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Abstract

There are numerous physical constructs in which heterogeneities are randomly dis-
tributed. The quantity of interest in these materials is the ensemble average of the
flux, or the average of the flux over all possible material ‘realizations.” Equations for
the ensemble average were developed twenty years ago by Levermore, Pomraning
and Vanderhaegen and, for binary statistical mixtures, consist of a coupled set of
equations. [terative solution methods are slow to converge, however, as one or both
materials approaches the diffusion and/or atomic mix limits.

A three-part acceleration scheme is devised to expedite convergence. The itera-
tion is divided into a series of ‘inner’ material and source iterations to attenuate
the diffusion and atomic mix error modes separately. Atomic mix synthetic accel-
eration is applied to the inner material iteration and S, synthetic acceleration to
the inner source iterations to offset the cost of doing several inner iterations per
outer iteration. Finally, a Krylov iterative solver is wrapped around each iteration,
inner and outer, to further expedite convergence. A spectral analysis is conducted
and iteration counts and computing cost for the new two-step scheme are compared
against those for a simple one-step iteration, to which a Krylov iterative method
can also be applied.
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1 INTRODUCTION

The development of transport methods for stochastic mixtures is necessary for
the numerous physical constructs in which heterogeneities are not distributed
in predictable and ordered ways, but are indeed random. These include the
distribution of the pebbles and the structure of the pebbles themselves in
pebble bed reactors, the composition of concrete used in reactor shielding,
tissue variability in radiation therapy, and cloud composition for global climate
modeling. It is useful to describe the composition of stochastic media in a
statistical sense i.e., the sizes of individual ‘chunks’ of material are described
by an appropriate probability density function. Since the material composition
is known only statistically, the flux and other physical quantities are described
in terms of an ensemble average, or the average over all possible ‘realizations’
of the material.

The ensemble average is easily found by generating large numbers of realiza-
tions using the statistical characterization, conducting transport calculations
for each realization, and averaging the result over all realizations. While these
‘numerical experiments’ are straightforward and vield exact results, within
statistical error, they are extremely time consuming. It is desirable instead to
ensemble average the transport equation directly, thereby yielding an equa-
tion or system of equations for the ensemble average of the flux. One such
description was derived twenty years ago by Levermore, Pomraning and Van-
derhaegen for binary, or two-state, mixtures [4, 15]. Their formalism is widely
used, although it is not exact in time-dependent and scattering regimes since it
assuries that the transport process is Markovian in nature, which is true only
in time-independent, purely absorbing materials. However, the method has
been shown to be robust in one-dimension when scattering is present [2,12].
The model employs the Levermore-Pomraning (LP) closure and consists of
two coupled equations for the conditional ensemble average of the flux in the
two materials present.

While solution of the coupled equations is considerably more efficient than
conducting transport calculations for numerous material realizations, conver-
genee can still be slow in diffusive and/or atomically mixed regimes. Recently,
two distinct acceleration techniques have been devised to remedy different as-
pects of this problem. The first is a coupled diffusion synthetic acceleration
(DSA) scheme, which was designed to accelerate iterative solution in opti-
cally thick, diffusive materials, although it was successful in a wider variety
of regimes [10]. The second is an atomic mix synthetic acceleration (AMSA)
scheme which exploits the asymptotic atomic mix limit to calculate a lower-
order correction for the flux and was applied to electron energy-loss straggling
computations 13]. However, a scheme has not yet been devised to accelerate
convergence when the material is both diffusive and atomically mixed.



A three-part acceleration scheme is proposed. Firstly, the outer iteration is
divided into a series of ‘inner’ material and source iterations to attenuate the
diffusion and atomic mix error modes separately. Secondly, AMSA is applied
to the inner material iteration and Sy synthetic acceleration (S;SA) to the
inner source iterations to offset the cost of doing three inner iterations per
outer itcration. And finally, a Krylov iterative solver is wrapped around each
iteration, inner and outer, to further accelerate convergence. Krylov itera-
tive methods have been shown to be effective acceleration tools for transport
iterations in deterministic materials, particularly when preconditioned with
DSA [16]. A Krylov iterative method can also be applied to a simple one-step
iteration, against which the two-step iteration is compared.

