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Exploring network structure, dynamics, and function using NetworkX

Aric Hagberg and Pieter J. Swart
Mathematical Modeling and Analysis, Theoretical Division,
Los Alamos National Laboratory, Los Alamos, NM 87545

Daniel A. Schult
Department of Mathematics, Colgate University, Hamilton, NY 13346

NetworkX is a Python language package for exploration and analysis of networks and network algorithms,
The core package provides data structures for representing many types of networks, or graphs, including simple
graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be
any (hashable) Python object and edges can contain arbitrary data; this flexibility makes NetworkX ideal for
representing networks found in many different scientific fields.

In addition to the basic data structures many graph algorithms are implemented for calculating network prop-
erties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and
many more. NetworkX can read and write various graph formats for easy exchange with existing data, and
provides generators for many classic graphs and popular graph models, such as the Erdos-Rényi, Small World,
and Barabdsi-Albert models, are included.

The ease-of-use and flexibility of the Python programming language together with connection to the SciPy
tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying
synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computa-

tional networks.

1. INTRODUCTION

Recent major advances in the theory of networks combined with
the ability to collect large-scale network data has increased interest in
exploring and analyzing large networks [New03] [BNFTO04]. Appli-
cations of network analysis techniques are found in many scientific
and technological research areas such as gene expression and protein
interaction networks, Web Graph structure, Internet traffic analysis,
social and collaborative networks including contact networks for the
spread of diseases. In these areas and others, specialized software
tools are available that solve domain-specific computational prob-
lems but only recently have open-source general purpose tools been
developed that can span research application domains [CN][OFS08].
We have designed NetworkX to fill the need for general network
analysis software that also can be easily used as a platform for de-
signing new theory and algorithms [HSS].

The Network X package is a flexible network analysis tool written
in the Python programming language. NetworkX provides basic net-
work, or graph, data structures that allow the representation of sim-
ple graphs, directed graphs, and graphs with seif-loops and parallel
edges. It allows {almost) arbitrary objects as nodes and can associate
arbitrary objects to edges. This means that the network structure
can be integrated with custom objecis and data structures, comple-
menting any pre-existing code and allowing network analysis in any
application setting without significant software development. Once
a network is represented as a NetworkX object, standard algorithms
that facilitate finding degree distributions (number of edges incident
to each node), clustering coefficients (number of triangles each node
is part of), shortest paths, spectral measures, and communities can be
used to analyze the structure,

We began developing NetworkX in 2002 to analyze data and in-
tervention strategies for the epidemic spread of disease [EGKO02] and
to study the structure and dynamics of social, biological, and infras-
tructure networks. The initial development was driven by our need
for ease-of-use and rapid development in a collaborative, multidisci-
plinary environment. Our initial goals were to build an open-source
ool base that can easily grow in a multidisciplinary environment
with users and developers that are not necessarily experts in soft-

ware architecture or programming. We wanted to build something
that interfaces easily with existing code bases written in C, C++, and
FORTRAN, and that could painlessly slurp in large nonstandard data
sets {one of our early tests involve studying dynamics on a 1.6 mil-
lion node graph with 6 million edges). Python satisfied all of our
requirements but there was no existing AP or graph implementation
that was suitable for our project. Inspired by a 1998 essay by Python
creator Guido van Rossum on a Python graph representation {[vR98]
and the excellent C and C++ graph data structures and algorithms
book by Sedgewick [Sed02] we developed NetworkX as a tool for
the field of computational networks. NetworkX had a public pre-
mier in September 2004 at the SciPy annual conference and was first
publicly released in April of 2005.

In this paper we describe NetworkX and demonstrate how it has
enabled our work studying synchronization of coupled oscillators.
In the following we give a brief introduction to Network X with sim-
ple examples and describe some of the details of the classes, data
structures and algorithms available. After that we describe in detail
a research project in which NetworkX plays a central role. We con-
clude with examples of how others have used NerworkX in research
and education.

II. USING NETWORKX

To get started with NetworkX you will need the Python language
system and the NetworkX package. Both are included in several stan-
dard operating system packages [pac]. NetworkX is easy to install
and we suggest you visit the project website to make sure you have
the latest software version and documentation [HSS]. In some of the
following examples we also show how NetworkX interacts with other
optional Python packages such as NumPy, SciPy, and Matplotlib, and
we suggest you also consider installing those; NetworkX will auto-
matically use them if they are available.

