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2 N. Jeffery and B. Wingate 

A linear stability analysis of the inviscid stratified U"C'HH~0'1 equations is presented 

11 zonal flow with constant vertical shear in a tilted f-plane. Full nonhydro-

static terms are included: 1) acceleration of vertical velocity and 2) Coriolis terms 

from the meridional component of Earth's rotation vector. Calculations of growth 

critical wavenumbers, and dominance regimes for baroclinic and symmetric instabilities 

are compared with results from the traditional nonhydrostatic equations, which include 

11 vertical rotation vector, as well as results from the hydrostatic equations. We 

finel that tilted rotation enhances the dominance regime of symmetric instabilities at the 

expense of baroclinic instabilities and maintains symmetric instabilities to larger scales 

Lbnn previously indicated. Furthermore, in contrast to former DC''''UJJ::;''. we determine that 

growth rates for both instabilities are not maximal. Rather, growth rates 

peak in the fully nonhydrostatic UUU"""HO for parameter physically relevant and 

consistent with oceanic measurements of the Labrador Sea and Southern Ocean. Results 

that implementation of the fully nonhydrostatic equations should be considered 

rUt numerical modelling. 

L Introduction 

Of fundamental importance in geophysical fluid dynamics is the relatio:1 between ba1-

,wced flows and vorticity production which has implications for understanding atmo­

spheric storms or oceanic eddies. One of the simplest pictures of eddy production is the 

ECldy (1949) model: a zonal flow with linear z-shear is maintained in steady balance with 

il meridional temperature gradient. This thermal wind balance provides a store of 

Lial and kinetic energy to drive the production of eddies via rotational shear instabilities, 

mas 1. the symmetric and baroclinic instabilities. 
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In the 1960's and 1970's, Stone published a series of papers III which he used lin-

ear stability analyzes to calculate and compare growth rates of two competing shear 

instabilities, symmetric and baroclinic (Stone] 966, 1970, 1971), He observed that the 

Richardson number (Ri 1 the square of the ratio of stratification to shear) determines an 

instability's dominance regime: the set of parameter values for which the instability's 

maximum growth rate exceeds that of all competing instabilities. For Ri > 0,95, Stone 

concluded that baroclinic instability, which converts base state potential energy to rolls 

of cross-wise vorticity, has maximal rates. However, for 0,25 < Ri < 0.95, the symmetric 

instability dominates, and base state kinetic energy, primarily, feeds the production of 

stream-wise vorticity rolls, The Hi criteria proved valid for both hydrostatic and tra­

ditional nonhydrostatic models, though instability gro\vth rates were found to depend 

upon the vertical velocity acceleration term (Dw/Dt) particularly for the symmetric 

instability. 

Although Stone (1971) first suggests that nonhydrostatic effects may be important 

for resolving symmetric instabilities, his nonhydrostatic model employs the traditional 

approximation, i.e. Coriolis terms containing the meridional component of the Earth's 

rotation vector are neglected. Hathaway et a1. (1979), Sun (1994) and Muet a1. (1998) 

go beyond the traditional approximation to include both components of the tilted ro­

tation vector in their studies of the nonhydrostatic symmetric instability and find that 

nonhydrostatic parameters alter the Ri criteria. However, their work assumes a hydro­

static base state which couples the static stratification to the vertical CorioUs term in 

the base state buoyancy field, rendering each contribution indistinguishable in the model 

parameter space. 

In this work, we return to linear stability theory and Stone (1971)'s framework but 

include full components of the Coriolis force in our analysis of nonhydrostatic insta-
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bilities. Our work extends the results of Hathaway et al. (1979), Sun (1994) and Mu 

et aL (1998) with the following important differences: 1) our base state decouples the 

":tii,tic stratification from the vertical Corio lis terms enabling a greater exploration of the 

parameter space, and 2) impacts to both symmetric and baroclinic instabilities 

are assessed. We find that nonhydrostatic terms, Dw/ Dt and the Coriolis terms due to 

modify dominance regimes and alter growth rates for both types of 

instabilities, Consequently, nonhydrostatic symmetric instabilities may occur at larger 

scales than previously indicated by hydrostatic and traditionalnonhydrostatic solutions. 

Our primary interest is in the Earth's oceans and possible implications that 

terms may have for modelling. vVe consider a physically relevant parame-

tel' regime defined by three locations in the Earth's seas: the of Biscay, the Southern 

Ocean and the Labrador Sea. Of the dimensional parameters which characterize these 

bodies of water, stratification is found to be the most significant determinant in assessing 

Lite importance of tilted rotation and Dw / Dt in a particular We find that parame-

Ler values for which nonhydrostatic effects are maximal are consistent with stratifications 

of the Labrador Sea and the Southern while the Bay of Biscay is, to good 

approximation, hydrostatic. In the Labrador Sea, growth rates for both instabilities are 

notably enhanced by nonhydrostatic effects. Results indicate that the high-latitudes are 

the oceanic regions most sensitive to fullnonhydrostatic terms. 

Finally, we use our perturbation solutions to calculate kinetic and potential mean to 

eddy conversion rates and, then, estimate mean and eddy energy production rates for 

haroclinic and symmetric instabilities. The purpose of these estimates is to understand 

[;he extent to which relative mean kinetic to potential energy loss rates become 

specific when tilted rotation and Dw/ Dt are included. This dependence is most prominent 

for Lhe symmetric instability. 
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2. Equations 

We use the following notation in this work: fluid velocity, u = (u, 'l.', w), represents zonal 

:r, meridional y, and vertical z components, respectively; (} = pi po is pressure normalized 

by a constant reference density; and the Earth's rotation vector at a reference lati-

tude <Po includes both meridional and vertical components 0 

(0, f)/2. We are interested in oceans with stable static stratifications and potentially 

destabilizing flow. The square of the Brunt-ViiisiiHi frequency, N 2 -g/ Podps(z)/ dz > 0, 

is proportional to gradients of the resting state density Ps (z), and is taken to be constant, 

while the buoyancy, b -g[p - Ps(z)lI Po, is proportional to density deviations from the 

resting state and gravitational acceleration g. 

Our analysis begins with the 3D inviscid and incompressible Boussinesq equations on 

a tilted f-plane: 

Du 
Dt + 20 X u V (} bk = 0 

Db 2 
-+wN =0 
Dt 

V·u 0 1) 

where D/Dt == 8/8t + u· V. '}'o facilitate comparison with Stone (1971), we adopt 

his scaling in (2.1): (x, f))Uo / f, z = zD, t i/ f, (u, v) v)Uo , wwfD, 

(} = eu;, and b = bU';j / D where tildes denote non-dimensional variables, D js the vertical 

depth, and Uo the maximum background zonal velocity. 

