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2 N. Jeffery and B. Wingate

A linear stability analysis of the inviscid stratified Boussinesq equations is presented
piven a steady zonal flow with constant vertical shear in a tilted f-plane. Full nonhydro-
static terms are included: 1} acceleration of vertical velocity and 2) Corlolis terms arising
Irom the meridional component of Earth’s rotation vector. Calculations of growth rates,
critical wavenumbers, and dominance regimes for baroclinic and symmetric instabilities
are compared with results from the traditional nonhydrostatic equations, which include
a strictly vertical rotation vector, as well as results from the hydrostatic equations. We
And that tilted rotation enhances the dominance regime of symmetric instabilities at the
expense of baroclinic instabilities and maintains symmetric instabilities to larger scales
“Lhan previously indicated. Furthermore, in contrast to former studies, we determine that
hydrostatic growth rates for both instabilities are not maximal. Rather, growth rates
peak in the fully nonhydrostatic equations for parameter regimes physically relevant and
consistent with oceanic measurements of the Labrador Sea and Southern Ocean. Results
suggest that implementatvion of the fully nonhydrostatic equations should be considered

for high-latitude numerical modelling.

1. Introduction

Of fundamental importance in geophysical fluid dynamics is the relation between bal-
anced flows and vorticity production which has implications for understanding atmo-
spheric storms or oceanic eddies. One of the simplest pictures of eddy production is the
Fady (1949) model: a zonal flow with linear z-shear is maintained in steady balance with
a meridional temperature gradient. This thermal wind balance provides a store of poten-
tial and kinetic energy to drive the production of eddies via rotational shear instabilities,

most notably, the symmetric and baroclinic instabilities.
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In the 1960’s and 1970’s, Stone published a series of papers in which he used lin-
ear stability analyzes to calculate and compare growth rates of two competing shear
instabilities, symmetric and baroclinic {Stone 1966, 1970, 1971). He observed that the
Richardson number (R;, the square of the ratio of stratification to shear) determines an
instability’s dominance regime: the set of parameter values for which the instability’s
maximum growth rate exceeds that of all competing instabilities. For £; > 0.95, Stone
concluded that baroclinic instability, which converts base state potential energy to rolls
of cross-wise vorticity, has fnaximal rates. However, for 0.25 < R; < .95, the symmetric
instability dominates, and base state kinetic energy, primarily, feeds the production of
stream-wise vorticity rolls, The Ry criteria proved valid for both hydrostatic and tra-
ditional nonhydrostatic models, though insta,bility growth rates were found to depend
upon the vertical velocity acceleration term (Dw/Dt) particularly for the symimetric
instability. |

Although Stone (1971) first suggests that nonhydrostatic effects may be important
for reSOi‘ving symmetric ingtabilities, his nonhydrostatic model employs the traditional
approximation, i.e. Coriolis terms containing the meridional component of the Earth’s
rotation vector are neglected. Hathaway et al. (1979), Sun (1994) and Mu et al. (1998)
go beyond the traditional approximation to include both components of the tilted ro-
tation vector in their studies of the nonhydrostatic symmetric instability émd find that
nonhydrostatic parameters alter the R, criteria. However, their work assumes a hydro-
static base state which couples the static stratification to the vertical Coriolis term in
the base state buoyancy field, rendering each contribution indistinguishable in the model
parameter space.

In this work, we return to linear stability theory and Stone {1871)’s framework but

include full components of the Coriolis force in our analysis of nonhydrostatic insta-
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bilities. Our work extends the results of Hathaway et al. (1979), Sun (1994) and Mu

et al. {1998) with the following important differences: 1) our base state decouples the
static stratification from the vertical Coriolis terms enabling a greater exploration of the
model parameter space, and 2) impacts to both symmetric and baroclinic instabilities
are assessed. We find that nonhydrostatic terms, Dw/ Dt and the Coriolis terms due to
oblique 1“ota’;;ion, modify dominance regimes and alter growth rates for both types of
instabilities. Consequently, nonhydrostatic symmetric instabilities may occur at larger
scales than previously indicated by hydrostatic and traditional nonhydrostatic solutions.

Our primary interest is in the Earth’s oceans and revealing possible implications that
nonhydrostatic terms may have for modelling. We consider a physically relevant parame-
ter regime defined by three locations in the Earth’s seas: the Bay of Biscay, the Southern
Ocean and the Labrador Sea. Of the dimensional parameters which charac“f,erize these
bodies of water, stratification s found to be the most significant determinant in assessing
the importance of tilted rotation and Dw/ Dt in a particular region. We find that parame-
ter values for which nonhydrostatic effects are maximal are consistent with stratifications
typical of the Labrador Sea and the Southern Ocean, while the Bay of Biscay is, to good
approximation, hydrostatic. In the Labrador Sea, growth rates for both instabilities are
notably enhanced by nonhydrostatic effects. Results indicate that the high-latitudes are
i1he oceanic regions most sensitive to full nonhydrostatic terms.

Finally, we use our perturbation solutions to calculate kinetic and potential mean to
eddy conversion rates and, then, estimate mean and eddy energy production rates for
haroclinic and symmetric instabilities. The purpose of these estimates is to understand
the extent to which relative mean kinetic to potential energy loss rates become region-
specific when tilted rotation and Dw/ Dt are included. This dependence is most prominent

for the symmetric instability.
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2. Equations

We use the following notation in this work: fluid velocity, u = {u, v, w), represents zonal
z, meridional y, and vertical z components, respectively; # = p/p, is pressure normalized
by a constant reference density: and the Earth’s rotation vector at a reference lati-
tude ¢, includes both meridional and vertical components £2 = (0, Q2cos¢,, Qsing,) =
(0, F, f)/2. We are interested in oceans with stable static stratifications and potentially
destabilizing flow. The square of the Brunt- Viisili frequency, N? = —g/podps(2)/dz > 0,
is proportional to gradients of the resting state density ps(z), and is taken to be constant,
while the buoyancy, b = ~glp — ps(2)1/p,, I8 proportional to density deviations from the
resting state and gravitational acceleration g.