To get started first import NetworkX using *nx” as a short name
10 save typing

>>»> import networkx as nx



The basic Graph class is used to hold the network information,
Nodes can be added as follows:

»>> G=nx.Graph{)

»>> G.add_node{l) # integer
>»» G.add_node(’a’) # string
>>»> print G.nodes{)

[ra’, 1]

Nodes can be any hashable [has] object such as strings, numbers,
files, functions, and more

>»> import math

>>» G.add_nodel{math.cos}) # cosine function
>>> fh=zopen({’/tmp.txt’, 'w’)

»>>» G.add_node(fh} # file handle

>>> print G.nodes ()

[<built-in function cos>,

<open file ‘tmp.txt’, mode 'w’ at 0x30dc38>)

Edges, or links, between nodes are represented as tuples of nodes.
They can be added simply

>>> G.add_edge(l,a’)
»»> G.add_edge (b’ , math.cos}
»»> print G.edges ()
[{(*b’, <built-in function cos>), (‘a’, 1)]

{f the nodes do not already exist they are automatically added to
the graph.

Edge data can d be associated with the edge by adding an edge as
a 3-tuple {u,v,d). The default value for d is the integer 1 but any
valid Python object is allowed. Using numbers as edge data allows
a natural way to express weighted networks. In the following ex-
ample we use Dijkstra’s algorithm to find the shortest weighted path
through a simple network of four edges with weights.

>»> G=Graph()}

»»> e=[{"a’,"b",0.3}, (b, ’c’,0.9},
{("a’,’c, 0.5, ("c','d’",1.2)]

>»> G.add_edges_from(e}

>>> print dijsktra_path(G, a’', 'd’)

(o, 2, 31

NetworkX includes functions for computing network statistics and
metrics such as diameter, degree distribution, number of connected
components, clustering coefficient, and betweenness centrality. In
addition generators for many classic graphs and random graph mod-
els are provided. These graphs are useful for modeling and analy-
sis of network data and also for testing new algorithms or network
metrics. The following example shows how to generate a network
consisting of a path with 6 nodes and compute some statistics about
that network.

>>> G = nx.path_graph(6)
>>> print G.degree()

(2, 2, 2, 2, 2, 1]

>>> print nx.density (G}
0.333333333333

>>> print nx.diameter (G}

5
>»> print nx.degree_histogram{G}
[o, 2, 43

>>>» print nx.betweenness_centrality(G)
{(0: 0.0, 1: 0.4, 2: 0.6, 3: 0.6, 4: 0.4, 5:

FIG. 1. Matplotlib plot of a 24 node circular ladder graph

Network X leverages existing Python libraries to extend the avail-
able functionality with interfaces to well-tested numerical and statis-
tical libraries written in C, C++ and FORTRAN. NetworkX graphs
can easily be convert to NumPy matrices and SciPy sparse matri-
ces to leverage the linear algebra, statistics, and other tools from
those packages. For example, to study the eigenvalue spectrum of the
graph Laplacian the Network X laplacian() function returns a NumPy
matrix representation. The eigenvalues can be then easily computed
using the numpy.linalg sub-package

>>> L=nx.laplacian(G)
>>> print L # a NumPy matrix
[t1. -1. 0. 0. 0. ¢€.]
[-1. 2. -1. 0. 0. 0.]
[ 0. -1, 2. -1. 0. 0.]
[e¢. 0. -1. 2. -1. 0.]
[ 6. 6. 0. -1. 2. -1.]
[ oe. o. 0. 0, -1. 1.1
=>> import numpy.linalg
»>>> print numpy.linalg.eigvals{L)
[ 3.7321e+00C 3.0000e+00 2.0000e+00
1.0000e+00 -4.02352-17 2.6795e-01]

]

For visualizing networks NetworkX includes an interface to the
the Matplotlib Python plotting package along with simple force-
directed, spectral, and geometric node positioning algorithms.

»>> G = nx.cilrcular_ ladder_graph{12)
»>> nx.draw(G)

Connections to other graph drawing packages are available either
directly, for example using PyGraphviz with Graphviz drawing sys-
tem, or through writing the data t0 one of the standard file inter-
change formats.

II1. INSIDE NETWORKX

NetworkX provides classes to represent directed and undirected
graphs, with optional weights and self loops, and a special represen-
tation for multigraphs which allows multiple edges between pairs of
nodes. Basic graph manipulations such as adding more removing

0.0} nodes or edges are provided class methods. Some standard graph


http:nr""J1{l,.l1

i

reporting such as listing nodes or edges or computing node degree
are also provided as class methods but more complex statistics and
algorithms such as clustering, shortest paths, and visualization are
provided as package functions.

