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Abstract

Archiving  large  datasets  requires  parallel
processing of both data and metadata for timely
execution. This paper describes the work in progress 1o
use various processing lechniques, including multi-
threading of data and metadata operations, distributed
processing, aggregaiion, and conditional processing to
achieve increased archival performance for large
datasets.

1. Introduction

Ever-increasing computing capabilities result in
ever-increasing data sets to be archived. Such data sets
can consist primarily of large files, many small files, or
both. Archiving data sets with large files requires an
emphasis on parallel file transfer, utilizing as much
bandwidth as possible to transfer data to the archive.
And it is in this area that the majority of parallel
archival development has occurred. When a data set
includes a large number of small files, the archiving
process must also include an emphasis on processing
large amounts of file system and archival system
metadata, not only when storing into the archive, but
also when retrieving from the archive and when
browsing/mining/maintaining the archive. As archival
data sets accumulate over time, multiplying the amount
of metadata owned by a single user, the need for high
performance metadata processing also increases. Thus,
there is an increasing need for parallel capabilities in
handling large amounts of both data and metadata,
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2. Overview of PSI

The Paralle! Storage Interface (PSI) is an archival
system user interface designed to provide high speed
archiving for large data sets, with a special emphasis
on focusing as many resources as possible on a single
user request. Developed by the authors, PSI is the main
user interface to the High Performance Storage System
(HPSS) at Los Alamos National Laboratory. This
paper describes the efforts to utilize PSI to achieve
archival rates of a million files and a million
megabytes per minute. The emphasis is on single
user/single command performance, as opposed to the
overall capabilities of the file system or the archival
system.

While there have been efforts in the past to provide
parallel Unix commands, these efforts [1] have largely
been based upon achieving parallelism by running
existing serial Unix commands on more than one host
at a time. In contrast, PSI uses aggressive multi-
threading per host to control and execute the various
aspects of the archiving process.

PSI is based upon a multi-node, light weight,
passive client model, with the majority of the software
residing on the archival server. PSI uses a parallel
work flow model for processing both data and
metadata. Work is parallelized and scheduled on
available server and multi-node client resources
automatically, using a priority and resource-based
approach. Optimization s performed automatically,
including areas such as parallelization, optimized tape
transfer, load leveling, etc. PSI utilizes UNIX-like
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syntax and semantics. Areas discussed include parallel
techniques used within PSI, results obtained, and
perceived impediments to  further performance
increases.

3. Need for Both Parallel Data and Parallel
Metadata Processing

Archiving very large data sets places a variety of
high performance requirements on an archival storage
system, While past efforts have focused primarily on
meeting bandwidth requirements for data sets with
large amounts (terabytes) of data, this focus is not
sufficient when dealing with data sets consisting of
large numbers of files, Data sets requiring archiving
frequently exceed 100,000 files, and one million file
data sets are no longer rare. High performance
metadata access is required for these large data sets,
both for the file system containing the data as well as
for the archival storage system receiving the data.

The requirements for high performance vary with
the file sizes being archived as well as with the various
stages of archiving activity. For datasets dominated by
large files, the initial archiving process is dominated by
bandwidth-related activity. Once the initial archiving
process is over, any subsequent incremental archiving
can introduce the need for high performance metadata
access on both the file system and the archival system
to determine which files need to be archived. (This
type of incremental archiving can either be the result of
an interrupted initial archiving attempt, or the result of
the application adding more data to the original data
set residing in the local file system, and which now
needs to be archived). Once the data has been fully
archived, the need for performance becomes either the
need to query the archive for file names and atiributes,
or the need to retrieve data from the archive (requiring
both archival metadata performance plus file transfer
performance).

For data sets dominated by small files, bandwidth
plays a reduced role, with metadata access and /O
latency dominating all of the wvarious archiving
activities; high metadata performance is required from
both the file system and from the archival system.

When such data sets are accumulated over time,
scanning these combined data sets requires even
greater archival metadata performance. For example,
archiving one million files per hour requires “stat”
rates and /O rates of less than 300 files per second.
However, to scan 60 existing data sets this size in an
hour requires almost 17,000 file attribute calls per
second, bevond what most file systems and archival
systems are capable of providing, especially in
response to a single user request.

4. Techniques Used for Performance
Increases

The general approach chosen involves the use of
parallel data and metadata processing, automatic
optimized file aggregation and de-aggregation, and
conditional operations when feasible. Combining these
three features provides a variety of performance
increases. For example, multi-threading to a degree of
40 threads might increase performance by a factor of
30 or so, while operating on a file aggregate of 1000
files can provide a performance boost of up to 300.
Conditional operations can provide a factor of 20 or s0.
By combining these three features, performance gains
of over 1,000 have been observed, as outlined below.

