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Abstract 

Good estimates of the reliability of a system make use of test data and expert knowledge 

at all available levels. Furthermore, by integrating all these information sources, one can 

determine how best to allocate scarce testing resources to reduce uncertainty. Both of these 

goals are facilitated by modern Bayesian computational methods. \Ve apply these tools to 

examples that were previously solvable only through the use of ingenious approximations, and 

use genetic algorithms to guide resource allocation. 

Key Words: Genetic Algorithm, MCMC, Metropolis-Hastings Algorithm, Reliability Block Di­

agram, Resource Allocation, Success/Failure Data, System-Level/Subsystem-Level/Component­

Level Data. 

Introduction 

Assessing the reliability of systems represented by reliability block diagram remains important. 

Take for example, U.S. military weapon systems and nuclear power plants. In making these assess­

ments, often there are information and data available at all levels of these systems, whether they 

be at the component, subsystem or system level. For example, there may be data from component 

and subsystem tests as well as expensive full system tests. In this article, we are concerned with 

assessing the reliability of a system by combining all available information and data at whatever 

level they are available; here we consider the case where we have success/failure test data. 

Much of the reliability literature (Cole (1975), Mastran (1976), Mastran and Singpurwalla 

(1978), Natvig and Eide (1987), Martz, Waller and Fickas (1988), Martz and Waller (1990)) predates 

the advances made in Bayesian computation in the 1990's and resorts to various approximations. 

However, today a fully Bayesian method using the Johnson et al. (2003) framework which combines 

1 


http:04.22.08


all available multi-level data and information can be implemented using Markov chain Monte Carlo 

(MCMC). In this article, we employ such modern Bayesian methods to make reliability a.ssessments. 

In the next section, we introduce the statistical model that combines all available multi-level 

data and briefly present MCMC for analyzing such data. Then, we illustrate this methodology 

by making reliability assessments for an air-to-air heat-seeking missile system and a low-pressure 

coolant injection system in a nuclear power plant first considered by Martz et al. (1988) and Martz 

and Waller (1990), respectively. 

Once multi-level data and information can be analyzed, the question arises of what additional 

tests should be done when new funding becomes available. That is, what tests will reduce the 

system reliability uncertainty the most? In this article, we show how a genetic algorithm using a 

pre-posterior based criterion can address this resource allocation question. We illustrate resource 

allocation with a simplified system. 

A Model for Combining Multi-Level Data 

To combine multi-level data for system reliability assessment, we use the Johnson et al. (2003) 

framework. We introduce the framework's notation and models by considering the reliability block 

diagram of a simplified system given in Figure L First, components, subsystems and the system 

are referred to as nodes. In this example, the system is node 0 which consists of two subsystems 

(nodes 1 and 2) in series. The first subsystem consists of two components in parallel (nodes 3 and 

4) and the second subsystem consists of three components in series (nodes 5, 6 and 7). 

We begin by considering the binomial data model when data are available at a node. At the 

ith node, there are Xi successes in ni trials with probability of success (reliability) 7ri. If node i 

is a subsystem or the full system (i.e., not a component), then tri is expressed in terms of the 

component reliabilities. For the simplified system, the subsystem reliabilities are expressed as 

7r] = 1 - (l - 7r3) (1 7r4) and 7r2 7r57r67r7 and the system reliability is expressed as 7ro 7rl7r2 = 

{(1 (1 7r3)(1 7r4))7r57r67r7}' In general, let C be the subset of nodes which are components, and 

let 7rc = {7r, : i E C}; then for i 'I. C and for some function hi) 7ri hi (7rc). 

Next, we consider prior distributions for node reliabilities. For components, we use beta prior 

distributions in terms of a best guess for reliability Pi and a precision Vi which acts like an effective 

sample size. That is, if the ith node is a component, then 7ri ."" Beta(viPi, vi(1 - Pi))' If no 

information is available, the Jeffreys' prior Beta(l x 0.5, 1 x (1 - 0.5)) or a uniform prior Beta(2 x 

0.5,2 x (1 0.5)) can be used. 
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Figure 1: Simplified System Reliability Block Diagram. 