Our analysis begins with the 3D inviscid and incompressible Boussinesq equations on

a tilted f-plane:

Dua -
I B g—~bk=10
Dt+ Oxu+V k
Db o
"—"Dt%w]\ =0
Vou=10 (2.1

where D/Dt = 8/8t 4+ u» V. To facilitate comparison with Stone (1971), we adopt
his scaling in (2.1): (z,y) = (&, §)U./f, 2 = 2D, t =t/ f, (u,v) = (4, 2)U,, w = wfD,
8= §U§, and b = BU(‘? /D where tildes denote non-dimensional variables, D js the vertical

depth, and U, the maximum background zonal velocity.
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Db
e A Ryl = 0 2.
o + Ry (2.3)

¥.i=0 (2.4)

It is convenient to define a modified normalized pressure 8* = 8 — R,32 /2 and buoyancy
b* = b+ R;Z which from (2.3) is a Lagrangian invariant Db*/Df = 0. The solutions to

the scaled equations depend on three non-dimensional numbers:

\72 2
oo VD
0z
U, -
RQ m ﬁ — (53 1
F
cot éc. = ? (25)

the Richardson number (R}, the thermal Rosshy mumber (R,) or “baroclinicity” which
is equivalent to the inverse of Stone {1971)’s aspect ratio (d;), and the ratio of tilted
o vertical rotation (cotangent of the latitude). For the range of Richardson numbers
investigated in this work (R; € [0.25,40]), the relative importance of Dw/ Dt and tilted
rotation terms diminishes with increasing baroclinicity. As £, — oo, solutions converge
to the hydrostatic limit.

In the remainder of this work, variables are assumed non-dimensional (unless other-
wize stated) and represented without tildes and “modified” buoyancy and pressure are
understood and represented without *. Subscripts of the independent variable will denote
“differentiation by?”, for e.g. uy = Ju/0Ot.

According to Sun (1994), stability properties and growth rates of the symmetric insta-
bility are not influenced by northward rotation effects when the base flow is meridional
because the Coriolis contribution is trivially zero. A similar conclusion clearly follows for
the baroclinic instability, Thus, in what follows, we restrict our analysis to strictly zonal

base Hows.
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Consider a zonal base flow U(z,y), modified buoyancy B(y, z) and pressure O(y, z) in
a horizontal plane of infinite extent bounded vertically by a flat bottom at z = 0 and

rigid lid at z = 1. By (2.2)-(2.4), base state variables satisfy the relations:

U+0©, =0 and — R, cotgpU +0,~B=10 (2.6)
from which we conclude

By = — R cot ¢oUy, + U] (2.7)

B, = -—/Uzzdyl-'R;lCOt‘ﬁoUz +Bz<3> (28)

where B, is an arbitrary function of z representative of the static ocean stability and
may be equated to the square of the Brunt-Viisild frequency, i.e. B = R;z. There are
two important points to note concerning the base state. First, from (2.7), meridional
gradients in the vertical Coriolis force modify the thermal wind relation. Although lat-
itude is fixed in this medel, meridional gradients are possible in the base velocity and,
certainly, more realistic. This additional complication will be the topic of future work
and is not addressed here. The second point arises from (2.8). In general, base flow will
modify the constant N? resting stratification via z-gradients in the zonal velocity and
the meridional component of the rotation vector. In the case of a zonal flow linear in
z, B = Ryz — U,y — R;! cot ¢,U. The several authors who have looked at this problem
(Hathaway et al. (1979), Sun (1994) in (21a), Straneo et al. (2000) in (3), Mu et al,
{1998)), combine the static stratification and the vertical Coriolis into a single linear
function of z parameterized by a “base” Brunt-Vaisild frequency, ie. B = Riz — ULy
which also satisfes the thermal wind equation. We use the former result derived from

(2.8) with B = R;z which is more general, does not enforce a hydrostatic balance in the
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base flow, and also applies to the more realistic case of meridionally confined or depen-
dent zonal vertical shear. As well, by decoupling the static stratification (R; dependent)
fromn the vertical Coriolis (R, and cot @, dependent), we can explore stability properties
in a more complete parameter space.

We are interested in disturbances about a base flow which may lead to rotational
shear instabilities. We adopt Eady (1949)’s model of baroclinically unstable flow, U = 2,
which is the simplest example and was a starting point in the works of Stone and others
{Hathaway ef al. {1979), Sun (1994), Mu et al. (1998)). Let u = U + o/, (v, w) = (v, w'),
b= B+ and § = & + ¢ where perturbation variables (assumed small) are denoted

with primes. Retaining only linear terms, (2.2)—(2.4) become

v£+zv;+u’+9; =0
R, 2w + zwl| — Ry cot o’ + 6, —b' =0
by + 2b, + o' By + w'B, =0

V.u =0 (2.9)
Imposing a solution ansatz:
(u, o', ', 0, b) x Re{(@(2), i6(2), ib(2), #(2), b(2)) exp{i(oot + kz -+ Ay)}

and letting o(z) = o, + zk, (2.9) can be combined into a single, second-order, ordinary

differential equation for vertical velocity

2%
0= (1—-0%) b, + |20A(1 + Ry cot ¢,) — — | — [k*(R; — R cot o)+

kN
N(R; + R 2 cot? ¢,) — B2 (k% + A%)o? + —2—(1 + Ry Yeotgo) | (2.10)
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subject to the boundary conditions: 1) @w(z) = 0at z = O and 1 and 2) Im(\) = Im(k) = 0
as required for finite solutions in an infinite horizontal domain. (2.10) reduces to Stone
{1971)’s equation (2.25) with cot ¢, = 0 and further reduces to Eady {1949)’s equation
(IT) when R, — 0. Note, the equivalent expression with B, independent of U, derived

in Hathaway et al. (1979} eqn. 15) is missing the term 2k, /o.

2.1. Near the Symmetric Axzis: k— 0

Several authors (Hathaway et al, (1879), Sun (1994), and Mu et al. (1998)) have studied
the effects of a rotation axis tilted with respect to the vertical in connection with the
symmetric instability. Most notably Hathaway et al. (1979) and Sun (1994) present results
from a linear stability analysis given zonal base flow with constant vertical shear and full
non-hydrostatic effects in the perturbation variables, however base vertical buoyancy
gradients are restricted to be hydrostatic, B, = ;. By relaxing this condition, we are
free to use the model non-dimensional parameter space to establish hydrostatic regimes
and clarify the connection between the baroclinicity and the effects of tilted rotation.
Stone (1966) and (1971) established that symmetric instabilities occur for o, ~ 1 as

k — 0. In this limit {2.10) reduces to

2N, . N . - 91
R (R -t cot dy) 0, — 3 [RiRO -+ cot® ¢y — oo] o (2.11)

0=(1—-02) i+
with solution

. —1A(R, + cot g,z | : .
W= pr{ ) sin(mwz) for m=1,2 3, .. (2.12)

