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Abstract

Good estimates of the reliability of a system make use of test data and expert knowledge
at all available levels. Furthermore, by integrating all these information sources, one can
determine how best to allocate scarce testing resources to reduce uncertainty. Both of these
goals are facilitated by modern Bayesian computational methods. We apply these tools to
examples that were previously solvable only through the use of ingenious approximations, and

use genetic algorithms to guide resource allocation.

Key Words: Genetic Algorithm, MCMC, Metropolis-Hastings Algorithm, Reliability Block Di-
agram, Resource Allocation, Success/Failure Data, System-Level/Subsystem-Level/Component-

Level Data.
Introduction

Assessing the reliability of systems represented by reliability block diagram remains important.
Take for example, U.S. military weapon systems and nuclear power plants. In making these assess-
ments, often there are information and data available at all levels of these systems, whether they
be at the component, subsystem or system level. For example, there may be data from component
and subsystem tests as well as expensive full system tests. In this article, we are concerned with
assessing the reliability of a system by combining all available information and data at whatever
level they are available; here we consider the case where we have success/failure test data.

Much of the reliability literature (Cole (1975), Mastran (1976), Mastran and Singpurwalla
(1978), Natvig and Eide (1987), Martz, Waller and Fickas (1988), Martz and Waller (1990)) predates
the advances made in Bayesian computation in the 1990’s and resorts to various approximations.

However, today a fully Bayesian method using the Johnson et al. (2003) framework which combines
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all available multi-level data and information can be implemented using Markov chain Monte Carlo
(MCMC). In this article, we employ such modern Bayesian methods to make reliability assessments.

In the next section, we introduce the statistical model that combines all available multi-level
data and briefly present MCMC for analyzing such data. Then, we illustrate this methodology
hy making reliability assessments for an air-to-air heat-seeking missile system and a low-pressure
coolant injection system in a nuclear power plant first considered by Martz et al. (1988) and Martz
and Waller (1990), respectively.

Once multi-level data and information can be analyzed, the question arises of what additional
tests should be done when new funding becomes available. That is, what tests will reduce the
system reliability uncertainty the most? In this article, we show how a genetic algorithm using a
pre-posterior based criterion can address this resource allocation question. We illustrate resource

allocation with a simplified system.
A Model for Combining Multi-Level Data

To combine multi-level data for system reliability assessment, we use the Johnson et al. (2003)
framework. We introduce the framework’s notation and models by considering the reliability block
diagram of a simplified system given in Figure 1. First, components, subsystems and the system
are referred to as nodes. In this example, the system is node 0 which consists of two subsystems
{(nodes 1 and 2) in series. The first subsystem consists of two components in parallel (nodes 3 and
4) and the second subsystem consists of three components in series (nodes 5, 6 and 7).

We begin by considering the binomial data model when data are available at a node. At the
ith node, there are x; successes in n; trials with probability of success (reliability) =;. If node ¢
is a subsystem or the full system (i.e., not a component), then x; is expressed in terms of the
component reliabilities. For the simplified system, the subsystem reliabilities are expressed as
7 =1— (1 —m3)(1 — 7)) and 7y = wsmeny and the system reliability is expressed as mg = mymy =
{(1 = (1 —7m3)(1 — my))msmemr }. In general, let C be the subset of nodes which are components, and
let we = {m, 14 € C}; then for i ¢ C and for some function h;, m; = h;(7we).

Next, we consider prior distributions for node reliabilities. For components, we use beta prior
distributions in terms of a best guess for reliability 7; and a precision v; which acts like an effective
sample size. That is, if the ith node is a component, then m; ~ Beta(v;p;, (1 — p;)). If no
information is available, the Jeffreys’ prior Beta(1 x 0.5,1 x (1 —0.5)) or a uniform prior Beta(2 x

0.5,2 x (1 —0.5)) can be used.
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Figure 1: Simplified System Reliability Block Diagram.