We also allow the possibility that information ("expert knowledge") is available on the reliabil­

ities of subsystems and/or the full system; we assume that this information is independent of the 

test data and any information used to build the prior distributions for the component reliabilities. 

Assume that the information takes the form of an estimated reliability Pi and a precision Vi. We 

then express the information contribution, including the Xi successful tests in ni trials, from the ith 

subsystem or system as a term proportional to 

As discussed above, the subsystem or system reliability 1["; is expressed in terms of the component 

reliabilities as hi(Tic). In effeet, we have treated this information as if it were derived from binomial 

data instead of as a beta distribution; the difference involves a change in the exponents of 1["; and 

(1 - 1["i) by one. One effect of this treatment is to ensure that the posterior distribution of Tic is 

well defined. We can define ei to be the indicator that node i is a component (i.e., e'i = 1 if node i 

is a component, and 0, otherwise), in which case the information contribution from the ith node is 

regardless of whether node i is a component. If no information at the ith node is available beyond 

binomial tests, then Vi = 0, although Vi > 0 should be used for components to ensure a proper prior. 
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Table> 1: Data for Simplificd System 

INO(lc Data PI 


o 15/20 0.8 
1 0.9 
2 10/10 0.9 
3 34/40 o.a 
4 47/50 0.9 
5 3/5 0.95 
6 0.95 
,.., 
I 0.95 i 

In the remainder of this paper, when we refer to the prior distribution, we mean the distribution 

that arises from combining the component Beta distributions with the upper-level expert knowledge. 

This is in fact a posterior distribution if there is nonzero expert knowledge, and in this case the 

components no longer have independent "prior" distributions. 

A variety of models might be employed for the 1Ii' The 1Ii might be treated as constants when 

they are really thought to be effective sample sizes. On the other hand, they might be described 

by a distribution, such as 1Ii Gamma(all , bll ). This allows expert knowledge to be downweightedrv 

if it is inconsistent with the data. Now consider the data and prior information for the simplified 

system given in Table 1. Notc that no precisions 1Ii are provided so that a prior distribution needs 

to be specified. For illustration, we consider the same precision 11, i.e., 1Ii = 11, and take the prior 

distribution for 11 to be: 

11 rv Gamma(a ll = 5,bv 1). 

That is, we believe that the expert information on average is worth five Bernoulli observations. 

To combine the data with the expert knowledge represented as above, we use Bayes Theorem: 

f(8IY) = f(YI8)f(8) / Jf(ylf,)f(f,)df" (1 ) 

where 8 is the parameter vector (i.e., the component reliabilities Tee and any other unknown pa­

rameters), y is the data vector, f(8) is the prior probability density function and f(yI8) is the data 

probability density function (i.e., the binomial probability mass function for binomial data) which 

viewed as a function of the parameter vector given the data is known as the likelihood. The result 

of combining the data with expert knowledge is f(8IY) which is known as the posterior distribution. 

Since the 1990's, advances in Bayesian computing through Markov chain Monte Carlo or MCMC 

have made it possible to sample from the posterior distribution (Gelfand and Smith (1990)). Next, 
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we discuss how the Metropolis-Hastings algorithm (Chib and Greenberg (1995)) can be used to 

obtain draws or samples from the parameter posterior distribution. 