Substituting (2.12) into (2.11) and defining A,,, = X/ (m7), 0, satisfies

0= (14 NGRS — o224 A2 (R + Ry % sin™ )] + 1+
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M(Ry —1—2R;* cot o) (2.13)

go_ 24 A (Ri+ Ry sin™? ¢,
o 2(1+ A2, Ry ?)
4@:%A%R;%(1+A§Uﬁ—«1—QRJIQW¢leﬂ}

{1+

1—

2.14
24+ X2 [R; + R7?sin™? ¢,))2 (2.14)
£113

A necessary condition for instability may be found by noting that maximum growth

rates ocour for A, — oc.

hm o2 TS s oo [ {1_ [Rz'—l-?fﬁ;lcowﬁo]rg (2.15)
Ao 7 2 [R:R, + R sin™? ¢, 2 -

which for 02 < 0 implies

2 cot ¢,

;< 1
&<+RO

(2.16)

This result reduces to Stone (1966)’s criteria R; < 1 for purely vertical rotation, i.e.
cot ¢, = 0. Sun (1994) finds a similar result for the unbounded domain based on the
work of Ooyama (1965) and Hoskins (1978). His result may be converted into the criteria
jor instability: R; < 1+ cot ¢,/ R, which differs by the factor two. Both (2.16) and the
instability criteria of Sun (1994) are equivalent to Hoskins (1978) condition of negative

base state Ertel potential vorticity, ¢ (in dimensional variables):

fe=02Q+V xUi)-VB

= (0, M,,—M,)- VB

B ] a(M, B)

Aea) ; <0 for instability (2.17)

- where M = U — fy+ Fz is the absolute momentum. In this form, the discrepancies

between Stone (1966}, Sun {1994) and (2.16) are made clear. Relative to Stone (1966)

3
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the vertical Coriolis decreases z-gradients in M and increages z-gradients in B, and both
contributions decrease ¢. The base state as defined in Sun (1994) includes only the former
contribution.

In the comparisons to follow, we use the term “model” to refer to (2.10) and its
solutions in three parameter lmits: 1) Ry — oo defines the “hydrostatic model”, 2) finite
R, and cot ¢, = 0 defines the “traditional nonhydrostatic model”, and 3) finite R, and
cot &, # 0 defines the “fully nonhydrostatic model”. Oceanic “mimerical models” will be
referred to as such to avoid confusion.

In figure 1, the unstable growth rates of (2.15)(thick lines) are compared with the
traditional nonhydrostatic results (Dw/Dt # 0 but cot ¢, = 0} (thin lines) depicted in
Stone (1971)’s fig. 2 and the hydrostatic approximation (thinnest lines in (b) only). We
use Stone (1971)’s choice of Ry, 0.5, and sampling of R,: 1) 70 (dotted), 2} 1 {dashed)
and 3) 0.5 (dash;dotted), with one notable addition, the R, = 3 example (solid lines). In
the traditional approximation (F = (), symmetric perturbations of the nonhydrostatic
model, in regions of negative ¢, lead to instabilities which grow slower than that of the
hydrostatic model. In fact, the smaller the baroclinicity, and, thus, the greater the relative
importance of Dw/ Dt, the smaller the growth rate. When the traditional approximation
is niot made, unstable growth rates initially increase with decreasing baroclinicity, i.e.
the R, = 3 example. Hence, for a given R;, the hydrostatic rate is not maximal. Rather
growth rates peak at an intermediate value of baroclinicity, R, ~ O{(1).

A second novel feature of the fully nonhydrostatic model is evident in figure 1. Stone
{1971) observed that Dw/Dt has no effect on the largest wavelength at which the in-
stability grows. However, when full Coriolis terms are included, symmetric growth rates
(0, = —Im(o)) are positive to larger scales than predicted by the hydrostatic model.

In figure 1(b), wavenumber A\ which scales with R, * has been converted to wavelength,



12 N. Jeffery and B. Wingale

Lx/D = 2w R,A71, normalized by vertical depth to elucidate the scale def)endence, In
all cases, as R, decreases, symmetric instabilities become confined to smaller scales.
This reduction in scale, however, is not as pronéunced in the fully nonhydrostatic model
and, for all baroclinicities compared, growth rates remain»positive to maximum scales of

LD > 1.

2.2. Near the Baroclinic Azis: X —

Sun (1994} finds that tilted rotation modifies linear perturbations about a zonal flow
with constant z shear “if, and only if” perturbations are functions of y, and, hence, they
do not impact pure baroclinic instabilities. Stone (1971), in his analysis of nonhydrostatic
baroclinic instabilities, finds only weak effects (without tilted rotation). That is, Dw/Dt
always decreases peak baroclinic growth rates and has no effect on stability criteria.
However, we already have some indications that these conclusions change in the presence
ol tilted rotation and a nonhydrostatic base state. As was demonstrated in the previous
section, the z-gradients of the vertical Coriolis modify the base stratification, the base
Ertel potential vorticity (g}, and, consequeutly, the symmetric stability criteria. Since
peak symmetric growth rates are about a factor of five greater than baroclinic rates in
regions of negative g, we can expect a modified regime in R;/R, parameter space for
which baroclinic instabilities dominate. As well, Sun (1994) defined a base R] which
does not decouple the static stratification (R;) from the vertical Coriolis (x R, 1), a
contribution which will modify even pure baroclinic instabilities.

Stone {1966) and (1971) established that maximum growth rates for baroclinic in-

stabilities occur for k ~ O(1) and 0, = kc as A — 0. In the baroclinic plane, (2.10)

becomes

2 t o K z
0= (1= k(c+2)?) e — ——b, — [kg (Ri - COR"’”’ ) - (61;; 2) } @ (2.18)
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which reduces to Stone (1971)’s nonhydrostatic result (eqn. 3.2) with cot¢, = 0. Al-
though we solve this equation numerically using a collocation method and present the
results in the figures of this work, it is lluminating to compare Stone (1971)’s approxi-
mate solution for unstable growth under nonhydrostatic conditions with the analogous
expression including til,ted rotation. Let w = w, + k%wy + - and ¢ = ¢, + k%c; + - into

(2.18) and retain the first two terms;

o; "2 % [k - 21—;‘53 <1 + Ry — R cot b, + ﬂg‘%—zﬂ (2.19)
where
1 1
Cop = 5 + ’2%
¢ = :tg%g (1 + Ry — R,  cot by + Sngg)

The signature of the nonhydrostatic base buoyancy profile appears in the @(k?) term, i.e.
B, = R, — R cot ¢b,, which reduces to R; as in Stone (1971) without tilted rotation or
R! for a base state as defined in Sun (1994). The important point here is that the “weak”
nonhydrostatic effects Stone refers to are of O(k°) and negative and always decrease
growth rates, whereas R} is the same order in k as R; and positive which decreases the
stabilizing effect of the stratiﬁc:aiion and increases growth rates.