We also allow the possibility that information (“expert knowledge”) is available on the reliabil-
ities of subsystems and/or the full system; we assume that this information is independent of the
test data and any information used to build the prior distributions for the component reliabilities.
Assume that the information takes the form of an estimated reliability §; and a precision v;. We
then express the information contribution, including the z; successful tests in n; trials, from the ith

subsystem or system as a term proportional to

?Tfi+uiﬁi<1 - ,]_;,i)ni‘q:i~;-y;g{1-131')a

As discussed above, the subsystem or system reliability 7, is expressed in terms of the component
reliabilities as h;(mw¢). In effect, we have treated this information as if it were derived from binomial
data instead of as a beta distribution; the difference involves a change in the exponents of «; and
(1 — m;) by one. One effect of this treatment is to ensure that the posterior distribution of ¢ is
well defined. We can define e; to be the indicator that node 7 is a component (i.e., ¢; = 1 if node ¢

is a component, and 0, otherwise), in which case the information contribution from the ith node is

,}.{.;Ui‘l""ﬂ?l‘ei(l _ ,',Ti)ni_-'l?i‘f“}z'(i'?i)_ﬁi’

regardless of whether node ¢ is a component. If no information at the ith node is available beyond

binomial tests, then v; = 0, although v; > 0 should be used for components to ensure a proper prior.



Table 1: Data for Simplified System

Node Data p
0 15/200 0.8
1 0.9
2 10/10 0.9
3 34/40 0.9
4 47/50 0.9
5 3/5 0.95
6 8/8 0.95
7 16/17 0.95

In the remainder of this paper, when we refer to the prior distribution, we mean the distribution
that arises from combining the component Beta distributions with the upper-level expert knowledge.
This is in fact a posterior distribution if there is nonzero expert knowledge, and in this case the
components no longer have independent “prior” distributions.

A variety of models might be employed for the v;. The v; might be treated as constants when
they are really thought to be effective sample sizes. On the other hand, they might be described
by a distribution, such as v; ~ Gamma(a,,b,). This allows expert knowledge to be downweighted
if it is inconsistent with the data. Now consider the data and prior information for the simplified
system given in Table 1. Note that no precisions v; are provided so that a prior distribution needs
to be specified. For illustration, we consider the same precision v, i.e., v; = v, and take the prior
distribution for v to be:

v~ Gammala, = 5,b, = 1).

That is, we believe that the expert information on average is worth five Bernoulli observations.

To combine the data with the expert knowledge represented as above, we use Bayes Theorem:

f(6ly) = F(y18)/(68) / / FyIE) F(€)de, M)

where @ is the parameter vector (i.e., the component reliabilities ¢ and any other unknown pa-
rameters), y is the data vector, f(8) is the prior probability density function and f(y|@) is the data
probability density function (i.e., the binomial probability mass function for binomial data) which
viewed as a function of the parameter vector given the data is known as the likelihood. The result
of combining the data with expert knowledge is f(8]y) which is known as the posterior distribution.
Since the 1990’s, advances in Bayesian computing through Markov chain Monte Carlo or MCMC

have made it possible to sample from the posterior distribution (Gelfand and Smith (1990)). Next,
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we discuss how the Metropolis-Hastings algorithm (Chib and Greenberg (1995)) can be used to
obtain draws or samples from the parameter posterior distribution.
A fully Bayesian analysis of the model described above is nontrivial. The posterior distribution

is not analytically tractable: up to a normalizing constant, it is
flme vl 5) = ) [ e = mpeometiop e, @
i

This looks superficially like a beta distribution, but it is not so simple because of the functional
relationships between the 7;; i.e., the subsystem and system m; = h;(w¢). Consequently, a Bayesian
analysis requires an implementation of an MCMC algorithm such as Metropolis-Hastings; see, for
example, Chib and Greenberg (1995). We use a variable-at-a-time Metropolis-Hastings algorithm
as follows. The algorithm loops through all the unknown parameters =,;(i € C) and v, proposing
changes to one parameter at a time and either accepting or rejecting changes according to the
Metropolis-Hastings rule. We update the m; on the logit scale: suppose we are at the stage in one
iteration of the algorithm where we are updating m; (for some i € ). Propose a new value !
according to

logit 71} ~ N (logit m;, s3), (3)
where s; > 0 are tunable constants. Accept the value 7} with probability

. ”Tg(l_ﬂ;)f(ﬂ/(%g/}maﬁ)
i {1’ (1= ) f(mc, v]z, ) } (4)

where 7, is equal to ¢ except with its ith node reliability replaced by =. If the move is accepted,
change the current value of the parameter to be x!, otherwise its value continues to be ;. After all
the 7; for 7 € C have been updated in this way, we update v on the log scale; this proceeds similarly

except that the proposed new values of v satisfy
log/ ~ N(logv,s?) , (5)

so that these proposed new values are accepted with probability
VvV flmwe, Ve, p
min{l,-M} : (6)
v f(me,vi@,p)
After a complete iteration (after attempts to move each of the 7; for 7 € C and also v), record the
current values of all the parameters; this is treated as one sample from the posterior distribution.

