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Abstract 

There are numerous physical constructs in which heterogeneities are randomly dis­
tributed. The quantity of interest in these materials is the ensemble average of the 
flux, or the average of the flux over all possible material 'realizations.' Equations for 
the ensemble average were developed twenty years ago by Levermore, Pomraning 
and Vanderhaegen and, for binary statistical mixtures, consist of a coupled set of 
equations. Iterative solution methods are slow to converge, however, as one or both 
materials approaches the diffusion and/or atomic mix limits. 

A three-part acceleration scheme is devised to expedite convergence. The itera­
tion is divided into a series of 'inner' material and source iterations to attenuate 
the diffusion and atomic mix error modes separately. Atomic mix synthetic accel­
eration is applied to the inner material iteration and 82 synthetic acceleration to 
the inner source iterations to offset the cost of doing s(:vcral inner iterations per 
outer iteration. Finally, a Krylov iterative solver is wrapped around each iteration, 
inner and outer, to further expedite convergence. A spectral analysis is conducted 
and iteration counts and computing cost for the new two-step scheme are compared 
against those for a simple one-step iteration, to which a Krylov iterative method 
can also be applied. 
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1 INTRODUCTION 

The development of transport methods for stochastic mixtures is necessary for 
the numerous physical constructs in which heterogeneities are not distributed 
in predictable and ordered ways, but are indeed random. These include the 
distribution of the pebbles and the structure of the pebbles themselves in 
pebble bed reactors, the composition of concrete used in reactor shielding, 
tissue variability in radiation therapy, and cloud composition for global climate 
modeling. It is useful to describe the composition of stochastic media in a 
statistical sense i.e., the of individual 'chunks' of material are described 
by an appropriate probability density function. Since the material composition 
is known only statistically, the flux anu other physical quantities are described 
in terms of an ensemble average, or the average over all possible 'realizations' 
of the materiaL 

The ensemble average is easily found by generating large numbers of realiza­
tions using the statistical characterization, conducting transport calculations 
for each realization, and averaging the result over all realizations. \Vhile these 
'numerical experiments' are straightforward and yield exact results, within 
statistical error, they are extremely time consuming. It is desirable instead to 
ensemble average the transport equation directly, thereby yielding an equa­
tion or systcm of equations for the ensemble average of the flux. One such 
description was derived twenty years ago by Levermore, Pomraning and Van­
derhaegen for binary, or two-state, mixtures [4,15]. Their formalism is widely 
used, although it is not exact in time-dependent and scattering regimes since it 
assumes that the transport process is lVlarkovian in nature, which is true only 
in time-independent, purely absorbing materials. However, the method has 
been shown to be robust in one-dimension when scattering is present [2,12]. 
The model employs the Levermore-Pomraning (LP) closure and consists of 
two coupled equations for the conditional ensemble average of the flux in the 
two materials present. 

\Vhile solution of the coupled equations is considerably more efficient than 
conducting transport calculations for numerous material realizations, conver­
genee ean still be slow in diffusive and/or atomieally mixed regimes. Recently, 
two distinct acceleration techniques have been devised to remedy different as­
pects of this problem. The is a coupled diffusion synthetic acceleration 
(DSA) scheme, which was designed to accelerate iterative solution in opti­
cally thick, diffusive materials, although it was successful in a wider variety 
of regimes [10]. The second is an atomic mix synthetic acceleration (AMSA) 
scheme which exploits the asymptotic atomic mix limit to calculate a lower­
order correction for the flux anu was applieu to electron energy-loss straggling 
computations [13]. However, a scheme has not yet been devised to accelerate 
convergence when the material is both diffusive and atomically mixed. 

2 




2 

A three-part acceleration scheme is prop08ed. Firstly, the outer iteration is 
di vided into a series of material and source iterations to attenuate the 
diffusion aml atomic error modes separately. Secondly, AMSA is applied 
to the inner material iteration and S2 synthetic acceleration (S2SA) to the 
inner source iterations to offset the cost of doing three inner iterations per 
outer iteration. And finally, a Krylov iterative solver is wrapped around each 
iteration, inner and outer, to further accelerate convergence. Krylov itera­
tive methods have been shown to be effective acceleration tools for transport 
iterations in deterministic materials, particularly when preconditioned with 
DSA [16]. A Krylov iterative method can also be applied to a simple one-step 
iteration, again8t which the two-step iteration is compared. 

In Section 2, the problem setup and pertinent equations are presented. Sec­
tion 3 contains a discussion of the one- and two-step methods, syn­
thetic acceleration schemes and solution by Krylov iterative methods. A spec­
tral analysis is presented in Section 4, detailing pertinent of the eigen­
value 8pectra of the various transport operators and their implications for 
convergence. Section 5 <.:ontains numerical result::;, ::;pedfi<.:ally iteration counts 
and computing costs for each method. And finally, conclusions are presented 
in Section 6. 

