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Resource Allocation for Reliability
of a Complex System with Aging Components
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Todd L. Graves
Michael S. Hamada
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Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract:

To assess the reliability of a complex system, many different types of data may be
available. Full-system tests are the most direct measure of reliability, but may be
prohibitively expensive or difficult to obtain. Other less direct measures, such as
component or section level tests, may be cheaper to obtain and more readily available.
Using a single Bayesian analysis, multiple sources of data can be combined to give
component and system reliability estimates. Resource allocation looks to develop
methods to predict which new data would most improve the precision of the estimate of
system reliability, in order to maximally improve understanding. In this paper, we
consider a relatively simple system with different types of data from the components and
system. We present a methodology for assessing the relative improvement in system
reliability estimation for additional data from the various types. Various metrics for
comparing improvement and a response surface approach to modeling the relationship
between improvement and the additional data are presented.

Key words: Bayesian analysis, design of experiments, sequential experimentation,
mixture experiments, meta-analysis, reduction of uncertainty

1. Introduction

When estimating the reliability of a complex system, different potential sources of
data may be available. The full-system tests are the most direct assessment of this
reliability, but other sources may be cheaper, more plentiful and can also be beneficial
when appropriately combined with understanding of the system structure. Methodology
to model system reliability as a function of component, sub-system and system level data
1s discussed in Wilson et al. (2006) and Anderson-Cook et al. (2007, 2008). This

Bayesian analysis approach allows multiple types of data to be combined with subject



matter expertise through prior distributions in a single analysis to provide a synthesized
estimate of system reliability which reflects all sources of data.

The form of the system is incorporated into the model to retlect how the
component and subsystem data should be combined to accurately reflect the connections
between the components. Common structures used to capture the structure include series
and parallel systems. For more details on types of system structures, see Rausand and
Hoyland (2004) and Saunders (2007). Some of the types of data that might be available to
assess portions of the system include:

1. pass/fail data evaluated at a given age of the component

2. degradation data consisting of a continuous measure with known operational

limits, outside of which the component is not expected to work successfully

3. lifetime data for components tested and observed until they fail
Typically the estimate of system reliability is modeled as a function of the age and
potentially the usage of the system. The data collection and analysis can be an ongoing
process where new data are collected to help update the reliability estimates as the
population of systems age. Prediction of system reliability beyond the observed ages of
the system is common, and the target range of extrapolation may be expanded with

sequential data collection over time.

Resource allocation is a form of sequential experimentation, where a formal
process is used to determine how to best spend future resources available for collecting
new data. The problem considers how to best determine which types of data are most
advantageous for maximally improving the precision of our estimation and prediction
conditional on the data already available and leveraging understanding of system
reliability as a function of its components’ reliabilities. Figure 1 illustrates the basic
problem considered in the remainder of this paper. Phase 1 involves collecting initial data
and information, which when combined with knowledge of the system structure allows
for construction of an appropriate statistical model for an analysis to be performed. From
the analysis, estimates of system and component reliabilities are available across the
range of observed ages as well as for system ages not yet observed. Phase 2 involves

collecting more data, and re-running the analysis with the combined data (with both the
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initial data and the newly collected data) to provide updated estimates of model
parameters and system reliability. We assume that the same form of the model is being
used, but just with additional data. The decision-making process of resource allocation
should occur between Phases 1 and 2 of Figure 2, and guides the choice of new data to be
collected as part of sequential experimentation. As with any design of experiment
selection, the choice of which new data to collect must be made before the new data are
available to show what improvements to the estimation of the system reliability their
values provide. Hence we wish to use our current understanding of model parameters to
help inform us about what data might be expected as well as how it will influence the
uncertainty about system reliability. First, a few key points about the scope of our
discussions:
1. We consider new data of the same types as those already collected in the Phase 1.
This approach does not consider adding new potential data sources, which might
model alternate failure mechanism not currently in the model or alternative data

types that would complement existing data for a given component or subsystem.

)

Because we believe that the current model appropriately summarizes the system
reliability, we focus on reducing the uncertainty in our estimation, rather than
looking to reduce potential bias from an incorrectly specified model.

3. We assume that the available budget for Phase 2 data collection and cost of each
type of data are known and fixed. Typically the costs for different types of data
can vary greatly.