In practice the first several iterations are discarded as part of a “burn-in” period. Choosing good



values of the s; is not difficult: in particular, the YADAS software system (Graves (2003, 2006,
2007)) has a methed to tune these automatically in the burn-in period.
The same MCMC algorithm just deseribed for making draws from the joint posterior distribution

can be used for making draws from the joint prior distribution
flme,vlp) = folv) [[ w5 (1 = m) 0P,

where m; for a subsystem or system is a function of we. Draws for the subsystem and system
reliabilities are obtained by evaluating the appropriate functions with the #+ draws. The resulting
prior distributions for the node reliabilities and v are displayed as dashed lines in Figures 2 and 3,
respectively.

In assessing the system reliability for the simiplified system of Figure 1, we combine the node data
with the prior distributions using MCMC as just described that result in the posterior distributions
displayed as the solid lines in Figures 2 and 3. From these results, the 90% (central) credible interval
for the system (node 0) reliability is calculated as (0.697, 0.861) whose length is 0.164. Note that
even though there is no data for the first subsystem (node 1), the system data (node 0) and the
component data (nodes 3 and 4), dramatically improve what we know about the first subsystem
reliability. As shown in Figure 3, the addition of the data does not change v much, except that v

is somewhat larger than indicated by the prior distribution.
Reliability Assessments for Two Applications

Next, we consider two substantive applications from the literature (Martz et al. (1988) and

Martz and Waller (1990)) to demonstrate making reliability assessments with multi-level data.

Series System Example

Martz et al. (1988) considered the reliability of a certain air-to-air heat-seeking missile system
consisting of five subsystems in series each consisting of multiple components themselves combined
in series as depicted in Figure 4. The data and prior information that Martz et al. (1988) used are
presented in Table 2 as (successes/trials) and best guesses p and precisions v. Martz et al. (1988)
did not provide details on how these data were obtained and how the prior information was arrived
at.

To compare with Martz et al. (1988), we treat the precisions as constants and then obtain the

posterior node reliabilities using YADAS. The posterior node reliabilities are displayed in Figure 5
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Figure 2: Plot of Simplified System Reliability Priors (dashed lines) and Posteriors (solid lines) for

Nodes (-7.
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Figure 3: Plot of Simplified System v Prior (dashed line) and Posterior (solid line}.

Figure 4: Series System Example Reliability Block Diagram.



Table 2: Data for Series Systemn Example

Node Data P v
] 115/265 265
1 /8
2 7/8
3 191/205 257/269 269
4 55/66 66
5

11 30/30 0.5
12 80/80 0.5
13 39/40 0.5
14 30/30 0.5

15 90/90  846/848 84

16 10/10 0.5
17 29/30 0.5
18 20/20 0.5
19 5/5 0.5

21 50/50  399/402 402
22 50O/B0 278/302 302
23 09/100 1098/1102 1102
24 23/25  654/690 690
25 50/50  299/301 302
26 55/55  348/352 352
31 129/130  246/250 250
32 130/130  245/250 250
33 129/130  247/250 250
31 129/130  272/276 276
35 130/130  357/360 360
36 247/250  254/257 257
37 129/130  250/252 252

38 249/250  250/252 252
30 330/330  341/352 352
11 797/802 802
42 796/802 802
43 794/802 802
44 791/802 802
45 386/402 402
51 1026/1122 1122
52 1087/1092 1092
53 1084/1092 1092
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Table 3: Comparison of Posteriors for Series System Example (0.05, 0.5, 0.95 quantiles)
Node Fully Bayesian ~ Martz ot al. (1988)

0 (0.393, 0.436, 0.479) (0.403, 0.463, 0.525)
(0.588, 0.655, 0.723) (0.701, 0.851, 0.947)
(0.820, 0.848, 0.873) (0.830, 0.858, (1.883)
(0.901, 0.917, 0.931) (0.908, 0.927, 0.944)
( (
{ (

0.886, 0.908, 0.925) '
0.926, 0.945, 0.961)

0.858, (.898, 0.931)
0.889, 0.904. 0.918)

o oot

as solid lines; the Martz et al. (1988) results are displayed as dashed lines. The median (0.50
quantile) and 90% credible intervals (0.05, 0.95 quantiles) for the system and subsystem posterior
reliabilities from the fully Bayesian and Martz et al. (1988) methods are given in Table 3.