Di1 -). A-,- ae = 0 
-..c + Ro cot ,;/o'wul· 
Dt afi; 

Dv ae 
+i1 0 

af) 

2Dw 1 R;; - R;; cot 
ae -+ -b 0 (2.2) 
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Db R - 0 + i W = (2.3) 

V. ii 0 (2.4) 

It convenient to define a modified normalized pressure 8* = fj RiZ2/2 and buoyancy 

{/ - b + which from (2.3) is a Lagrangian invariant Db* / Dt O. The solutions to 

the clealed equations depend on three non-dimensional numbers: 

Ro 
Uo = 6;1 
fD 
F 

cot -

f 
(2.5) 

the Richardson number (Rd, the thermal Rossby number (Ro) or "baroc]jnicity" which 

is equivalent to the inverse of Stone (1971)'s aspect ratio (68 ), and the ratio of tilted 

[,0 vertical rotation (cotangent of the latitude). For the range of Richardson numbers 

invescigated in this work (Ri E [0.25,40]), the relative importance of Dw/ DE and tilted 

rotation terms diminishes with increasing baroclinicity. As Ro -+ 00, solutions converge 

to the hydrostatic limit. 

In the remainder of this work, variables are assumed non-dimensional (unless other-

wise and rel)reSellted without tildes and "modified" buoyancy and pressure are 

understood and represented without *. Subscripts of the independent variable will denote 

"differentiation by», for e.g. ztt ::::::: 8zt/8t. 

According to Sun (1994), stability properties and growth rates of the symmetric insta-

bUity are not influenced by northward rotation effects when the base flow is meridional 

because the Coriolis contribution is trivially zero. A similar conclusion clearly follows for 

the baroclinic instability. Thus, in what follows, we restrict our analysis to strictly zonal 

base flows. 
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Consider a zonal base flow U(z, y), modified buoyancy B(y, z) and pressure 8(y, z) in 

a horizontal plane of infinite extent bounded vertically by a flat bottom at z = 0 and 

rigid lid at z 1. By (2.2)-(2.4), base state variables satisfy the relations: 

from which we conclude 

cot 

(2.6) 

(2.7) 

(2.8) 

where Bz is an arbitrary function of z representative of the static ocean stability and 

may be equated to the square of the Brunt-Viiisiilii frequency, i.e. B RiZ. There are 

two important points to note concerning the base state. First, from (2.7), meridional 

gradients in the vertical Coriolis force modify the thermal wind relation. Although lat­

itude is fixed in this model, meridional gradients are possible in the base velocity and, 

certainly, more realistic. This additional complication will be the topic of future work 

and is not addressed here. The second point arises from (2.8). In general, base flow will 

modify the constant N2 resting stratification via z-gradients in the zonal velocity and 

the meridional component of the rotation vector. In the case of a zonal flow linear in 

cot ¢oU. The several authors who have looked at this problem 

(Hathaway et a1. (1979), Sun (1994) in (21a), Straneo et a1. (2000) in (3), Mu et a1. 

(1998)), combine the static stratification and the verticaJ Coriolis into a single linear 

function of z parameterized by a "base" Brunt-Viiisiilii frequency, i.e. B 

which also satisfies the thermal wind equation. We use the former result derived from 

(2.8) with B = RiZ which is more general, does not enforce a hydrostatic balance in the 
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base flow, and also applies to the more realistic case of meridionally confined or depen-

dent zonal vertical shear. As by decoupling the static stratification (Ri dependent) 

from the vertical Coriolis (Ro and cot¢o dependent), we can explore stability properties 

in a more complete parameter space. 

We are interested in disturbances about a base flow which may lead to rotational 

"hear instabilities. We adopt (1949)'s model of barocLinically unstable flow, U = Z, 

IvlJich is the simplest and was a starting point in the works of Stone and others 

(Hat.haway et al. (1979), Sun (1994), Mu et ai. (1998)). Let u U u' , w) = (Vi, Wi), 

b B + b' and () = e + ()! where perturbation variables (assumed small) are denoted 

with primes. Retaining only linear terms, (2.2)-(2.4) become 

, , '[ I R····· 1 A. 1 ' a' u t + zU x + w . + 0 cot '1'0 - v + x o 

, , , (}I 
V t +zvx + u + y o 

o 

b~ zb~+v'By+w'Bz 0 

V·u' 0 (2.9) 

Imposing a solution ansatz: 

Cu, Vi, Wi, ()', b') ex Re{(u(z), O(z), b(z)) exp{i(aot k:r+ >.y)} 

and letLing a(z) ao zk, (2.9) can be combined into a single, second-order, ordinary 

differential equation for vertical velocity 

0= (1 - a
2

) wzz + [2'i>'(1 

>.2(Ri + R;;2 cot 2 ¢o) (2.10) 
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subject to the boundary conditions: 1) w(z) = 0 at z = 0 and 1 and 2) Im(/\) = Im(k) = 0 

as required for finite solutions in an infinite horizontal domain. (2.10) reduces to Stone 

(1971)'s equation (2.25) with cot = 0 and further reduces to Eady (1949)'s equation 

(II) when Ro --t co. Note, the equivalent expression with Bz independent of Uz derived 

in Hathaway et al. (1979) eqn. 15) is missing the term 2kwz /a. 

2.1. Near the Symmetric Axis: k --t 0 

Several authors (Hathaway et al. (1979), Sun (1994), and Mu et al. (1998)) have studied 

the effects of a rotation axis tilted with respect to the vertical in connection with the 

symmetric instability. Most notably Hathaway et al. (1979) and Sun (1994) present results 

from a linear stability analysis given zonal base flow with constant vertical shear and full 

non-hydrostatic effects in the perturbation variables, however base vertical buoyancy 

gradients are restrieted to be hydrostatie, = R i . By relaxing this condition, we are 

free to use the model non-dimensional parameter space to establish hydrostatic regimes 

and clarify the connection between the baroclinieity and the effects of tilted rotation. 