In figure 2, numerical solutions of 0; = —Im(c)k (thick lines), where ¢ is the elgenvalue
of (2.18), are compared with the traditional nonhydrostatic growth rates (thin lines, also
numerically derived) whose approximate solutions are plotted in Stone (1971)’s fig. 1.
The hydrostatic results (thinnest lines in (b)) are plotted but converge with the R, =
70 dotted line in (a). Again, the choice of R; = 2 and R, are Stone’s: 1) R, = 70
(dotted), 2) R, = 0.1 (dashed), and 3) R, = 0.03 (dash-dotted), though we have added

R, =1 (solid). In the traditional approximation (/* = 0), along-flow perturbations of
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haroclinically unstable flows in the nonhydrostatic model grow slower than that of the
hvdrostatic model. As with the symmetric perturbations, the smaller the baroclinicity,
and, thus, the greater the relative importance of Dw/D¢, the smaller the growth rate.
When the traditional approximation is not made, unstable growth rates initially increase
with decreasing baroclinicity and fixed R;. This is particularly evident in the R, = | and
0.1 curves. As in the symmetric result, for a given R;, the hydrostalic raie is not mazimal.
In fact, growth rates appear to peak at similar values of baroclinicity, R, ~ O(1). This
is interesting since baroclinic growth rates are much less sensitive to R, than symmetric
rates.

In figure 2(b), growth rates are plotted against the zonal waveleﬁgth normalized by the
vertical depth, Li/D), in order to remove the R, dependence of the zonal wavenumber, k,
and clarify the scale dependence of maximum growth rates. In contrast to the symmetric
instability, baroclinic growth is confined to large scales and maximum rates peak at
clearly defined wavenumbers. In general, for all models, as the relative importance of
Dw /Dt increases, zonal wavelengths of maximum growth move to smaller horizontal
scales. Wavelengths derived from the nonhydrostatic solutions with tilted rotation follow
very closely the traditional nonhydrostatic results and deviate from the hydrostatic limit
only at very small baroclinicities: R, ~ O(107?), when nonhydrostatic growth rates

become small.

3. Implications for the Ocean

The results of the previous section and, in particular, the comparisons with Stone
(1971}, indicate that tilted rotation coupled with acceleration of vertical velocity enhances
growth rates of both instabilities and extends symmetric instabilities to larger scales for

parameter values of B, € O(1), R; ~ O(1) and ¢, = 45°. We now consider the following
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questions: 1) do these parameter values appropriately characterize the physical ocean?
2) Can we more fully explore the relévant physical parameter space?

Of the dimensional parameters which characterize the physical ocean, the Brunt-
Viisild frequency (V) and the latitude (¢,) are the most influential in determining
the importance of tilted rotation. And, as we shall see, of the two, N has the most
significance.

We consider three oceanic regions for their ranging typical deep water stratifica-
tions: the Bay of Biscay (BB) at 44°-48°N, the Southern Ocean (SO) at = 60°S, and
the Labrador Sea (LS) at 55°-60°N. van Aken et al. (2007) measured mean Brunt-
Viisald frequencies in the slope region of the Bay of Biscay of ~ 3.1 —3.5x 1073 57! and
low gradient Richardson numbers well below 1. The Southern Ocean, according to Hey-
wood et al. (2002) is generally weakly stratified, with low values of Brunt-Viiséla frequency
{(5.44:0.2) x 107% 571, and the Labrador Sea region (60°N), according to Lasier (1980},
is characterized by a deep weakly stratified region of 2.1 x 1074 571,

Figure 3 is a comparison of growth rates for the above three stratifications typical of
L3 (£), SO {0}, and BB ([0} at three latitudes: 307, 45°, and 60° indicated by decreasing
thickness. In the top two plots ((a) and (b)), tilted rotation effects are included along
with Dw/Dt, while the bottom two ((c) and (d)) are from solutions of the traditional
nonhydrostatic equations {cot ¢, = 0). The hydrostatic curves in (a)—(d) are indicated
by + (visible in (b)) which overlap the growth rate curves for BB in (a), (¢), and (d).
Baroclinic instabilities (R; = 2) are on the left and symmetric (R; = 0.5) on the right.
The baroclinic results are the more straight forward. For the full range of latitudes
described, nonhydrostatic effects are most evident at the weakest stratifications (LS)
where they modify peak growth rates between ~ 7-16% of the hydrostatic rate. The

high stratification of BB establishes the region as “hydrostatic” independent of latitude,
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Siroply put, for the baroclinic instability, changes in stratification account for greater
variations in non-dimensional growth rates than occur for changes in latitude.

For the symmetric instability with tilted rotation (b}, all three regions show at least
modest deviations from the hydrostatic result (BB has a maximum deviation of ~ 5%). In
the regions of weak stratifications (LS and SO), tilted rotation and Dw/Dt can account
for a 20-30% change in peak hydrostatic growth rate, though the latitude dependence
is also significant. The tilted f-plane approximation limits our ability to fully explore
the latitudinal dependence of these results, particularly near the equator where the 3
cffect becomes important. However, we conclude that for ¢, € [30°,60°] weak static
stratification is a very important indicator of a regions sensitivity to tilted rotation and
w-acceleration and observe that weakly stratified regions tend to be high-latitude.

In the remainder of this work, we set ¢, = 60° rather than 45°, which is more appro-
priate for the weak N regions, LS and SO, and will provide a more accurate estimate of
nonhydrostatiq effects where they are more likely to occur.