4. There may be restrictions and constraints on the types and amounts of new data
that can be collected. These logistical or practical restrictions may limit the
available choices for allocations. Initially, we assume that the user specifies
possible allocations to be considered, and then the best of these will be identified.
Later in the paper we present some extensions that allow for estimation of a
global best allocation within a bounded allocation design space.

5. We assume that while good estimation of reliability for all of the components is

helpful for understanding, the primary focus of the problem is to improve the

precision of our system reliability estimate.



6. We assume that management of the systems depends on the estimation or
prediction of system reliability at particular ages, perhaps in the range of systems
already observed or involving extrapolation to older ages.

We therefore seek to find the best allocation of these fixed resources to maximally reduce
the uncertainty of our prediction of system reliability for a user specified range of system
ages.

We first present the algorithm to assess the potential allocations which have been
identified. Suppose that we have d allocations to compare based on a user-selected metric
for quantifying the uncertainty of our estimate (more details about this metric are given in
the next section). Below we outline an algorithm for comparing the allocations: |

1. Analyze currently available data.

2. For each of the d potential allocations,

a. Use reliability estimates for each component, subsystem or system to generate
multiple new data sets for each type of data in the amount required by the
allocation.

b. For each of the generated data sets, perform a new analysis using the same
model as used in Step 1 above but with combined data (original + new
simulated data).

¢.  Summarize results for allocation using selected uncertainty metric.

3. Compare results for all allocations, and select best one.

Note that the generation of new data uses the assumed model from the original
analysis which specifies the distribution from which the data are generated as well as the
current reliability estimates for that type of data. Note that the methodology outlined in
Anderson-Cook et al (2007,2008) provides estimates of reliability for all components,
subsystems and the system, which makes the required data generation possible. For
example, suppose pass/fail data for a particular component are assumed to come from a
probit model. If we wish to generate new data at a specific age, we would use the
posterior distribution for the estimate the reliability at that age from the current analysis.

From that, we would generate the required number of new pass/fail observations from a



binomial distribution with the probability of a pass equal to the component reliability
estimate. '

Multiple data sets are required to capture both the uncertainty of the model
parameters based on the first analysis and sample-to-sample variability expected if that
allocation were selected and the actual data obtained. This generation and analysis of
multiple data sets is beneficial for its more accurate assessment of variability, but is
computationally quite intensive.

To illustrate the methodology we consider the series system shown in Figure 2
consists of 5 components (Components 1, 2, 3.1, 3.2, and 4) in series, with 8 different
types of data available. For a series system, all components need to work for a successful
full-system test, and the failure of one or more components will lead to a failed system
test. Systems and components of ages 1 through 5 years are available for testing. Interest

in prediction of system reliability is for ages 5 to 7 years.

Component 1
The data for Component 1 is Pass/Fail observed at particular ages of the system.

We model the probability that Component 1 works at age 7 using a probit link as

Prob(C, =1|1)) = ®(a, + ;1)) ()
The observed data used in the initial analysis consists of ¥, passes in N, tests at age 1, ,
for i =1,...,n, with the units used at each age assumed to be different. Hence, we can

model
Y, ~ Binomial(N,,,Prob(C, =1]1,)).

Component 2
Component 2 has two different types of data which can be used to assess its

reliability: degradation data and pass/fail data at particular ages. The continuous measures
or degradation data are compared to a specification limit to determine if the component
would have passed. A value for the specification limit is known, but there is some

uncertainty about whether this value accurately retlects when the component will actually



fail during a different type of test which is thought to more accurately reflect how the
component is exercised during the full-system test.

The degradation data are assumed to be distributed as
Z|t, ~ Normal(y, + 1,t,,6") (2)

with observed data Z, ”

atage 1, for i=1,---,n,,, j=1,---,n, . That is, there are
n,, inspection times and at each inspection time, »,. are destructively measured.
Therefore, the n,_units at each inspection time are different.

The pass/fail data at various ages for Component 2 is assumed to pass with

probability,

Prob(C, =1|1,) = (D{M_D_z]

Vo' +6°
where the threshold D, is not known precisely. That is, the more that z exceeds D,, the

higher the probability of passing the test. We reparameterize so that

+;/}t2)/0'—1);]
J1+62 /67

(
Prob(C, =]fz2)=<DL Yo 3)

where D, = D, /o . The observed data used in the initial analysis consists of ¥,, passes in
N,, tests at age t,,, for i =1,...,n,, with the units used at each age assumed to be

different.