A fully Bayesian analysis of the model described above is nontrivial. The posterior distribution 

is not analytically tractable: up to a normalizing constant, it is 

(2) 

This looks superficially like a beta distribution, but it is not so simple because of the functional 

relationships between the 1fi; i.e., t.he subsystem and system 1fi = hlrrc). Consequently, a Bayesian 

analysis requires an implementation of an MCMC algorithm such as Metropolis-Hastings; see, for 

example, Chib and Greenberg (1995). We use a variable-at-a-time Metropolis-Hastings algorithm 

as follows. The algorithm loops through all the unknown parameters 1fli E C) and v, proposing 

changes to one parameter at a time and either accepting or rejecting changes according to the 

Metropolis-Hastings rule. We update the 1fi on the logit scale: suppose we are at the stage in one 

iteration of the algorithm where we are updating 1fi (for some i E C). Propose a new value 1f~ 

according to 

logit 1f~ ""' N(logit 1fi, sD, (3) 

where Si > 0 are tunable constants. Accept the value 1f~ with probability 

(4) 

where 7r~ is equal to 7rc except with it.s ith node reliability replaced by 1f~. If the move is accepted, 

change t.he current value of the parameter to be 1f:, ot.herwise its value cont.inues to be 1fi. After all 

the 1fi for i E C have been updated in this way, we update v on the log scale; this proceeds similarly 

except that the proposed new values of v satisfy 

log v' ""' N(log v, s~) , (5) 

so that these proposed new values are accepted with probability 

. {l v' f(7rc ,VI1 x,p)}mm . . (6)
, v f(7rc,vlx,p) 

After a complete iteration (after attempts to move each of the 1fi for i E C and also 1/), record the 

current values of all the parameters; this is treated as one sample from the posterior distribution. 

In practice the first several iterations are discarded as part of a "burn-in" period. Choosing good 



values of the Si is not difficult: in particular, the YADAS software system (Graves (2003, 2006, 

2007)) has a method to tune these automatically in the burn-in period. 

The same MCMC algorithm just described for making draws from the joint posterior distribution 

can be used for making draws from the joint prior distribution 

j(7rc, vip) f,,(v) II 1T~Pi-ei(l _1T,),,(l-p;J-e\ 

where 1Ti for a subsystem or system is a function of 7rc. Draws for the subsystem and system 

reliabilities are obtained by evaluating the appropriate functions with the 7rc draws. The resulting 

prior distributions for the node reliabilities and v are displayed as dashed lines in Figures 2 and 3, 

respectively. 

In assessing the system reliability for the simplified system of Figure 1, we combine the node data 

with the prior distributions using MCMC as just described that result in the posterior distributions 

displayed as the solid lines in Figures 2 and 3. From these results, the 90% (central) credible interval 

for the system (node 0) reliability is calculated as (0.697, 0.861) whose length is 0.164. Note that 

even though there is no data for the first subsystem (node 1), the system data (node 0) and the 

component data (nodes 3 and 4), dramatically improve what we know about the first subsystem 

reliability. As shown in Figure 3, the addition of the data does not change v much, except that v 

is somewhat larger than indicated by the prior distribution. 

Reliability Assessments for Two Applications 

Next, we consider two substantive applications from the literature (ylartz et al. (1988) and 

Martz and Waller (1990)) to demonstrate making reliability assessments with multi-level data. 

Series System Example 

Martz et al. (1988) considered the reliability of a certain air-to-air heat-seeking missile system 

consisting of five subsystems in series each consisting of multiple components themselves combined 

in series as depicted in Figure 4. The data and prior information that Martz et aL (1988) used are 

presented in Table 2 as (successes/trials) and best guesses p and precisions v. Martz et al. (1988) 

did not provide details on how these data were obtained and how the prior information was arrived 

at. 