Note that there is quite a difference in the subsystem 1 results. The difference in location is due
to the fact that the approximations used in Martz et al. (1988) do not use higher-level information
(system data) to inform estimates of lower-level parameters (such as subsystem 1 reliability). The
expert judgment estimate of system reliability, 116/267 or 0.43, is lower than the data and expert
judgment at the lower levels would imply, and the fully Bayesian analysis needs to attribute this
unreliability to one of the subsystems. Subsystem 1 and in particular component 19 have the
sparsest information and are the natural targets. For this reason, the fully Bayesian analysis is
more useful than the approach of Martz el al. (1988) in evaluating the usefulness of gathering
more data at low levels. In practice one would review the information that led to the low system
reliability estimate. The fully Bayesian analysis could be rerun with random #'s, and this would

presumably allocate positive probability to the event that g is an underestimate.

Complex Series/Parallel System Example

Martz and Waller (1990) considered the reliability of a low-pressure coolant injection system, an
important safety system in a nuclear-power boiling-water reactor. It consists of twin trains consisting
of pumps, valves, heat exchanges and piping whose reliability block diagram is displayed in Figure 6.
The data and prior information that Martz and Waller (1990) used are presented in Table 4 as
(successes/trials) and best guess p and precision v.

Martz and Waller (1990) based component prior distributions (i.e., for nodes 121, 122, 1111,
1112, 1121, 1122, 221, 222, 2111, 2112, 2121, 2122) on data from the Nuclear Regulatory Commission

Accident Sequence Evaluation Program database (U.S. Nuclear Regulatory Commission (1987)) and
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Figure 6: Complex Series/Parallel System Example Reliability Block Diagram.

some subsystem prior distributions (i.e., for nodes 12, 111, 112, 222, 211, 212) on composite IEEE
Std. 500 reliability data (IEEE (1983)). See Martz and Waller (1990) for more details.

Like Martz and Waller (1990), we treat the precisions as constants and obtain the posterior
node reliabilities using YADAS, The resulting posterior reliabilities for the subsystems and system
are displayed in Figure 7. Also, the summaries of the posterior reliabilities for all nodes are given

in Table 5.
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Table 4: Data for Complex Series/Parallel Systemn Example

Node Data o ""*—**-u—“'“—'f)— VVVVVVVVVVVV 1;7
,,,,,, L

1

2

11

12 242 87/244.66  244.66
111 1.55/1.58 1.58
112 1.55/1.58 1.58
121 240/240 470.13/471.90  471.90
122 240/240  14232.34/14234.12  14234.12
1111 236/240 191.17/191.79  191.79
1112 240/240  14232.34/14234.12  14234.12
1121 238/240 191.17/191.79 19179
1122 240/240  14232.34/14234.12  14234.12
21

29 242.87/244.66  244.66
211 1.55/1.58 1.58
212 1.55/1.58 1.58
221 240/240 470.13/471.90 47190
222 240/240 14232.31/14234.12 1423412
2111 240,240 191.17/191.79  191.79
2112 240/240 14232.34/14234.12  14234.12
2121 238/240 191.17/191.79  191.79
2122 240/240 14232.31/14231.12  14234.12
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Figure 7: Plot of Complex Series/Parallel System Example Reliability Posteriors for Subsystems

and Svstem.

14



Table 5: Posterior Smumaries for Complex Series/Parallel System Example (0.05, 0.5, 0.95 quan-

tiles)

Node
0 (0.99990. 0.99996, 0.99998)
1 (0.98835. 0.99354, 0.99678)
2 (0.98812. 0.99342, 0.99680)
11 (0.99962, 0.99985, 0.99995)
12 (0.98835, 0.99354, 0.99678)
111 {0.97371, 0.98505, 0.99311)
112 (0.97990. 0.98990, 1.99568)
121 {0.98853, 0.99373, 0.99696)
122 (0.99962, 0.99985, (,99996)
1111 (0.97389, 0.98519, 0.99329)
1112 (0.99962, 0.99986. 0.99996)
1121 {0.98010, 0.99008, ().99584)
1122 (0.99961, 0.99985, 0.99996)
21 (0.99983, 0.99995, 0.99999)
22 (0.98812, 0.99342. 0.99680)
211 (0.98681, 0.99468, 0.99847)
212 (0.98040, 0.98994, 0.99599) |
221 (0.98826, 0.99359. 0.99697) |
222 (0.99962, 0.99985. 0.99996) |
2111 (0.98697, 0.99485, 0.99865)
2112 (().99961, 0.99986, 0.99996)
2121 (0.98054, 0.99011, 0.99611)
2122 (0.99962. 0.99985, 0.99996) |