In Section 2, the problem setup and pertinent equations are presented. Sec-
tion 3 contains a discussion of the one- and two-step iterative methods, syn-
thetic acceleration schemes and solution by Krylov iterative methods. A spec-
tral analysis is presented in Section 4, detailing pertinent aspects of the eigen-
value spectra of the various transport operators and their implications for
convergence. Section 5 contaius numerical results, specifically iteration counts
and computing costs for each method. And finally, conclusions are presented
in Section 6. :

2 GOVERNING EQUATIONS

Consider a stochastic material in which two immiscible materials are ran-
domly distributed according to homogeneous Markov mixing statistics. Tak-
ing the conditional ensemble average of the transport equation and applying
the Levermore-Pomraning closure yields a coupled system of equations for the
conditional ensemble average of the flux, ¥,(r, Q):
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for £,k = 1,2, £ # k, where s is the spatial variable, u is the cosine of the
angular variable # and, for material ¢, ¢(s) is the conditional ensemble av-
erage of the scalar flux, £, and X, are the total and scattering cross sec-
tions and Q;(s, u) is a volume source. The equations are coupled through the
%(z&k(s 1) — (s, ) term, which is introduced by the Levermore-Pomraning
closure and describes the diffusion of particles across material interfaces. The
material can be thought of as alternating slabs of the two materials where the
individual slabs of material £ have mean length ),. Since the mixing statistics
are assumed to be Markovian, the slab widths, z, are distributed exponen-



tially: )

Pila) = - exp(—1) (2)
Given that s is in material £, ‘i—: is the probability of transition into material &
in the distance ds [11]. The total ensemble average of the flux is then defined
to be:

<Y >= pr + pibe,
where p, is the probability that a point in the domain is in material ¢ and is
given by

n A.l —{"-)\27 D2 + P1-

For numerical solution, a discrete ordinates, or Sy, angular discretization is
applied in which the angular derivative is approximated using Gauss-Legendre
quadrature with weights w,, and abscissas 1, [9] to yield the following form
of the Sy LP equations:
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and the scalar flux is approximated by
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3 ITERATIVE SOLUTION METHOD

In large, multi-dimensional systems, direct inversion of the transport operator
is prohibitively expensive, therefore iterative methods are the standard solu-
tion method. Iterative solution of the L.P system is complicated by the fact that
the equation for 1, relies not only on ¢, but on ., as well, and vice versa.
Thus any iterative method must have a source iteration component ie., ¢
and ¢, must be lagged-—and a material iteration component i.e.; ¢» must be
lagged. There are numerous combinations of these components, but we intuit
that each will be influenced by the two separate asymptotic limits associ-
ated with source and material iteration—the diffusion and atomic mix limits,
respectively.



3.1 One-Step Method

The most straightforward way to iterate between these two equations is to
lag unknown quantities at each iteration so that the angular fluxes can be
updated. This iteration can be written as
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where  is the iteration index. Since there is only one complete transport
calculation per iteration, this iteration is dubbed the ‘one-step’ iteration. It is
robust but converges slowly as the material approaches the atomic mix limit,
A&y < 1, the diffusion limit, ¢, = £,,/%¢ = 1, or both limits.

3.2 Two-Step Method

Alternately, each iteration could be separated into two inner iterations: A
‘material iteration’ that attenuates the atomic mix error mode and a ‘species
iteration’ consisting of two source iterations, one for each material, that atten-
uates diffusive error modes. Since the prevalent error modes are being handled
separately in this two-step outer iteration, it is expected that this scheme will
converge in fewer iterations than the one-step iteration scheme (Eq. (4)). Con-
sider the following two-step scheme, with outer iteration index m, comprising
two inner iterations. The index ¢ is assigned to the first inner iteration, or
material iteration, which for outer iteration m + 1 is given by:
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where the values of d)(lm) and @ém) from the previous outer iteration are held

constant. When no synthetic acceleration scheme is applied, ét: 2 W% 2

The result of this iteration gives @fﬁﬂL@ and z/1£2+é), which are then held con-
stant in the second inner iteration, or species iteration. The species iteration
comprises two independent source iterations, each with index j, which for
outer iteration m + 1 is given by:
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for £ = 1,2. As with the material iteration, when no synthetic acceleration
GRS I {m+1)

scheme is applied, 7, w(j 2 . The result of this iteration is &; and
("1 which are then passed to the next outer iteration.

Since each two-step iteration requires three inner iterations while each one-
step iteration requires only a single transport sweep, each two-step iteration
will be more expensive than a one-step iteration. Fortunately, the structure of
the inner iterations easily allows for the use of known syuthetic acceleration
schemes which should offset the cost of doing multiple inner iterations per
outer iteration. Specifically, the material iteration is accelerated with atomic
mix synthetic acceleration (AMSA) [13] and the species iteration is accelerated
using S, synthetic acceleration (S2SA) [5].

