
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Intended for:

EXPLORING NETWORK STRUCTU
FUNCTION USING NETWORKX

DANIEL SCHULT

PROCEEDINGSITALK
SCIPY 08

SWART

DYNAMICS, AND

NATIONAL LABORATORY

----EST.1943 --­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
lor the National Nuclear Security Administration of the U.S. Department of Energy under contract DE·AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Exploring network structure, dynamics, and function using NetworkX

Aric and Pieter 1. Swart
Mathematical Modeling and TheoreIical Division,
Los Alamos National LaboraloT)~ Los Alamos, NM 87545

Daniel A. Schult
"f'mlJ'UTIPnI of Mathematics, mVf'rs/lv Hamilton, NY 13346

NetworkX is a Python package for exploration and analysis of networks and network algorithms.
The core provides data structures for representing many types of networks, or

directed graphs, and graphs with and self loops. The nodes in NetworkX graphs can be
any (hashable) Python and edges can contain arbitrary data; this flexibility makes NetworkX ideal for

networks found in many different scientific fields.
In addition to the basic data stl1Jctures many algorithms are implemented for calculating network prop-

erties and stl1Jcture measures: shortest paths, betweenness and distribution and
many more. NetworkX can read and write various formats for easy exchange with data, and

generators for many classic and popular graph models, such a<; the Small World,
and Barabasi-Albert models, are included.

The ease-oF-use and flexibility of the Python together with connection to the SciPy
tools make NetworkX a powerful tool for scientific We discuss some of our recent work

of oscillators to demonstrate how NetworkX enables research in the field of computa-
tional networks.

I. INTRODUCTION

Recent advances in the theory of networks combined with
the ability to collect network data has increased interest in
exploring and large networks [New03] [BNFf04].
cations of network analysis are found in many scientific
and technological research areas such as gene and protein
interaction networks, Web Graph structure, Internet traffic
social and collaborative networks including contact networks for the
spread of diseases. In these areas and others, software
tools are available that solve computational
lems but only recently have open-source purpose tools been
developed that can span research application domains [CN) [OFS08].
We have NetworkX to fill the need for network

used as a platform for de~

the structure.
flP,,,p .. rmloa NetworkX in 2002 to analyze data and in-

tervention for the epidemic spread of disease and
to the stl1Jcture and of
tnlcture networks. The initial was driven by our need
for ease-of-use and development in a collaborative, multidisci­
plinaryenvironment. Our initial goals were to build an open-source
tool base that can easily grow in a multidisciplinary environment
with users and that are not experts in soft-

ware architecture or We wanted to build something
that interfaces with code ba~es written in C. C++, and
FORTRAN, and that could painlessly slurp in large nonstandard data
sets (one of our early tests involve on a 1.6 mil-
lion node with 6 million Python satisfied all of our

API or
that was suitable for our Inspired by a 1998 essay by Python
creator Guido van Rossum on a Python graph [vR98]
and the excellent C and C++ graph data structures and
book by Sedgewick we developed NetworkX as a tool for
the field of computational networks. NetworkX had a public pre­
mier in 2004 at the annual conference and was first
publicly released in April of 2005.

In this paper we describe NetworkX and demonstrate how it has
enabled our work synchronization of coupled oscillators.
In the following we a brief introduction to NetworkX with sim-
ple and describe some of the details of the classes, data
stl1Jctures and algorithms available. After that we describe in detail
a research in which NetworkX a central role. We con-
elude with
and education.

of how others have used NetworkX in research

H. USING NETWORKX

To get started with NetworkX yOll will need the Python
system and the NetworkX Both are included in several stan-
dard system NetworkX is easy to install
and we suggest you visit the project website to make sure you have
the latest software version and documentation [HSS]. In some of the
following examples we also show how NetworkX interacts with other
optional such as NumPy, and Matplotlib, and
we suggest you also consider installing those; NetworkX will auto­
matically use them if they are available.

To get started first import NetworkX "nx" as a short name
to save typing

»> import networkx as nx

The basic class is used to hold the network information.
Nodes can be added as follows:

G=nx. Graph ()
G.add_node{) # integer

»> G.add_node('a') # string
»> print .nodes()
[, a', 1]

Nodes can be any hashable
files, functions, and more

import math

such as numbers,

»> G.add_node(math.cos) # cosine function
»> fh=open(' tmp. txt', 'w')

»> G.add_node(fh) # file handle
»> print G.nodes{)
[<built-in function
<open file 'tmp.txt', mode 'w' at Ox30dc38>J

or I inks, between nodes are
They can be added simply

»> G.add_edge(,'a')
»> G.add_edge('b' ,math.cos)
»> print G.edges{)

as tuples of nodes.