GOVERNING EQUATIONS 

Consider a stochastic material in which two immiscible materials are ran­
domly distributed according to homogeneous Markov statistics. Tak­
ing the conditional ensemble average of the transport equation and applying 
the Levermore-Pomraning closure yields a coupled system of equations for the 
conditional ensemble average of the fiux,ljJg(r, 0): 

for t, k = 1,2, £ # k, where s is the spatial variable, Ji is the cosine of the 
angular variable () and, for material e, (h(s) is the conditional ensemble av­
erage of the scalar flux, and 2:s,R are the total and scattering cross sec­
tions and Qj!( s, Ji) is a volume source. The equations are coupled through the 
If\¢k(s, Ji) - Ji)) term, which is introduced by the Levennore-Pormaning 
closure and describes the difFusion of particles across material interfaces. The 
material can be thought of as alternating slabs of the two materials where the 
individual slabs of material t have mean length Aj!. Since the mixing statistics 
are assumed to be Markovian, the slab widths, x, are distributed exponen­
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tially: 
1 x

H(x) exp(--). (2)
At' Ae 

Given that s is in material i, is the probability of transition into material k 
in the distance ds '. The total ensemble average of the flux is then defined 
to be: 

< t/J PI t/JI + P2 t/J2 , 
where Pc is the probability that a point in the domain is in material £ and is 
given by 

PI P2 = 1 - Pl' 

For numerical solution, a discrete ordinates, or SN, angular discretization is 
applied in which the derivative is approximated using Gauss-Legendre 
quadrature with Wn and abscissas /-Ln [9] to yield the following form 
of the SN LP equations: 

L 1iJ (s) (3a)1,n"T l,n 

(3b) 

where 

(/-L1! ;7~ + ~e + I~:I) 
and the scalar flux is approximated by 

N 

1>£(s) 21r L wnt/Je,n(s), 
n=l 

ITERATIVE SOLUTION METHOD 

In large, multi-dimensional systems, direct inversion of the transport operator 
is prohibitively expensive, therefore iterative methods are the standard solu­
tion method. Iterative solution of the LP f:lYf:ltem is complicated by the fact that 
the equation for ,/JI,n relies not only on 1>1, but on 1/;2,11 as well, and vice versa. 
Thus any iterative method must have a source iteration component Le., 1>1 
and rb2 must be lagged- and a material iteration component i.e., t/J2 must be 
lagged. There are numerous combinations of these components, but we intuit 
that each will be illfluellced by the two separate asymptotic limits associ­
ated with source and material diffusion and atomic mix limits, 
respectively. 
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8.1 One-Step Methud 

The most straightforward way to iterate between these two equations is to 
lag unknown quantities at each iteration so that the angular fluxes can be 
updated, This iteration can be written as 

1 I (m+l) 2.: 8 ,1 ,+.(m) + It.tnl ?i/m ) + ( 4a) l,n'lPl,n 4 'PI \ 'r2,n 
, 7r "'I 

1 I (m+l) _ 2.:8 ,2 : (m) + lPn' nl.(m+l) + ~Q ( 4b) 2,nW2,n ~ 4 CfJ2 \ 'Pl,n 4 2,n 
7r "'2 7r 

where m is the iteration index. Since there is only one complete transport 
calculation per iteration, this iteration is dubbed the 'one-step' iteration. It is 
robust but converges slowly as the material approaches the atomic mix limit, 
AeEe « 1, the diffusion limit, Ce 2.:s ,e/2.:e :::::: 1, or both limits, 

8.2 Two-Step Methud 

Alternately, each iteration could be separated into two inner iterations: A 
;material iteration' that attenuates the atomic mix error mode and a 'species 
iteration' consisting of two source iterations, one for each material, that atten­
uates diffusive error modes. Since the prevalent error modes are being handled 
separately in this two-step outer iteration, it is expected that this scheme will 
converge in fewer iterations than the one-step iteration scheme (Eq. (4)). Con­
sider the following two-step scheme, with outer iteration index rn, comprising 
two inner iterations. The index i is assigned to the first inner iteration, or 
material iteration, which for outer iteration m + 1 is given by: 

(5a) 

(5b) 

where the values of ¢im
) and tp~m) from the previous outer iteration are held 

constant. When no synthetic acceleration scheme is applied, ~t,~~), 

h" . . .(m+~) d (m+~) h' 1 h h ld Th. e resu Itotf IS IteratIOn glves (,Ul,n ~ an ?j!z,n , W IC 1 are t en e con­
stant in the second inner iteration, or species iteration. The species iteration 
comprises two independent source iterations, each with index j, which for 
outer iterationm + 1 is given by: 

11 nl.rj+~) + -4Qe,n, (6)t,n 'Pe,n 
1f 
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for f 1,2. As with the material iteration, when no synthetic acceleration 

scheme is applied, 'IjJ~jr~l) = . The result of this iteration is ¢~rn""'l) and 

¢~m-c-l), which are then passed to the next outer iteration. 

Since each two-step iteration requires three inner iterations while each one­
step iteration requires only a single transport sweep, each two-step iteration 
will be more expensive than a one-step iteration. Fortunately, the structure of 
the inner iterations easily allows for the use of known synthetic acceleration 
schemes which should offset the cost of doing multiple inner iterations per 
outer iteration. Specifically, the material iteration is accelerated with atomic 
mix synthetic acceleration (AMSA) [13] and the species iteration is accelerated 
using S2 synthetic acceleration (S2SA) [5]. 