Sub-system 3
Sub-system 3 consists of 2 components, C3; and Cs», in series. Data for

component C3; are Weibull lifetimes distributed as Weibull(A4, #) where
C Prob(Cy =1|1)y=exp(—[t/ A)) @)
with observed lifetimes Y,,,,i=1,---,n;, .
Data for component Cs; consists of degradation data distributed as

Yy, ~ Normal(n, +7711,V2) (%)



Dy, =, + 1t
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where Prob(C,, =1|f) =Prob(},,, > D;,) =1~ (D[ J . We assume that the

threshold D, is known. The observed degradation data are Y, at age t,,, for
i=1,---,m,,.j=1,--,n,,. That is, there are n,, inspection times and at each inspection
time, n,,_are destructively measured.

Data observed at the sub-system level are pass/fail data over time. Pass/fail data at
various ages of the sub-section are also available. We observe Y, passesin N, tests at
age t,,, for i =1,...,n,. The probability of passing at time ¢, is

Prob(SS, =1|t,) =Prob(C;, =1|t;)eProb(C,, =1|t;)

= exp(-1t, / 21 )+(1 - @(—-——D o~ T J) ©
1%

34 k

Therefore, ¥, ~ Binomial(N, .exp(—[t, / AT )+(1- @ (MJ)) :
1 %4

Component 4
Component 4 has pass/fail data and the component is assumed to not age over

time. Therefore, we assume

Prob(C, =1) = p, (7

We have observed Y, passes in N, tests, and Y, ~ Binomial(N,, p,)

System data
The system consists of five components in series, with the observed pass/fail data

at various ages. We have Y passesin N, testsatage ¢ . for i=1,...,n,. We express
system reliability as

Prob(S =1|t) = Prob(C, =1]|¢)sProb(C, =1|1)
+Prob(C;, =1{#)*Prob(C,, =1|#)*Prob(C, =1) 3)

Hence, we model Y, ~ Binomial(N,,Prob(S =1|¢,))at each time considered.



Since the best allocation will be dependent on the data already collected, Table 1
describes the data observed for each of the eight data types for the various ages. Given
the costs given in Figure 2, the total cost of the initial data is $40,000 (400 system tests
each at $50 = 20,000; 400 component 1 tests each at $10 = $4,000, etc.). Note that the
lifetime data for component 3.1 and the non-aging pass/fail data for Component 4 are not
associated with any particular age, and hence were not performed on components of a
specified age, as the other forms of data are. Figure 3 shows estimates of the various
components and the system with uncertainty (90% credible intervals) based on the initial
data using a Bayesian approach.

Suppose than an additional $30,000 is available to collect more data. Based on
logistical and practical constraints, possible allocations are identified in Tables 2 and 3.
Available systems are between 1 and 5 years old, and sufficient components and parts
from a large population are available to allow for all of the suggested allocations.
Twenty-one allocations were considered: seven divisions of the budget across data types
are considered, with three distributions of ages for each of the seven divisions. Collecting
the component data naturally grouped into two sets of components: Group 1 components
are those with costs of $10 per observation (C1, SS3 and C4), while Group 2 components
are those with $5 per observation costs (C2a, C2b, C31 and C32). For example, allocation
3B (half system data and half component data with more older data) would contain 300
new observations from all eight data types with 20 observations of each type of age 1, 40
observations of age 2, ..., and 100 observations of age 5. If for a particular allocation the
total number of observations is not divisible by 15, then the number of observations at

each of the 5 ages is rounded to the nearest observation.

The objective of this resource allocation problem is to identify the best allocation
to maximally improve prediction of system reliability for systems aged S to 7 years. In
the following sections, we describe the criteria used to compare allocations (Section 2),
and then provide additional details for the algorithm described above to estimate the
expected improvement in precision for each allocation (Section 3), before providing

results in Section 4. Section 5 discusses some strategies for generalizing the solution to



give an optimal solution across the range of data types, beyond just the specific

allocations identified.