4.1, Multiphase Parallel Work Flow

To facilitate efficient control of the various steps
required to execute user requests in a parallel fashion,
tasks are organized into three phases. Each phase can
consist of many threads, each requiring different
resources. Achieving high performance in processing
metadata requires a reasonably high degree of
parallelism; typical thread counts for all three phases is
50 to 150, depending upon the mix of metadata and file
transfer operations being performed.

4.1.1. Phase 1 — Parallel Tree Traversal. Virtually
all user requests require attributes of files in order to be
processed. These files may reside on either the archival
system or the file system. For example, a command to
store files would begin by obtaining attributes of files
on the file system, while a command to retrieve or list
files would begin by obtaining attributes of files on the
archival system.

During phase one, each thread is assigned to one
directory, This encourages scalability and avoids the
loss of efficiency whenever threads are serialized by
the kernel on per-directory operations, such as occurs
on Linux when more than one thread attempts to “stat”
in the same directory. During parallel tree traversal,
whenever a directory is encountered, it is put onto the
work list for phase one. This triggers the spawning of
another thread to process that directory, provided
sufficient resources are available, The thread count for
phase one typically is in the range of 20 to 50.

4.1.2. Phase 2 — Parallel Processing By Directory.
Any processing other than that described for phase
one, occurs in phase two, with the exception of file
transfers. Phase two parallel tasks includes such
operations as finding files, changing permissions,
showing storage used, listing file attributes, etc, Other



than file transfers, all file operations are performed on
a directory basis. Each directory is processed in a
separate thread in order to obtain more predictable
multi-threading performance, given that some systems
tend to lock directories when updating, etc. The thread
count for phase two typically is in the range of 10 to
50.

4.1.3 Phase 3 — Parallel Processing By File. Phase
three consists of all file transfer operations. The
resources consumed by threads in phase three are
normally different from, but much greater than,
resources needed by threads in the first two phases.
Priority is given to threads in later phases to avoid
resource starvation by threads in earlier phases,
thereby allowing work to flow with less interruption.
The thread count for phase three typically is in the
range of 10 to 50.

4.1.4, Heterogeneous Tree Traversal. Many user
requests can be performed entirely in a parallel mode,
such as those involving file transfers, change of
permissions, and others. For those user requests that
require that the final activity is performed in a
particular order, such as “du”, “Is”, or “rm”, the work
list selection mechanism for each phase allows for
selection of work by serial tree traversal order, rather
than by the normal parallel directory order. Thus,
parailel performance can still be obtained for the first
one or two parallel phases, while still providing the
desired serial order to the final phase of a user
command. If the final phase can be performed as fast
as work becomes available for it, then the overall
command can execute a parallel speed, even though
the last phase may be serial. For example, an “Is”
command can execute at parallel “stat” rates, even
though the final output might be in some specific serial
tree order.

4.2. Resource-Based Scheduling

As threads execute various types of tasks, they
consume several types of resources, including server
memory, client memory, client CPU bandwidth, client
disk bandwidth, and network bandwidth., When many
threads are executed in parallel, they can quickly
exhaust available resources on the server or on any of
the available clients, causing either performance
degradation or the crash of some component of the
user interface. To keep parallel activities from
consuming too many resources, each thread s
controlled according to the amount of resources it uses,
and is prioritized according to its execution phase,
described above.

The overall scheduling goal is to approach saturation
of the most limiting resources without oversubscribing
them. To keep track of all of the resources being
consumed at any given moment, a detailed resource
estimate is maintained for each thread. This estimate is
based upon a detailed description of the various
resource components involved in wvarious thread
activities. For example, for each file transfer
performed, configuration information is utilized that
describes disk speed, CPU speed, network interface
speed, overall network speed, archival device speed,
and maximum archival devices allowed. For each
thread that is obtaining file attributes, per-client
memory consumption and CPU bandwidth are
estimated. This performance information allows for
very fast and reasonably accurate task dispatching, and
for load leveling across client machines, (Interface
processes are automatically started as necessary on
available client machines for purposes of load-
leveling}.

5. Many Small Files

Large numbers of small files result in problems with
both archival performance and with the amount of
metadata that must be maintained within the archival
system database. For example, HPSS can archive
approximately 100 files per second. At this rate, nearly
three hours are required to archive one million small
files. In addition, since roughly 2000 bytes of metadata
are required in the database for each file, one million
files results in roughly 2 GB of database metadata that
must be backed up, etc. Since our site has an estimated
5 billion files archived, these files would currently
require an archival database of approximately 10 TB of
data if all of these files were stored individually.