3.3 Synthetic Acceleration 

Synthetic acceleration schemes quickly generate corrections for the problem 
unknown at the end of each iteration by computing a low-order estimate of its 
error. While calculation of the correction increases the computational cost of 
each iteration, a suitable synthetic acceleration scheme will generally reduce 
the number of required iterations considerably, thereby reducing the required 
computational effort overall. For source iteration, S2 synthetic acceleration 
provides a suitable update for the scalar flux by approximating its error using 
S2 discrete ordinates. Computing the error estimate for ¢ at the end of each 
inner source iteration for the two-step method involves solving a system of 
coupled equations: 

L f(j+~) Es,I (F.(j+~) + ij+~)
[,1 t, 1 4 [ [ <jJ~j) ) (711,) 

7f 

, (j..,..~) (Fe(j+~) + ~) (j) )Le,2fe,2 - = - Ot (7b) 

where Le,ll fe,I and ff1,2 are given for the two S2 quadrature angles. The 

S2SA approximation of the error in is given by 

F.(j+~) - f(j+~) + f(j+~) ,...., A-. +(j+~)
e - Je,1 £,2""" If' 'PI: 

where <jJ is the exact solution. The scalar flux can then be updated before 
proceeding to the next iteration: 

(8) 

The scheme is most efficient in diffusive regimes and is well documented [1,5]. 

A-.(j+l) 
ve 
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In order to provide a suitable update for1/;2 at the end of each inner mate­
rial iteration, the asymptotic atomic mix limit is employed. In this limit, the 
mean chord lengths of the materials, At, are much smaller than the mean free 
paths of the traversing particles, to which the material appears to be homo­
geneous i.e., « 1 where the mean free path is defined to be the inverse 
of . Equations for the error in the angular flux, for the material iteration 
(Eq. 5) are then given by: 

,.(i) ) 
'1/'2,71 	 (9a) 

L E(i+~)
2,71 2,71 	 (9b) 

~) - ~) and 'I/)e,n is the exact value of the angular flux in 
for quadrature angle n. 

Introducing a scaling parameter, E « 1, the mean chord lengths can be rewrit­
ten as At = E},e where },e "" 0(1) and the errors, Ee,n, and fluxes, can 
rewritten as series expansions in terms of powers of E: 

Ee,n 	 L
:xo 

em E~:) (1Oa) 
m=O 

OQ 

,/ 	 "'" m i (m)
'I-'e,71 = 	 L..t e '/!Je,n (lOb) 

m=O 

where the superscript (m) in this case represents the mth expansion coefficient. 
Substituting into Eq. 9 yields: 

~),(m) + ~),(m) ) 
(lla) 

(llb) 

To lowest order (0(1)), Eq. llb yields 

_ E(i+~)i(O) 
- '2,n (12) 

From Eq. lla we can then conclude that 

,(i+~),(O) 1 (i),(O) 0 
l.fJe,2 ~jJe,2 . (13) 
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To first order (0(£)), the result is: 

( a L) E(i-+-~),(()) ( E(i+~),(1) _ ~),(1) + . (i+~),(l) 
f.1.na + 1 1,n 2,n 1./Je,2 1 

.8 ) 

(14a) 

( a .. L ) E(i+~),(O) ( E(i+~),(l)
I ­1Lna t- 2 '2n \ 1,71 ). (1'1b)

s ' 

Mulitiplying Eq. 14a by PI and Eq. 14b by P2, applying the relationship in 
Eq. 12 and summing yields: 

~),(o) _ 1/1n! (.(i+i),(I) ; (i.)'(I)\
1./J2 - W2 I (15 ) Al + A2 ,71 . ,n J' 

As can be seen, if both the numerator and denominator on the right hand side 
of this equation are multiplied by E and the relationship in Eq. 13 applied, the 

final AMSA approximation for is found to be: 

(16) 

This scheme was shown to be effective for electron energy-loss straggling cal­
culations )3], for which is no angular dependence, but this its 
first application in scattering regimes. 

3.4 Operator Notation 

For solution, a discrete ordinates representation has already been applied to 
the angular variable. A linear discontinuous finite element discretization is 
now applied to the spatial variable. The discretized form of the one-step outer 
iteration can then be written in matrix notation as: 

(17) 

where, for outer iteration m + 1, Eq. (17) represents Eq::;, (4a) and (4b) and 
can be rewritten as: 

T 1 ,;§(m) (18) 

where DV; = ;j, 

and 
V;o = A-Ifj, 

which physically represents the uncollided angular flux and can be computed 
before iteration begins. 
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Likewise, the two-step outer iteration can be written in matrix notation as: 

(19a) 

(19b) 

where, for outer iteration m + 1, Eq. (19a) represents the unaccelerated mate­
rial iteration (Eqs. (5a) and (5b)) and Eq. (1gb) represents the unaccelerated 
species iteration (Eq. for t = 1,2). Collapsing Eqs. (19) into a single matrix 
equation for and yields: 

(20) 

where 
DA-lB )-lDA-lC, (I - A -IC ) A-lB(I s s s S mm mm 

and 

which physically represents the uncollided scalar flux. 

