
LA-UR-

Approved for public release;
distribution is unlimited.

Pfoc~,,vG €)~ .DATAl ME7MATA)
Title: W(TI((N AN /ffC/-lIVAL­

V bE1E!. I"..("7: ~eIPAc€""

Author(s): (rlltelC
/) /l-ItltV '(j},

j.BA'R.'f"
C. DAvlf)

:r,E,E.E:.Intended for:

SaT z,zl

CoolC
PA-{lL-1 MAN

S t-<~R£"{ L..L

s/\//'rf'L 05 u.o~#CSK~Pl
2~) ~1r~·nft1{)L~J MD.

QAlamos
NATIONAL LABORATORY

--- EST. 1943 -- ­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the Nationaf Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this articfe, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S . Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Parallel Processing of Data, Metadata, and Aggregates Within an

Archival Storage System Interface

(Toward Archiving a Million Files and a Million Megabytes per Minute)

Mark A l""V':''-'lU,,,,

High Performance Division,
Los Alamos National Laboratory

mar@lanl.gov

Danny
High Performance

Alamos National

Abstract

Archiving large datasets parallel
of both data and metadala for timely

execution. This paper describes the work in progress to
use various processing multi­
Ihrl~adim;> ofdata and metadata distributed

aggregation, and conditional processing to
achieve increased archival for large
dalasets.

1. Introduction

Ever-increasing computing capabilities result in
ever-increasing data sets to be archived. Such data sets
can consist primarily of many small files, or
both. Archiving data sets with files requires an

on parallel file utilizing as much
bandwidth as to transfer data to the archive.
And it is in this area that the majority of parallel
archival development has occurred. When a data set
includes a large number of small files, the archiving
process must also include an on processing

amounts of file and archival system
not only when into the archive, but

also when retrieving from the archive and when
browsing/mining/maintaining the archive. As archival
data sets accumulate over multiplying the amount
of metadata owned by a user, the need for high

metadata also increases. Thus,
there is an need for capabilities in

large amounts of both data and metadata.

Bart J.
Performance Computing Division,

Alamos National
bartp@lanl.gov

C. David Sherrill
Performance

Alamos National

Overview of PSI

The Parallel Storage Interface (PSI) is an archival
user interface to provide high speed

for large data sets, with a special emphasis
as many resources as on a single

user Developed the PSI is the main
user interface to the Performance System

at Los Alamos National This
paper describes the efforts to utilize PSI to achieve
archival rates of a million files and a million

per minute. The is on single
command as opposed to the

overall capabilities of the file or the archival

While there have been efforts in the past to provide
Unix commands, these efforts [1] have largely

been based upon achieving by running
serial Unix commands on more than one host

at a time. In contrast, PSI uses multi-
per host to control and execute the various

of the archiving process.
PSI is based upon a multi-node, light

passive client model, with the majority of the software
residing on the archival server. PSI uses a parallel
work flow model for processing both data and
metadata. Work is parallelized and scheduled on
available server and multi-node client resources
automatically, using a priority and resource-based
approach. Optimization is performed automatically,

areas such as optimized tape
load etc. PSI utilizes UNIX-like

mailto:bartp@lanl.gov
mailto:mar@lanl.gov

and semantics. Areas discussed include parallel
techniques used within results obtained, and

impediments to further performance
increases.

Need for Both Parallel Data and Parallel
Metadata Processing

very large data sets places a variety of
.;vo.~n,nt~ on an archival storage

system. While past efforts have focused primarily on
meeting bandwidth for data sets with

amounts (terabytes) of data, this focus is not
sufficient when dealing with data sets consisting of

numbers of files. Data sets archiving
frequently exceed 100,000 and one million file
data sets are no longer rare. High
metadata access is required for these large data sets,
both for the file system containing the data as well as
for the archival storage the data.

The requirements for performance vary with
the file sizes being archived as well as with the various
stages of archiving activity. For datasets dominated by
large files, the initial archiving process is dominated by
bandwidth-related activity. Once the initial
process is over, any incremental archiving
can introduce the need for high performance metadata
access on both the file system and the archival
to determine which files need to be archived.
type of incremental can either be the result of
an interrupted initial archiving or the result of
the application adding more data to the data
set in the local file system, and which now
needs to be Once the data has been fully

the need for performance becomes either the
need to query the archive for file names and
or the need to retrieve data from the archive
both archival metadata file transfer

For data sets dominated small bandwidth
plays a reduced with metadata access and I/O
latency dominating all of the various archiving

metadata performance is from
both the file system and from the archival system.