To compare with Martz et al. (1988), we treat the precisions as constants and then obtain the 

posterior node reliabilities using YADAS. The posterior node reliabilities are displayed in Figure 5 
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Figure 2: Plot of Simplified Svstem Reliability Priors (dashed lines) and Posteriors (solid lincs) for 

l\'odcs 0-7. 
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Figure 4: Series System Example Reliability Block Diagram. 
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1 8/8 

2 7/8 

:3 191/203 

4 

:) 

11 30/:30 
12 80/80 
1:3 39/40 
1:1 30j:30 

15 90/90 

16 10/10 

17 29/30 

18 20/20 

19 

21 50/50 

22 50/50 

2:3 99/1UO 
24 23/2,5 
25 50/50 
26 55/55

I 


31 129/1:30 

:~2 130/130 

33 129/130 

34 129/1:30 

35 130/130 

:36 247/250 

37 129/130 

38 249/250 

39 330/330 

41 

42 

43 

44 

45 

51 

52 

5:3 

257/269 269 

55/66 66 


0.5 1 

0.5 1 

0.5 1 

0.5 1 


846/848 848 

0.5 1 

0.5 1 

0.5 1 

0.5 

399/402 402 

278/302 :302 


1098/1102 1102 

65.Jj690 690 

299/301 302 

348/:352 :352 

246/250 250 

245/250 250 

247/250 250 

272/276 276 

:357/:360 360 

2})4/257 257 

250/252 252 

250/252 252 

341/352 352 

797/802 802 

796/802 802 

704/802 802 

701/802 802 

386/402 402 


1026/1122 1122 

1087/1092 1002 


1092 
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Fig1ll'C 5: Plot of Sl~rics System Exa.mple Reliability Posteriors. (Dashed lines arC' from Martz et al. 
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Table 3: COlllparisoll of Pmitcriors for Series System Example (0.05, 0.5, 0.95 quantilcs) 
1'\fo;T(~-~---Fl1nyII1YC;};:1I1---KIartz-ctar0988): 

O~ .(0.393, 0.4:16, 0.479) .(0.403, rf,463,-0,5'25) 
(0.588, 0.655, 0.723) (0,701,0.851. 0,947) 

2 (0.820, 0.848, 0.873) (0.830, 0,858, 0,883) 
3 (0.901,0.917,0.931) (0.908, 0.927, 0,944) 
4 (0.886,0.908,0.925) (0,858, 0.898, 0.931) 
5 (0.926, 0.945, 0.961) (O,88~J.9ll::!'. 0.918) 

as solid lines; the Martz et aL (1988) results are displayed as dashed lines. The median (0,50 

quantile) and 90% credible intervals (0.05, 0.95 quantiles) for the system and subsystem posterior 

reliabilities from the fully Bayesian and Martz et aL (1988) methods are given in Table 3. 

Note that there is quite a difference in the subsystem 1 results. The difference in location is due 

to the fact that the approximations used in Martz et aL (1988) do not use higher-level information 

(system data) to inform estimates of lower-level parameters (such as subsystem 1 reliability). The 

expert judgment estimate of system reliability, 116/267 or 0.43, is lower than the data and expert 

judgment at the lower levels would imply, and the fully Bayesian analysis needs to attribute this 

unreliability to one of the subsystems. Subsystem 1 and in particular component 19 have the 

sparsest information and are the natural targets. For this reason, the fully Bayesian analysis is 

more useful than the approach of Martz el aL (1988) in evaluating the usefulness of gathering 

more data at low levels. In practice one would review the information that led to the low system 

reliability estimate. The fully Bayesian analysis could be rerun with random v's, and this would 

presumably allocate positive probability to the event that Po is an underestimate. 

Complex Series/Parallel System Example 

Martz and Waller (1990) considered the reliability of a low-pressure coolant injection system, an 

important safety system in a nuclear-power boiling-water reactor. It consists of twin trains consisting 

of pumps, valves, heat exchanges and piping whose reliability block diagram is displayed in Figure 6. 

The data and prior information that Martz and Waller (1990) used are presented in Table 4 as 

(successes/trials) and best guess p and precision v. 