Figure 4 is an analogue of the Stone figures (1 and 2) with physically relevant values
of R, (see figure caption) evaluated from R; = 2 (baroclinic) and .5 {symmetric),
b, = 60° and N from LS {dash-dotted), SO (dashed) and BB (solid}. The oceanic
values of R,: a) 1 (LS) to 20 (BB) for baroclinic instabilities, and b) 2 (LS) to 30 (BB) for
gyrmmetric instabilities, are subsets of the ranges plotted in figures 1 and 2 and continue
to illustrate mény of the important features of tilted rotation and Dw/Dt on growth
rates and scale, though with less pronounced effect than observed at ¢, = 45°. That
is, for both instabilities, hydrostatic growth rates for a given R; are not maximal, and
unstable growsh rates initially increase as baroclinicity decreases from the hydrostatic
Limit. Most signi’ﬁcantly, the regime R, ~ O(1), for which enhancement of growth rates

due to nonhydrostatic terms is most important, is physically relevant.
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In figures 5 and 6, maximum growth rates are presented as solid contoﬁrs in the space
of R, and R,. Thick solid lines are from solutions of the fully nonhydrestatic equations,
{2.10) and (2.18), while the thin lines are eigenvalues of the traditional nonhydrostatic
equations (cot ¢, = 0). Since symmetric instabilities are bounded by a necessary condi-
tion of negative g, we have included lines of zero ¢: 1) ch6 dotted line at R; = 1 as stated
in Stone (1966) and appropriate for the traditional nonhydrostatic solutions, 2) the thick
dash~dgtted line defined in (2.18), and, in figure 5 only, 3) the thin dash-dotted line of
Sun (1994). Also included, as physical references, are three dashed lines of constant N
representative of the sample locations: the Bay of Biscay (BB), Southern Ocean (SO)
and Labrador Sea (L.S).

Symmetric maximum growth rates exceed maximum baroclinic rates in regions of
negative ¢ except in a small neighborhood of the boundary. Stone (1966), for example,
finds baroclinic rates dominate for R; > 0.95 when rotation is strictly vertical. Tilted
rotation increases this boundary by at least 5% for baroclinicities of < 20, and both SO
and LS fall in this range. For LS, the negative ¢ boundary nearly doubles, and baroclinic
instabilities are not preferred until R; reaches almost 2,

In the large R, limit (at fixed f), both Stone (1971)’s results (thin lines) and the fully
nonhydrostatic rates (thick lines) converge to the hydrostatic values and become inde-
pendent of the baroclinicity. This hydrostatic limit also depends on R;, i.e. convergence
occurs for smaller values of R, at larger R;. Thus, with or without tilted rotation, baro-
clinic instabilities are hydrostatic for a greater range of stratifications than symmetric
instabilities.

As R, — 1 for fixed R; € [0.3,40], nonhydrostatic terms become more important.
Stone (1971) observed that Dw/Dé always decreases growth rates for both instabilities

and his result is verified by the thin contours of figures 5 and 6. In our extension of
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Stone’s analysis, we find the new result that Dw/Dt together with Coriolis terms from
the meridional component of rotation initially enhance instability growth rates before
decreasing which is indicated by a bulge in the thick contours of the same figures,

Instability growth rate curves also provide information about critical wavenumbers
and, consequently, length scale. For the baroclinic instability, growth rate curves versus
wavenumber have a definite peak, and modes with highest growth rates will dominate
the ingtability evolution. Thus, the critical wavenumber, k., is the wavenumber at peak
growth rate. As observed in the previous section, inclusion of tilted rotation in a nonhy-
drostatic model makes only minor modifications to k. at intermediate values of H,.

For the symmetric instability, growth rates increase sharply with A beginning at some
minimum value then level at maximum by A = 50. Inclusion of Dw/Dt and cot ¢, does
nob alter this behavior, and choosing the wavelength of maximum growth does not provide
new information. However, what is new is that the minimum wavenumber, i.e. largest
scale, at which the instability occurs is modified by tilted rotation’ {figure 4), and we can
capture this behavior by choosing the minirmum wavenumber as A,. In any case, we are
interested in trends in the horizontal length scale of the instability as modified by full
nonhydrostatic effects and remark that one needs to be cautious before extrapolating
conclusions about length scale from a linear stability prediction to the full nonlinear
stability problem.

The contours of figure 7 were derived by converting A, into the critical wavelength,
Le = 2rDR,A; 1, and normalizing by the ocean depth, D. Thick lines are contours for
which Dw/Dt and tilted rotation are included, while thin lines were evaluated from
the traditional nonhydrostatic model. Regimes of negative ¢ (mnarked “unstable”) are
bounded by the dotted vertical line at R; = 1, valid for the hydrostatic and traditional

nonhydrostatic models, and the thick dash-dotted line defined by (2.16) and appropriate



Tilted rotation in nonhydrostatic models 19

for the nonhydrostatic equations with tilted rotation. Clearly, decreasing R, at fixed Ry,

corresponds to decreasing horizontal length scale and, as previously stated, increasing

‘the relative importance of nonhydrostatic terms. The reduction in scale of symmetric

instabilities with decreasing R, is not as pronounced in the fully nonhydrostatic model.
For example, at R; = 0.9 and stratifications typical of LS and SO, the hydrostatic
and traditional nonhydrostatic models predict a horizontal wavelength of D and 3D,
respectively, while the nonhydrostatic model with tilted rotation predicts 3D and 6D,
respectively.

If we interpret L./ D as the inverse aspect ratio, 7!, and note that R, = § U/ (f,L.) =
8§71 R*, where we have used the notation superscript * to differentiate the Rossby number
(R}) from the baroclinicity (thermal Rossby number, R, }, then we obtain figure 8, Each
solid (Dw/dt # 0 and cot¢, # 0) and dashed (Dw/Dt # 0 and cot ¢, = 0) curve in
figure 8 represents the evolution of an unstable mode in the space of 6 and R}, at constant
R; as the baroclinicity, H,, changes. Lines increase in thickness with increasing R;. Small
R, solutions for the full equations collapse to a line at § ~ O(1) and R: ~ O(0.1), In
the hydrostatic limit, fixed R; corresponds to fixed R} and increasing R, to decreasing
8. That s, the instability time scale is fixed by the R} (R;) while the “nonhydrostatic”
parameter determines the relative scale of horizontal to vertical features. In a hydrostatic
model, or, in the case of symmetric modes, a nonhydrostatic model without tilted rota-
tion, instabilities retain these dependencies for all R, described. This is not the case in
a full nonhydrostatic model. The vertical Corlolis {for positive U, ), at small R,, acts to
effectively weaken N changing the stratification time scale and the Rossby number. As
R; approaches and exceeds 1, the remaining symmetric modes are fundamentally nonhy-

drostatic, vanishing with increasing baroclinicity. The dash-dotted line, included in the
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plot for a reference, has a -1 slope which parallels the E; = 1 line and the collapsed

modes at small R,. At higher R;, changes in baroclinicity primarily alter R} and not 4.