There are a few standard representations for graphs: a list of
edges, an adjacency matrix, or an adjacency list. The choice of repre-
sentation affects both the storage and computational time to perform
look-ups and graph algorithms [Sed02]. Many real-world graphs and
network models are sparse; they typically have only a few connec-
tions of the total possible connections for each node, For sparse
graphs the adjacency list is preferred since the storage requirement is
the smallest (proportional to m + n for n nodes and m edges).

There are several options for implementing an adjacency list in
Python using the built-in list, set, and dictionary data structures. The
simplest option is to use a “dictionary of lists"[vR98] where each
node v is a key in a dictionary with associated data consisting of a
list of neighbors (nodes connected to v). Another possibility is {o use
a “dictionary of sets” by using a set of nodes instead of a list.

NetworkX in contrast uses a “dictionary of dictionaries”, The rep-
resentation of an undirected graph with the edges A - B, B - C,
is

>»>» Gznetworkx.Graph)
»>>> G.add_edge{’'A', "B’}
>>> G.add_edge{’'B’,'C"}
>»> print G.adj
{*ar: {'B": 1},
‘B’ {'A’7: 1, C’': 1},
'Cr {'B7: 1)}

Each node n is a key in the G. adj dictionary with the data con-
sisting of a dictionary with neighbors as keys and the default data 1 as
value. This node dictionary allows the natural expressions n in G
to test if the graph G contains node » and and for n in Gioloop
over all nodes [Epp08]. The “dictionary of dictionary” data struc-
ture allows finding edges and removing edges with two dictionary
look-ups instead of a dictionary look-up and a search when using a
“dictionary of lists”. Some of the same benefits can be realized using
sets to represent the node neighbors but we use dictionaries instead
since this allows arbitrary data to be attached to the edge. The phrase
G [u] [v] returns the edge object associated with the edge between
nodes « and v. A common use is to store a real value on the edge so
that a weighted graph is represented.

Note that for undirected graphs both representations (e.g A — B
and B — A) are stored. Storing both representations allows a sin-
gle dictionary look-up to test if edge u — v or v — u exists. For
directed graphs only one of the representations for the edge u — v
needs (o be stored but we keep track of both the forward edge and
the backward edge in a “successor” and “predecessor” dictionary of
dictionaries. This extra storage simplifies some algorithms, such as
finding shortest paths, when traversing backwards through a graph is
useful,

Though less natural than storing simple graphs or digraph the
“dictionary of dictionaries” data structure can also be used to store
graphs with parallel edges (multigraphs). NetworkX provides the
MultiGraph and MultiDiGraph classes to implement a graph
structure with parallel edges. In that case the data for Glul{v] con-
sists of a list of edge objects with one element for each edge connect-
ing nodes w and .

There are no custom node objects or edge objects by default in
NetworkX. Edges in NetworkX are represented as a two-tuple or
three-tuple of nodes {u,v), or {u,v,d) with d as edge data. The
edge data d is the value of a dictionary and can thus be any Python
object. Nodes are keys in a dictionary and therefore have the same

restrictions as Python dictionaries; nodes must be hashable objects.
Users can define custom node objects as long as they meet that single
requirement.

IV. NETWORKX IN ACTION: SYNCHRONIZATION

We are using NetworkX in our scientific research for the spectral
analysis of network dynamics and to study synchronization in net-
works of coupled oscillators [HSO8]. Synchronization of oscillators
is a fundamental problem of dynamical systems with applications to
heart and muscle tissue, ecosystem dynamics, secure communication
with chaos, neural coordination, memory and epilepsy. The specific
question we are investigating is how to best rewire a network in order
to enhance or decrease the network’s ability to synchronize. We are
particularly interested in the setting where the number of edges in a
network stays the same; we can modify the network by moving edges
(defined as removing an edge between one pair of nodes and adding
an edge between another). Ideally this question should be answered
independently of the specific details of the oscillators or coupling.

Our model follows the framework presented by [FIC00] where
identical oscillators are coupled in a fairly general manner and said
to be synchronized if their states are identical at all times. Small per-
turbations from synchronization are examined to determine if they
grow or decay. If the perturbations decay the system is said to be
synchronizable. In solving for the growth rate of perturbations, it
becomes apparent that the dynamical characteristics of the oscillator
and coupling separate from the structural properties of the network
over which they are coupled. This surprising and powerful separa-
tion implies that coupled oscillators synchronize more effectively on
certain networks independent of the type of oscillator or their cou-
pling.