3.3 Synthetic Acceleration

Synthetic acceleration schemes quickly generate corrections for the problem
unknown at the end of each iteration by computing a low-order estimate of its
error. While calculation of the correction increases the computational cost of
each iteration, a suitable synthetic acceleration scheme will generally reduce
the number of required iterations considerably, thereby reducing the required
computational effort overall. For source iteration, S; synthetic acceleration
provides a suitable update for the scalar flux by approximating its error using
S, discrete ordinates. Computing the error estimate for ¢ at the end of each
inner source iteration for the two-step method involves solving a system of
coupled equations:
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where f,g 1 }ig 2, fe1 and fyo are given for the two S, quadrature angles. The

(G+3) .

S2SA approximation of the error in ¢, is given by

L
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where ¢ is the cxact solution. The scalar flux can then be updated before
proceeding to the next iteration:

L

The scheme is most efficient in diffusive regimes and is well documented [1, 5].



In order to provide a suitable update for s at the end of each inner mate-
rial iteration, the asymptotic atomic mix limit is employed. In this limit, the
mean chord lengths of the materials, A;, are mnuch smaller than the mean free
paths of the traversing particles, to which the material appears to be homo-
geneous- i.e., AyXy < 1 where the mean free path is defined to be the inverse
of ¥y, Equations for the error in the angular flux, ¢, for the material iteration
(Eq. 5) are then given by:
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where .Cin - Yun — Uy, * and iy, is the exact value of the angular flux in

material ¢ for quadrature angle n.

Introducing a scaling parameter, ¢ < 1, the mean chord lengths can be rewrit-
ten as Ny = eds where Ay ~ O(1) and the errors, Eg,, and fluxes, ¥y ,, can be
rewritten as series expansions in terms of powers of e

EE,n = Z " g;f) (loa’)
Yo = Z €y (10b)

where the superscript (m) in this case represents the m®* expansion coefficient.
Substituting into Eq. 9 yields:
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To lowest order (O(1)), Eq. 11b yields
From Eq. 11a we can then conclude that
(H 3,{(0) 0
byt =g =0, (13)
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To first order (O(e)), the result is:
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Mulitiplying Eq. 14a by p; and Eq. 14b by p., applying the relationship in
Eq. 12 and summing yields:
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As can be seen, if both the numerator and denominator on the right hand side
of this equation are multiplied by ¢ and the relationship in Eq. 13 applied, the

L
final AMSA approximation for ?LS: 2 s found to be:
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This scheme was shown to be effective for electron energy-loss straggling cal-
culations [13], for which there is no angular dependence, but this marks its
first application in scattering regimes.

3.4 Operator Notation

For solution, a discrete ordinates representation has already been applied to
the angular variable. A lincar discontinuous finite element discretization is
now applied to the spatial variable. The discretized form of the one-step outer
iteration can then be written in matrix notation as:

A = B 4 Cy™ 4 (17)

where, for outer iteration m + 1, Eq. (17) represents Eqs. (4a) and (4b) and
can be rewritten as: . . .

W = Ty gt™ o 4y (18)
where D¢ = gg,

T, = A '(BD + C)
and

Yy = Al

which physically represents the uncollided angular flux and can be computed
before iteration begins.



Likewise, the two-step outer iteration can be written in matrix notation as:

Amg(m—%—%) _ Bmgg(rra} + sz;(-nr‘r%-) + (T'm (19‘&)
A = Bt 4 Cptte) 4 g (19b)

where, for outer iteration m+ 1, Eq. (19a) represents the unaccelerated mate-
rial iteration (Eqgs. (5a) and (5b)) and Eq. (19b) represents the unaccelerated
species iteration (Eq. (6) for £ = 1,2). Collapsing Eqgs. (19) into a single matrix
equation for ¢U™ and ™D yields:

Fmh = Ty 4 Gy 20

where
T, = (I-DA;'B,) 'DAJ'C, (T - AL/ Cu ) AL'Bin

and

g =1 -DAS'B,)'DAS (7. + C, (1- ACu) ALl ),

m

which physically represents the uncollided scalar flux.

Rewriting the accelerated inner material iteration (Egs. (5) and 16) in matrix
notation using the matrices from Eq. (19a) yields:

POt = Tl 4 iy, (21a)
&ira) = By, (172 - g1} (21b)
@5’(1‘%—1} - J{i—i—%) + gtwé} (21(:)
where
Twm=ACh,

which represents the inversion of the appropriate transport operator; and
Gom = AL Bmo™,

which does not physically represent the uncollided flux in this case, but is an
invariant source term since ¢™ is held constant during the material iteration.
Note that g, is not included in J’om since it is contained in (/;n (Eq. (20})). The
matrix E;, represents the inversion of the AMSA transport operator and is
the lower-order atomic mix approximation of (I — Tp,) ' Ty,.

