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ABSTRACT 
There has recently been considerable interest in applying To­
tal Variation with an [I data fidelity term to the denoising 
of images subject to salt and pepper noise, but the extension 
of this formulation to more general problems, such as de­
convolution, has received little attention, most probably be­
cause most efficient algorithms for [I-TV denoising can not 
handle more general inverse problems. We apply the Itera­
tively Reweighted Norm algorithm to this problem, and com­
pare performance with an alternative algorithm based on the 
Mumford-Shah functional. 

Index Terms- deconvolution, total variation, speckle 
noise 

1. INTRODUCTION 

The standard Total Variation (TV) regularization functional 
[I], which we shaH refer to as [2-TV, may be written as 

where K is the linear operator representing the forward prob­
lem, and we employ the foHowing notation: 

• 	 the p-norm of vector u is denoted by Ilullp, 
• 	 scalar operations applied to a vector are considered to 

be applied element-wise, so that, for example, u = 
v 2 

=? Uk = v~ and u = ..;v =? Uk = yfUk, and 

• 	 horizontal and vertical discrete derivative operators are 
denoted by Dx and Dy respectively. 

This regularization functional has been applied to a wide 
variety of image restoration problems, including denoising 
and deconvolution [2, 3] of images subject to Gaussian white 
noise. 

More recently, the [I-TV functional [4,5] 
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has attracted attention due to a number of advantages [6], in­
cluding superior performance with non-Gaussian noise such 
as salt and pepper noise. While rapid progress has been made 
on the development of efficient algorithms for minimizing this 
functional [7,8,9, 10], the majority of these methods are re­
stricted to the denoising problem, corresponding to setting 
J{ to the identity operator, and, presumably for this reason, 
application of the [I-TV functional for more general inverse 
problems, such as deconvolution, has received little or no at­
tention in the literature. 

In this paper we consider the problem of deconvolution 
subject to salt and pepper noise, comparing Cl-TV decon­
volution, computed via the recently introduced Iteratively 
Reweighted Norm (IRN) approach [I I, 12], with an alterna­
tive variational approach designed for this problem [13] . 

2. ITERATIVELY REWEIGHTED NORM 
APPROACH 

The IRN algorithm [1 I, 12] for minimizing the generalized 
TV functional 

is motivated by the Iteratively Reweighted Least Squares 
(IRLS) method [14, IS, 16] for solving the minimum CP norm 
problem minu ~IIJ{u - sll~ by solving a sequence of mini­

mum weighted [2 norm problems. These methods represent 
the fP norm of u 

by the weighted t2 norm of u 

with diagonal weight matrix W = (2/p) diag (luIP-2) . At 
each iteration of an iterative scheme, the [P norm is approx­
imated by the weighted [2 norm using the weights from the 



previous iteration. To simplify somewhat, this approxima­
tion may be used to minimize the norm because, for the same 
choice of W (and u such that Uk =J 0 'Ilk) we have 

Vu~ I lu ll ~ = (P/2)Vu~ II W1/2u ll : , 

so that both expressions have the same value and tangent di­
rection. 

The weighted e2 equivalent of (l) may be written (the 
reader is referred to [11 , 12] for full details of the derivation) 
as 

where 

Wp diag (~fp (Ku - s) ) 

WR diag (~fR ((Dx u)2 + (Dyv?)) 

D = ( ~: ) WR = (~R ~R) , 

and functions (with corresponding threshold parameters Ep 

and ER) 

if Ixl > Ep 

if Ixl ::; Ep , 

and 
Ix l(Q-2) /2 if Ixl > ER

fR( X) = { 0 
if Ixl ::; ER , 

are required to avoid the possibility of infinite weights. The 
minimum of this functional is 

u= (KTWpK + ADTWRD) - 1 KTWps , (2) 

and the resulting algorithm consists of the following steps: 

Initialize 
Uo = (KTK + >"DTDr

l 
KTs 

Iterate 

Wp,k =diag(~fp(KUk- l - S)) 

WR,k = diag (~fR ((Dxuk _I)2 + (DyUk_1)2)) 

Uk = (KTWp,kK +>"D~WR,kDx 
T )-1 T+>..Dy WR ,kDy K Wp,kS 

The matrix inversion is achieved using the Conjugate Gra­
dient (CG) method. We have found that a significant speed 
improvement may be achieved by starting with a high CG tol­
erance which is decreased with each main iteration until the 
final desired value is reached. 

, 
'\ 

3. RESULTS 

We compare the performance of £1_TV deconvolution with 
that of an alternative variational approach [13] (which we 
shall refer to as the BKS method) making use of the regular­
ization term of the Mumford-Shah functional [17] . The first 
test uses the 236 x 236 pixel "Einstein" image (see Fig. I), 
convolved with a 3 x 3 pillbox kernel and subjected to salt 
and pepper noise. This example is identical to one of those 
set up by Bar et. at. [13], allowing us to use their parameter 
choices, for their method, to provide a fair comparison. The 
second test uses the 512 x 512 pixel "Boat" image (see Fig. 
2), convolved with a 7 x 7 Gaussian kernel of standard devi­
ation 2.0, and subjected to salt and pepper noise (in this case 
we made our own choice of parameters for the BKS method). 

Reconstruction SNR values and computation times are 
compared in Table I, and noisy and reconstructed images are 
displayed in Figs. 3 to 5. For comparable computation times, 
the 1RN algorithm for f l-TV deconvolution gives signicantly 
better results, both in terms of SNR and visual quality. 

Fig. 1. "Einstein" test image (236 x 236 pixel) . 

Fig. 2. "Boat" test image (512 x 512 pixel). 
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(a) Blur and 10% salt and pepper noise 	 (b) B KS reconstruction (c) (I-TV IRN reconstruction 

Fig. 3. Deconvolution with 10% salt and pepper noise. 

(a) Blur and 30% salt and pepper noise 	 (b) B KS reconstruction (c) (I_TV IRN reconstruction 

Fig. 4. Deconvolution with 30% salt and pepper noise. 

(a) Blur and 30% salt and pepper noise (b) BKS reconstruction (c) (l_TV IRN reconstruction 

Fig. 5. Deconvolution with 30% salt and pepper noise. 
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SNR (db) Time (s) 
i I_TVei-TVImage Noise BKS BKS 

Einstein 10% 7.9 20.5 58 55 
30% 2.2 15.8 57 50 
10%Boat 9.3 20.1 282 356 
30% 282 2899.7 16.5 

Table 1. Deconvolution perfonnance comparison between 
BKS [13] method and el-TV, computed via the IRN algo­
rithm, on the "Einstein" and "Boat" test images. 

4. CONCLUSIONS 

The e1-TV method gives very good reconstruction quality 
when applied to deconvolution of images with salt and pep­
per noise. The IRN algorithm represents a computationally 
efficient approach to minimizing the el-TV functional. 
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