Stone (1966) and (1971) established that symmetric instabilities occur for a o ~ 1 as 

k -> O. In this limit (2.10) reduces to 

2i), 'R ) + l ·0-+ cot¢o 
Ro 

),2 [ 2 2 - ~ RR +cot ¢o R3 t 0 
(2.11 ) 

with solution 

W exp {--=~:------;~-,--} sin(m7fz) for m 1, 2, 3, ... (2.12) 

Substituting (2.12) into (2.11) and defining == /\/ (m-rr) , a 0 satisfies 

o 
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2 1 Arn(R; - 1 - 2R;; cot 4>0) (2.13) 

I.e. 

(2.14) 

A necessary condition for instability may be found by noting that maximum growth 

rates occur for Am -) co. 

~{1 
2 

(2.15) 

which for < a implies 

(2.16) 

Tbis result reduces to Stone (1966)'s criteria Ri < 1 for purely vertical rotation, i.e. 

cot O. Sun (1994) finds a similar result for the unbounded domain based on the 

work ofOoyama (1965) and Hoskins (1978). His result may be converted into the criteria 

for instability: < 1 + cot which differs hy the factor two. Both (2.16) and the 

criteria of Sun (1994) are equivalent to Hoskins (1978) condition of negative 

base state Ertel potential vorticity, q dimensional variables): 

Jq (20 + V x . VB 

= (0, ·VB 

I 
o(M, B) I 0 .r:' b'l' = ( ) < lor l11sta 1 Ity o z,y 

(2.17) 

where Al U - Jy + Fz is the absolute momentum. In this form, the discrepancies 

between Stone (1966), Sun (1994) and (2.16) are made clear. Relative to Stone (1966), 
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the vertical CorioUs decreases z-gradients in M and increases z-gradients in B, and both 

contributions decrease q. The base state as defined in Sun (1994) includes only the former 

contribution. 

In the comparisons to follow, we use the term "model" to refer to (2.10) and its 

solutions in three parameter limits: 1) Ro --+ 00 defines the "hydrostatic model", 2) finit,e 

Ro and cot ¢o 0 defines the "traditional nonhydrostatic model", and 3) finite Ro and 

cot ¢o =I 0 defines the "fully nonhydrostatic model". Oceanic "numerical models" will be 

referred to as such to avoid confusion. 

In figure 1, the unstable growth rates of (2.15)(thick lines) are compared with the 

traditional nonhydrostatic results (Dw / Dt =I 0 but cot <Po 0) (thin lines) depicted in 

Stone (1971)'s fig. 2 and the hydrostatic approximation (thinnest lines in (b) only). We 

use Stone (1971)'s choice of Ri , 0.5, and sampling of Ro: 1) 70 (dotted), 2) 1 (dashed) 

and 3) 0.5 (dash-dotted), with one notable addition, the Ro 3 example (solid lines). In 

the traditional approximation (F = 0), symmetric perturbations of the nonhydrostatic 

model, in regions of negative q, lead to instabilities which grow slower than that of the 

hydrostatic model. In fact, the smaller the baroclinicity, and, thus, the greater the relative 

importance of Dw I Dt, the smaller the growth rate. When the traditional approximation 

is not made, unstable growth rates initially increase with decreasing baroclinicity, i.e. 

the Ro 3 example. Hence, for a given ~, the hydrostatic rate is not maximal. Rather 

growth rates peak at an intermediate value of baroclinicity, Ro rv 0(1). 

A second novel feature of the fully nonhydrostatic model is evident in figure 1. Stone 

(1971) observed that Dwl Dt has no effect on the largest wavelength at which the in­

stability grows. However, when full CorioUs terms are included, symmetric growth rates 

(O'i -Im(O')) are positive to larger scales than predicted by thc hydrostatic model. 

In figure l(b), wavenumber>' which scales with R;;l has been converted to wavelength, 
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27r RoA --1, normalized by vertical depth to elucidate the scale dependence_ In 

all cases, as decreases, symmetric instabilities become confined to smaller scales. 

This reduction in scale, however, is not as pronounced in the fully nonhydrostatic model 

for all baroclinicities compared, growth rates remain positive to maximum scales of 

L)j 0 1. 

2.2. Near the Baraclinic Axis: A -+ 0 

Sun (1994) finds that tilted rotation modifies linear perturbations about a zonal flow 

with constant z shear "if, and only if" perturbations are functions of y, and, hence, they 

do not pure baroclinic instabilities. Stone (1971), in his analysis of nonhydrostatic 

baroclinic instabilities, finds only weak effects (without tilted rotation). That Dw/Dt 

always decreases peak baroclinic growth rates and has no effect on stability criteria. 

However. we have some indications that these conclusions change in the presence 

of (.iJted rotation and a nonhydrostatic base state. As was demonstrated in the previous 

section, the '.LUi.e",'"", of the vertical CorioUs modify the base stratification, the base 

vorticity (q), and, consequently, the symmetric stability criteria. Since 

peak symmetric growth rates are about a factor of five greater than baroclinic rates in 

regions of q, we can expect a modified regime in Rd Ro parameter space for 

which baroclinic instabilities dominate. As Sun (1994) defined a base which 

does not decouple the static stratification from the vertical Corio lis (ex: a 

l'onLribution which will modify even pure baroclinic instabilities. 

Stone (1966) and (1971) established that maxi mum growth rates for baroclinic in-

stabilities occur for k ~ 0(1) and ao kc as A -+ O. In the baroclinic plane, 10) 

becomes 

o (1 + 7U (2.18) 
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which reduces to Stone (1971)'s nonhydrostatic result (eqn. 3.2) with cot¢o = O. Al-

though we solve this equation numerically using a collocation method and present the 

results in the figures of this work, it is illuminating to compare Stone (1971)'s approxi-

mate solution for unstable growth under nonhydrostatic conditions with the analogous 

expression including tilted rotation. Let w = Wo + k2Wl + ... and C Cot k2Cl -j ... into 

(2.18) and retain the first t.wo terms: 

(2.19) 

where 

i ( Cl =±---" I+R 
15V3 z 

The signature of the nonhydrostatic base buoyancy profile appears in the O(k3) term, i.e. 

Bz Ri R;;l cot¢o, which reduces to Hi as in Stone (1971) without tilted rotation or 

R~ for a base state as defined in Sun (1994). The important point here is that the "weak" 

nonhydrostatic effects Stone refers to are of O(k5) and negative and ahvays decrease 

growth rates, whereas R;;l is the same order in k as Ri and positive which decreases the 

stabilizing effect of the stratification and increases growth rates. 