Likewise, the inner species iteration (Eqs. 6) can be rewritten in matrix nota-



tion using the matrices from Eq. (19b) as:

FooB — T 1 G, (222)
FUt3) — B, (5(3'*%) _ gg(j)) (22b)
SUHY) = GUHE) L U+ (22¢)
where
T, = DA'B,
and

$os = DAZIC D),

Once again, note that (;g{})s is not the uncollided flux, but a source term rep-
resenting '™ %) | and ds 1s not included in ¢y, since it is already contained
in ¢y. The matrix E, represents the inversion of the S;SA transport operator
and is the lower-order Sy approximation of (I — Ty)~'Ts.

3.5 Krylov Iterative Methods

7

While the two-step outer iteration scheme is expected to converge in fewer
iterations than the one-step scheme, the spectral radius is still very large in the
atomic mix-diffusion regime, i.e., in the regime where ¢, = 1 and A2, < 1 (see
Section 4). In order to accelerate convergence, a Krylov iterative method, such
as the restarted Generalized Minimal RESidual (GMRES(n)) method, which
was designed for use with non-symmetric operators such as the transport
operators, could be ‘wrapped around’ the existing algorithm to accelerate
convergence. This approach has shown excellent acceleration when used in
place of traditional source iteration, particularly when preconditioned with
DSA [16].

Krylov iterative solvers solve the matrix equation AZ = b or the left precon-
ditioned matrix equation M~*A ¥ = M~2b. In order to solve our system using
a Krylov solver, Egs. (18}, (20), (21a) and (22a) are rewritten in the general
form as

(I-T)0 = Ty. (23)
Multiplication by T represents the inversion of the appropriate transport op-
erator, I is the appropriately sized identity matrix and \I—}O represents the ap-
propriate uncollided flux or source vector [8]. Since a single transport sweep
calculates the product T\i;, the algorithm is very simply modified to output
(I —T)U, the result of which is returned to the Krylov solver.

For the inner iterations, it is possible to left precondition the system using
AMSA and S5SA. The synthetic acceleration update for inner iteration 7 can

10



be written in general as:
QU+ o Pl o E(\I_;(i+%) —_ \I_}(i)) (24)

where P0+2) = TGO 4 \flo and E is the appropriate synthetic acceleration ap-
proximation to (I —T)~!'T. Thus, in matrix notation, the accelerated systems
for the inner iterations take the form:

POD = 79 4§ + B(TTD + Ty — 90). (25)
Grouping terms yields:
PO = (I - (I4+E)I-T)) ¥ + I+ E)T, (26)
which can be rewritten as:
(I+E)I-T)¥ = (I+E)J,. (27)

Since the synthetic acceleration algorithms compute the operation of E on the
supplied residual, they are easily modified to return the operation of (I + E)
on an input vector. While the two-step outer iteration scheme is expected
to converge in fewer iterations than the one-step scheme, slow convergence is
anticipated in the atomic mix-diffusion regime, where ¢; = 1 and A%, < 1.

4 SPECTRAL ANALYSIS
4.1  Simple Ilterative Schemes

The spectral radius, p, of the operator T is indicative of the convergence rate
of the simple iterative schemes, with larger p indicating slower convergence.
The spectral radii of each operator are shown in Table 1 for the one-step (18)
and two-step (2S) schemes, as well as the inner material iteration (MI) and
source iterations (SI1 and SI2) and accelerated material (AMI) and source
(ASI1 and ASI2) iterations. Results are shown for various scattering ratios, c,
and values of ¢y, where A = e\ and A ~ 0(1).

As can be seen, in all cases, the spectral radii for the 2S operator are smaller
than those for the 1S operator. For both the 1S and 2S schemes, the spectral
radii are smallest when the materials are nof atomically mixed or diffusive,
larger when they are either atomically mixed or diffusive and largest when
they are atomically mixed and diffusive. The spectral radii for the MI are large
when €, is small, but are unaffected by the magnitude of ¢. As demonstrated
previously [13], the addition of AMSA is particularly effective at reducing
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€

1 1 01 .001
c 18 25 15 28 15 28 13 25
1 9967 9623 998 8935 .99495 9969 9999 8972
99 9872 8671 8914 | 9722 89749 U835 9993 9871
9 9017 4359 | 9314 | 8008 8833 B848 8581 8962
5 5187 08109 | 6634 | .3138 9275 4857 592 485
MI AMI MI AMI MI AMI M1 AMI