[('b', <built-in function cos», ('a', 1)]

If the nodes do not exist are automatically added to

data can d be associated with the edge an as
a v, d). The default val ue for d the 1 but any
valid Python is allowed. numbers as data allows
a natural way to express weighted networks. In the following ex-

we use Dijkstra's to find the shortest weighted path
a simple network of four edges with

»> G=Graph ()
»> e= (' a' , 'b' ,0.3) , (' b' , 'c' , 0.9) ,

('a','c',0.5),(' ','d',1.2)]
»> G.add_edges_from(e)
»> print
[0, 2, 3]

jsktra-path(

NetworkX includes functions for

'a', 'd')

network statistics and
metrics such as diameter, degree distribution, number of connected
components, coefficient, and betweenness centrality. In
addition generaLOrs for many classic and random mod­
els are These graphs are useful for modeling and analy-
sis of network data and also for new or network
metrics. The shows how to generate a network

of a path with 6 nodes and compute some statistics about
that network.

»> G = nx.path~graph(6)
»> print G.degree()
[1, 2, 2, 2, 2, 1]
»> print nx.density(G)
0.3333333333 3
»> print nx.diameter(G)
5
»> print nx.degree_histogram(G)
[, 2, 4]
»> print nx.bet,veenness_centrality(Gl
(0: 0.0, 1: 0.4, 2: 0.6. 3: 0.6, 4: 0.4, 5: O.O}

2

FIG. I: IV"U.,J1VIU plot of a 24 node circular ladder graph

NetworkX Python libraries to extend the avail-
able functionality with interfaces to well-tested numerical and statis­
tical libraries written in C. C++ and FORTRAN. NetworkX

be convert to NumPy matrices and sparse matri-
the linear statistics, and other tools from

>,a~I\.""t:.". For to study the spectrum of the
the NetworkX function returns a NumPy

matrix representation. The eigenvalues can be then easily
the numpy.linaJg surl-D,ICK:age

»> L=nx.laplacian(G)
»> print L # a NurnPy matrix
[[1. 1. O. O. O. o .J

[-1. 2. -l. O. O. o .J
[O. 2. - O. o .J

O. O. l. 2 -l. 0.1
O. O. -l. 2. -1. J
O. O. O. O. -1. l.ll

»> import nurnpy.linalg
»> print numpy.linalg.eigvals(L)
[3.73 le+OO 3.0000e+OO .OOOOe+OO

1.0000e+OO 4.0235e- 2.6795e-0 1

For networks NetworkX includes an interface to the
the Matplotlib Python plotting with simple force-
directed, and geometric node positioning

»> G nx.circular_ladder~graph(

»> nx draw(G)

are available either
for example

tern, or through
formats.

PyGraphviz with drawing sys-
the data to one of the standard file inter-

III. INSIDE NETWORKX

NetworkX provides classes to represent directed and undirected
with and self and a special represen-

tation for between of
>,UlaWJID such as adding more removing

nr""J1{l,.l1 class methods. Some standard

http:nr""J1{l,.l1

reporting such as nodes or edges or node degree
are also provided as class methods but more complex statistics and
l_~_; ••• ~, such as shortest and visualization are

for graphs: a list of
an matrix, or an list. The choice of repre-

sentation affects both the storage and computational time to
and algorithms Many real-world

network models are sparse; they typically have a few connec­
tions of the total possible connections for each node. For sparse
graphs the adjacency list is since the storage requirement is
the smallest (proportional to m + n for n nodes and m

There are several for an list in
Python using the built-in list, set, and data structures. The

option is to use a "dictionary of Iists"[vR98] where each
node v is a in a dictionary with associated data consisting of a
list of neighbors (nodes connected to v). Another possibility is to use
a "dictionary of sets" by using a set of nodes instead of a list.