2. Criteria for Comparing Allocations

In determining the best allocation, we want to select based on a reduction of the
uncertainty of the estimation of system reliability. There are number of consideration in
selecting a single number summary of the improvement. We should consider the metric
of uncertainty, and where we wish to predict reliability. In addition, given that we will be
simulating data from the estimated reliability distributions using the posteriors of the
various parameters, we should select an appropriate summary across the range for
samples generated.

Several possible measures of uncertainty are possible for any age at which we
wish to predict. We could look at the variance of posterior distribution for system
reliability, the width of a particular (1-a)100% credible interval, or the entropy of the
estimate. Wynn (2004) shows that under certain restrictive conditions which are not
applicable to our particular situation, these different measures of uncertainty are all
asymptotically equivalent. However, in general and in our example, these different
measures of uncertainty may lead to different relative rankings of the allocations. Hence
it is important to consider how the results of the new analysis will be used and select a
metric that most appropriately summarizes that aspect of uncertainty. In our example,
system reliability will be reported with the median of the posterior, and a 90% credible
interval. Hence the width of the 90% credible interval at a particular age is a sensible
measure of uncertainty.

The objective of the study is to predict reliability well for systems with ages
between 5 and 7 years. Several potential choices of metric might make sense: we may
wish to select a single age (say age 6) and compare the width of credible intervals at that
age. Alternately, we may wish to integrate the arca between the credible interval lines
across the range of ages, or consider a weighted average of several specific ages (with
weights selected to reflect our relative interest in different ages). While the integrated

area may be the most precise summary of uncertainty across the range of ages, we select



a relatively simple proxy for this by considering the arithmetic average of the widths of
the credible intervals at ages 5, 6 and 7 years.

Finally, we need to select an appropriate summary across the various samples of
data generated for each allocation. A couple of intuitive choices would be to look at the
median or average width across the samples or an upper percentile. The median or.
average would represent a “typical” improvement with the new data, while an upper
percentile would estimate a “worst case” improvement. In our case, we consider both the
median and 90th percentiles of the average width of the 90% credible intervals, where we
average over the system estimates at ages 5, 6 and 7 years.

As a baseline, based on the Table 1 data, the width of the intervals at ages 5, 6 and
7 years are 0.071, 0.136 and 0.214, respectively. The average of these widths is 0.140.
When new data are added to the analysis, we would expect that each of these intervals

would become narrower.

3. Details of Algorithm for Assessing Allocations

In this section we consider some of the details for performing the algorithm
described in the Introduction for the example. Step 1 uses a Bayesian approach and
assumes that we have a well-defined model which allows us to write down the likelihood
for all the types of data that we have observed. Equations (1)~(8) provide a mechanism
for including each type of observed data into a global likelihood which is a function of

the 13 parameters of the model. Component 1 has parameters «,,¢,, Component 2 has
Yo, 7. D,.8% .67, Component 3.1 has A, 8, Component 3.2 has 7,,7,.v*. and
Component 4 has parameter p,. Let © denote the vector of the 13 model parameters.

The Bayesian approach combines prior information about ® with the information

contained in the data. The prior information is described by a prior density 7 (©)and

summarizes what is known about the model parameters before any data are observed.
Here, we assume that little is known, and therefore choose diffuse proper prior

distributions, which allow for the possibility of a wide range of values for the model
parameters. (ao,a],D;,yg,y,,no,m ~ Normal(0,10°), 8,0, A, B,v ~ Gamma(1,1)

p, ~ Beta(9,1) ) The information provided by the data is captured by the data sampling

10



model f, (y |®) known as the likelihood, which is based on Equations (1)-(8). The

combined information is described by the posterior density, 7 (@ | y) . We evaluate the

posterior density using Bayes' Theorem [Degroot (1970)] as
7(@]y)x f(y|©)7(©).

When the form of the posterior density is well known, the distributional form of
the posterior density can be obtained in closed form. For more general forms of the
posterior density, we can use recent advances in Bayesian computing to approximate the
posterior distribution via Markov chain Monte Carlo [Gelfand and Smith (1990), Casella
and George (1992), Chib and Greenberg (1995)]. That is, Markov chain Monte Carlo
(MCMC) algorithms produce draws (i.e.. samples) from the joint posterior distribution of
® by sequentially updating each model parameter conditional on the current values of
the other model parameters. These draws of the posterior of ® are easy to work with in
evaluating system reliability at a given age which is a function of ® . That is, we obtain a
draw from the posterior of system reliability at a given age by evaluating the system

reliability with a draw of the posterior of ®.