When such data sets are accumulated over time,
these combined data sets even

archival metadata performance. For example,
archiving one million files per hour requires "stat"
rates and VO rates of less than 300 files per second.

to scan 60 data sets this size in an
hour requires almost 17,000 file attribute calls per

beyond what most file systems and archival
systems are of especially in
response to a single user

4. Techniques Used for Performance

The approach chosen involves the use of
data and metadata

file and
conditional operations when feasible. Combining these
three features a of performance
increases. For multi-threading to a of
40 threads increase by a factor of
30 or so, while operating on a file of 1000
files can provide a boost of up to 300.
Conditional operations can a factor of20 or so.

combining these three performance
of over 1 have been observed, as outlined below.

4.1. Multiphase Parallel Work Flow

To facilitate efficient control of the various
to execute user fashion,

tasks are into three Each phase can
consist of many each different
resources. Achieving
metadata requires a

typical thread counts for all three is
upon the mix of metadata and file

4.1.1. Phase 1 - Parallel Tree Traversal. Virtually
all user requests require attributes of files in order to be

These files may reside on either the archival
system or the file For example, a command to
store files would by obtaining attributes of files
on the file while a command to retrieve or list
files would by obtaining attributes of files on the
archival system.

phase one, each thread is to one
directory. This encourages scalability and avoids the
loss of whenever threads are serialized by
the kernel on per-directory such as occurs
on Linux when more than one thread
in the same
whenever a IS

work list for one. This
another thread to process that provided
sufficient resources are available. The thread count for
phase one typically is in the range of20 to 50.

4.1.2. Phase 2 Parallel By Directory.
Any other than that described for
one, occurs in with the exception of file
transfers. Phase two parallel tasks includes such
operations as finding tIles, changing permissions,
showing used, file attributes, etc. Other

than file all fi Ie
a directory basis. Each is

thread in order to obtain more
that some

etc. The thread
count for two is in the range of 10 to
50.

4.1.3 Phase 3 - Parallel
three consists of all file
resources consumed are
nonnally different but much
resources needed by threads in the first two
Priority is to threads in later to avoid
resource starvation threads in earlier
thereby allowing work to flow with less interruption.
The thread count for three is in the
range of 10 to 50.

4.1.4. Heterogeneous Tree Traversal. user
requests can be n""~""""'<'ri
such as those
pennissions, and others.
require that the final
particular order, such as "du", "Is", or "rm", the work
list selection mechanism for each allows for
selection of work by serial tree traversal rather
than by the normal order. Thus,
parallel can still be obtained for the first
one or two parallel while still the
desired serial order to the final
command. If the fmal can be
as work becomes available for it, then the overall
command can execute a
the last phase may be serial. For
command can execute
though the final
tree order.

As threads execute various
consume several of resources, server
memory, client memory, client CPU bandwidth, client
disk bandwidth, and network bandwidth. When many
threads are executed in they can
exhaust available resources on the server or on any of
the available either
degradation or the crash of some component of the
user interface. To activities from
consuming too many resources, each thread is
controlled according to the amount of resources it uses,
and is prioritized to its execution phase,
described above.

The overall scheduling goal is to
of the most limiting resources without
them. To keep track of all of the resources
consumed at any given moment, a detailed resource
estimate is maintained for each thread. This estimate is
based upon a detailed description of the various
resource components involved in various thread
activities. For example, for each file transfer

configuration infonnation is utilized that
describes disk speed, CPU network interface
speed, overall network speed, archival device
and maximum archival devices allowed. For each
thread that is obtaining file
memory consumption and CPU bandwidth are
estimated. This perfonnance information allows for
very fast and reasonably accurate task and
for load leveling across client machines.
processes are automatically started as necessary on
available client machines for purposes of load­
leveling).

5. Many Small Files

Large numbers of small files result in problems with
both archival performance and with the amount of
metadata that must be maintained within the archival
system database. For example, HPSS can archive
approximately 100 files per second. At this rate, nearly
three hours are required to archive one million small
files. In addition, since roughly 2000 bytes of metadata
are required in the database for each file, one mi Ilion
files results in roughly 2 GB of database metadata that
must be backed up, etc. Since our site has an estimated
5 billion files archived, these files would currently
require an archival database of approximately 10 TB of
data if all of these files were stored individually.

6. Small File Aggregation

To alleviate both performance and metadata
problems, various forms of
utilized by archival can be
perfonned on the client or on the client
aggregation was chosen for use within PSI. Client-side
aggregation facilitates scalability, client file
system bandwidth while the transaction load
and data transfer load on the archi va I system (1000
client files/sec, 1000 file I archival
file/sec, 1MB/sec).