1 004605 | .03615 | .2193 .1165 8135 1216 9793 04596
.99 | .004605 | 03615 | .2193 1165 8135 1216 9793 04596
.9 .004605 | .03615 | .2193 1165 8135 1216 9793 04596
004605 | 03615 @ .2193 .1165 8135 1216 9783 04586

sh ASI si1 ASI SI1 ASll S ASI

1 9102 2081 D387 1482 1231 04714 01449 005957
.99 9011 2059 8333 146 1218 .04663 01435 .005897
] 81852 1789 4848 1275 1108 04206 .01304 .005356
5 4551 08562 | 2693 | 06154 | .06154 | .02259 | .007246 | .002966

SI2 ASI2 512 ASI2 S12 ASBI2 512 ASI2
1 .9056 2107 5381 1488 1231 04714 | 01449 | 005857
RE 8066 2075 1 5327 | 1467 1218 | 04682 01435 005897
9 .8151 181 4843 | 1284 1108 | .04206 .01304 005356

5 4528 08787 1 269 | 06266 @ 06154 | 02259 | 007246 | .002966

Table 1

Spectral radii for a 10 cm slab with isotropic incidence on the left boundary and a
reflecting boundary condmon at the right (I = 100 spatial cells, N = 8 quadrature
angles, ¥y =5.0cm™!, ¥y = 1.0em™, X\; = 1.0 cm and )\2 = 5.0 cm).

the spectral radius when the material is atomically mixed while increasing it
slightly when the material is far from atomic mix. The spectral radii for SI1
and 812, on the other hand, are affected by both ¢, and ¢. This can be seen
by examining the operator

+Z£+ ]

ZJ n o A
b 9s e

in Eq. (6). In effect, the material always looks less diffusive than it actually
is because the effective total cross section is Xy + "" zl . Thus, the smaller Ay,
the larger the effective total cross section and the less diffusive the material
appears. Therefore, the spectral radius is large whenever cand A, are large, and
small when either ¢ or A, are small. SpSA (ASI1 and ASI2) always effectively
reduces the spectral radius.

12



4.2 GMRES

There are several properties of an operator that influence the choice of Krylov
iterative method and yield some information about its rate of convergence,
which is difficult to quantify precisely. Among these are the symmetry and
positive-definiteness of the operator, and whether it is normal in the case that
it is nonsymmetric. However, in general the eigenvalue spectrum of the matrix
(I = T) yields qualitatively useful information about the rate of convergence.
Loosely speaking, the convergence rate is determined by the distribution of
eigenvalues. It has been shown that it is directly proportional to the radius
of the circles bounding clusters of eigenvalues, relative to their centers, along
with the relative distances between clusters [3]. Convergence is fastest for
small clusters centered near unity and is slowest for large clusters or clusters
centered near zero. Spectra for some representative problems are examined in
Figs. 1 and 2.

(b) A1 = .001, Ay = .005

o =

(C) AL =1, )\2 =.5 (d) )\1 = VOOI, )\2 =.005

Fig. 1. Spectrum of (I — T) for a 10 cm slab with isotropic incidence on the left
boundary and a reflecting boundary condition at the right (/ = 100, N = 8,5, = 5.0
cm™!, 2 = 1.0 em™! and ¢ = 1.0).

In each of the plots in Fig. 1, ¢ = 1.0, but the materials are more atomically
mixed in 1(b) and 1(d). The spectrum of the 2S operator in Fig. 1(a) is
confined to the real line and is tightly clustercd at unity with a few outliers.
The 1S spectrum is less tightly clustered with some imaginary eigenvalues, and
the clusters are farther from unity. In Fig. 1(b), the 1S spectrum has shifted

13



() A =1 Q=25 (d) Ay = .001, Ay = .005

Fig. 2. Spectrum of (I — T) for a 10 cm slab with isotropic incidence on the left
boundary and a reflecting boundary condition at the right (I = 100, N =8, %; =5.0
cm™!, ¥y =1.0 cm™! and ¢ = .5).

5 NUMERICAL RESULTS

Numerical results were obtained for the 1S and 2S schemes using both the
simple iterative method and GMRES(10). In all cases Uy is used as the initial
guess for U and the solution is converged when the relative residual is less
than or equal to 1075, Four different studies are conducted in Tables 2 to 5.
In the first, the scattering ratio, ¢, and order of magnitude of A, ¢y, in the
two materials are varied simultaneously. Thus the atomic mix parameter, L\,
is the same in both materials as well. In the second study, e), and €, vary
separately for ¢ = .99. In the third, ¢ and ¢ vary independently for e, = .01.
And finally, in the fourth study eg, and es, are allowed to vary for €, = .01
and ¢ = .99.