3.1. Energetics

in the previous sections, we have demonstrated that a tilted rotation axis in a nonhy-
drostatic model expands the unstable regime of the symmetric instability and decreases
the dominance regime of the baroclinic instability. We have also demonstrated an R, de-
pendence In horizontal length scale for symmetric instabilities and growth rates for both
types of shear instabilities. However, it remains unclear if and how these features modify
the driving mechanisms of the instabilities and whether an R, dependence is evident in
mean to eddy energy production and conversion rates.

In general, dependent variables, 77, have a mean and fluctuating component, i.e. n =

7 -+ 1)/, where we define zonal {mean) averages by

1 L2
7 o= - ndz 3.1
7 L[ngn (3.1)

An equation for the production rate of zonal rmean kinetic energy, Kar = T -T/2, is

found by taking the dot product of the averaged momentum equation (2.2}

DK o
___-m”’ = —updjulul, — 7O, — WO, + WH

= -V . (Wuz) +uw (3.2)

where D/Dt = 8/8t + 1 - V and subscripts ¢, j, k correspond to z, y, 2 components,
respectively. The equation for the zonally averaged eddy kinetic energy, Kp = [(v/)? +
(v'}? + Ro™%(w')?)/2, is similarly derived from the momentum perturbation equations

[2.9). Taking u’ - Du'/ D¢ and averaging:
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JKp

"-""5'5— :*u;u/'V’&—k—V'W"!”W

= —ww -V w4V’ (3.3)

The equation for the production rate of eddy potential energy, Pp = b'8//(2B,), is found

by multiplying the perturbation buoyancy equation by 5’ and averaging:

OPg bu' - VB e 3
P N NIV N s A 3.4
ot B, CTUYE, (8:4)
Finally, zonal mean available potential energy Py = P — Py where P = —2B is
D Py —m s B
- . 3 b et 5
B V- (zu'¥) + Vo B. (3.8)

(3.2)—(3.5) together with the linear approximations to the perturbation variables eval-
uated in section 2 provide a second order estimate of the production/loss rate of the
base state and eddy energies. From the above equations, we define the conversion rates
C{A — B) where A — B indicates a direct transfer of energy from source A to source

B at the rate

C(Kp — Ky) = uw'w'
C(Pg — Kg) =b'w/
C(Py — Pr) = _z}a;;%

Fa

C(Ky — Py)=0 (3.6)
while the fluxes are defined as

F(Kg)=u'§'

F(Pg)=10
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F(Pu) = —2u'd. (3.7)

3.2, Globally Averaged Conversions and Production Rates

Modes tending to symmetric instability have y and z dependencies and a zonal av-
erage is trivially defined w'v’ = 27k~ *u’v’. For each baroclinic mode, we have v/ =

Re{a(z, ¢) exp(ika)} and v’ = Re{d(z,t) exp(ikz}}, and a zonal average may be defined

by

-

o 2n/k
u'v! = / Re{aexp(ikz)}Re{vexp(ikz)}da = %Re{d'&*}
0

= %exp(ZOit)Re{ﬁ.(z)[‘i'fi(z)r} | (3.8)
where 0; = ~Tm(¢). However, in both cases the global average is simply
o Ak 1 7(/)\ o 1
< uly' > = — exp(_flcrgt)/ / wvldydz = / Re{dfid|” }dz. (3.9
27 0 Jew/A 0 .

Unstable modes have three nonzero conversion rates, globally integrated:

<Z(7(f(g —F ffg4> > o= < wlul >

< C(Pp — Kg) >=<w'bl >

< v’y >

< C(Py — Pg)>= ——22 >
(Prs — Pp) R: — Ro Lcot g

(3.10)

The globally integrated fluxes for rigid top and bottom boundaries are zero.

For baroclinic instabilities, the positive < C(Py — Pg) >= C, continues to be the
highest conversion rate regardless of baroclinicity (Stone (1972)) and R;. Tilted rotation
increases the relative rate C;1 < C{Pg — Kg) > by only about 5% compared to the
traditional nonhydrostatic result under conditions of small N (LS} where these effects are

most prominent. In general, the “traditional” baroclinic energy cycle, Pyy — Pp — Kg,
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applies equally well to hydrostatic and nonhydrostatic models with or without tilted
rotation.

Symmetric instabilities are, however, nonhydrostatic for a much larger range of R, than
baroclinic instabilities, and the modifications due to tilted rotation are more pronounced
and challenge the traditional interpretation of the energy cycle, In the hydrostatic limit,
global energy conversions are dominated by <« C(Kg — Ky ) »>= —C, < 0. That is,
base kinetic energy is the primary source driving the production of eddy kinetic energy
for the symmetric instability (Eliassen and Kleinschmidt (1957)).

Total energy production rates normalized by C, are plotted in figure 9 versus R, for {a}
R; = 0.9 and (b) R; = 0.5. Thick lines were derived from the nonhydrostatic model with
tilted rotation, while thin lines are results which include Dw/Dt but assume a vertical
rotation axis. Mean kinetic (horizontal dotted line) and mean potential rates (solid lines)
are negative, i.e. losses, which is expected as the base state drives the instability, The
eddy production rates are indicated by dashed lines for the eddy potential energy and
dash-dotted lines for the eddy kinetic energy. Vertical dotted lines mark values of Ro
consistent with constant N typical of LS, SO and BB.

The energy production rates for both nonhydrostatic models become independent of
R, and, thus, equivalent to the hydrostatic result, at base N near that of BB, In this
limit, the magnitude of K s loss rates exceed that of Py by an order of magnitude. In
nonhydrostétic solutions with tilted rotation, the relative conversion C;* < C(Py —
Pr) > begins to play a larger role for R, < that of S8O. For both nonhydrostatic models
we see an increased role for the Py in driving the instability, however, without tilted
rotation D Py /Dt remains secondary to DK »y/ Dt in our oceanic parameter range. From
figure 9 this is not the case when full nonhydrostatic effects are included. At values of

R, in the vicinity of LS, |DPy/Dt] exceeds |DK s/ Dt} and Py becomes the dominant
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energy source for the instability. This transition coincides with & sharp relative increase

in P production not evident in the traditional nonhydrostatic results.