NetworkX in contrast uses a of dictionaries". The rep-
resentation of an undirected graph with the A - B, B - C,
is

»> G=networkx Graph()
»> G.add_edge{'A','B')
»> G.add_edge('B', 'C')
»> print G.adj
{'A': ('B': },

'B': ('A': 1, 'C': I},

'C': {'B': l}}

Each node n is a in the G. adj dictionary with the data con-
sisting of a dictionary with neighbors as and the default data 1 as
value. This node dictionary allows the natural in G
to test if the G contains node n and and for n in G to loop
over all nodes [Epp08]. The "dictionary of data struc-
ture allows finding and with two dictionary
look-ups instead of a dictionary look-up and a search when

''''',,,, ... ,''r,, of lists". Some of the same benefits can be realized
sets to represent the node but we use dictionaries instead
since this allows arbitrary data to be attached to the edge. The phrase

[u 1 [v 1 returns the associated with the between
nodes and v. A common use is to store a real value on the so
that a graph is replre~;ented

Note that for undirected A B
and B A) are stored. both representations allows a sin-
gle dictionary look-up to test if u 'V or V u exists. For
directed only one of the representations for the u --> v
needs to be stored but we track of both the forward edge and
the backward in a "successor" and dictionary of
dictionaries. This extra storage simplifies some algorithms, such as

shortest when backwards a graph is
useful.

Though less natural than graphs or the
"dictionary of dictionaries" data structure can also be used to store

with parallel NetworkX provides the
and classes to

structure with parallel edges. In that case the data for
sists of a list of objects with one element for each

nodes u and 'v.
There are no custom node by default in

NetworkX in NetworkX are as a two-tuple or
of nodes or v, d) with d as data. The

edge data d is the value of a dictionary and can thus be any Python
object. Nodes are in a dictionary and therefore have the same

3

restrictions as Python dictionaries; nodes must be hashable objects.
Users can define custom node Objects as long as meet that

IV. NETWORKX IN ACTION: SYNCHRONIZATION

We are NetworkX in our scientific research for the spectral
of network dynamics and to study in net-

works of coupled oscillators [HS08]. Synchronization of oscillators
is a fundamental problem of dynamical systems with applications to
heart and muscle tissue, ecosystem dynamics, secure communication
with chaos, neural coordination, memory and epilepsy. The
question we are is how to best rewire a network in order
to enhance or decrease the network's to We are
particularly interested in the setting where the number of edges in a
network stays the same; we can the network by edges
(defined as removing an edge between one pair of nodes and
an between another). Ideally this question should be answered
independently of the details of the oscillators or coupling.

Our model follows the framework presented [FJeOO] where
identical oscillators are coupled in a fairly general manner and said
to be if their states are identical at all times. Small per­
turbations from synchronization are examined to determine if they
grow or decay. If the perturbations decay the system is said to be

In solving for the rate of perturbations, it
becomes apparent that the dynamical characteristics of the oscillator
and coupling separate from the structural of the network
over which they are coupled. This and powerful separa-
tion that coupled oscillators synchronize more on
certain networks of the type of oscillator or their cou­
pling.

The effect of the network structure on synchronization is deter-
mined via the of the network Laplacian matrix L =
D A where A is the matrix of the net-
work and D is a diagonal matrix of node
with 111 oscillators, there are 111
The lowest Ao 0 is zero and we index the others Ai in in-

order. For a connected network it is true that Ai 0 for
O. The growth rate of is determined by a Mas-

Function as inputs and
returns the growth rate for that The observed growth
rate of the system is the maximum of the MSF evaluations for all

By studying the spectrum one can show that networks
for which the lie in a wide band are resistant to synchro­
nization and an effective measure of the resistance to synchronization
is the ratio of the to sma!lest of the net-
work, The of
to move that optimally decrease r.

Python makes it easy to implement and test
how well they work. Functions that take NetworkX.GraphO objects
as input and return an edge constitute an algorithm for edge addition
or removal. these algorithms for We
implemented several algorithms either the
or the of the network and (''''mn,~r''ri

choice. We found that
while algorithms which use information are much better than
random it is most effective to use information from the

of the network rather than
Of course, the to choose for rewiring

the network you start with. NetworkX is helpful for exploring
choices over many different networks since a variety of networks
can be easily created. Real data sets that provide network config-

4

Barabasi - Albert

p)

250

r 150

50

900

700
r

500

300

10.6

10.4

r 10.2'

10.0

2.6

r 2.4

2.2

0 5 10 15 20
number moved

FIG. 2: The in r as in some example networks are
moved according to different schemes. A strategy that moves

based on is the most effective overall at
synchronization by)'. The

ues found by using the NetworkK connections to
matrix solvers.

urations can be read into lists as well as
many other formats. In addition, a
generators are included so that, for random networks with
a distribution can be easily constructed. These genera­
tor are taken from recent (as well as very old) literature
on random network models. The Numpy also makes it easy
to collect statistics over many networks and the results via Mat­
plotlib as shown in 2.

[n addition to computation, visualization of the networks is help­
ful. NetworkX hooks into Matplotlib or (2D) and VTK or
UbiGraph (3D) allow network visualization with node and traits
that cOlTelate well with r as shown in 3.