In figure 2, numerical solutions of (Ji = -Im(c)k (thick lines), where c is the eigenvalue 

of (2.18), are compared with the traditional nonhydrostatic growth rates (thin lines, also 

numerically derived) whose approximate solutions are plotted in Stone (1971 )'s fig. 1. 

The hydrostatic results (thinnest lines in (b)) are plotted but converge with the Ro 

70 dotted line in (a). Again, the choice of Ri 2 and Ro are Stone's: 1) Ro 70 

(dotted), 2) Ro 0.1 (dashed), and 3) Ro 0.03 (dash-dotted), though we have added 

Ro = 1 (solid). In the traditional approximation (F 0), along-flow perturbations of 
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baroclinically unstable flows in the nonhydrostatic model grow slower than that of the 

modeL As with the symmetric perturbations, the smaller the baroclinicity, 

and, thus, the greater the relative importance of Dw I Dt, the smaller the growth rate. 

'vV' hen the traditional approximation is not unstable growth rates initially increase 

with decreasing baroclinicity and fixed ~. This is particularly evident in the Ro = 1 and 

0.1 curves. As in the symmetric result, for a given , the hydrostatic rate is not maximal. 

In growth rates appear to peak at similar values of baroclinicity, Ro rv 0(1). This 

:nteresting since baroclinic growth rates are much less sensitive to Ro than symmetric 

rates. 

In 2(b), growth rates are plotted CkF,UH'''C the zonal wavelength normalized the 

vertical depth, Lkl D, in order to remove the Ro dependence of the zonal wavenumber, k, 

aud clarify the scale dependence of maximum growth rates. In contrast to the symmetric 

instability, baroclinic growth is confined to large scale.'! and maximum rates at 

defined wavenumbers. In general, for all models, as the relative importance of 

DILl Dt zonal wavelengths of maximum growth move to smaller horizontal 

,"cales. Wavelengths derived from the nonhydrostatic solutions with tilted rotation follow 

very closely the traditional nonhydrostatic results and deviate from the hydrostatic limit 

only at very small baroclinicities: Ro ~ 0(10-2 ), when nonhydrostatic growth rates 

become smalL 

3. Implications for the Ocean 

The results of the previous section and, in particular, the comparisons with Stone 

indicate that tilted rotation coupled with acceleration of vertical velocity enhances 

growth rates of both instabilities and extends symmetric instabilities to larger scales for 

values of Ro ~ 0(1), Ri ~ 0(1) and cPo 45°. We now consider the following 
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questions: 1) do these parameter values appropriately characterize the physical ocean? 

2) Can we more fully explore the relevant physical parameter space? 

Of the dimensional parameters which characterize the physical ocean, the Brunt­

Viiisiilii frequency (N) and the latitude (CPo) are the most influential in determining 

the importance of tilted rotation. And, as we shall see, of the two, N has the most 

significance. 

We consider three oceanic regions for their ranging typical deep water strati fica-

tions: the Bay of Biscay (BB) at 44°~48°N, the Southern Ocean (SO) at ?: 60 0 S, and 

the Labrador Sea (LS) at 55°-GO°l\". van Aken et al. (2007) measured mean Brunt­

Viiisalii frequencies in the slope region of the Bay of Biscay of <'V 3.1 3.5 x 1O~3 and 

low gradient Rjchardson numbers well below 1. The Southern Ocean, according to Hey­

wood et al. (2002) is generally weakly stratified, with low values of Brunt- Viii siil a frequency 

(5.4 ± 0.2) x 3-1, and the Labrador Sea region (GOON), according to Lasier (1980), 

is characterized by a deep weakly stratified region of 2.1 x 10 4 3~1. 

Figure 3 is a comparison of growth rates for the above three stratifications typical of 

LS (L\), SO (0), and BB (D) at three latitudes: 30°,45°, and 60° indicated by decreasing 

thickness. In the top two plots ( ( a) and (b)), tilted rotation effects are included along 

with Dw/ Dt, while the bottom two ((c) and (d)) are from solutions of the traditional 

nonhydrostatic equations (cot 0). The hydrostatic curves in (a)~(d) are indicated 

by + (visible in (b)) which overlap the growth rate curves forBB in Ca), , and (d). 

Baroclinic instabilities (Ri 2) are on the left and symmetric (Ri 0.5) on the right. 

The baroclinic results are the more straight forward. For the full range of latitudes 

described, nonhydrostatic effects are most evident at the weakest stratifications (LS) 

where they modify peak growth rates between ~ 7-16% of the hydrostatic rate. The 

high stratification of BB establishes the region as "hydrostatic" independent of latitude, 
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Simply put, for the baroclinic instability, changes in stratification account for greater 

variations in non-dimensional grmvth rates than occur for changes in latitude. 

For the symmetric instability with tilted rotation (b), all three regions show at least 

modest deviations from the hydrostatic result (BB has a maximum deviation of ~ 5%). In 

the regions of weak stratifications (LS and SO), tilted rotation and Dw/ Dt can account 

for a 20-30% in peak hydrostatic growth rate, though the latitude dependence 

is also significant. The tilted f-plane approximation limits our ability to fully explore 

the latitudinal dependence of these results, particularly near the equator where the ,6 

cEred becomes important. However, we conclude that for E [30 0
, 600

] weak static 

cltratification is a very important indicator of a regions sensitivity to tilted rotation and 

w-acceleratioll and observe that weakly stratified regions tend to be high-latitude. 

In the remainder of this work, we set tPo = 600 rather than 450
, which is more appro­

for the weak N regions, LS and SO, and will provide a more accurate estimate of 

l1onhydrostatic effects where they are more likely to occur. 