Rewriting the accelerated inner material iteration (Eqs. (5) and 16) in matrix 
notation using the matrices from Eq. (19a) yields: 

-(' 1) -(')­'1/) t+ 2 = T '1/.) t + ,/,o. m, ~ ,m (21a) 
--"' 1) 1) -(')\
e\H'.1 = Em 2 _ '1jJ t ) (21b) 

1) -('-1-1)
2 + Et 2 (21c) 

where 
Trn A;;:,lC m , 

which represents the inversion of the appropriate transport operator; and 

-;- A-lB J:m)
'IPO,m = m m9 ; 

which does not physically represent the uncollided flux in case, but is an 
invariant source term since ;SCm) is held constant during the material iteration. 
Note that ifm is not included in ~O,m since it is contained in ¢o (Eq. (20)). The 
matrix Em represents the inversion of the AMSA transport operator and is 
the lower-order atomic mix approximation of (I - Trn)-lTm. 

Likewise, the inner species iteration (Eqs. 6) can be rewritten in matrix nota­
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tion using the matrices from (1gb) as: 

~) = T s¢tj) + ¢a,s (22a) 

f(j+~) = Es (¢ti7~) - ¢til) (22b) 

j/Hl) J}j+~) + ~) (22c) 

where 
DA-1B s s 

and 
io,$ DA;lCs47m+~). 

Once again, note that io,s is not the uncollided flux, but a source term rep­
resenting ~), and ifs is not included in ¢a,s since it is already contained 

in ¢r}. The matrix Es represents the inversion of the S2SA transport operator 
and is the lower-orderS2 approximation of (I Ts)-lTs. 

3.5 Krylov Iterative lvfethods 

'While the two-step outer iteration scheme is expected to converge in fewer 
iterations than the one-step scheme, the spectral radius is still very large in the 
atomic mix-diffusion regime, Le., in the regime where Ce ~ 1 and AeEe « 1 (see 
Section 4). In order to accelerate convergence, a Krylov iterative method, such 
as the restarted Generalized Minimal RESidual (GMRES(n)) method, which 
was designed for use with non-symmetric operators such as the transport 
operators, could be 'wrapped around' the existing algorithm to accelerate 
convergence. This approach has shown excellent acceleration when used in 
place of traditional source iteration, particularly when preconditioned with 
DSA [16]. 

Krylov iterative solvers solve the matrix equation Ai' = bor the left precon­
ditioned matrix equation M-1Ai' = M-1b. In order to solve our system using 
a Krylov solver, Eqs. (18), (20), (21a) and (22a) are rewritten in the general 
form as 

(23) 

Multiplication by T represents the inversion of the appropriate transport op­
erator, I is the appropriately sized identity matrix and \]io represents the ap­
propriate uncollided flux or source vector [8]. Since a single transport sweep 
calculates the product T\]i, the algorithm is very simply modified to output 
(I T) \]i, the result of which is returned to the Krylov solver. 

For the inner iterations, it is possible to left precondition the system using 
AMSA and S2SA. The synthetic acceleration update for inner iteration i can 
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be written in general as: 

(24) 

where W(i+~) TWCi) + Wo and E is the appropriate synthetic acceleration ap­
proximation to (I T) -IT. Thus, in matrix notation, the accelerated systems 
for the inner iterations take the form: 

(25) 

Grouping terms yields: 

(I (I + E)(I - T)) Wei) + (I + E)Wo (26) 

which can be rewritten as: 

(I + E)(I - T)W = (I + E)Wo. (27) 

Since the synthetic acceleration algorithms compute the operation of E on the 
supplied residual, they are easily modified to return the operation of (I + E) 
on an input vector. \Vhile the two-step outer iteration scheme is expected 
to converge in fewer iterations than the one-step scheme, slow convergence is 
anticipated in the atomic mix-diffusion regime, where c[ ~ 1 and AeE, « 1. 

4 SPECTRAL ANALYSIS 

4.1 Simple Iterative Schemes 

The spectral radius, p, of the operator T is indicative of the convergence rate 
of the simple iterative sehemes, with larger p indicating slower eonvergence. 
The spectral radii of each operator are shown in Table 1 for the one-step (IS) 
and two-step (2S) schemes, as well as the inner material iteration (NII) and 
source iterations (SIl and SI2) and accelerated material (AMI) and source 
(ASH and AS12) iterations. Results are shown for various scattering ratios, c, 
and values of tA, where A tA). and). "-' 0(1). 