Resource Allocation

Once there is a way to analvze data, then test design can be addressed. When additional
funding becomes available, the question of where should the tests be done and how many should
be taken arises. In this section, we consider the optimal allocation of additional testing within a
fixed budget that results in the least uncertainty of system reliability. We explore this by using
the simplified system in Figure 1. We must determine how many tests should be performed at the
system, subsystem and component level (i.e., nodes 0-7) under a fixed budget for specified costs
at each level (system, subsystem, component). In this article, we use a genetic algorithm (GA)
{Goldberg (1989), Michalewicz (1992)) to do the optimization. But other optimization methods
like particle swarms (Eberhart and Kennedy (1995)) could easily be used instead.

Thus, we assumne that there is a cost for collecting additional data with higher-level data being
more costly than lower-level data. Consider the following costs as an example of the costs for testing
at each node. Recall that node 0 is the system, nodes 1 and 2 are subsystems and nodes 3-7 are

components:
(0: 85), (1: 82), (2: $3), (3: $1), (4: 81), (5: 81), (6: $1), (7: §1).

We evaluate a candidate allocation (i.e., a specified number of tests for each of the eight nodes)
using a pre-posterior based criterion as follows. We take a draw from the current joint posterior
distribution (based on the current data) of the node reliabilities and draw binomial data according
to the candidate allocation. Then we combine these new data with the current data using the same
prior distributions fo obtain an updated posterior distribution of the node reliabilities; again we use
MCMC to obtain N, draws from this updated posterior distribution. The length of the 90% central
credible interval of the system reliability posterior distribution is taken as a measure of uncertainty.
This is repeated Ny times, each with a different draw from the current joint posterior distribution
of the node reliabilities. The uncertainty criterion is then calculated as the 0.90 quantile of the
resulting 90% credible interval lengths.

Briefly, we describe how a GA can be used to find a nearly optimal allocation. A GA operates on
a “population” of candidate allocations, where a candidate allocation is a vector of node sample sizes.
The GA begins by constructing an initial population or generation of M allocations by randomly
generating allocations that do not exceed the given fixed budget. The uncertainty criterion for each

of these allocations in the initial population is evaluated and the allocations are ranked from smallest
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to largest, i.e., the best allocation has the smallest criterion in the initial population. The second
(and subsequent) GA generations are then populated using two genetic operations: crossover and
mutation (Goldberg (1989), Michalewicz (1992)). A crossover is achieved by randomly selecting two
parent allocations from the initial (or current) generation without replacement with probabilities
inversely proportional to their rank among the M allocations in the initial (or current) generation.
A new allocation is generated node by node from these two selected parent allocations by randomly
picking one of the two parents each time and taking its node sample size. The two parent allocations
are then returned to the initial (or current) population before the next crossover is performed. In
this way, an additional M allocations are generated using the crossover operator. The generated
allocations are checked to make sure they do not exceed the budget, so that new allocations are
generated until there are M such allocations. The uncertainty criterion is then evaluated for each
of these new allocations. A mutation of each of the initial (or current) M allocations is obtained
node by node by first randomly deciding to change the node sample size and if so then randomly
perturbing the current node sample size. Using mutation, M additicnal allocations which remain
within the budget are generated and the uncertainty criterion for each is evaluated. At this point
there are 3M allocations. In the next generation, the current population consists of the A best
allocations from these 3M allocations, i.e., with the smallest uncertainty criterion. The GA is
executed for G generations. We implemented the GA for resource allocation in R (R Development
Core Team (2004)) which generates the candidate allocations. An allocation is evaluated in R by
repeatedly building YADAS input data files, running the YADAS code using the reliability package
(through the R “system” call) to analyze the new and current data, and reading the resulting
YADAS output files back into R to calculate the uncertainty criterion.