6.1. HTAR

A "tar"-like utility
Enterprises) is used to aggregate and
on the client. HTAR is a

standard "tar" file on reducing the load
on the local file HTAR archives an index file
with each tar file. This allows the determination of
what files are in the tar file without to read the
actual tar file. HT AR also supports the effective
removal of individual files from a tar file modifying
the index file.

The main drawbacks of using HT AR (or any client-
side approach) are and
an invisible name space. results from

too many files and too much data into a single
and therefore onto only a small number of archival

devices. The invisible name space occurs simply
because the files in the files are not a part of
the archival system name space, and thus are not
directly accessible via archival system API function
calls.

6.2. Avoiding Over-aggregation

PSI addresses the issue of by
a~I.:.l\O;l'.alll';:; (at most) one directory of files into each
tar file, i.e. no subdirectories are within an

This approach allows many directories to be
on (aggregated, queried, retTieved)

simultaneously. For scalability, PSI supports breaking
up a directory into more than one tar file, allowing
single directories to be operated on in parallel via
mUltiple per directory. The advantages of

directory are shown in the
results below. Another of

is that only small files are placed
large files are stored as regular

allowing for more bandwidth to be applied to a
user

Namespace Extension

by directory also facilitates an
extensible name space, which in turn addresses the
issue of an invisible name space. PSI provides the
capability to extend the name space of a given

into the tar files located within that directory.
This allows user interface commands, e.g. "Is",
"chmod", "store", , , etc to access the files
within these tar files. As part of the name space
extension, a user command is able to refer to files
within these tar files by means of "globblng"

PSI is also for maintenance of the
contents of directories containing tar including

files or files in tar files to avoid
duplicate names in a name space. In addition,
user interface commands can utilize
intelligently, operating on whole tar files when

executing commands such as "cp", "rm", "du", and
"chmod", instead of operating on individual files
within tar when especially when

on whole tree structures.

The result is an approach that is

scalable, and provides the user with a
reasonably view of all files in a tTee,
whether they are regular files or are contained within

file. Also, the archival database is
decreased the reduction of the

number of regular files within the archival

7. Overview of Network Configuration

The HPSS archival system was
version 6.2 of HPSS on 12 AIX main servers and tape

servers, including 32 TlOOOO tape
drives, attached in groups of 4 to Linux tape servers,
each server connected to the network with a I
interface.

Each of the client nodes has four dual-core
AMD Opteron processors 2.2 Ghz. running Redhat
EL 4. The intra-client network fabric for the Linux
clients is InfiniBand.

The client file is a Panasas global
file system with each user file configured
across 7 to 10 storage blades.

8. Performance Results

In the following tests, whole trees were
upon a user a command to the
archival user interface. The "Threads" axis refers to the
number of threads used in the dominant (limiting)
work flow phase, described above. For in the
"find" command, the dominant thread type is
the one "stat" threads. When transferring
the dominat thread the three transfer
thread. In the of results below, the
following terms are used.

refers to a local file system tree of a
million file tree of small files
(1000 bytes per 1000 files per
directory, 1000 directories per tree).

refers to a million file tree of small
files (1000 per file,

1000 files per directory, 1000
directories per

htar tree refers to a miIlion file tree of
small regular files (1000

1000 files per
one per

directory, plus one aggregate index
file (512,000 per directory,
1000 directories per tree.

refers to a one tree of 61
each 16

cond refers to a conditional operation that
is perfonned if it is determined
from the file attributes that the

is necessary.

8.1. Results for Finding

This set of results involves the use of the "find"
command. The UNIX "find" command and the PSI
local "find" command were executed on the client file
system, and the PSI archive "find" command was
executed on archive trees of and HTAR files.
This set of results primarily measures the performance
of "stat" since the "find" is

The limiting factor in the client file cases is
the rate at which the client file can provide
"stat" information. The limiting factor in the archive
reg_tree case is the HPSS DB2 query rate for

metadata. The factor in the
case is the number of file transfer

(to read HTAR index files) per second that
can be handled by a API connection to HPSS.

The archival gain from multi-threading
and aggregates was a factor of99.

Performance of "find" Command

100,000 ~-···------~·--i

10,000

u 1,000
Q)

{!2
II)

..9l
u::: 100 -I-------~ ...- .. I

10 -1-------- ...~

16 322 4 8

Threads

............. UNIXfind

PSI local find

1. Find results

8.2. Results for Changing File Permissions

This set of results involves the use of the "chmod"
command, and measures the performance of the "stat"
and "chmod" operations. The UNIX "chmod"
command and the PSI local "chmod' command were
executed on the local file system. The PSI archive
"chmod" command was executed on archive trees of
regular files and HTAR files .