The effect of the network structure on synchronization is deter-
mined via the eigenvalues of the network Laplacian matrix L =
D — A where A is the adjacency matrix representation of the net-
work and D is a diagonal matrix of node degrees. For a network
with V oscillators, there are N eigenvalues-all real and non-negative.
The lowest Ag = 0 is always zero and we index the others A; in in-
creasing order. For a connected network it is true that A; > 0 for
t > 0. The growth rate of perturbations is determined by a Mas-
ter Stability Function (MSF) which takes eigenvalues as inputs and
returns the growth rate for that eigenmode, The observed growth
rate of the system is the maximum of the MSF evaluations for all
eigenvalues, By studying the spectrum one can show that networks
for which the eigenvalues lie in a wide band are resistant to synchro-
nization and an effective measure of the resistance to synchronization
is the ratio of the largest to smallest positive eigenvalue of the net-
work, r == Ax-1/A, The goal of enhancing synchronization is then
to move edges that optimally decrease .

Python makes it easy to implement algorithms quickly and test
how well they work. Functions that take NetworkX.Graph() objects
as inpwt and refurn an edge constitute an algorithm for edge addition
or removal. Combining these gives algorithms for moving edges. We
implemented several algorithms using either the degree of each node
or the eigenvectors of the network Laplacian and compared their ef-
fectiveness to each other and to random edge choice. We found that
while algorithms which use degree information are much better than
random edge choice, it is most effective to use information from the
eigenvectors of the network rather than degree.

Of course, the specific edge to choose for rewiring depends on
the network you start with, NetworkX is helpful for exploring edge
choices over many different networks since a variety of networks
can be easily created. Real data sets that provide network config-
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FIG. 2: The change in r as edges in some example networks are
moved according to different schemes. A greedy strategy that moves
edges based on Laplacian eigenvectors is the most effective overall at
enhancing synchronization by reducing ». The Laplacian eigenval-
ues found by using the NetworkX connections to SciPy and NumPy
matrix eigenvalue solvers,

urations can be read into Python using simple edge lists as well as
many other formats. In addition, a large collection of network model
generators are included 50 that, for example, random networks with
a given degree distribution can be easily constructed. These genera-
tor algorithms are taken from recent (as well as very old) literature
on random network models. The Numpy package also makes it easy
to collect statistics over many networks and plot the results via Mat-
plotlib as shown in Fig. 2.

In addition to computation, visualization of the networks is help-
ful. NetworkX hooks into Matplotlib or Graphviz (2D) and VTK or
UbiGraph (3D) allow network visualization with node and edge traits
that correlate well with » as shown in Fig. 3.

V. NETWORKX IN THE WORLD

The core of NetworkX is written completely in Python; this makes
the code easy to read, write, and document. Using Python lowers the
barrier for students and non-experts to learn, use, and develop net-
work algorithms. The ease-of-use has contributed to uses in the open-
source community and in university educational settings [MSO7].
The SAGE open source mathematics system [Ste08] has incorpo-
rated NetworkX and extended it with even more graph-theoretical

algorithms and functions.
NetworkX takes advantage of many existing applications in

FIG. 3: A sample graph showing how to choose edges by eigenvec-
tor. The size of each node represents the value of the largest eigen-
vector associated with that node. The dashed edge is the edge with
the largest difference in eigenvector values between the two nodes.
Nodes 3 and 6 have the highest degree but the edge between 3 and 8
is more effective at enhancing synchronization.

Python and other languages and brings then together to build a pow-
erful analysis platform. For computational analysis of networks us-
ing techniques from algebraic graph theory, NetworkX uses adja-
cency matrix representations of networks with NumPy dense ma-
trices and SciPy sparse matrices [Oli06]. The NumPy and SciPy
packages also provide linear system and eigenvalue solvers, statisti-
cal tools, and many more useful functions. For visualizing and draw-
ing, NetworkX contains interfaces to the Graphviz network layout
tools [EGK04], Matplotlib (2d} [Hun07] and UbiGraph (3d) [Vel07].
A variety of standard network Models are included for realization
and creation of network models and NetworkX can import graph data
from many external formats.

VI. CONCLUSION

Python provides many tools to ease exploration of scientific prob-
lems. One of its strengths is the ability connect existing code and
libraries in a natural way that eases integration of many tools, Here
we have shown NetworkX, in conjunction with packages SciPy,
NumPy, Matplotlib and their connections to LINPACK, ODE in-
tegration tools and other tools written in FORTRAN and C allow
analysis and implementation of algorithms for analyzing dynamics
of network coupled oscillators. We hope to have enticed you to take
a took at NetworkX the next time you need a way to keep track of
connections between objects.
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