As can be seen, in all cases, the spectral radii for the 2S operator are smaller 
than those for the IS operator'. For both the 18 and 28 schemes, the spectral 
radii are smallest when the materials are not atomically mixed or diffusive, 
larger when they are either atomically mixed or diffusive and largest when 
they are atomically mixed and diffusive. The spectral radii for the ::vn are large 
when fA is small, but are unaffected by the magnitude of c. As demonstrated 
previously [13], the addition of AMSA is particularly effective at reducing 
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c IS 2S 18 
I 

28 18 28 IS 28 

1 .9967 .9623 .998 .9935 .9995 .9969 .9999 .9972 

.99 .9872 .8671 .9914 .9722 .9979 .9855 .9998 .9871 

.9 .9017 .4359 .9814 .8008 .9838 .8848 .9981 .8962 

.5 .5187 .08109 .6634 .3138 .9275 .4657 .992 .495 

MI AMI MI A~lI MI AMI Ml AMI 

1 .004605 .08615 .2193 .1165 .8135 .1216 .9793 .04596 

.99 .00·1605 .03615 .2193 .1165 .8135 .1216 .9793 .04596 

.9 .004605 .03615 .2193 .1165 .813.5 .1216 .9793 .04596 

.5 .00,1605 .03615 .2193 .1165 .8135 .1216 .9793 .04596 

SIl ASIl 811 ASIl SIl ASIl S11 ASIl 

•
1 . 9102 .2091 .5387 .1482 .12:n .04714 .01449 .005957 

.99 .9011 .2059 .5888 .146 .1218 .04668 .01435 .005897 

.9 .8192 .1789 .4848 I 
.1275 .1108 .04206 .01304 .005856 

.5 .4551 .08562 .21)93 .06154 .06154 .02259 .007246 .00291)1) 

I S12 AS12 S12 AS12 S12 ASI2 812 AS12 

1 .9056 .2107 .5381 .1488 .1281 .04714 .01449 .0059.';7 I 
.99 .8966 .2075 .5827 .1467 .1218 .04662 .01435 .00.5897 

.9 .8151 .181 .4843 .1284 .1108 .04206 .01304 .005356 i 

.5 .4528 .08787 .269 .06266 .06154 .02259 I .007246 ! .002966 

Table 1 
Spectral radii for a 10 crn slab with isotropic incidence on the left boundary and a 

reflecting boundary condition at the right (I = 100 spatial cells, N = 8 quadrature 
angles, 2.:1 = 5.0 ern -1, 1.0 cm-1, ),1 = 1.0 ern and ),2 = 5.0 ern). 

the spectral radius when the material is atomically mixed while increasing it 
slightly when the material is far from atomic mix. The spectral radii for 811 
and 812, on the other hand, are affected by both E,\ and c. This can be seen 
by examining the operator 

a I I- + ~e + fJ-n as Ae 

in Eq. (6). In effect, the material always looks less diffusive than it actually 
is because the efJective total cross section is ~e + Thus, the smaller Ae, 
the larger the effective total cross section and the diffusive the material 
appears. Therefore, the spectral radius is large whenever c and At are large, and 
small when either c or At are small. S2SA (ASIl and ASI2) always effectively 
reduces the spectral radius. 
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4.2 GMRES 

There are several properties of an operator that influence the choice of Krylov 
iterative method and yield some information about its rate of convergence, 
which is difficult to quantify precisely. Among these are the symmetry and 
positive-definiteness of the operator, alld whether it is normal in the case that 
it is nonsymmetric. However, in general the eigenvalue spectrum of the matrix 
(I - T) yields qualitatively useful information about the rate of convergence. 
Loosely speaking, the convergence rate is determined by the distribution of 
eigenvalues. It has been shown that it is directly proportional to the radius 
of the circles bounding clusters of eigenvalues, relative to their centers, along 
with the relative distances between clusters [3]. Convergence is fastest for 
small clusters centered near unity and is slowest for large clusters or clusters 
centered near zero. Spectra for some representative problems are examined in 
Figs. 1 and 2. 

(a) Al = .1, A2 = .5 (b) Al = .001, A2 = .005 

, "~ :J.~ . 
Ii, .l .. 

; 1 , ~. '." .~, ."~

_ , _, I 

',J -:.-: : : ~-~ 

. .. ' _ .- j .. " OJ ..I - .- . ­

(c) Al = .1, A2 = .5 (d) Al = .001, A2 = .005 

Fig. 1. Spectrum of (I - T) for a 10 cm slab with isotropic incidence on the left 
boundary and a reflecting boundary condition a t the right (1 = 100, N = 8, L:I = 5.0 
ern - I , L:2 = 1.0 crn- I and c = 1.0). 

In each of the plots in Fig. 1, C = 1.0, but the materials are more atomically 
mixed in l(b) and l (d). The spectrum of the 2S operator in Fig. l(a) is 
confined to the real line and is tightly clustered at unity with a few outliers. 
The IS spectrum is less tightly clustered with some imaginary eigenvalues, and 
the clusters are farther from unity. In Fig. l (b), the IS spectrum has shifted 
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(c) Al = .1 , A2 = .5 (d) Al = .001, A2 = .005 

Fig. 2. Spectrum of (I - T) for a 10 cm sla.b with isotropic incidence on the left 
boundary and a reflecting boundary condition at the right (I = 100, N = 8, I:l = 5.0 
em-I, I:2 = 1.0 cm - 1 and c = .5). 