4, Conclusions

In this work, we have extended Stone’s pioneering study of the symmetric and baro-
clinic instabilities to include a non-vertical axis of rotation. From a linear stability analy-
sis, we have shown that tilted rotation modifies the base state fields from the traditional
nonhydrostatic model in two ways: 1) increasing the absolute momentum vertical gra-
dients and 2} decreasing the modified buoyancy vertical gradients. Both modifications
decrease base Frtel potential vorticity (g), push the symmetric boundary of existence to
larger R;’s, and, thus, impact dominance regimes for symmetric and baroclinic insﬁabil—
ities. Since growth rates for symmetric instabilities are about a factor of 5 greater than
baroclinic rates in regions of negative g, except in a small neighborhood of the boundary,
a nonzero meridional rotation component together with a positive zonal z-shear enhances
the symmetric dominance regime at the expense of the baroclinic regime. In regions of
weak stratification like the Labrador Sea, symmetric growth rates exceed that of baro-
clinic modes for R; of almost 2, whereas the traditional nonhydrostatic result predicts a
transition to baroclinic dominance at R; = 0.95.

Our work is consistent with and supports that of Hathaway et al. (1979}, Sun (1994)
and Mu et al. (1998} who include tilted rotafion in their analyzes of the symmetric
instability but do not decouple the static stratification from the vertical Coriolis and,
therefore, do not explore the effects of modifications to the vertical gfadients of the
buoyancy field.

Contrary to the conclusions of Stone (1971), growth rates for symmetric and baroclinic

instabilities at fixed latitude and R; are not maximal in the hydrostatic limit. Rather,
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growth rates peak at intermediate values R, ~ O(1) in the nonhydrostatic equations with
tilted rotation. This is also the regime for which deviations from the hydrostatic result
are most important, since at very small R,, deviations from hydrostatic may be large,
but growth rates are negligible. Significantly, the O{1) parameter regime is physically
relevant and consistent with oceanic measurements of stratifications in the Labrador ‘Sea
and Southern Ocean for R; < 20.

Symmetric instabilities are confined to smaller horizontal scales than baroclinic insta-
bilities, and these scales are bounded by some maximum wavelength which varies with
R,. Tilted rotation maintains these instabilities to ],arger horizontal scales, i.e. greater
maximum wavelengths, which is potentially important for global scale numerical mod-
elling and regional numerical models which resolve scales approximately an order of
magnitude smaller than that of baroclinic instabilities. For baroclinic instabilities, es-
timates of length scale changes due to the hydrostatic and traditional approximations
are minor. Our present stability analysis provides useful information about trends and
relative length scales but not accurate estimates which depend on nonlinear effects. In
future work, we will investigate the role of tilted rotation and its impact on spatial scale
in a nonlinear numerical model of the 3D nonhydrostatic Boussinesqg equations.

We have also applied our results to parameter regimes relevant to the physical ocean.
Stratification is identified as an important parameter in assessing a region’s sensitivity
to nonhydrostatic effects, at least in our limited latitude range {30° to 807). The weak
stratifications of the Southern Ocean, the Labrador Sea and high-latitudes in general
make these regions most sensitive to the nonhydrostatic effects described in this work, We
suggest that implementation of the fully nonhydrostatic equations should be considered
for high-latitude numerical modelling.

Finally, we have shown that tilted rotation modifies the energy cycle of symmetric
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instabilities. Our analysis compares relative changes in the energy conversion rates be-
tween base and eddy flow and total energy prqduction /loss rates. The hydrostatic picture
of synmunetric eddy rolls driven by base state Kinetic energy is not accurate in parame-
ter regimes appropriate for the Labrador Sea where tilted rotation and nonhydrostatic
effects are important. Rather, the base state potential energy, the primary source in
baroclinic instabilities, contributes comparably potentially exceeding that of base state

