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AN /1-TV ALGORITHM FOR DECONVOLUTION WITH SALT AND PEPPER NOISE

Brendt Wohlberg*

T-7 Mathematical Modeling and Analysis
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

ABSTRACT

There has recently been considerable interest in applying To-
tal Variation with an ¢! data fidelity term to the denoising
of images subject to salt and pepper noise, but the extension
of this formulation to more general problems, such as de-
convolution, has received little attention, most probably be-
cause most efficient algorithms for £'-TV denoising can not
handle more general inverse problems. We apply the Itera-
tively Reweighted Norm algorithm to this problem, and com-
pare performance with an alternative algorithm based on the
Mumford-Shah functional.

Index Terms— deconvolution, total variation, speckle
noise

1. INTRODUCTION

The standard Total Variation (TV) regularization functional
[11, which we shall refer to as ¢2-TV, may be written as

2
T(u) = % Ku-—s|| +A \/(Dx“)2 + (Dyu)?||
2
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where K is the linear operator representing the forward prob-
lem, and we employ the following notation:

e the p-norm of vector u is denoted by |lu]|,,

e scalar operations applied to a vector are considered to
be applied element-wise, so that, for example, u =
v? = u =vZ and u = /v = u; = /U, and

e horizontal and vertical discrete derivative operators are
denoted by D, and D, respectively.

This regularization functional has been applied to a wide
variety of image restoration problems, including denoising
and deconvolution [2, 3] of images subject to Gaussian white
noise.

More recently, the £1-TV functional [4, 5]
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has attracted attention due to a number of advantages [6], in-
cluding superior performance with non-Gaussian noise such
as salt and pepper noise. While rapid progress has been made
on the development of efficient algorithms for minimizing this
functional [7, 8, 9, 10], the majority of these methods are re-
stricted to the denoising problem, corresponding to setting
K to the identity operator, and, presumably for this reason,
application of the ¢!-TV functional for more general inverse
problems, such as deconvolution, has received little or no at-
tention in the literature.

In this paper we consider the problem of deconvolution
subject to salt and pepper noise, comparing ¢!-TV decon-
volution, computed via the recently introduced Iteratively
Reweighted Norm (IRN) approach [11, 12], with an alterna-
tive variational approach designed for this problem [13].

2. ITERATIVELY REWEIGHTED NORM
APPROACH

The IRN algorithm [11, 12] for minimizing the generalized
TV functional
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is motivated by the Iteratively Reweighted Least Squares
(IRLS) method [14, 15, 16] for solving the minimum ¢ norm
problem min,, %IlKu — s} by solving a sequence of mini-
mum weighted ¢2 norm problems. These methods represent
the ¢2 norm of u

il = Z kP,
by the weighted ¢2 norm of u
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with diagonal weight matrix W = (2/p) diag (|u[?~2) . At
each iteration of an iterative scheme, the ¢” norm is approx-
imated by the weighted ¢ norm using the weights from the



previous iteration. To simplify somewhat, this approxima-
tion may be used to minimize the norm because, for the same
choice of W (and u such that u; # 0 Vk) we have

Vo lull} = @/2) Vg [,

so that both expressions have the same value and tangent di-
rection.

The weighted ¢? equivalent of (1) may be written (the
reader is referred to [11, 12] for full details of the derivation)
as

1 = 4 oo 3 o
where
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and functions (with corresponding threshold parameters ep
and € R)
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are required to avoid the possibility of infinite weights. The
minimum of this functional is

N -1
= (KTWFK + ,\DTWRD) KTWes, (2
and the resulting algorithm consists of the following steps:

Initialize iy
uo = (KTK +AD"D) " KTs

Iterate
. 2
W = dios (2fe(Kuos )

L f2 .
Wr = diag (afR ((Drug-1)* + (DUUk—1)2)>
e = (KTWeiK + ADIWg D,
AADTWg D)~ KT Wiys

The matrix inversion is achieved using the Conjugate Gra-
dient (CG) method. We have found that a significant speed
improvement may be achieved by starting with a high CG tol-
erance which is decreased with each main iteration until the
final desired value is reached.

3. RESULTS

We compare the performance of ¢!-TV deconvolution with
that of an alternative variational approach [13] (which we
shall refer to as the BKS method) making use of the regular-
ization term of the Mumford-Shah functional [17]. The first
test uses the 236 x 236 pixel “Einstein” image (see Fig. 1),
convolved with a 3 x 3 pillbox kernel and subjected to salt
and pepper noise. This example is identical to one of those
set up by Bar et. al. [13], allowing us to use their parameter
choices, for their method, to provide a fair comparison. The
second test uses the 512 x 512 pixel “Boat” image (see Fig.
2), convolved with a 7 x 7 Gaussian kernel of standard devi-
ation 2.0, and subjected to salt and pepper noise (in this case
we made our own choice of parameters for the BKS method).

Reconstruction SNR values and computation times are
compared in Table 1, and noisy and reconstructed images are
displayed in Figs. 3 to 5. For comparable computation times,
the IRN algorithm for £!-TV deconvolution gives signicantly
better results, both in terms of SNR and visual quality.

Fig. 1. “Einstein” test image (236 x 236 pixel).

Fig. 2. “Boat” test image (512 x 512 pixel).




(a) Blur and 10% salt and pepper noise (b) BKS reconstruction (c) £1-TV IRN reconstruction

Fig. 3. Deconvolution with 10% salt and pepper noise.

(a) Blur and 30% salt and pepper noise (b) BKS reconstruction (c) £1-TV IRN reconstruction

Fig. 4. Deconvolution with 30% salt and pepper noise.

¥

(a) Blur and 30% salt and pepper noise (b) BKS reconstruction (c) £*-TV IRN reconstruction

Fig. 5. Deconvolution with 30% salt and pepper noise.



SNR (db) Time (s)

Image | Noise | BKS [ £I-TV | BKS | ¢-TV
Einstein | 10% 7.9 20.5 58 35
30% 2.2 15.8 57 50
Boat 10% 9.3 20.1 282 356
30% 9.7 16:571 1 282 289

Table 1. Deconvolution performance comparison between
BKS [13] method and ¢!-TV, computed via the IRN algo-
rithm, on the “Einstein” and “Boat” test images.

4. CONCLUSIONS

The ¢'-TV method gives very good reconstruction quality
when applied to deconvolution of images with salt and pep-
per noise. The IRN algorithm represents a computationally
efficient approach to minimizing the ¢*-TV functional.
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