5 NUMERICAL RESULTS 

Numerical results were obtained for the 1S and 2S schemes using both the 
simple iterative method and GMRES(lO). In all cases Wo is Llsed as the initial 

guess for Wand the solution is converged when the relative residual is less 
than or equal to 10-6 . Four different studies are conducted in Tables 2 to 5. 
In the first , the scattering ratio , c, and order of magnitude of A, C,\" in the 
two materials are varied simultaneously. Thus the atomic mix parameter, I:,\ 
is the same in both materials as well . In the second study, C'\'l and C'\'2 vary 
separately for c = .99. In the third, Cl and C2 vary independently for to,\, = .O l. 
And finally, in the fourth study CEl and CE~ are allowed to vary for to,\, = .01 
and c = .99. 

Tables 2 and 3 show outer iteration counts for the simple iterations and GM­
RES(lO) , respectively. A restart of 10 was selected for GMRES because it 
achieved rapid convergence for the cases examined while requiring relatively 
little computer storage. The 2S method always converges in fewer iterations 
than the IS method for both the simple iteration and GMRES(10) and , in 
most cases, the iteration counts differ by one to two orders of magnitude. 
Similarly, in comparing the simple and GMRES(10) iteration counts for the 
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closer to zero and, although the cluster is slightly smaller than in l(a), 
its proximity to zero indicates that convergence will be slow. Compared with 
Fig. 1 (a), the speetrum for the 2S operator also shifted away from unity, 
although not as dramatically 3,.,) the IS operator, and there are more outliers 
between zero and unity. The spectra indicate that both operators are well­
suited for GMRES and that convergence will be slower in the atomic mix 
regime for both operators, but the 2S method should converge more rapidly 
in general. 

The preconditioned operators for all three of the inner iterations 1 (c) 
and 1 (d)) show better convergence properties than the unpreconditioned as 
their spectra are more tightly clustered and the centers of their clusters are 
closer to unity. The spectrum of the unpreconditioned MI operator in 1 (c) 
also shows much better convergence properties than that in Fig. l(d), which 
is extremely close to zero since the material is atomically mixed. pre­
conditioned operators show the opposite behavior, however, demonstrating 
the effectiveness of AMSA as a preconditioner in the atomic mix limit. As dis­
cussed previously and as can be seen in comparing Figs. l(c) and l(d), varying 
A affects the convergence rates of the SI. While c is the same in both cases, 
the spectra in Fig. l(d) are tightly clustered close to unity while the spectra 
in Fig. l(c) are far from unity and are much more spread out, indicating that 
the S1 should converge more quickly in the atomic mix case. 

Fig. 2 shows spectra for the same parameters as Fig. 1 with the exception 
of the scattering ratio, which is now c Comparing Figs. l(a) and 2(a) 
reveals that while the shapes of the IS and 2S spectra are similar for different 
c, the outliers on the line have shifted towards unity in the c .5 ease. 
Since the material is diffusive, it is expected that GyIRES will converge 
more rapidly. In l(b) and 2(b), the same effect is observed, although it 
is not as drastic for the IS spectrum. Since only c has changed, the spectra for 
the material iteration are unchanged and since c is now smaller, the spectra 
for the species iteration are smaller and have shifted towards unity. 

It is also known that restarted GMRES is guaranteed to converge if the matrix 
is positive definite (PD) . The operator for the IS scheme is generally not 
PD, while the 2S operator usually is. The operator for the MI is not PD in those 
cases where fA cv c)(1O~3), but the preconditioned operator is PD in all cases. 
The SI operators are PD in all cases, both with and without preconditioning. 
Although restarted GMRES is guaranteed to converge whenever the operator 
is PD, it is also not guaranteed to fail when the operator is not PD. Indeed, for 
all cases examined, GMRES(lO) always converges (see Section 5). However, 
positive definiteness is a desirable quality that occurs more frequently in 2S 
operator than the IS and the preconditioned MI than the unpreconditioned. 
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IS and 2S iterations, GMRES(lO) always converges in fewer iterations than 
the simple scheme, and the counts differ by at least one order of magnitude 
in most cases. Although the data for the inner iterations are not shown here, 
GMRES(lO) always converges in fewer iterations than traditional Ml or SI. 
Also, accelerating/preconditioning decreases the iteration count in most cases, 
therefore all data for the 2S scheme are shown for accelerated/preconditioned 
inner iterations. 

Each GMRES(lO) iteration requires more work than a single simple iteration, 
and a single 2S iteration requires more work than a IS iteration, particularly in 
diffusive and/or atomically mixed regimes in which the species and/or mate­
rial iterations are extremely tiIne-consuming. Therefore, while iteration count 
indicates the effectiveness of a method, it says little about its computational 
efficiency. The computational work and relative efficiency are therefore quan­
tified using floating point operation (FLOP) counts. The results are displayed 
in Tables 4 and 5 for the simple iteration and GMRES(lO), respectively. 