V. NETWORK"\(IN THE WORLD

The core of NetworkX is written completely in this makes
the code easy to read, write, and document. Python lowers the
balTier for students and non-experts to leam, use, and net­
work The ease-oF-use has contributed to uses in the open-
source and in educational [MS07].
The SAGE open source mathematics system
rated :-.letworkK and extended it with even more

algorithms and functions.

NetworkX takes advantage of many in

FIG. 3: A graph how to choose
tor. The size of each node represents the value of the
vector associated with that node. The dashed edge is the edge with
the values between the two nodes.

but the between 3 and 8

and brings then together to build a pow-
For of net works us­

ing from algebraic theory, NetworkX uses adja­
of networks with :-.lumPy dense ma­

trices and sparse matrices The NumPy and SciPy
"dL"'""'~ also provide linear system and eigenvalue solvers, statisti­
cal tools, and many more useful functions. For and draw-

NetworkX contains interfaces to the Graphviz network
tools [EGK04], (2d) [Hun07] and UbiGraph (3d)
A variety of standard network Models are included for realization
and creation of network models and NetworkX can data
from many external formats.

VI. CONCLUSION

Python many tools to ease exploration of scientific prob­
lems. One of its is the ability connect code and
libraries in a natural way that eases of many tools. Here
we have shown NetworkX, in with
NumPy, Matplotlib and their connections to UNPACK, ODE in­
tegration tools and other tools written in FORTRAN and Callow

and implementation of for dynamics
of network coupled oscillators. We hope to have enticed you to take
a look at NetworkX the next time you need a way [0 track of
connections between

5

[BNFl'04] Eli Ben-Naim, Hans Frauenfelder, and Zollan Torozckai,
editors, Complex Networks, volume 650 of Lecture NOles in
Physics. 2004.

Gabor Csardi and Tamas Nepusz. The igraph

Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Mad­
hav V. Marathe, Aravind Srinivasan, Zoltan Toroczkai, and Nan
Wang. Modelling disease outbreaks in realistic urban social net­
works. Nature, page 180,2002.

1. Elison, E.R. Gansner, E. Koutsofios, S.c. North, and
G. 	Woodhull. Graphviz and dynagraph static and

drawing tools. In M. and P. .\1urzel, editors, Graph
Software, pages 127-148. 2004.

rEpp08] David Eppstein. PADS, a library of Python
Data Structures, 2008. http://www.ics.ucLeduJf.nr ... tf.. n.

[FJCOO] Kenneth S. Fink, Johnson, Tom Can'oll,
and Lou Pecora, Three oscillators a universal
of synchronization stability in coupled oscillator arrays,
Rev. E,61(5):5080 90, MAY 2000.

[has] Hashable note.
[HS08] Ark Hagberg and Daniel A. Schult. Rewiring networks for

To appear in Chaos, 2008.

[HSS] Aric A. Hagberg, Daniel A, Schult, and Pieter J. Swart. Net­

workX. 	ht tps : / /networkx. lanl.
John D. Hunter. Matplotlib: A 2d environment.

Computing in Science and 9(3):90-95,
2007.

[MS07) Christopher R. Myers and James P. Sethna. Python for edu­
cation: Computational methods for nonlinear systems. CompUl­

in Science alld 2007.
[New03] M, E, 1. Newman. The structure and function of

networks, SIAM Review, 167 256, June 2003,
[OFS08] Joshua O'Madadhain, Danyel Fisher, Padhraic

Scott White, and Yan-Biao Analy­
sis and visualization of network data JUNG,
http://jung,sourceforge,netJdoclJUNG_journal,pdf, 2008.

[Oli06] Travis E. Guide to Provo, UT, March
2006.

Available in Debian Linux and Fink (OSX) package systems.
Robert Sedgewick. Algorithms in C: Part 5: al­

gorithms. Addison-Wesley, Reading, MA, USA, third edition,
2002.

[Ste08] William Stein. Sage: Open Source Malhemati­
cal (Version 2,10.2). The 2008.
http://lt.'W'.'l . sagemath. org.

[VeI07) Todd L. Veldhuizen. Dynamic multilevel graph visualiza­
tion. Eprint arXiv:cs.GRJ07121549, Dec 2007.

Guido van Rossum. Python Patterns Implementing
1998. http://www.python.orgJdoc!essayslgraphsl.

http://www.python.orgJdoc!essayslgraphsl
http://lt.'W'.'l
http://jung,sourceforge,netJdoclJUNG_journal,pdf
http:http://www.ics.ucLeduJf.nr