The conditional cases involve only changing file
attributes when necessary. Also , note the performance
advantage of modi fying aggregate attributes instead of
individual file attributes, as in the "htar _tree cond"
tests, since only the HT AR file permissions required
updating.

The archival performance gain from multi-threadirig
and aggregates was a factor of 839. Adding the
conditional "chmod" operation increased the gain to a
factor of 4074.

Performance of "chmod" Command

1 ,000,000

....
100,000 ...- ~

~ '"
~

10,000
0
Q)

(/)
1,000in

..2!
u:::

100
!II- ..-k-"

-:-'-- ilL ..w -
~

10

1

1 2 4 8 16 32

Threads

--+- UNIX chmod client_tree

______ PSI local chmod client_tree

--.- PSI archive chmod reg_tree

---7>; PSI archive chmod reg_tree cond

~ PSI archive chmod htar_tree

_ PSI archive chmod htar_tree cond

Figure 2. Chmod results

8.3. Results for Copying Small Files

The following tests demonstrate the performance of
copying small files (\000 bytes each) from one tree to
another tree within the same file system. The UNIX
"cp" command and the PSI local "cp" command were
executed on the client file system, and the PSI archive
"cp" command was executed on archive trees of
regular and HTAR files.

The limiting factor for the client executions was the
rate at which files could be written to the local file
system. These results illustrate the advantage of
copying aggregated (HT AR) file s instead of copying
individual files. The limiting factor in these case is the
rate at which aggregate files and index files can be
copied within the archive.

The archival performance gain from multi-threading
and aggregates was a factor of 2564.

0
Q)

(/)

in
..2!
u:::

Performance of "cp" Command

1 0,000 r - - - - ---=:i==;:====i:j

1,000

100

10

•

2 4 8 16 32

Threads

--+-UNIXcp client_tree

______ PSI local cp client_tree

--.- PSI archive cp reg_tree

~ PSI archive cp htar_tree

Figure 3. Cp performance

Small Files 8.4. Results for

The tests demonstrate the performance of
storing small files (1000 bytes) into the archival
storage system. These tests stored files from the local
file system into either or HT AR trees in the
archive.

The limit for the unconditional HT AR case
is the rate at which the client file could T\"r·tnt"t'YI

a sequence of open, close" system calls on
small files for a user. The apparent limit for the
conditional transfer cases consists of the combination
of the limit on "stat" of the local file system and the
archival file and the rate at which these two
sets of file attributes could be compared.

The archival gain from multi-threading
and was a factor of 267. Adding the
conditional "store" increased the gain to a
factor of 1 066.

Performance of "store" of Small
Files

2 4 8 16 32

Threads

10,000

1,000
0
(l)

S!l
UJ 100

..!!!
i!

10

Figure 4. Small file store performance

Results for Storing Large Files

The file tests demonstrate the fundamental
to utilize multiple client nodes to transfer from

the client file system to archival system tape
with file transfers on each node. In
this test, the file transfer threads were
across 8 client nodes. The apparent
the client file performance.

The archival performance gain from
and nodes was a factor of 5.

Performance of "store" of Large

Files

1200

1000

800

0
(l)

S!l 600
III
::i!

400

200

0

2 4 8 16

Threads

5. Store performance

8.6. Results for Grep of Archive Files

These tests ran the PSI archive command on
the and HTAR trees in HPSS. The increase in

when using (HTAR) files
illustrates the value of utilizing the HTAR co-location
of data and metadata, as seen by the nearly two orders
of magnitude gain in Virtually any data mining

could feasibly make use of in this
fashion to obtain significant performance
improvement.

The archival performance from
and was a factor of 616.

Performance of "grep" Command

100,000

1 0,000

u
Q) 1,000

{Q
III

..!l! 100u:

10

2 4 8 16 32

Threads

PSI archive grep reg_tree

PSI archive grep

Figure 6. performace

9. Conclusion

Combining the techniques of multi-threaded
of data and metadata with the concept of

small file can result in significant
performance increases for archival systems.
These increases can be further improved by adding
techniques such as conditional updates or conditional
file transfers. Performance increases above factors of
1000 have been observed. In

10. References

and W. Unix

Implementation, Y. Cotronis and 1.
PVMJMPI 2001, LNCS 2131, pp 410-418
Berlin Heidelberg 200 I)