Figure 4 is an analogue of the Stone figures (1 and 2) with physically relevant values 

of flo (see figure caption) evaluated from Ri 2 (baroclinic) and 0.5 (symmetric), 

(Po ~c 60°, and N from LS (dash-dotted), SO (dashed) and BB (solid). The oceanic 

va.Jcles of Ro: a) 1 (LS) to 20 (BB) for baroclinic instabilities, and b) 2 (LS) to 30 (BB) for 

symmetric instabilities, are subsets of the ranges plotted in 1 and 2 and continue 

[;0 illustrate many of the important features of tilted rotation and Dw/ Dt on growth 

rates and scale, though with less pronounced effect than observed at tPo = 45 0
• That 

is, for both instabilities, hydrostatic growth rates for a given are not maximal, and 

,mstable growth rates initially increase as baroclinicity decreases from the hydrostatic 

Emit. Most significantly, the regime Ro "" 0(1), for which enhancement of growth rates 

due to nonhydrostatic terms is most important, is physically relevant. 
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In figures 5 and 6, maximum growth rates are presented as solid contours in the space 

of Ro and R,. Thick solid lines are from solutions of the fully nonhydrostatic equations, 

(2.10) and (2.18), while the thin lines are eigenvalues of the traditional nonhydrostatic 

equations (cot <Po = 0). Since symmetric instabilities are bounded by a necessary condi­

tion of negative q, we have included lines of zero q: 1) the dotted line at Ri = 1 as stated 

in Stone (1966) and appropriate for the traditional nonhydrostatic solutions, 2) the thick 

dash-dotted line defined in (2.16), and, in figure 5 only, 3) the thin dash-dotted line of 

Sun (1994). Also included, as physical references, are three dashed lines of constant N 

representative of the sample locations: the Bay of (BB), Southern Ocean (SO) 

and Labrador Sea (LS). 

Symmetric maximum growth rates exceed maximum baroclinic rates in regions of 

negative q except in a small neighborhood of the boundary. Stone (1966), for example, 

fbds baroclinic rates dominate for Ri > 0.95 when rotation is strictly verticaL Tilted 

rotation increases this boundary by at least 5% for baroclinicities of < 20, and both SO 

and LS fall in this range. For LS, the negative q boundary nearly doubles, and baroclinic 

instabilities are not preferred until Ri reaches almost 2. 

In the large Ro limit fixed f), both Stone (1971)'s results (thin lines) and the fully 

non hydrostatic rates (thick lines) converge to the hydrostatic values and become inde· 

pendent of the baroclinicity. This hydrostatic limit also depends on ~, Le. convergence 

occurs for smaller values of Ro at larger Ri . Thus, with or without tilted rotation, baro­

clinic instabilities are hydrostatic for a greater range of stratifications than symmetric 

instabilities. 

As Ro --> 1 for fixed Ri E [0.3,40]' nonhydrostatic terms become more important. 

Stone (1971) observed that Dw I Dt always decreases growth rates for both instabilities 

and his result is verified by the thin contours of figures 5 and 6. In our extension of 
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Stone's analysis, we find the new result that Dw/ Dt together with Coriolis terms from 

the meridional component of rotation initially enhance instability growth rates before 

which is indicated by a bulge in the thick contours of the same 

Instability growth rate curves also provide information about critical wavenumbers 

consequently, length scale. For the baroclinic instability, growth rate curves versus 

wavelYJmber have a definite peak, and modes with highest growth rates will dominate 

the instability evolution. Thus, the critical wavenumber, ke, is the wavenumber at peak 

growth rate. As observed in the previous inclusion of tilted rotation in a nonhy-

drostatic model makes only minor modifications to ke a.t intermediate values of Ro. 

For the symmetric instability, growth rates increase sharply with A beginning at some 

lIlinimum value then level at maximum by A;:::;:; 50. Inclusion of Dw/ Dt and cot <Po does 

not alter this behavior, and choosing the wavelength of maximum growth does not provide 

new information. However, what is new is that the minimum wavenumber, Le. largest 

at which the instability occurs is modified by tilted rotation (figure 4), and we can 

this behavior by choosing the minimum wavenumber as Ae. In any case, we are 

interested in trends in the horizontal length scale of the instability as modified by full 

l1onhydrostatic effects and remark that one needs to be cautious before extrapolating 

conclusions about length scale from a linear stability prediction to the full nonlinear 

slability problem. 

The contours of figure 7 were derived by converting Ac into the critical wavelength, 

= 27r D RoX;; 1, and normalizing by the ocean depth, D. Thick lines are contours for 

which Dw/ Dt and tilted rotation are included, while thin lines were evaluated from 

the traditional nonhydrostatic model. Regimes of negative q (marked "unstable") are 

bounded by the dotted vertical line at Ri 1, valid for the hydrostatic and traditional 

nOl1hydrostatic models, and the thick dash-dotted line defined by (2.16) and appropriate 
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for the nonhydrostatic equations with tilted rotation. Clearly, decreasing Ro at fixed Hi, 

corresponds to decreasing horizontal length scale and, as previously stated, increasing 

the relative importance of nonhydrostatic terms. The reduction in scale of symmetric 

instabilities with decreasing Ro is not as pronounced in the fully nonhydrostatic model. 

For example, at Hi 0.9 and stratifications typical of LS and SO, the hydrostatic 

and traditional nonhydrostatic models predict a horizontal wavelength of D anel 3D, 

respectively, while the nonhydrostatic model with tilted rotation predicts 3D and 6D, 

respectively. 

If we interpret Lei D as the inverse aspect ratio, 6- 1, and note that Ro = 6- 1U /(IoLe) 

8-1 R~, where we have used the notation superscript * to differentiate the Rossby number 

(R~) from the baroclinicity (thermal Rossby number, Ro ), then we obtain figure 8. Each 

solid (Dw/dt i 0 and cot¢o i 0) and dashed (Dw/Dt i 0 and cot¢o = 0) curve in 

figure 8 represents the evolution of an unstable mode in the space of 8 and at constant 

Hi as the baroclinicity, Ro, changes. Lines increase in thickness with increasing Ri. Small 

Ro solutions for the full equations collapse to a line at 8 ~ 0(1) and R~ ~ 0(0.1). In 

the hydrostatic limit, fixed Ri corresponds to fixed R~ and increasing Ro to decreasing 

8. That the instability time scale is fixed by the R~ (Rt) while the "nonhydrostatic" 

parameter determines the relative scale of horizontal to vertical features. In a hydrostatic 

model, or, in the case of symmetric modes, a nonhydrostatic model without tilted rota­

tion, instabilities retain these dependencies for all Ro described. This is not the case in 

a full nonhydrostatic model. The vertical Coriolis (for positive Uz ), at small Ro , acts to 

effectively weaken N changing the stratification time scale and the Rossby number. As 

Ri approaches and exceeds 1, the remaining symmetric modes are fundamentally nonhy-

drostatic, vanishing with increasing baroclinicity. The dash-dotted included in the 
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plot for a reference, has a -1 slope which parallels the 1 line and the collapsed 

modes at small Ro. At higher R i , '-U''''Hi'''C;'~ in baroclinicity primarily alter R~ and not 8. 