GMRES(10) always requires less computational effort than the simple itera­
tion despite the larger cost per iteration and, although data are only shown 
for accelerated/preconditioned inner iterations, in all cases examined it is al­
ways morc efficient to accelerate or precondition the inner iterations. FOr the 
simple iteration scheme, the IS is actually more efficient than the 2S in most 
cases, the exceptions being those materials in which E), "-' (')(.001). However, 
for GMRES(lO), the 2S scheme is often more efficient than the IS. This can 
be attributed to the fact that the 2S operator is much better suited to GM­
RES than the IS operator, as discussed in Section 4. Furthermore, the 2S 
scheme with GMRES(lO) is much more efficient in the atomic mix-diffusion 
regime, which is the regime in which the IS scheme is particularly inefficient. 
Conversely, it is only slightly less efficient when the material is not atomically 
mixed or diffusive where the IS scheme is quite efficient anyway. 
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6 CONCLUSIONS 

A new two-step iterative scheme for solving the Levermore-Pomraning trans­
port equations for binary statistical materials has been devised and demon­
strated. In this two-step scheme, each iteration is divided into a series of inner 
material and source iterations that attenuate the diffusion and atomic mix 
error modes separately. Atomic mix and S2 synthetic accelerations are applied 
to the inner material and source iterations, respectively, to offset the cost of 
doing several inner iterations per outer iteration. A Krylov iterative solver 
-specifically, restarted G:VIRES~is then wrapped around each iteration, in­

ner and outer. The method is demonstrated for a wide variety of combinations 
of physical parameters. 

As predicted by spectral analysis, the new two-step scheme always converges 
in fewer iterations than one-step scheme for both simple iterations and 
GMRES(10), but it is not always more computationally efficient since each 
two-step iteration is more expensive than a one-step iteration. However, the 
two-step is far more efficient in the atomic mix-diffusion regime in which the 
one-step iteration is extremely time-consuming, while it is only slightly less 
efficient in regimes where the one-step scheme converges rapidly anyway. Ac­
celerating/preconditioning the inner iterations with S2SA and AMSA improves 
their convergence rate and results in better overall computational efficiency in 
most cases. Thus, the new restarted GMRES two-step iteration scheme with 
preconditioned inner iterations has been shown to be an effective and efficient 
solution technique in materials that are atomically mixed and diffusive. 
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'A 

1 .1 .01 .001 

c IS 2S 18 2S IS 28 IS 28 

1 I 3637 347 5991 1953 I 24770 3977 199360 4523 

.99 936 94 1381 4,52 5364 857 42792 964 

.9 117 16 170 58 674 103 5442 114 

.5 19 6 31 11 1M ]7 1342 ]8 
I 

i 
'A, 

1 .1 .01 .001 

£A2 IS 2S 18 28 IS 28 IS 28 

! 936 94 837 110 816 
I 

85 81:-1 791 

.1 1144 156 1381 452 1456 [103 1453 352 

I .01 
1189 130 2021 579 5364 857 7178 699 

.001 1200 122 2129 554 10077 1006 42792 964 

(:1 

1 .99 .9 .5 

C2 IS 28 IS 2S 18 2S IS 2S 

1 24770 ::\977 8816 1412 1:-108 I 205 287 
I 

40 

.99 8817 1412 5364 857 1194 186 281 :-19 

,9 1:-108 205 1194 186 674 103 241 ::12 

,5 287 40 281 39 
I 

240 I 32 154 17 

£)';, 
I 

I 
10 1 I ,] ,01 

I 
()';2 18 2S 1 ., IS 28 IS 2S 

10 1590 526 2063 584 2153 550 2163 545 I 

1 2029 58] 5364 857 6:307 621 6320 573 

.1 2111 546 6188 610 I 3481 I 95 2639 49 

.01 2120 541 6179 I 562 2635 49 1531 13 
I 

Table 2 
Simple Iteration: Outer iteration counts for a 10 cm slab with isotropic incidence 

on the left boundary and a reflecting boundary condition at the right (/ 100, 
N = 8, 5.0 cm~1, 1.0 cm~I,.\] 1.0 cm and .\2 = 5.0 cm). Unless 
otherwise specified, c .99 and fA = .01. 
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i 
fAI 

1 .1 .01 .001 
I 

25 ~5c IS IS 2S 25 15 25 II 
1 150 17 378 156 6559 203 I 40473 196 

.99 85 15 127 60 1551 83 8905 86 

.9 25 9 38 18 252 1231 24 

I 
.5 9 5 

I 
16 7 91 

2: I 345 8 

E.\, 

2S IS 2525 IS 25 ISCE2 IS
I 

I247 6110 136 66 225 65 246 62 

1 217 1551 83 4264 2395 2477 35 

1569 8.1 235 60 23·19 36 1261 6 

1 .1 I .01 .001 
I 

E.\~ 15 2S 15 25 15 25 IS 2S 

1 85 15 66 14 68 9 66 8 I 
.1 93 33 127 60 116 27 113 21 

.01 96 27 249 65 1551 83 2395 59 

.001 97 26 238 61 I 2633 88 8905 86 

Cl 

I .99 .9 .5 

C2 IS 
I 

2S IS 2S IS 25 IS 2S 

I 6559 203 2532 115 432 33 134 14I 
I 

.99 2539 116 1551 83 398 31 132 14 

.9 431 33 396 31 252 22 119 13 

I
.5 132 14 131 14 118 13 91 8 

I 
C);, 

10 1 .1 .01 

.01 I 235 60 2339 1267 6 433 855 

Table 3 
GMRES(lO): Outer iteration counts for a 10 crn slab with isotropic incidence on 

the left boundary and a reflecting boundary condition at the right (I = 100, N 8,
1tl = 5.0 crn-I, t2 = 1.0 crn- , :Xl = 1.0 crn and :X2= 5.0 crn). Unless otherwise 

specified, c .99 and E), .01. 
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FA 

