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Abstract: 
To assess the reliability of a complex system, many different types of data may be 

available. Full-system tests are the most direct measure of reliability, but may be 
prohibitively expensive or difficult to obtain. Other less direct measures, such as 
component or section level tests, may be cheaper to obtain and more readily available. 
Using a single Bayesian analysis, multiple sources of data can be combined to give 
component and system reliability estimates. Resource allocation looks to develop 
methods to predict which new data would most improve the precision of the estimate of 
system reliability, in order to maximally improve understanding. In this paper, we 
consider a relatively simple system with different types of data from the components and 
system. We present a methodology for assessing the relative improvement in system 
reliability estimation for additional data from the various types. Various metrics for 
comparing improvement and a response surface approach to modeling the relationship 
between improvement and the additional data are presented. 

Key words: Bayesian analysis, design of experiments, sequential experimentation, 
mixture experiments, meta-analysis, reduction of uncertainty 

1. Introduction 

When estimating the reliability of a complex system, different potential sources of 

data may be available. The full-system tests are the most direct assessment of this 

reliability, but other sources may be cheaper, more plentiful and can also be beneficial 

when appropriately combined with understanding of the system structure. Methodology 

to model system reliability as a function of component, sub-system and system level data 

is discussed in Wilson et al. (2006) and Anderson-Cook et al. (2007,2008). This 

Bayesian analysis approach allows multiple types of data to be combined with subject 
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matter expertise through prior distributions in a single analysis to provide a synthesized 

estimate of system reliability which reflects all sources of data. 

The form of the system is incorporated into the model to reflect how the 

component and subsystem data should be combined to accurately reflect the connections 

between the components. Common structures used to capture the structure include series 

and parallel systems. For more details on types of system structures, see Rausand and 

Hoyland (2004) and Saunders (2007). Some of the types of data that might be available to 

assess portions of the system include: 

1. 	 pass/fail data evaluated at a given age of the component 

2. 	 degradation data consisting of a continuous measure with known operational 

limits, outside of which the component is not expected to work successfully 

3. lifetime data for components tested and observed until they fail 

Typically the estimate of system reliability is modeled as a function of the age and 

potentially the usage of the system. The data collection and analysis can be an ongoing 

process where new data are collected to help update the reliability estimates as the 

population of systems age. Prediction of system reliability beyond the observed ages of 

the system is common, and the target range of extrapolation may be expanded with 

sequential data collection over time. 

Resource allocation is a form of sequential experimentation, where a formal 

process is used to determine how to best spend future resources available for collecting 

new data. The problem considers how to best determine which types of data are most 

advantageous for maximally improving the precision of our estimation and prediction 

conditional on the data already available and leveraging understanding of system 

reliability as a function of its components' reliabilities. Figure 1 illustrates the basic 

problem considered in the remainder of this paper. Phase 1 involves collecting initial data 

and information, which when combined with knowledge of the system structure allows 

for construction of an appropriate statistical model for an analysis to be performed. From 

the analysis, estimates of system and component reliabilities are available across the 

range of observed ages as well as for system ages not yet observed. Phase 2 involves 

collecting more data, and re-running the analysis with the combined data (with both the 
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initial data and the newly collected data) to provide updated estimates of model 

parameters and system reliability. We assume that the same form of the model is being 

used, but just with additional data. The decision-making process of resource allocation 

should occur between Phases 1 and 2 of Figure 2, and guides the choice of new data to be 

collected as part of sequential experimentation. As with any design of experiment 

selection, the choice of which new data to collect must be made before the new data are 

available to show what improvements to the estimation of the system reliability their 

values provide. Hence we wish to use our current understanding of model parameters to 

help inform us about what data might be expected as well as how it will influence the 

uncertainty about system reliability. First, a few key points about the scope of our 

discussions: 

1. 	 We consider new data of the same types as those already collected in the Phase 1. 

This approach does not consider adding new potential data sources, which might 

model alternate failure mechanism not currently in the model or alternative data 

types that would complement existing data for a given component or subsystem. 

2. 	 Because we believe that the current model appropriately summarizes the system 

reliability, we focus on reducing the uncertainty in our estimation, rather than 

looking to reduce potential bias from an incorrectly specified modeL 

3. 	 We assume that the available budget for Phase 2 data collection and cost of each 

type of data are known and fixed. Typically the costs for different types of data 

can vary greatly. 

4. 	 There may be restrictions and constraints on the types and amounts of new data 

that can be collected. These logistical or practical restrictions may limit the 

available choices for allocations. Initially, we assume that the user specifies 

possible allocations to be considered, and then the best of these will be identified. 

Later in the paper we present some extensions that allow for estimation of a 

global best allocation within a bounded allocation design space. 

S. 	 We assume that while good estimation of reliability for all of the components is 

helpful for understanding, the primary focus of the problem is to improve the 

precision of our system reliability estimate. 
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6. 	 We assume that management of the systems depends on the estimation or 

prediction of system reliability at particular ages, perhaps in the range of systems 

already observed or involving extrapolation to older ages. 

We therefore seek to find the best allocation ofthese fixed resources to maximally reduce 

the uncertainty of our prediction of system reliability for a user specified range of system 

ages. 