6. Small File Aggregation

To alleviate both performance and metadata
problems, various forms of aggregation are often
utilized by archival systems. While aggregation can be
performed on the client or on the archive, client
aggregation was chosen for use within PSI. Client-side
aggregation facilitates scalability, leveraging client file
system bandwidth while reducing the transaction load
and data transfer load on the archival system (1000
client files/sec, 1000 bytes/client file => | archival
file/sec, IMB/sec).

6.1. HTAR

A “tar”-like utility named HTAR (from Gleicher
Enterprises) is used to aggregate and de-aggregate files
on the client. HTAR is multi-threaded, and generates a



standard “tar” file directly on HPSS, reducing the load
on the local file system. HTAR archives an index file
with each tar file. This allows the determination of
what files are in the tar file without having to read the
actual tar file. HTAR also supports the effective
removal of individual files from a tar file by modifying
the index file.

The main drawbacks of using HTAR (or any client-
side aggregation approach) are over-aggregation and
an invisible name space. Over-aggregation results from
placing too many files and too much data into a single
file, and therefore onto only a small number of archival
devices. The invisible name space occurs simply
because the files in the aggregate files are not a part of
the archival system name space, and thus are not
directly accessible via archival system AP function
calls.

6.2. Aveiding Over-aggregation

PSI addresses the issue of over-aggregation by
aggregating (at most) one directory of files into each
tar file, i.e. no subdirectories are placed within an
aggregate. This approach allows many directories to be
operated on  (aggregated, queried, retrieved)
simultaneously. For scalability, PSI supports breaking
up a directory into more than one tar file, allowing
single large directories to be operated on in paralle] via
multiple aggregates per directory. The advantages of
aggregation by directory are shown in the performance
results below. Another aspect of avoiding over-
aggregation is that only small files are placed into
aggregates; large files are stored as regular files,
allowing for more bandwidth to be applied to a given
user request.

6.3. Namespace Extension

Aggregation by directory also facilitates an
extensible name space, which in turn addresses the
issue of an invisible name space, PSI provides the
capability to extend the name space of a given
directory into the tar files located within that directory.
This allows user interface commands, e.g. “Is”,
“chmod”, “store”, “cp”, “get”, etc to access the files
within these tar files. As part of the name space
extension, a user command is able to refer to files
within these tar files by means of “globbing” (wild
cards).

PSI is also responsible for maintenance of the
contents of directories containing tar files, including
removing regular files or files in tar files to avoid
duplicate names in a directory name space. In addition,
user interface commands can utilize aggregates
intefligently, operating on whole tar files when

executing commands such as “cp”, “rm”, “du”, and
“chmod”, instead of operating on individual files
within tar files, when appropriate, especially when
operating on whole tree structures.

The result is an aggregation approach that is high
speed, scalable, and provides the user with a
reasonably transparent view of all files in a tree,
whether they are regular files or are contained within
an aggregate file. Also, the archival database is
significantly decreased through the reduction of the
number of regular files within the archival system.

7. Overview of Network Configuration

The HPSS archival storage system was running
version 6.2 of HPSS on 12 AIX main servers and tape
storage servers, including 32 StorageTek T10000 tape
drives, attached in groups of 4 to Linux tape servers,
each server connected to the network with a 10-GigE
interface.

Each of the eight client nodes has four dual-core
AMD Opteron processors @ 2.2 Ghz. running Redhat
EL 4. The intra-client network fabric for the Linux
clients is InfiniBand.

. The client file system is a Panasas global parallel
file system (version 3.0) with each user file configured
across 7 to 10 storage blades.

8. Performance Resulés

In the following tests, whole trees were operated
upon by a single user issuing a single command to the
archival user interface. The “Threads™ axis refers to the
number of threads used in the dominant (limiting)
work flow phase, described above. For example, in the
“find” command, the dominant thread type is always
the phase one “stat” threads. When transferring data,
the dominat thread type is the phase three transfer
thread. In the description of results below, the
following terms are used.

refers to a local file system tree of a
million file tree of small regular files
(1000 bytes per file, 1000 files per
directory, 1000 directories per tree).

client_tree

reg tree refers to a million file tree of small
regular files (1000 bytes per file,
1000  files per directory, 1000
directories per tree).

htar_tree refers to a million file tree of
aggregated small regular files (1000
bytes per file, 1000 files per
aggregate, one  aggregate  per



large file tree

cond

directory, plus one aggregate index
file (512,000 bytes) per directory,
1000 directories per tree.

refers to a one terabyte tree of 61
files, each 16 gigabytes in size.

refers to a conditional operation that
is performed only if it is determined
from the file attributes that the
operation is necessary.

8.1. Results for Finding Files

This set of results involves the use of the “find”
command. The UNIX “find” command and the PSI
local “find” command were executed on the client file
system, and the PSI archive “find” command was
executed on archive trees of regular and HTAR files.
This set of results primarily measures the performance
of “stat” requests, since the per-file “find” logic is
negligible.