3.1. Energetics 

In the previous sections, we have demonstrated that a tilted rotation axis in a nonhy-

drostatic model expands the unstable regime of the symmetric instability and decreases 

tbe dominance regime of the baroclinic instability. We have also demonstrated an Ro de-

pendence in horizontal length scale for symmetric instabilities and growth rates for both 

types of shear instabilities. However, it remains unclear if and how these features modify 

the driving mechanisms of the instabilities and whether an dependence is evident in 

mean to eddy energy production and conversion rates. 

In dependent variables, r;, have a mean and fluctuating component, i.e. T/ = 

Y}rl', where we define zonal averages by 

r; 
1 jL/2 
L -L/2 

r;da: (3.1) 

An equation for the production rate of zonal mean kinetic energy, KM IT . IT/2, is 

found by the dot product of the averaged momentum equation (2.2): 

+wB 

• V'Uk - V'. ITe+- wB 

-V' . (u'u' z )+ It'W' 

where D / Dt {) / at + IT . V' and subscripts i, .1, k correspond to x, y, z components, 

respectively. The equation for the zonally averaged eddy kinetic energy, K E = [( It')2 + 

+ Ro-2 (w')2]/2, is similarly derived from the momentum perturbation equations 

(2.9). Taking u' . Du l
/ Dt and averaging: 
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(JKE -- -- --
= -u"u" VUk - V· u'O' + b'w' 

+ (3.3) 

The equation for the production rate of eddy potential energy, = b'b' /(2Bz ), is found 

by mUltiplying the perturbation buoyancy equation by b' and averaging: 

Finally, zonal mean available potential energy PNJ = P - PE where P -zB is 

DP.IvJ 
= V . (zu'b') + (3.5) 

Dt 

(3.2)~(3.5) together with the linear approximations to the perturbation variables eval-

uated in section 2 provide a second order estimate of the production/loss rate of the 

base state and eddy energies. From the ahove equations, we define the conversion rates 

C(A. B) where A. B indicates a direct transfer of energy from source A. to source 

B at the rate C: 

C(K.1v1 -+ P.vJ) = 0 (3.6) 

while the fluxes are defined as 

peKE) u'O' 

P(PE) 0 
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F(KM) 

(3.7) 

3.2. Globally Averaged Conversions and Production Rates 

Modes tending to symmetric instability have y and z dependencies and a zonal av-

crage is trivially defined u'v' = . For each baroclinic mode, we have u/ 

lle{D.(z, t) exp(ikx)} and v' Re{ v(z, t) exp(ikx)}, and a zonal average may be defined 

by 

l
~k w 

Re{uexp(ikx)}Re{iiexp(ikx)}dx = -Re{71v*} 
o' k 

w 
= kexp(2(1,t)Re{u(z)[W(z)n (3.8) 

where (Ii = -Im((I). However, in both cases the global average is simply 

< 
Ak 11 11[/).. > = exp( -2(1it) u'v'dydz 

o -1[ /).. 

11 Re{u[iv]*}dz. (3.9) 

Unstable modes have three nonzero conversion globally integrated: 

> = < w'b' > 

(3.10) 

The integrated fluxes for rigid top and bottom boundaries are zero. 

For baroclinic instabilities, the positive < C(PM PE) >= Co continues to be the 

highest conversion rate regardless of baroclinicity (Stone (1972)) and R i . Tilted rotation 

increases the relative rate C;-l < C(PE K E ) > by only about 5% compared to the 

traditional nonhydrostatic result under conditions of small N (LS) where these effects are 

most prominent. In general, the "traditional" baroclinic energy 
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applies equally well to hydrostatic and nonhydrostatic models with or without tilted 

rotation. 

Symmetric instabili ties are, however, nonhydrostatic for a much larger range of Ro than 

baroclinic instabilities, and the modifications due to tilted rotation are more pronounced 

and challenge the traditional interpretation of the energy cycle, In the hydrostatic limit, 

global energy conversions are dominated by < C(KE -co < 0, That 

ba.qe kinetic energy is the primary source driving the production of eddy kinetic energy 

for the symmetric instability (Eliassen and Kleinschmidt (1957)). 

Total energy production rates normalized by Co are plotted in figure 9 versus Ro for (a) 

= O,g and (b) Ri 0.5. Thick lines were derived from the nonhydrostatic model with 

tilted rotation, while thin lines are results which include Dw/ Dt but assume a vertical 

rotation axis. Mean kinetic (horizontal dotted line) and mean potential rates (solid lines) 

are negati ve, i.e. which is expected as the base state drives the instability. The 

eddy production rates are indicated by dashed lines for the eddy potential energy and 

dash-dotted lines for the eddy kinetic energy. Vertical dotted lines mark values of Ro 

consistent with constant N typical of LS, SO and BE. 

Tbe energy production rates for both nonhydrostatic models become independent of 

Ro and, thus, equivalent to the hydrostatic result, at base N near that of BE. In this 

limit, the magnitude of KM loss rates exceed that of PM by an order of magnitude. In 

nonhydrostatic solutions with tilted rotation, the relative conversion C;l < C(PM -. 

PE) > begins to playa larger role for Ro ~ that of SO. For botb nonhydrostatic models 

we see an increased role for the PM in driving the instability, however, without tilted 

rotation DPM / Dt remains secondary to DKM / Dt in our oceanic parameter range. From 

figure 9 this is not the case when full nonhydrostatic effects are included. At values of 

in the vicinity of LS, IDPM / Dtl exceeds ID KM / Dtl and PM becomes the dominant 
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energy sonrce for the instability. This transition coincides with a sharp relative increase 

in PE production not evident in the traditional nonhydrostatic results. 

4. Conclusions 

In this work, we have extended Stone's pioneering study of the symmetric and baro­

clinic instabilities to include a non-vertical axis of rotation. From a linear stability analy­

we have shown that tilted rotation modifies the base state fields from the traditional 

nonhydrostatic model in two ways: 1) increasing the absolute momentum vertical gra­

dients and 2) decreasing the modified buoyancy vertical gradients. Both modifications 

decrea.se base Ertel potential vorticity (q), push the symmetric boundary of existence to 

Hi'S, and, thus, impact dominance regimes for symmetric and baroclinic instabil-

ities. Since growth rates for instabilities are about a factor of 5 than 

baroclinic rates in .v,,"."~iHJ of negative q, except in a small neighborhood of the boundary, 

11 nonzero meridional rotation component together with a zonal z-shear enhances 

the dominance regime at the expense of the baroclinic regime. In of 

weak stratification like the Labrador Sea, ,",Vlnn,pl.r1 growth rates exceed that of baro-

clinic modes for Hi of almost 2, whereas the traditional nonhydrostatic result predicts a 

Lransition to baroclinic dominance at Hi = 0.95. 