As aresult of the Bayesian analysis performed based on the initial data, we obtain
posterior distributions for all 13 parameters. To incorporate the uncertainty in the
estimates of model parameters, values are sampled from the posterior of each parameter
and new data are generated based on these values. For example, for allocation 1A, we
wish to generate 120 (600*1/5) new observations at each of ages 1, 2, ..., 5. A draw from
the joint posterior of all 13 parameters is selected, say draw (k), yielding parameter values
(", a*,---, p*7). The probability of a successful system test is estimated at age 1

using Prob(S =1|¢=1) in equation (8) with the draw values. Then a binomial would be

generated Y, ~ Binomial(120,Prob(S =1|r =1)). This data would then be combined

with the original data to give the total number of successes Yy, + Yy, out of (80 + 120) =

200 test of systems at age 1. The process would be repeated for ages 2 through 5.
For the different allocations, different types of new data are generated. All of the

generated data are created using the estimated model parameters from the initial analysis.
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For many of the allocations, new data for all or most of the data types are required at each

of ages 1 through 5 years. For Component 3.1, new lifetime data are created consistent

with the estimated parameter values A“’, ¥, Since there is no aging for Component 4,
new binomial data are generated using the draw estimate p{"’. In our example, for each

allocation, we sample 100 draws from the posterior, and generated a new data set for
each, and then re-ran the analysis with the combined data. Once the new parameter
posteriors are obtained, the width of the 90% credible interval for system reliability at
each of ages 5, 6 and 7 years was calculated. Then an average of these three widths was
obtained for each new analysis. The results from these 100 new analyses were used to
find the median average width and the 90th percentile average width for each allocation.
It should be apparent from the description above, that this approach to estimating
the improvement in precision for a particular allocation can be computationally very
intensive. For our simple example where we are comparing 21 different allocations, 21 x
100 = 2100 different data sets need to be created and then combined analyses of the
original data with a particular generated data set performed. If each analysis is time-

consuming, then resource allocation will become a very time intensive procedure.

4. Results for Example

In this section we consider the results from our comparison of the 21 possible
allocations. Table 4 summarizes the median and 90" percentile average widths based on
the 100 generated samples and new analyses for each allocation. Recall that the average
width for the original data was 0.140. By changing the total budget from $40,000 to
$40.,000+$30,000=$70,000, we are able to realize substantial reduction in the width of
the intervals. The best allocation for both criteria is 5B, with the narrowest predicted

median and 90" percentile average credible intervals.

As we might have expected, the “more older” data allocations (B) are consistently
best for predicting in the age ranges 5 to 7 years. In addition, the allocations with more of
the group 1 component data (allocations 4 and 5) perform well. By examining Figure 3,
we can see that group 1 components tend to correspond to components with lower

reliablities at older ages. Recall that the variability of proportions becomes larger as the

12



probability of success moves away from one. Hence by obtaining more data for these
data types we are able to reduce uncertainty more substantially than for a highly reliable
component.

Based on these results the best available allocation to maximally reduce the
uncertainty of our system reliability predictions for ages 5, 6 and 7 years is to collect new
data as listed in Table 5. Recall that the average width of the 90% credible interval based
on the original data was 0.140. By adding the $30,000 of additional data, we can expect
that there is a 50% chance of reducing the average width of the interval to less than 0.079
(a 43% reduction) and a 90% chance of reducing it to less than 0.092 (a 34% reduction).

It should be noted that some of the allocations have an observed 90" percentile
that is actually wider than that observed in the original analysis. This suggests that if we
choose a bad allocation of new data to collect, the uncertainty in our model estimates may
not be improved. While this may not seem possible intuitively, one explanation might be
that sampling variability from some new data may actually introduce some additional
uncertainty, instead of reducing it. It should be noted that this is only occurs for the 90
percentile, as this represents a “worst case” reduction of uncertainty across possible data

sets consistent with the model parameter estimates.