kinetic energy in driving symmetric eddies.
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Fraure 1. A comparison of growth rates for the symmetric instability between the fully nonhy-
drostatic model (thick lines), Stone (1971)’s fig. 2 nonhydrostatic results with F = 0 {thin lines),
and the hydrostatic results (thinnest lines in (b) only). In (a), growth rates for four baroclinic-
ities are plotted versus the non-dimensional wavenumber {X) which in dimensional units scales
with R,. We have added an intermediary value of the baroclinicity, R, = 3, for comparison to
highlight a novel feature of the nonhydrostatic model with tilted rotation: symmetric growth
rates do not peak in the hydrostatic limit but, rather, at values of R, ~ O(1}. In (a), all hydro-
stalic lines converge with the R, = 70 (dotted) nonhydrostatic solutions. In (b}, growth rates
for the same four baroclinicities are plotted against wavelength, Lx/D = 2rR,A™", normalized
by Lhe vertical depth to remove the implicit R, dependence and clarify the scale dependence,
When tilted rotation is included in a nonhydrostatic model, the cut-off maximum meridional
wavelength of the symmetric instability moves to larger scales. Maximum wavelengths of the
traditional nonhydrostatic and hydrostatic solutions are identical. Latitude is fixed at 45°.
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FIGURE 2. A comparison of baroclinic growth rates from {2.18) which include nonhydrostatic
effects and tilted rotation (thick lines) and Stone {1971)'s fig. 1 which includes Dw /D¢t but
assumes F' = 0 (thin lines) with K, = 70 (dotted), 0.1 (dashed), and 0.03 (dash-dotted}. We
have added R, = 1 (solid) to illustrate two novel features of the nonhydrostatic equations with
tilted rotation: 1) baroclinic growth is most sensitive to values of R, ~ @1} where rates become
maximal, and 2) as R, decreases from the hydrostatic limit at fixed R;, growth rates initially
increase exceeding that of the hydrostatic model. Since the wavenumber k& scales with Hs, we
have also plotted, in (b), growth rates versus wavelength, Lx/D = 2mR.k™", normalized by the
vertical depth, Thinnest lines, evident in (b} only, are solutions of the hydrostatic model. In (a),
all hydrostatic lines converge to the B, = 70 (dotted line). Latitude is 45°.
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60°; and stratifications typical of the following locations: Labrador Sea (A}, Southern Ocean (o),
and Bay of Biscay (). The hydrostatic results in (a)-(d} are indicated by + {visible in (b} only}
and are coincident with the filled {1 of the BB growth rate curves for (a), (¢}, and (d). Upper
plots {(a) and (b)) are from nonhydrostatic equations with tilted rotation, while lower plots ((¢)
and (d}} are from the traditional nonhydrostatic equations which include Dw/D¢ but assume
strictly vertical rotation. For the baroclinic plots on the left, changes in stratification account
for greater variations in non-dimensional growth rates than occur for changes in latitude: For
bath instabilities, the regions most sensitive to tilted rotation and Dw/D# are those with weak
static stratifications even at latitudes of 60°.
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Ficure 4. (a) Baroclinic (R; = 2) and {b) symmetric (H; = 0.5) growth rates at 60° lati-
tude with stratifications typical of the following locations: Labrador Sea {dash-dot), Southern
Ocean {dash), and Bay of Biscay (solid). Baroclinicities for the regions are as follows: BB (in
(a) Ry = 20 and (b} Ry = 30}), SO (in (a) R, = 3 and (b} R, =6}, and LS {in (a} Ry = 1 and
{b} Ro = 2). Thick lines include tilted rotation and Dw/D¢, while thin lines include Dw/ Dt
but assume a locally vertical rotation vector. The hydrostatic result is indicated by <. Inclusion
of full nonhydrostatic terms increases growth rates for all three regions though at high-latitude
the effect is less pronounced than shown in figures 1 and 2 at ¢, = 45°. The key baroclinici-
ties, Ry ~ O(1), for which enhancement of growth rates due to nonhydrostatic terms is most
significant, are physically relevant and well characterized by the above three oceanic regions.
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Fraure 5. Contours of maximum growth rate for the symmetric instability at ¢, == 60°. Thick
solid lines are solutions which include tilted rotation and Dw/Dt, and thin solid lines are from
traditional nonhydrostatic equations (Dw/ D¢ # 0 and cot ¢, = 0). Dashed lines are of constant
N typical of the Bay of Biscay (BB), Southern Ocean (8O) and Labrador Sea (LS). The dotted
line at R; = 1 marks the boundary for existence of the symmetric instability according to Stone
(1971}'s necessary condition when cot ¢ = 0, the thick dash-dotted line defines the existence
boundary according to (2.16), and the thin dash-dotted line marks the instability criteria of
Sun (1994). Symmetric maximum growth rates ezceed maximum baroclinic rates in regions of
negative g except in a small neighborhood of the boundary. This boundary, for LS, reaches
Ri = 2 with tilted rotation and Dw/DE, nearly double that of the traditional nonhydrostatic
and hydrostatic results.
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FIGure 6. Contours of maximum growth rate for the baroclinic instability at ¢, = 60°. Thick
solid lines are solutions which include tilted rotation and Dw/Dt, and thin solid lines are from
traditional nonhydrostatic equations (Dw/Dt # 0 and cot ¢, = 0). Dashed lines are of constant
N typical of the Bay of Biscay (BB), Southern Ocean (SO) and Labrador Sea (LS). Regimes
of negative ¢, for which the symmetric instability occurs and dominates except very near the
boundary, are indicated by the parameter space to the left of the thick dash-dotted line, when
full nonhydrostatic effects are included, and by the vertical axis R; = 1, when either a hydro-
static model or Stone (1971}s traditional nonhydrostatic model is assumned. Inclusion of tilted
rotation in the nonhydrostatic model reduces the parameter space for which baroclinic instabil-
ities dominate, and this effect is most pronounced for stratifications typical of the high-latitude

regions. For further details see figure 5
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P1GgurE 7. Contours of log(Le/D) (largest wavelength, 2nR,AZ", for which solutions have un-
stable growth rates), in the parameter space of R; and R,. Thick lines inciude nonhydrostatic
effects with tilted rotation, and thin lines include Dw/ D¢ as in Stone (1971) but with £ = 0 and
are identical to the hydrostatic result. Dashed lines mark constant N typical of LS {Labrador
Sea), SO (Southern Ocean) and BB (Bay of Biscay). Regimes of negative g (marked “unstable”)
are bounded by the dotted line at R; = 1 obtained from Stone (1971)’s necessary condition
for instability when F = 0 and the thick dash-dotted line obtained from the existence criteria
af (2.16). Decreasing R, at fixed R; increases the relative importance of nonhydrostatic terms
and decreases the largest horizontal scale of the instability for all models plotted. However, this
reduction in scale is less pronounced in the fully nonhydrostatic model, and maximum length
scales are double and triple that of the hydrostatic model for SO and LS near R; = 1.
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FIGURE 8. Lines of constant R; at ¢ = 60° in the space of aspect ratio, § = /L., and Rossby
number, R} = U//(fs L.}, where for the symmetric perturbations, L. = 2r DR, A" is the largest
wavelength unstable to symmetric rolls and for the baroclinic instability, L. = 2n DR,k is
the wavelength of maximum baroclinic growth rates. For both instabilities, lines increase in
thickness with increasing R;. Dashed lines are from solutions of the traditional nonhydrostatic
equations: 1) for symmetric, R; = [0.25,0.99] and 2) for baroclinic, R; € [1,2]. In the case of
symmetric modes, the vertical lines also align with the hydrostatic modes which indicates that
increasing/decreasing R, for solutions without tilted rotation corresponds directly to decreas-
ing/increasing é. Hydrostatic baroclinic modes (dash-dotted lines) are alse vertical at constant
B; and the previous conclusion holds. This is not the case in the fully nonhydrostatic model.
Solid lines include both tilted rotation and Dw/Dt: 1) for symmetric, R; € [0.25,1.7] and 2) for
baroclinic, R; € [1,2]. Although these modes converge with the hydrostatic for large R, (small
&), at small R, modes collapse to a line at 6 ~ @(1) and R} ~ O(0.1). The dotted line is in-
cluded for reference and slopes with —1. Above B; = 1 {the “traditional” symmetric boundary),
the remaining symmetric modes are fundamentally nonhydrostatic. Increasing/decreasing baro-
clinicity at fixed R; corresponds primarily to increasing/decreasing R, with minimal changes in

4.
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Ficure 9. Total energy production rates versus baroclinicity for (a) R; = 09 and (b)

R; = 0.5. Thick lines are from solutions with Dw/Dt and tilted rotation while thin lines are
the traditional nonhydrostatic results {Dw/dt # 0 and F = 0). All rates are normalized by

= |C(Kgr — Ku)|. Vertical dotted lines indicate constant stratifications typical of LS, SO
and BB. Rates for nonhydrostatic models with and without tilted rotation become independent
of R, and, thus, equivalent to the hydrostatic result, at base N near that of BB. As R, decreases,
both models show an increased role for Pas in driving the instability, however, only when tilted
rolation is included does | D Py /Dt exceeds |DKns /Dt for the above physical range of R,.
Latitude is 60°.