.1 .001 

c IS 2S IS 2S 2S IS 2S 

::160.92 597.96 594.45 ::1976.82 2457.48 6045.07 19778.2 4990,6 

.99 92.96 169.9 137,1 877.98 532.25 1311.39 ,1245.41 1130.7 

.9 11.7 ::11.91 16.96 115.67 66.96 167.42 539,99 220,29 

.5 1.98 10.26 CI.n 21.78 15,;17 ::15,03 lC13,23 10,1.93 

1 .1 .01 ,001 

EA2 IS 2S IS 2S IS 2S I IS 2S 

1 92.96 169,9 83,13 187.23 81.05 123,OCl 80.75 97.57 

.1 113.59 262.49 137.1 877,98 144,54 629,38 144.25 445.49 

,01 118,06 184.67 200,6 970.22 532.25 1311.39 712.21 846.47 

I .001 119.15 147.17 211.31 683.08 999.82 1329.24 4245.41 1130.7 

Cl 

1 .99 .9 .5 

C2 IS 23 IS 23 IS 23 IS 2S 

1 
__ I 

240 1.48 I 6045.07 874.71 2153.44 129.86 322.18 28.57 69.73 

.99 874.81 2153,44 532.25 lC111.39 118,55 293.35 27.97 68,26 I 
.9 129.86 322.18 IHt55 293.3.5 66.96 167.42 24.01 

,5 28.57 69.73 27.97 68.26 23,91 57,99 15.37 

10 

EEl IS 2S IS 

10 

.1 

.01 

Table 4 

157.84 

201.39 

209.52 

210.42 

1021. 

1041.38 

926.75 

891.61 

204.76 

532.25 

614. 

613.1 

{Y~l 

IS 

.1 

2S IS 

.01 

23 

1311.Cl9 

883.92 

789.67 

213.69 

625.8 

802.33 

826.31 

214.68 

627.09 

261.91 

151.98 

767.69 

736,58 

93.57 

51.83 

Simple Iteration: FLOP counts for a 10 cm slab with isotropic incidence on the 
left boundary and a reflecting boundary condition at the right (I 100, N 8, 

- -1 ­= 5.0 , E2 = 1.0 crn 1 >'1 1.0 crn and = 5.0 cm). Unless otherwise 
specified, c .99 and t). = .01. 
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t). 

1 .1 .01 .001 

c IS 2S IS I 2S IS 2S IS 2S 

1 26.68 35.91 67.35 • 218.69 1169.99 293.16 7266.77 304.54 

.99 15.11 31.89 22.56 86.52 276.78 126.84 1598.6 180.45 

.9 4.4 18.7 6.68 28.14 44.99 41.93 219.63 llO.51 

.5 1.59 8.55 2.76 
i 

11.99 16.18 21.98 61.46 92.:n 

I'Al 

1 .1 .01 .001 

fA2 IS 2S IS 2S IS 2S IS 2S 

1 15.11 31.89 11.88 25.4 12.ll 16.44 11.88 14.7 

.1 16.5 50. 22.56 86.52 20.6 36.06 20.1 27.52 

.01 17.07 39.59 44.34 100.35 276.78 126.84 427.19 78.89 

.001 17.29 32.3 42.38 73.83 469.61 136.37 1598.6 180.45 i 

Cl 

1 I .99 .9 .5 

C2 IS 2S IS 2S IS 2S ~ 
1 1169.99 293.16 451.66 171.:-l2 nOl 57.24 23.88 :-l0.68 

.99 452.91 172.72 276.78 126.84 70.98 54.32 23.6.5 :-l0.68 

.9 76.87 56.97 70.74 54.16 44.99 41.93 21.21 29.29 

.5 
I 

23.65 30.46 23.41 30.46 21. 29.07 16.18 21.98 

. 
EE, 

10 1 .1 .01 

il~2 IS 2S IS 2S IS 2S 1S 2S 

10 24.18 ~JO.96 40.04 88.1 43.8 90.39 43.97 88.08 

1 38.66 108.5 276.78 126.84 427.19 74.46 441.85 66.47 

.1 41.84 100.08 418.94 72.45 279.81 46.84 224.87 44.97 

. 01 41.84 96.21 417.17 69.26 226 . .14.82 152.47 42.66 

Table 5 
GMRES(lO): FLOP counts for a 10 cm slab with isotropic incidence on the left 

boundary and a reflecting boundary condition at the right (I 100, N 8, E1 = 5.0 
, E2 = LO em-1,).,1 LO em and ).,2 = 5.0 em). Unless otherwise specified, 

c .99 and f)" = .01. 
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