Our work is consistent with and supports that of Hathaway et al. (1979), Sun (1994) 

aJld Mu et at. (1998) who include tilted rotation in their of the symmetric 

ins[,ability but do not decouple the static stratification from the vertical Corio lis and, 

do not explore the effects of modifications to the vertical gradients of the 

buoyancy field. 

Contrary to the conclusions of Stone (1971), growth rates for symmetric and baroclinic 

CLC/,LHC1CCl at fixed latitude and Hi are not maximal in the hydrostatic limit. Rather, 
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growth rates peak at intermediate values Ro ~ 0(1) in the nonhydrostatic equations with 

tilted rotation. This is also the regime for which deviations from the hydrostatic result 

are most important, since at very small deviations from hydrostatic may be large, 

but growth rates are negligible. Significantly, the 0(1) parameter regime is physically 

relevant and consistent with oceanic measurements of stratifications in the Labrador Sea 

and Southern Ocean for Ri < 20. 

Symmetric instabilities are confined to smaller horizontal scales than baroclinic insta­

bilities, and these scales are bounded by some ma.,ximum wavelength which varies with 

Ro. Tilted rotation maintains these instabilities to larger horizontal i.e. greater 

maximum wavelengths, which is potentially important for global scale numerical mod­

elling and regional numerical models which resolve scales approximately an order of 

magnitude smaller than that of baroclinic instabilities. For baroclinic instabilities, es­

timates of length scale changes due to the hydrostatic and traditional approximations 

are minor. Our present stability analysis provides useful information about trends and 

relative length scales but not accurate estimates which depend on nonlinear effects. In 

future work, we will investigate the role of tilted rotation and its impact on spatial scale 

in a nonlinear numerical model of the 3D nonhydrostatic Boussinesq equations. 

\Ve have also applied our results to parameter regimes relevant to the physical ocean. 

Stratification is identified as an important parameter in ,"",""OOWll-', a region's sensitivity 

to nonhydrostatic effects, at least in our limited latitude range (30 0 to 600
). The weak 

stratifications of the Southern Ocean, the Labrador Sea and high-latitudes in general 

make these regions most sensitive to the non hydrostatic effects described in this work. We 

suggest that implementation of the fully nonhydrostatic equations should be considered 

for high-latitude Ilumerical modelling. 

Finally, we have shown that tilted rotation modifies the energy cycle of symmetric 
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instabilities. Our analysis compares relative changes in the energy conversion rates be­

tween base and eddy flow and total energy production/loss rates. The hydrostatic pict.ure 

of symmetric eddy rolls driven by base state kinetic energy is not accurate in parame­

t.er regimes appropriate for the Labrador Sea where tilted rotation and nonhydrostatic 

dfeds are important. Rather, the base stat.e potential energy, the primary source in 

baroclinic instabilities, contributes comparably potentially '--A"",.U%H", that of base state 

kinetic energy in symmetric eddies. 
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FiGURE 1. A comparison of growth rates for the symmetric instability between the fully nonhy­
dl'Ostatic model (thick lines), Stone (1971)'s fig. 2 nonhydrostatic results with F = 0 (thin lines), 
and the hydrostatic results (thinnest lines in (b) only). In (a), growth rates for four baroclinic­
ities are plotted versus the non-dimensional wavenumber (A) which in dimensional units scales 
with Ro. We have added an intermediary value of the bmoclinicity, Ro 3, for comparison to 
highlight a novel feature of the nonhydrostatic model with tilted rotation: symmetric growth 
rates do not peak in the hydrostatic limit but, rather, at values of Ro r-J O(l). In all hydro­
"taLic lines converge with the Ro = 70 (doHed) nonhydrostatic solutions. In (b), growth rates 
1C1I' the same four baroclinicities are plotted against wavelength, L;.jD = 21rRoA·- t , normalized 

the vertical depth to remove the implicit Ro dependence and clarifY the scale dependence. 
\Vhen tilted rotation is included in a nonhydrostatic model, the cut-off maximum meridional 
wavelength of the symmetric instability moves to scales. Maximum wavelengths of the 
tradi(.ional nonhydrostatic and hydrostatic solutions are identical. Latitude is fixed at 45°. 
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FIGURE 2. A comparison of baroclinic growth rates from (2.18) which include nonhydrostatie 
effects and tilted rotation (thiek lines) and Stone (1971)'s fig. 1 whieh includes Dw/Dt but 
lk"Sumes F = 0 (thin lines) with Ho = 70 (clotted), 0.1 (dashed), and 0.03 (dash-dotted). We 
have added Ho 1 (solid) to illustrate two novel features of the nonhydrostatic equations with 
tilted rotation: 1) baroclinic growth is most sensitive to values of Ro ~ 0(1) where rates become 
maximal, and 2) as Ro decreases from the hydrostatic limit at fixed R i , grov..1:h rates initially 
inerease exceeding that of the hydrostatic modeL Since the wavenumber k scales with Ro, we 
have also plotted, in (b), growth rates versus wavelength, Lk/ D = 21f Hok- 1

, normalized by the 
vertical depth. Thinnest lines, evident in (b) only, are solutions ofthe hydrostatic model. In (a), 
all hydrostatic lines converge to the Ho = 70 (dotted line). Latitude is 45°. 
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FIGCIU; 3. Baroclinic (Ri = 2 (a) and (c)) and symmetric (Ri = 0.5 (b) and (d)) growth rates 
versus wavenumbers for a range of latitudes (in order of decreasing thickness): 4Jo 30".45", and 

and stratificat.ions typical of the following locations: Labrador Sea (D), Southern Ocean 
and Bay of Biscay (D). The hydrostatic results in (a)--(d) are indicated by + (visible in (b) 
and are coincident with the filled 0 of the BB growth rate curves for (a), (c), and (d). Upper 
plots and (b)) are from nonhydrostatic equations with tilt.ed rotation, while lower plots ((c) 

are from the traditional nonhydrostatic equations which include Dw/ Dt but assume 
vertical rotation. For the bal'oclinic plots on the left, changes in stratification account 