Tables 2 and 3 show outer iteration counts for the simple iterations and GM-
RES(10), respectively. A restart of 10 was selected for GMRES because it
achieved rapid convergence for the cases examined while requiring relatively
little computer storage. The 25 method always converges in fewer iterations
than the 1S method for both the simple iteration and GMRES(10) and, in
most cases, the iteration counts differ by one to two orders of magnitude.
Similarly, in comparing the simple and GMRES(10) iteration counts for the

15



closer to zero and, although the cluster is slightly smaller than in Fig. 1{a),
its proximity to zero indicates that convergence will be slow. Compared with
Fig. 1(a), the spectrum for the 2S operator has also shifted away from unity,
although not as dramatically as the 1S operator, and there are more outliers
between zero and unity. The spectra indicate that both operators are well-
suited for GMRES and that convergence will be slower in the atomic mix
regime for both operators, but the 2S method should converge more rapidly
in general.

The preconditioned operators for all three of the inner iterations (Figs. 1(¢)
and 1(d)) show better convergence properties than the unpreconditioned as
their spectra are more tightly clustered and the centers of their clusters are
closer to unity. The spectrum of the unpreconditioned MI operator in Fig. 1(c)
also shows much better convergence properties than that in Fig. 1(d), which
is extremely close to zero since the material is atomically mixed. The pre-
conditioned operators show the opposite behavior, however, demonstrating
the effectiveness of AMSA as a preconditioner in the atomic mix limit. As dis-
cussed previously and as can be seen in comparing Figs. 1(c¢) and 1(d), varying
A affects the convergence rates of the SI. While ¢ is the same in both cases,
the spectra in Fig. 1(d) are tightly clustered close to unity while the spectra
in Fig. 1(c) are far from unity and are much more spread out, indicating that
the SI should converge more quickly in the atomic mix case.

Fig. 2 shows spectra for the same parameters as Fig. 1 with the exception
of the scattering ratio, which is now ¢ = .5. Comparing Figs. 1(a) and 2(a)
reveals that while the shapes of the 1S and 28 spectra are similar for different
¢, the outliers on the real line have shifted towards unity in the ¢ = .5 case.
Since the material is less diffusive, it is expected that GMRES will converge
more rapidly. In Figs. 1{b) and 2(b), the same cffect is observed, although it
is not as drastic for the 1S spectrum. Since only ¢ has changed, the spectra for
the material iteration are unchanged and since ¢ is now smaller, the spectra
for the species iteration are smaller and have shifted towards unity.

It is also known that restarted GMRES is guaranteed to converge if the matrix
is positive definite (PD) [7, 14]. The operator for the 1S scheme is generally not
PD, while the 25 operator usually is. The operator for the M1 is not PD in those
cases where ey, ~ O(1073), but the preconditioned operator is PD in all cases.
The SI operators are PD in all cases, both with and without preconditioning.
Although restarted GMRES is guaranteed to converge whenever the operator
is PD, it is also not guaranteed to fail when the operator is not PD. Indeed, for
all cases examined, GMRES(10) always converges (see Section 5). However,
positive definiteness is a desirable quality that occurs more frequently in the 25
operator than the 15 and the preconditioned MI than the unpreconditioned.
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1S and 2S iterations, GMRES(10)} always converges in fewer iterations than
the simple scheme, and the counts differ by at least one order of magnitude
in most cases. Although the data for the inner iterations are not shown here,
GMRES(10) always converges in fewer iterations than traditional MI or SL
Also, accelerating/preconditioning decreases the iteration count in most cases,
therefore all data for the 2S scheme are shown for accelerated/preconditioned
inner iterations.

Each GMRES(10} iteration requires more work than a single simple iteration,
and a single 25 iteration requires more work than a 18 iteration, particularly in
diffusive and/or atomically mixed regimes in which the species and/or mate-
rial iterations are extremely time-consuming. Therefore, while iteration count
indicates the effectiveness of a nmiethod, it says little about its computational
cfficiency. The computational work and relative efficicncy are therefore quan-
tified using floating point operation (FLOP) counts. The results are displayed
in Tables 4 and 5 for the simple iteration and GMRES(10}, respectively.