5. Modeling Allocation Results as a Cost-Based Mixture Experiment

Sometimes instead of being asked to select a best allocation from a list of possible
allocations, we are allowed to suggest a best allocation subject to some constraints. In this
case, we may wish to characterize the allocation space with a response surface model,
and use optimization techniques to find a best allocation. We now consider how this
might work for our example. We can think of the allocation space as a mixture-process
space (Cornell, 2002), where the mixture variables are the proportion of cost for the new
allocation for each data type, and the process space allows us to consider the possible
distribution of ages within a data type. In this case, since there are practical restrictions
on how much data from any year can be considered, we create a single process factor
with values -1 corresponding to “less older data™, 0 for equal data at all years, and +1 for

“more older data”.
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Recall that mixture variables are subject to the constraint that the proportion of
“ingredients” must sum to 1. In our case, we require that the sum of the proportions of the
costs sum to 1, which implies that each allocation that we consider has the same total
cost. This is quite natural as we would likely want to examine the reduction in width of
the credible intervals for comparable allocations with the same cost. If we consider the
allocations 1 and 2, we can illustrate how to represent these in mixture experiment
notation. Let X represent the proportion of the total cost from each data type. Then
allocation 1 corresponds to 100% of the budget being spent on system data. Therefore,
allocation 1 would be represented as

(X Xy Xar Xeaps Xeas Xegn X Xg) = (1,0,---,0).

Allocation 2 has new data for each of the component types, with 600 new observations
for each of C1 through C4. Some of the component data costs $10 per observation, while
for others the cost is $5 per observation. Hence we would summarize the allocation 2 as a
mixture as

(X X o X2 Xaps X Xgs Xeny» X3 =100,.2,.1,.1,.2,.1,.1,.2)

Since 600*$10 = $6000 for component 1 represents 20% of the total available new
budget. Hence, we can model any allocation considered as a mixture combination based
on cost. We can then fit a second order response surface model to the observed responses,
here the median or 90" percentile average width of the ages 5, 6 and 7 years with the
model

YzzﬂlXi+zZﬁU’X,'X‘/+ZQjX;P+€ (9)

J=i
where the 4 X, are the mixture main effect terms, the 4 X, X are the mixture second
order effect terms, and the 8 .X, P are the mixture-process interactions. Recall that

because of the constraint that all ingredients must sum to 1, there are no intercept, process

main effects and no pure quadratic mixture terms in the second order mixture-process
model. The usual 'regression assumption of &~ iid N(0,5.) apply to the error term.

Because we have eight data types, this leads to a model in (9) with 8 + 28 + 8 =
44 terms, but we only have 21 allocations with which to estimate this model. Hence, we

propose to consider a simplified version of the model. In this case, since there are

14



restrictions on collecting equal numbers of observations for group 1 data types and equal
numbers for group 2 data, it is natural to re-express the model in terms of three
ingredients: system, group 1 components and group 2 components. This leads to mixture
combinations of

(X Xois X ) =(1,0,0)
and

(X X o Xeoy) =(0,.6,.4)
for allocations 1 and 2, respectively. The proportions for allocation 2 are based on 60%
(or $18000) of the budget being spent on data for components 1, 4 and sub-system 3. The
remainder of the budget ($12000) is spent on component data of types 2a, 2b, 3.1 and 3.2.
Allocations 3 through 7 correspond to the following mixture combinations based on the
new groupings: (.5,.3,.2), (.5,.5,0), (0,1,0), (.5,0,.5), (0,0,1), respectively. This grouping
of data types into 3 categories leads to a simplified model with just 3 + 3 + 3 =9 terms,
which is easily estimable with our 21 allocations.

Figure 4 shows the design space for possible allocations based on the reduced
number of data types and the simplified process variable structure for the distribution of
the different ages of systems explored. Figure 5 shows the 7 allocations from Table 2
with the new grouping of components. Note that these allocations are well distributed
throughout the mixture region, and hence should allow good estimation of the model
parameters.

The model was estimated based on the 21 allocations with the results for both

criteria shown in Figures 6 and 7. The models fit the observed allocations well with

R2, =99.85% and 99.85% for the median and 90™ percentile of the average widths,

adj
respectively. In this case, the best allocation for maximally reducing the uncertainty in
the prediction of system reliability subject to the restriction of sampling by groups 1 or 2
for the component data corresponds to exactly what was sampled with allocation 5B. This
allocation was observed to give a median average width of 0.79, and is predicted from
our model to give a value of 0.80. Similarly for the 90" percentile of the average width,

the observed and predicted values are very similar.



