... 
Q) -(\I 
~ 

910 

900 L------------------------------=~==d 
o 20000 40000 60000 80000 100000 

Days 

Figure 9. Water level elevation changes with time 
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Figure 11 . Results for mixed vadose / saturated zone simulation using 
single-phase formulation. Open circles show locations for breakthrough 
curves. 
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Figures 13 and 14. Concentration breakthrough for the two formu lations at observation 
point a) below the perched layer and b) near the exit point. Locations are indicated in 
Figure 11. 