GMRES(10) always requires less computational cffort than the simple itera-
tion despite the larger cost per iteration and, although data are only shown
for accelerated/preconditioned inner iterations, in all cases examined it is al-
ways more cfficient to accelerate or precondition the inner iterations. For the
simple iteration scheme, the 1S is actually more efficient than the 25 in most
cases, the exceptions being those materials in which ey ~ 0(.001). However,
for GMRES(10), the 28 scheme is often more efficient than the 1S. This can
be attributed to the fact that the 28 operator is much better suited to GM-
RES than the 1S operator, as discussed in Section 4. Furthermore, the 28
scheme with GMRES(10) is much more efficient in the atomic mix-diffusion
regime, which is the regime in which the 1S scheme is particularly inefficient.
Conversely, it is only slightly less efficient when the material is not atomically
mixed or diffusive where the 1S scheme is quite efficient anyway.

16



6 CONCLUSIONS

A new two-step iterative scheme for solving the Levermore-Pomraning trans-
port equations for binary statistical materials has been devised and demon-
strated. In this two-step scheme, each iteration is divided into a series of inner
material and source iterations that attenuate the diffusion and atomic mix
error modes separately. Atomic mix and S, synthetic accelerations are applied
to the inner material and source iterations, respectively, to offset the cost of
doing several inner iterations per outer iteration. A Krylov iterative solver
—specifically, restarted GMRES—is then wrapped around each iteration, in-
ner and outer. The method is demonstrated for a wide variety of combinations
of physical parameters.

As predicted by spectral analysis, the new two-step scheme always converges
in fewer iterations than the one-step scheme for both simple iterations and
GMRES(10), but it is not always more computationally efficient since each
two-step iteration is more expensive than a one-step iteration. However, the
two-step is far more efficient in the atomic mix-diffusion regime in which the
one-step iteration is extremely time-consuming, while it is only slightly less
efficient in regimes where the one-step scheme converges rapidly anyway. Ac-
celerating/preconditioning the inner iterations with S;SA and AMSA improves
their convergence rate and results in better overall computational efficiency in
most cases. Thus, the new restarted GMRES two-step iteration scheme with
preconditioned inner iterations has been shown to be an effective and efficient
solution technique in materials that are atomically mixed and diffusive.
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€

1 1 .01 001

4 18 25 18 28 18 25 15 PA

1 3637 347 5991 | 1953 | 24770 | 3977 1499360 | 4523
99 936 94 1381 | 452 5364 857 42792 964
R 117 16 170 58 674 103 5442 114

3 19 6 31 11 154 17 1342 18
€3,
1 1 .01 001
€xg 18 28 15 28 18 28 18 238
1 936 94 837 110 816 85 813 79

1 1144 156 1381 452 1456 403 1453 362
.01 1189 130 | 2021 579 5364 857 7178 6599
.001 1200 122 2129 554 10077 | 1006 42792 964

1 .99 9 .5

c2 1S 28 18 25 15 28 15 28

1 24770 | 3977 | 8816 | 1412 1308 206 287 40

.99 8817 | 1412 | 5364 | 857 1194 186 281 39
9 1308 205 | 1194 | 186 674 103 241 32
5 287 40 281 39 240 32 154 17
€5,
10 1 1 .01
€3y 13 2S 18 25 13 25 15 28

10 1590 526 | 2063 584 2153 550 2163 545
1 2029 581 5364 | 8BT 6307 621 6320 573
1 2111 546 6188 = 610 3481 95 2639 49
01 2120 541 6179 | 562 2635 49 1531 13

Table 2

Simple Iteration: Outer iteration counts for a 10 cm slab with isotropic incidence
on the left boundary and a reflecting boundary condition at the right (I = 100,
N=8 3% =50cn!, Y =10cm™, A} = 1.0 cm and X = 5.0 cm). Unless
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€

1 150 17 378 156 | 6559 | 203 | 40473 | 196

99 85 15 127 60 1561 83 8905 26
.9 25 9 38 18 252 22 1231 24
.5 9 5 16 7 91 8 345 -3
5%
1 i .01 001

€x, 15 28 18 25 18 25 15 25

1 93 33 127 60 116 27 113 21
.01 96 27 249 65 1551 83 2345 59
001 97 26 238 61 2633 88 8905 86

1

c2 15 23 18 28 15 25 15 25

1 6559 203 | 2532 | 115 | 432 33 134 14
89 | 2539 | 116 | 1551 83 398 31 132 14
R°] 431 33 396 31 252 22 119 13
14 131 14 118 13 91 8

o
Pt
o
™

€3

€5, 18 28 15 28 18 25 15 238

10 136 66 225 65 246 62 247 61
1 217 64 1551 83 | 2385 | 42 2477 35
1 235 60 | 2349 | 36 1569 8 1261 6
.01 235 60 2339 | 33 | 1267 6 855 4