The limiting factor in the client file system cases is
the rate at which the client file system can provide
“stat” information. The limiting factor in the archive
reg tree case is the HPSS DB2 query rate for files,
including auxiliary metadata. The limiting factor in the
archive htar_tree case is the number of file transfer
requests (to read HTAR index files) per second that
can be handled by a single API connection to HPSS.

The archival performance gain from multi-threading
and aggregates was a factor of 99,

Performance of "find” Command
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Figure 1. Find results



8.2. Results for Changing File Permissions

This set of results involves the use of the “chmod”
command, and measures the performance of the “stat”
and “chmod” operations. The UNIX “chmod”
command and the PSI local “chmod’ command were
executed on the local file system. The PSI archive
“chmod” command was executed on archive trees of
regular files and HTAR files.

The conditional cases involve only changing file
attributes when necessary. Also, note the performance
advantage of modifying aggregate attributes instead of
individual file attributes, as in the “htar tree cond”
tests, since only the HTAR file permissions required
updating.

The archival performance gain from multi-threadirig
and aggregates was a factor of 839. Adding the
conditional “chmod” operation increased the gain to a
factor of 4074.

Performance of "chmod” Command
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—e— UNIX chmod client_tree
—a— PSllocal chmod client_tree
—a— PSl archive chmod reg_tree

PSI archive chmod reg_tree cond

—¥— PSl archive chmod htar_tree

—e— PSl archive chmod htar_tree cond

Figure 2. Chmod results

8.3. Results for Copying Small Files

The following tests demonstrate the performance of
copying small files (1000 bytes each) from one tree to
another tree within the same file system. The UNIX
“cp” command and the PSI local “cp” command were
executed on the client file system, and the PSI archive
“cp” command was executed on archive trees of
regular and HTAR files.

The limiting factor for the client executions was the
rate at which files could be written to the local file
system. These results illustrate the advantage of
copying aggregated (HTAR) files instead of copying
individual files. The limiting factor in these case is the
rate at which aggregate files and index files can be
copied within the archive.

The archival performance gain from multi-threading
and aggregates was a factor of 2564.
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Figure 3. Cp performance




8.4. Results for Storing Small Files

The following tests demonstrate the performance of
storing small files (1000 bytes} into the archival
storage system. These tests stored files from the local
file system into either regular or HTAR trees in the
archive,

The apparent limit for the unconditional HTAR case
is the rate at which the client file system could perform
a sequence of “stat, open, read, close” system calls on
smatll files for a single user. The apparent limit for the
conditional transfer cases consists of the combination
of the limit on “stat” of the local file system and the
archival file system, and the rate at which these two
sets of file attributes could be compared.

The archival performance gain from multi-threading
and aggregates was a factor of 267. Adding the
conditional *store” operation increased the gain to a
factor of 1066,

Performance of "store” of Smali
Files
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Figure 4. Small file store performance

8.5. Results for Storing Large Files

The large file tests demonstrate the fundamental
ability to utilize multiple client nodes to transfer from
the chient file system to archival system tape drives,
with multiple file transfers occurring on each node. In
this test, the file transfer threads were spread “evenly”
across 8§ client nodes. The apparent limiting factor is
the client file system performance.

The archival performance gain from multi-threading
and multiple nodes was a factor of 5.

Performance of "store” of Large
Files
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Figure 5. Store performance



8.6. Results for Grep of Archive Files

These tests ran the PSI archive “grep” command on
the regular and HTAR trees in HPSS, The increase in
performance when using aggregate (HTAR) files
illustrates the value of utilizing the HTAR co-location
of data and metadata, as seen by the nearly two orders
of magnitude gain in speed. Virtually any data mining
operation could feasibly make use of aggregates in this
fashion to  obtain  significant  performance
improvement.

The archival performance gain from multi-threading
and aggregates was a factor of 616.

Performance of "grep” Command
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9, Conclusion

Combining the techniques of muliti-threaded
processing of data and metadata with the concept of
small file aggregation can result in significant
performance increases for archival storage systems.
These increases can be further improved by adding
techniques such as conditional updates or conditional
file transfers. Performance increases above factors of
1000 have been observed. In addition, using user-
generated aggregates can result in significant decreases
in archival system metadata.

10. References

[1}] E. Ong, E. Lusk, and W. Gropp, Scalable Unix
Commands For Parallel Processors: A High-Performance
Implementation, Y. Cotronis and ] Dongarra (Eds): Euro
PVM/MPI 2001, LNCS 2131, pp 410-418 (Springer-Verlag,
Berlin Heidelberg 2001)