for great.er variations in non-dimensional growth rates than occur for changes in latitude,' For 
bot h instabilities, the regions most sensitive to tilted rotation and Dw /Dt are those with weak 
static stratifications even at latitudes of 60°. 
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FIGURE 4. (a) Baroclinic (Ri 2) and (b) symmetric 0.5) growth rates at 60° lati~ 
tude wit.h stratifications typical of the following locations: Labrador Sea (dasb-dot), Southern 
Ocean (dash), and Bay of Biscay (solid). Baroclinicities for the regions are as follows: BB (in 
(a) Ro 20 and (b) Ro 30)), SO (in (a) Ro = 3 and (b) Ro = 6), and LS (in (a) Ro 1 and 
(b) Ro 2). Thick lines include tilted rotation and Dw/Dt, while thin lines include Dw/Dt 
but assume a locally vertical rotation vector. The hydrostatic result is indicated by +. Inclusion 
of full nonhydrostatic terms increases growth rates for all three regions though at high-latitude 
the effect is less pronounced t.han shown in figures 1 and 2 at cPo 45°. The key baroclinici­
ties, Ro rv 0(1), for which enhancement. of growth rates due to nonhydrostatic terms is most 
significant, are physically relevant and ,veIl characterized by the above three oceanic regions. 
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FICURE; 5. Contours of maximum growth rate for the symmetric instability at <Po = 60°. Thick 
solid lines are solutions which include tilted rotation and Dw/ Dt, and thin solid lines are from 
traditional nonbydrostatic equations (Dw/ Dt =F ° and cot. 4>0 = 0). Dashed lines are of constant 
lY typical of the Bay of Biscay (BB), Southern Ocean (SO) and Labrador Sea (LS). The dotted 
line at Ri = 1 marks the boundary for existence of the symmetric instability according to Stone 

's necessary condition when cot 4>0 0, the thick dash-dotted line defines the existence 
according to (2.16), and the thin dash-dotted line marks the instability criteria of 
. Symmetric maximum growth rates exceed maximum baroclinic rates in regions of 

q except in a small neighborhood of the boundary. This boundary, for LS, reaches 
Hi 2 with tilted rotation and Dw/Dt, nearly double that of the traditional non hydrostatic 
and hydrostatic results. 
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FIGURE 6. Contours of maximum growth rate for the baroclinic instability at <Po 60 0
• Thick 

solid lines are solutions which include tilted rotation and Dw/ Dt, and thin solid lines are from 
traditional nonhydrostatic equations (Dw/ Dtf 0 and cot <Po 0). Dashed lines are of constant 
N typical of the Bay of Biscay (BB), Southern Ocean (SO) and Labrador Sea Regimes 
of negative q, for which the symmetric instability occurs and dominates except very near the 
boundary, are indicated by the parameter space to the left of the thick dash~dotted line, when 
full nonhydrostatic effects are included, and by the vertical axis Ri 1, when either a hydro­
static model or Stone (1971) 's traditional nonhydrostatic model is assumed. Inclusion of tilted 
rotation in the nonhydrostatic model reduces the parameter space for which baroclinic instabil­
ities dominate, and this effect is most pronounced for stratifications typical of the high-latitude 
regions. For further details see figure 5 
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FIGURE 7. Contours of log(Lc / D) (largest wavelength, 27fRoA-;\ for which solutions have un­
stable growth rates), in the parameter space of R" and Ro. Thick lines include non hydrostatic 
effects with tilted rotation, and thin lines include Dw / Dt as in Stone (1971) but with F = 0 and 
are identical to the hydrostatic result, Dashed lines mark constant N typical of LS (Labrador 

, SO (Southern Ocean) and BB (Bay of Biscay). Regimes of negative q (marked "unstable") 
are bounded by the dotted line at Ri 1 obtained from Stone (1971)'s necessary condition 
for instability when F 0 and the thick dash-dotted line obtained from the existence criteria 
of Decreasing Ro at fixed R. increases the relative importance of nonhydrostatic terms 

decreases the horizontal scale of the instability for all models plotted. However, this 
reduction in scale is less pronounced in the fully nonhydrostatic modeL and maximum length 
scales are double and triple that of the hydrostatic model for SO and LS near Ri = 1. 
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FIGURE 8. Lines of constant Ri at ¢ = 60° in the space of aspect ratio, b = D / Lc , and Rossby 
number, R~ U /(foL,J, where for the symmetric perturbations, Lc 21r DRoA;;l is the largest 
wavelength unstable to symmetric rolls and for the baroclinic instability, Lc = 21rDRok;;1 is 
the wavelength of maximum baroclinic growth rates. For both instabilities, lines increase in 
thickness with increasing Ri. Dashed lines are from solutions of the traditional non hydrostatic 
equations: 1) for symmetric, Ri [0.25,0.991 and 2) for baroclinic, Ri E [1,2J. In the case of 
symmetric modes, the vertical lines also align with the hydrostatic modes which indicates that 
increasing/decreasing Ro for solutions without tilted rotation corresponds directly to decreas­
ing/increasing b. Hydrostatic baroclinic modes (dash-dotted lines) are also vertical at constant 
Ri and the previous conclusion holds. This is not the case in the fully nonhydrostatic model. 
Solid lines include both tilted rotation and Dw/ Dt: 1) for symmetric, Ri E [0.25,1.71 and 2) for 
baroclinic, Ri E [1, 2]. Although these modes converge with the hydrostatic for laTge Ro (small 
0), at small Ro ) modes collapse to a line at 0 rv 0(1) and R~ rv 0(0.1). The dotted line is in­
cluded for reference and slopes with -l. Above Ri = 1 (the "traditional" symmetric boundary), 
the remaining symmetric modes are fundamentally non hydrostatic. Increasing/decreasing baro­
clinicity at fixed Ri corresponds primarily to increasing/decreasing R~ with minimal changes in 
b. 
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FIGtiRE 9. Total energy production rates versus baroclinicity for (a) Rt = 0.9 and (b) 
Ri = 0.5. Thick lines are from solutions with Dw/ Dt and tilted rotation while thin lines are 
the traditional nonhydrostatic results (Dw/dt f 0 and F 0). All rates are normalized by 
Co = [C(KE -> K.'vi )1. Vertical dotted lines indicate constant stratifications typical of LS, SO 
an~ BB. Rates for models with and without tilted rotation become independent 
of Rn ,md, thus, to the hydrostatic result, at ba.se N near that of BB. As Ro decreases, 
both models show an increased role for PM in driving the instability, however, only when tilted 
roial.ioll is included does [DPM/Dtl exceeds IDKAf/Dtl for the above physical range of Ro. 
Latitude is 60°. 