In the implementation, there are a number of issues regarding the choice of M, G, N, and
Ny. As the population size M and number of generations G increases, more candidate allocations
(i.e., M(1 + 2 x (G)) are entertained, but then more calculation is required. As the number of
posterior draws for each generated data set N, and the number of generated data sets to analyze
Ny increases, the uncertainty criterion is better evaluated, but the calculation needed to evaluate
a single candidate allocation can dramatically increase let alone that for A(1 4 2 x G) candidate
allocations. One has to realize that the nearly optimal allocation found by the GA may not be
the optimal allocation if the difference between them is less that the variability of the evaluated
uncertainty criterion, i.e., within the simulation error of the uncertainty criterion.

One might ask if there are any general insights regarding resource allocation with assessment of
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system reliability in mind. If we consider testing at the same level, for components {(or subsystem),
the component (or subsystem) with the most uncertainty will require more testing than the others.
If the subsystems are connected in series, but some subsystems have components connected in series
where as other subsystems have components connected in parallel, in terms of component testing,
the parallel configured subsystems will require less testing; this can be explained by examining the
subsystem reliability expression, which shows that the reliability of series configured subsystems is
of second order in their component reliabilities, where as that for parallel configured subsystems is of
first order. The allocation will also depend on the testing costs relative to the amount of information
they provide. If we consider a series configured subsystem, if the subsystem cost exceeds the sum
of the components costs, then performing components tests will be recommended; if the subsystem
cost is less than the sum of the components costs, then performing some subsystem tests may be
recommended if they provide relatively more information. But for complicated systems with many
subsystems and components whose costs are all different, it will be difficult to choose an optimal
allocation with these rules of thumb. However, the proposed methodology balances all these costs
and information across the entire system in finding a nearly optimal allocation.

Next, we illustrate the GA for the resource allocation problem described above for the simplified
system depicted in Figure 1 for a fixed budget of $1000. The length of the 90% credible interval
of system reliability based on the existing data is 0.164. We use populations of size A/ = 20 and
G = 50 generations, so that 2020 (= 20(1 + 2 x 50)) candidate allocations were generated and
evaluated. To evaluate the uncertainty criterion, we generated N, = 2000 posterior draws per data
analysis and generated Ny = 500 data sets corresponding to posterior draws based on the existing
data. For this situation, what allocation yields the most reduction in the uncertainty criterion for
system reliability?

Based on the proposed methodology described above, the GA produced the traces presented
in Figures 8 and 9 which display the best uncertainty criterion and allocation found during each
generation. The uncertainty criterion drops to 0.0804 for the initial population and decreases to
0.0725 by generation 50 with an allocation of (0, 0, 175, 0, 0, 208, 137, 128) for nodes 0-7. We
evaluated this allocation with NV, = 50000 and Ny = 100000 and obtained uncertainty criterion
values of 0.073358 and 0.073363, so we take the uncertainty criterion for this allocation as 0.0734.
These results suggests that there is enough data for node 1, the two component parallel subsystem
and the cost structure prohibits additional system tests (i.e., the system cost equals the sum of the

subsystem costs, which equals the sum of the components costs.). Because the node 2 subsystem
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cost equals the sum of its component costs, we tried an allocation which proportionally allocated
the subsystem tests to its components (i.e., splitting up 175 x 3 = 525 by the proportion (208/473,
137/473, 128/473) found by the GA) giving the allocation (0, 0, 0, 0, 0, 439, 289, 270). Evaluating
this allocation again with N, = 50000 and N; = 100000 gave uncertainty criterion values of 0.071439
and 0.071426, which we round to 0.0714. Consequently, there is some improvement by doing all

component tests for the node 2 subsystem.
Discussion

We have illustrated how to respond to the challenge of integrating all information available at
the various levels of a system in order to estimate its reliability. Bayesian models have always been
natural for doing this integration, and the computational tools have now caught up to make this
practical. Moreover, because we are able to analyze such data, we can now consider the problem of
allocating additional resources that best reduce the uncertainty in the system reliability assessment.

We have discussed the case of binomial test data only for systems represented by reliability

block diagrams. Hamada et al. (2004) showed how binomial data can be analyzed for problems
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using fault tree representations. Component and subsystem tests may generate continuous data
such as lifetimes, and their distributions may depend on covariates such as different suppliers.
Graves and Hamada (2004) presented an example of such an analysis. However, the problem of

resource allocation for non-binomial test data is a topic for future research.
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