Martz and Waller (1990) based component prior distributions (Le., for nodes 121, 122, 1111, 

1112,1121,1122,221,222,2111,2112,2121,2122) on data from the Nuclear Regulatory Commission 

Accident Sequence Evaluation Program database (U.S, Nuclear Regulatory Commission (1987)) and 
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Figure G: Complex Series/Parallel System Example Reliability Block Diagram. 

some subsystem prior distributions (i.e., for nodes 12, 111, 112, 222, 211, 212) on composite IEEE 

Std. 500 reliability data (IEEE (1983)). See Martz and Waller (1990) for more details. 

Like Martz and \Valler (1990), we treat the precisions as constants and obtain the posterior 

node reliabilities using Y ADAS. The resulting posterior reliabilities for the subsystems and system 

are displayed in Figure 7. Also, the summaries of the posterior reliabilities for all nodes are given 

in Table 5. 
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1 
2 

11 
12 242.87/244.66 244.66 

111 1.55/1.38 1.58 
112 1 .38 1.58 
121 240/240 470.13/471.90 471.90 
122 240/240 14232.34/142:34.12 14234.12 

1111 2:36/240 191.17/191.79 191.79 
1112 240/240 14232.34/14234.12 14234.12 
1121 238/240 191.17/191. 79 191.79 
1122 240/240 142:32.34/142:34.12 142:34.12 

21 
22 242.87/244.66 244.66 

211 1.GG/1.58 1.58 
212 1.G5/1 1.58 
221 240/240 470.1:3/H1.90 471.90 
222 240/240 1~12;32.~34/14234.12 14234.12 

2111 240/240 191.17/HH.79 191.79 
240/2·10 14232.3·lf 14234.12 142:31.12 
238/240 191.17/191.79 191.79 

12 
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Table 5: Posterior Summaries for Complex Serie;:;/Parallel Sy;:;telll Example (0.05, 0.5, 0.95 qUClIl­

tile;:; ) 

l

11 (0.99962, 0.99985, (U)9995) 
12 (0.9883.),0.99354,0.99678) 
III (0.97371,0.98505,0.99:311) 
112 (0.97990. O.989DO, 0.995(8) 
121 (0.9885:1, 0.99:3/:3, 0.99(96) 
122 (0.99962,0.9998.),0.99996) 
1111 (0.97:389,0.98519,0.99329) 
1112 (0.99962, O.9998G. 0.99996) 
1121 (0.98010,0.99008, D.99584) 
1122 (D.999GL 0.99985, 0.99996) 

21 (0.9998:'5, 0.99995, 0.99999) 
22 (0.98812, O.mn42. 0.99(80) 
211 (0.98681, 0.99468, 0.9(847) 
212 (0.98010.0.98994, D.99599) 
221 (0.98826, 0.99~i59, 0.99(97) 
222 (0.99962, 0.99985. 0.999(6) 

! 2111 (0.98697.0.99485,0.99865) 

J 2112 (0.99961, 0.9998G, 0.99996) 
2121 (0.98054.0.99011.0.99614) 

0.99996, 
(0.98835, 0.99354, 0.99678) 

2 (0.98812.0.99342, O.9968()) 

~_~2__~~~~96~ 0·22~~~, OJJ(996) I 
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Resource Allocation 

Once there is a way to analyze data, then test design can be addressed. 'When additional 

funding becomes available, the question of where should the tests be done and how many should 

be taken arises. In this section, we consider the optimal allocation of additional testing within a 

fixed budget that results in the least uncertainty of system reliability. We explore this by using 

the simplified system in Figure 1. We must determine how many tests should be performed at the 

system, subsystem and component level (Le., nodes 0-7) under a fixed budget for specified costs 

at each level (system, subsystem, component). In this article, we use a genetic algorithm (GA) 

(Goldberg (1989), l'v'Iichalewicz (1992)) to do the optimization. But other optimization methods 

like particle swarms (Eberhart and Kennedy (1995)) could easily be used instead. 