Table 3

GMRES(10): Outer iteration counts for a 10 cm slab with isotropic incidence on
the left boundary and a reflecting boundary condition at the right (7 = 100, N = §,
fll = 5.0 crn ™}, 532 = 1.0 em 1, :\1 = 1.0 cm and ,12 = 5.0 cm}. Unless otherwise
specified, ¢ = .99 and €, = .01.
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€

1 Nt 01 001

¢ 13 28 18 28 15 28 18 25

1 360.92 597.96 | 594.45 | 3976.82 | 2457.48 | 6045.07 | 19778.2 | 4990.6
.99 92.96 169.9 137.1 877.98 532.25 1311.39 | 424541 | 1130.7

11.7 31.81 16.96 115.67 66.96 167.42 539.99 | 220.29
5 1.98 10.26 3.17 21.78 15.37 35.03 133.28 104.93
€3,
1 1 01 001
3 18 25 15 28 15 28 18 23

1 92,96 169.9 83.13 187.23 81.05 123.03 80.75 §7.57
1 113.59 262.49 137.1 877.98 144.54 629.38 144.25 | 445.49
.01 118.06 184.67 200.6 970.22 532.25 1311.3% | 7i2.21 846.47
.001 119.15 147.17 | 211.31 683.08 994,82 1329.24  4245.41 | 1130.7

¢z 18 25 1S 25 18 25 18 28

1 2457.48 | 8045.07 | 874.71 | 2153.44 129.86 322.18 28.57 69.73
89 874.81 21563.44 | 532.25 | 131138 | 118.55 293.35 27.97 68.26
9 128.86 322.18 | 118.55 | 293.35 66.96 167.42 24.01 57.99
.5 28.57 69.73 27.97 68.26 23.91 57.99 16.37 35.03

€51,

10 1 1 .01

€5, 15 25 18 25 15 28 15 28

10 157.84 1021. 204.76 910.22 213.69 802.33 214.68 767.69
1 201.39 | 1041.88 @ 532.25 | 1311.39 625.8 826.31 627.09 736.58
1 209.52 926.75 614. 883.92 345.44 150.65 261.91 93.57
.01 210.42 891,61 613.1 788.67 261.51 93.48 151.98 51.83

Table 4

Simple Iteration: FLOP counts for a 10 cm slab with isotropic incidence on the
left boundary and a reflecting boundary condition at the right (I = 100, N = 8,
f}l = 5.0 cin}, ig = 1.0 ecm™ !, :Xl = 1.0 cm and 3\3 = 5.0 cm). Unless otherwise
specified, ¢ = .99 and €y = .01.
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€x

1 1 01 001
e 18 23 18 28 18 25 18 25
1 26,68 | 3591 | 67.35 | 218.69 | 1169.99 | 293.16 | T266.77 | 304.54
99 | 1511 | 31.89 | 2236 | 8652 | 276.78 | 126.84 | 15986 | 180.45
9 4.4 187 | 668 | 2814 | 4499 | 41.93 | 21963 | 110.51
5 1.59 855 | 276 | 1199 | 1618 | 2198 | 61.46 | 9231
5%
1 1 01 001
€3 18 25 18 25 18 25 18 28
1 1511 | 3189 | 1188 | 254 | 1211 | 1644 | 1188 | 147
1 16.5 50. | 2256 | 8652 | 206 | 3606 | 201 | 27.52

.01 17.07 39.59 44.34 100.35 | 276.78 126.84 | 427.19 78.89
.001 17.29 32.3 42.38 73.83 469.61 136.37 | 1598.6 | 180.45

C1

c2 15 25 15 25 1S 28 15 28

1 116999 | 293.16 | 451.66 | 171.32 77.01 57.24 23.88 30.68
99 452.91 72.72 | 276.78 | 126.84 70.98 54.32 23.65 30.68
9 76.87 56.97 70.74 54.16 44.99 41.93 21.21 29.29

.5 23.65 30.46 23.41 30.46 21. 29.07 16.18 21.98
€x,
10 1 1 .01

€53, 18 25 18 25 15 25 18 28
10 24.18 90.96 40.04 88.1 43.8 90.39 43.97 88.08
1 38.66 1085 276.78 | 126.84 | 427.19 74.46 441.85 66.47
.1 41.84 100.08 | 418.94 72.45 279.81 46.84 224.87 44.97
01 41.84 96.21 417.17 | 69.26 226. 44.82 152.47 42.66

Table 5

GMRES(10): FLOP counts for a 10 cm slab with isotropic incidence on the left
boundary and a reflecting boundary condition at the right (I = 100, N = §, £ =5.0
em™, %y = 1.0 em™!, :\1 = 1.0 cm and Ay = 5.0 cm). Unless otherwise specified,
¢=.99 and ¢, = .01.
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