Alternately, since it is clear from the initial results that the “more older data™ are
consistently best, we may wish to exclude the other distributions and only focus on
appropriate modeling of the allocations with this distribution of ages in a mixture model

ofthe form Y =3 S X +2 % B,X, X, +&. Wealso note that since the data in the

o
response surface modeling are simulated, it is possible to propose and evaluate
allocations outside of the constraints required for actual allocations. This provides an
opportunity to consider a designed experiment in the allocation space that allows for
good estimation of the response surface. If we selected possible allocations that did not
keep the proportions of component data fixed within group 1 and 2, we would be able to
explore if the grouping of components into these practically convenient groups is
advantageous from the prediction perspective.

Regardless of the approach, it is beneficial to evaluate the proposed optimal
allocation directly as well. In our example, the best allocation turns out to be one that we
have already evaluated. This will not be true in general. By comparing the responses from
the confirmatory run with those predicted by the response surface model, we can assess
the goodness-of-fit of the model and also verify that the suggested allocation matches

expected model results.

6. Discussion and Conclusions

In the example considered, the relative cost of the system data relative to
obtaining measures on the individual components is equal. Namely, both a single system
observation and one observation for each component cost $50. We also considered
changing the relative cost of these, by changing the system data costs to $25 and $100 per
observation. This did change the relative ranking of some of the allocations, but for each
of the new scenarios, allocation 5B remained the best choice. This is perhaps not
surprising since this allocation does not involve any system level data, and the system
level data does not appear to be as beneficial as additional component level data.
Typically, we would expect that changing the relative costs of the different data types
would lead to different best allocations based on a fixed budget.

The suggested best allocation is highly dependent on what original data were used

in the first analysis as well as on the reliability of the individual components. Data types
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that are already abundant represented in the original data are less likely to yield
substantial improvement in the reduction of prediction uncertainty, as there are
diminishing returns on additional data. As well, components that are highly reliable have
less associated uncertainty in their estimation, and hence require less total data to feel
confident that they are well understood. The ideal candidate for a large proportion of the
new allocation is a data type that has relatively less data and has reliability that is less
reliable or changing over time.

Given that there may be some uncertainty about the correctness of the system
structure model, it may be beneficial to consider including some system level data when
possible to validate the statistical model used to combine the component data into a
system reliability estimate. See Anderson-Cook (2008) for details on testing the series
assumption for a system. Additionally, including a measure of discrepancy in the model
to allow estimation of potential differences in system reliability estimate from various
data sources may also be advisable.

In this paper we propose an algorithm for evaluating different allocations of
resources. With a focus on predicting reliability well at user-specified ages of interest,
and by accounting for the uncertainty associated with both our parameter estimates and
sampling variability from the new data, we are able to rank competing allocations and
their potential value. As an initial approach, we compare a fixed number of possible
allocations and determine a best allocation. However, it may also be desirable to estimate
an optimal allocation within the ranges of allocations consistent with logistical and
practical constraints. By fitting a mixture or mixture-process response surface model to
the results of the evaluated allocations, we can {ind optimal proportions of the budget to
be spent on each data type. A further extension would be to use an automated search
algorithm, such as a genetic algorithm, to find a best allocation, subject to the constraints.

The methodology proposed would be appropriate for any meta-analysis where we
have different data types which we wish to combine in a single analysis to estimate a
primary response of interest. Integrating the relative cost of the data is important, as for
different data types the associate costs can vary substantially and this will impact the
amount of a particular data type that can be obtained subject to the available resources.

The general nature of the algorithm makes it widely applicable to various scenarios, but
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the computationally intense nature of the algorithm may mean that it is not practical for

some applications where a single analysis takes considerable time and computer power.
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Table 1: Data Types for System