Thus, we assume that there is a cost for collecting additional data with higher-level data being 

more costly than lower-level data. Consider the following costs as an example of the costs for testing 

at each node. Recall that node 0 is the system, nodes 1 and 2 are subsystems and nodes 3-7 are 

components: 

(0: $5), (1: $2), (2: $3), (3: $1), (4: $1), (5: $1), (6: $1), (7: $1). 

\Ve evaluate a candidate allocation (i.e., a specified number of tests for each of the eight nodes) 

using a pre-posterior based criterion as follows. We take a draw from the current joint posterior 

distribution (based on the current data) of the node reliabilities and draw binomial data according 

to the candidate allocation. Then we combine these new data with the current data using the same 

prior distributions to obtain an updated posterior distribution of the node reliabilities; again we use 

MClVIC to obtain Np draws from this updated posterior distribution. The length of the 90% central 

credible interval of the system reliability posterior distribution is taken as a measure of uncertainty. 

This is repeated Nd times, each with a different draw from the current joint posterior distribution 

of the node reliabilities. The uncertainty criterion is then calculated as the 0.90 quantile of the 

resulting 90% credible interval lengths. 

Briefly, we describe how a GA can be used to find a nearly optimal allocation. A GA operates on 

a "population" of candidate allocations, where a candidate allocation is a vector of node sample sizes. 

The GA begins by constructing an initial population or generation of lVI allocations by randomly 

generating allocations that do not exceed the given fixed budget. The uncertainty criterion for each 

of these allocations in the initial population is evaluated and the allocations are ranked from smallest 
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to largest, i.e., the best allocation has the smallest criterion in the initial population. The second 

(and subsequent) GA generations are then populated using two genetic operations: crossover and 

mutation (Goldberg (1989), Michalewicz (1992)). A crossover is achieved by randomly selecting two 

parent allocations from the initial (or current) generation without replacement with probabilities 

inversely proportional to their rank among the A! allocations in the initial (or current) generation. 

A new allocation is generated node by node from these two selected parent allocations by randomly 

picking one of the two parents each time and taking its node sample size. The two parent allocations 

are then returned to the initial (or current) population before the next crossover is performed. In 

this way, an additional iV! allocations are generated using the crossover operator. The generated 

allocations are checked to make sure they do not exceed the budget, so that new allocations are 

generated until there are iV! such allocations. The uncertainty criterion is then evaluated for each 

of these new allocations. A mutation of each of the initial (or current) A1 allocations is obtained 

node by node by first randomly deciding to change the node sample size and if so then randomly 

perturbing the current node sample size. Using mutation, lV! additional allocations which remain 

within the budget are generated and the uncertainty criterion for each is evaluated. At this point 

there are 3li.1 allocations. In the next generation, the current population consists of the A! best 

allocations from these 3M allocations, i.e., with the smallest uncertainty criterion. The GA is 

executed for G generations. We implemented the GA for resource allocation in R (R Development 

Core Team (2004)) which generates the candidate allocations. An allocation is evaluated in R by 

repeatedly building YADAS input data files, running the YADAS code using the reliability package 

(through the R "system" call) to analyze the new and current data, and reading the resulting 

YADAS output files back into R to calculate the uncertainty criterion. 

In the implementation, there are a number of issues regarding the choice of M, G, Np and 

Nd . As the population size loy! and number of generations G increases, more candidate allocations 

(i.e., A1(1 + 2 x G)) are entertained, but then more calculation is required. As the number of 

posterior draws for each generated data set Np and the number of generated data sets to analyze 

Nd increases, the uncertainty criterion is better evaluated, but the calculation needed to evaluate 

a single candidate allocation can dramatically increase let alone that for A1(1 + 2 x G) candidate 

allocations. One has to realize that the nearly optimal allocation found by the GA may not be 

the optimal allocation if the difference between them is less that the variability of the evaluated 

uIlcertainty criterion, i.e., within the simulation error of the uncertainty criterion. 