Amount of Initial Data
Data Type Age 1 Agel | Age3 Age 4 Age 5 No Age
System P/F at age 80 80 80 80 80
Comp 1 P/F at age 80 80 80 80 80
Comp 2 {(a) Testset 80 80 80 80 80
degradation
(b) /F at age 80 80 80 80 80
Sub-Sys 3 P/F at age 80 80 80 80 80
Comp 3.1 Lifetime 400
Comp 3.2 Testset 80 80 80 80 80
degradation
Comp 4 P/F 400
Table 2: Allocations Considered
Allocation System Cl1 C2a C2b SS3 C31 C32 C4
1 (all system) 600
2 (all component) 600 600 600 600 600 600 600
3 (Y2 sys, % comp) 300 300 300 300 300 300 300 | 300
4 (% sys, Y2 grp 1 comp) 300 500 500 500
5 (all grp 1 comp) 1000 1000 1000
6 (2 sys, 2 grp 2 comp) 300 750 750 750 750
7 (all grp 2 comp) 1500 | 1500 1500 | 1500
Table 3: Distribution of Ages for Aging Data (System, C1, C2a C2b, SS3, C32)as a
Proportion of Total Number of Observation for That Data Type
" Allocation Age=1 Age =2 Age=3 Age =4 Age =5
LA (equal ages) 1/5 1/5 1/5 1/5 1/5
B (more older) 1/15 2/15 3/15 4/15 S/15
C (less older) 5/15 4/15 3/15 2/15 1/15

Table 4: Results for Two Criteria for Five Component System Based on Average Width
of Credible Interval at Ages 5, 6 and 7 Years. The best allocation for each criterion is

shown in bold.

Allocation Median Width 90" Percentile Width

A B C A B C
1 0.121 0.106 0.127 0.137 0.125 0.144
2 0.095 0.088 0.106 0.110 0.104 0.122
3 0.104 0.065 0.116 0.123 0.113 0.132
4 0.095 0.090 0.109 0.109 0.101 0.128
5 0.083 0.079 0.099 0.099 0.092 0.114
6 0.126 0.123 0.134 0.143 0.139 0.146
7 0.134 0.135 0.142 0.145
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Table 5: Best Available Allocation for Minimizing the Median and 90" Percentile of the
Average Width of the Age 5, 6 and 7 Year System Reliability Prediction

| Age=1 Age=2 Age=3 Age=4 Age=35 No Age Total
System 0 0 0 0 0 0
Cl 67 133 200 267 333 1000
C2a 0 0 0 0 0 0
C2b 0 0 0 0 0 0
S83 67 133 200 267 333 1000
C31 0 0
c32 0 0 0 0 0 0
C4 1000 1000 |
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Figure 1: Overview of resource allocation problem.
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Figure 2: A simple example of a series system with five components and eight possible

data types. The data types and cost per observation are shown in grey.
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Figure 3: Reliability estimates (median — solid line, 90% credible interval — dashed lines)
for components and system for ages 0 to 7 years based on initial data described in Table
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Figure 4: Mixture-Process space for simplified version of the model with three data types
(system, group 1 components, group 2 components) and distribution of ages as a single
process variable.
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Figure 5: Allocations re-expressed in terms of System data, and Group 1 and 2

components,
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Figure 6: Contour plot of response surface model for median of average widths for ages
5, 6 and 7 years. The optimal allocation corresponds to 100% of the data being sampled

from Group 1 components.

Less (ider Data Median of Average Width . Equal Ages More Oider Dats
=] R e
A “ *\
5 .
34 . 34 |coe ﬂ‘*\\ 31 \\
5 ™,
Q1 T, Ted Comp ~ Geoup 2 Compononts \\,\ oed Como = Geoun 2 Componaoes Oas N Thing Comp = Groun 2 Companants
Q- . . \,
s .| \ I S P S
§ - B0 AN E i oo _k\‘\ 1500 ~\
£ —— D105 a2 £ N £ TN
g . ST — N : BN
§ T §oed B ¥ -bgs
£ 2 RN g e T10s S HE-R R T
\\Dzz‘;\ D""\«\\\Q‘.\ P‘“o,o\\\\
ERLIEN L. N =] \
o \\M\ N B O"?s\\ oy \’L\\:\l
> L 10% 0.23.\\‘\ © »lg._\ o e 5\\
— N P~ — a2y .
0,135 G135 N o ~ D0y ‘--\"“N«.._ »\\*\\ ] Y
3 \\ . 73 25 e . P
2 2 N ] s Y12s A
. : ey + . - v : v : r . . . . :
40 az 4 a8 a8 19 88 42 ad o8 L2 14 $8 82 &4 88 (3.3 18
Sysiom Syetam Syslem

23




Figure 7: Contour plot of response surface model for 90™ percentile of average widths for
ages 5, 6 and 7 years. The optimal allocation corresponds to 100% of the data being
sampled from Group 1 components.
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