One might ask if there are any general insights regarding resource allocation with assessment of 
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system reliability in mind. If we consider testing at the same level, for components (or subsystem), 

the component (or subsystem) with the most uncertainty will require more testing than the others. 

If the subsystems are connected in series, but some subsystems have components connected in series 

where as other subsystems have components connected in parallel, in terms of component testing, 

the parallel configured subsystems will require less testing; this can be explained by examining the 

subsystem reliability expression, which shows that the reliability of series configured subsystems is 

of second order in their component reliabilities, where as that for parallel configured subsystems is of 

first order. The allocation will also depend on the testing costs relative to the amount of information 

they provide. If we consider a series configured subsystem, if the subBystem cost exceedB the sum 

of the components costs, then performing components tests will be recommended; if the subsystem 

cost is less than the sum of the components costs, then performing some subsystem tests may be 

recommended if they provide relatively more information. But for complicated systems with many 

subsystems and components whose costs are all different, it will be difficult to choose an optimal 

allocation with these rules of thumb. However, the proposed methodology balances all these costs 

and information across the entire system in finding a nearly optimal allocation. 

Next, we illustrate the GA for the resource allocation problem described above for the simplified 

system depicted in Figure 1 for a fixed budget of $1000. The length of the 90% credible interval 

of system reliability based on the existing data is 0.164. We use populations of size M = 20 and 

G 50 generations, so that 2020 20(1 + 2 x 50)) candidate allocations were generated and 

evaluated. To evaluate the uncertainty criterion, we generated Np = 2000 posterior draws per data 

analysis and generated Nd = 500 data sets corresponding to posterior draws based on the existing 

data. For this situation, what allocation yields the most reduction in the uncertainty criterion for 

system reliability? 

Based on the proposed methodology described above, the GA produced the traces presented 

in Figures 8 and 9 which display the best uncertainty criterion and allocation found during each 

generation. The uncertainty criterion drops to 0.0804 for the initial population and decreases to 

0.0725 by generation 50 with an allocation of (0, 0, 175, 0, 0, 208, 137, 128) for nodes 0-7. We 

evaluated this allocation with Np 50000 and Nd = 100000 and obtained uncertainty criterion 

values of 0.073358 and 0.073363, so we take the uncertainty criterion for this allocation as 0.0734. 

These results suggests that there is enough data for node I, the two component parallel subsystem 

and the cost structure prohibits additional system tests (i.e., the system cost equals the sum of the 

subsystem costs, which equals the sum of the components costs.). Because the node 2 subsystem 
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Generation 

Figure 8: GA Evolution of Uncertainty Criterion. 

cost equals the sum of its component costs, we tried an allocation which proportionally allocated 

the subsystem tests to its components (i.e., splitting up 175 x 3 = 525 by the proportion (208/473, 

137/473, 128/473) found by the GA) giving the allocation (0, 0, 0, 0, 0,439,289,270). Evaluating 

this allocation again with Np = 50000 and Nd = 100000 gave uncertainty criterion values of 0.071439 

and 0.071426, which we round to 0.0714. Consequently, there is some improvement by doing all 

component tests for the node 2 subsystem. 

Discussion 

We have illustrated how to respond to the challenge of integrating all information available at 

the various levels of a system in order to estimate its reliability. Bayesian models have always been 

natural for doing this integration, and the computational tools have now caught up to make this 

practicaL Moreover, because we are able to analyze such data, we can now consider the problem of 

allocating additional resources that best reduce the uncertainty in the system reliability assessment. 

We have discussed the case of binomial test data only for systems represented by reliability 

block diagrams. Hamada et al. (2004) showed how binomial data can be analyzed for problems 
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using fault tree representations. Component and subsystem tests may generate continuous data 

such as lifetimes, and their distributions may depend on covariates such as different suppliers. 

Graves and Hamada (2004) presented an example of such an analysis. However, the problem of 

resource allocation for non-binomial test data is a topic for future research. 
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