We first present the algorithm to assess the potential allocations which have been 

identified. Suppose that we have d allocations to compare based on a user-selected metric 

for quantifying the uncertainty of our estimate (more details about this metric are given in 

the next section). Below we outline an algorithm for comparing the allocations: 

1. 	Analyze currently available data. 

2. 	For each of the d potential allocations, 

a. Use reliability estimates for each component, subsystem or system to generate 

multiple new data sets for each type of data in the amount required by the 

allocation. 

b. For each of the generated data sets, perform a new analysis using the same 

model as used in Step 1 above but with combined data (original + new 

simulated data). 

c. Summarize results for allocation using selected uncertainty metric. 

3. Compare results for all allocations, and select best one. 

Note that the generation of new data uses the assumed model from the original 

analysis which specifies the distribution from which the data are generated as well as the 

current reliability estimates for that type of data. Note that the methodology outlined in 

Anderson-Cook et a] (2007,2008) provides estimates of reliability for all components, 

subsystems and the system, which makes the required data generation possible. For 

example, suppose pass/fail data for a particular component are assumed to come from a 

probit modeL If we wish to generate new data at a specific age, we would use the 

posterior distribution for the estimate the reliability at that age from the current analysis. 

From that, we would generate the required number of new pass/fail observations from a 
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binomial distribution with the probability of a pass equal to the component reliability 

estimate. 

Multiple data sets are required to capture both the uncertainty of the model 

parameters based on the first analysis and sample-to-sample variability expected if that 

allocation were selected and the actual data obtained. This generation and analysis of 

multiple data sets is beneficial for its more accurate assessment of variability, but is 

computationally quite intensive. 

To illustrate the methodology we consider the series system shown in Figure 2 

consists of 5 components (Components 1, 2, 3.1, 3.2, and 4) in series, with 8 different 

types of data available. For a series system, all components need to work for a successful 

full-system test, and the failure of one or more components will lead to a failed system 

test. Systems and components of ages 1 through 5 years are available for testing. Interest 

in prediction of system reliability is for ages 5 to 7 years. 

Component 1 

The data for Component 1 is Pass/Fail observed at particular ages of the system. 

We model the probability that Component 1 works at age t using a probit link as 

probe CI 11 t l ) = <1>(a o+ altl ) (1) 

The observed data used in the initial analysis consists of ~J passes in Nil tests at age til' 

for i =1, ..., nl ' with the units used at each age assumed to be different. Hence, we can 

model 

Component 2 

Component 2 has two different types of data which can be used to assess its 

reliability: degradation data and pass/fail data at particular ages. The continuous measures 

or degradation data are compared to a specification limit to determine if the component 

would have passed. A value for the specification limit is known, but there is some 

uncertainty about whether this value accurately ret1ects when the component will actually 
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fail during a different type of test which is thought to more accurately reflect how the 

component is exercised during the full-system test. 

The degradation data are assumed to be distributed as 

Z I12 ~ Normal(yo +Yl2,5 2 
) (2) 

with observed data Z2ij at age 12; for i =1, .. " n22 , j 1" .. , n21 • That is, there are 

inspection times and at each inspection time, n2: are destructively measured. n21 


Therefore, the n2 =units at each inspection time are different. 


The pass/fail data at various ages for Component 2 is assumed to pass with 

probability, 

where the threshold D2 is not known precisely. That is, the more that z exceeds D2 , the 

higher the probability of passing the test. We reparameterize so that 

Prob(C, =11 I,) =<Dl( (Yo +Ylz) If:) - D; J (3) 
- - ,.)1 +52 / (J"2 

where D~ = D2 / (J" • The observed data used in the initial analysis consists of r;, passes in 

N21 tests at age 121 , for i =1, ... , n2 , with the units used at each age assumed to be 

different. 

Sub-system 3 

Sub-system 3 consists of2 components, C31 and C32, in series. Data for 

component C31 are Weibulllifetimes distributed as Weibull(A,P) where 

Prob(C31 11 t) exp(-[1/ At) (4) 

with observed lifetimes 1';",i 1, .. ·,n31 • 

Data for component C32 consists of degradation data distributed as 

(5) 
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where Prob(C32 =11 I) =Prob(1-:;21 > D32 ) 1- CI{ D32 ~o + '1l J. We assume that the 

threshold DJ2 is known. The observed degradation data are 1';21} at age 132j for 

i =1, ... ,nnz' j =1, ... , n321 • That is, there are n321 inspection times and at each inspection 

time, n32 :: are destructively measured. 

Data observed at the sub-system level are pass/fail data over time. Pass/fail data at 

various ages of the sub-section are also available. We observe 1-:;, passes in N3' tests at 

age 131 , for i = 1, ...,n3 • The probability of passing at time t3 is 

Prob(SS3 = 11 (3 ) = Prob(C31 = 11 (3 )-Prob(C32 = 11 (3 ) 

=exp(-[/3 /2]1' )-(1 $ ( D32 - : + '11/3} (6) 

Therefore, 1';i ~ Binomial(N ,exp(-[t / 2]1')-(1 $( D32 : +'1/3 }).31 3 

Component 4 

Component 4 has pass/fail data and the component is assumed to not age over 

time. Therefore, we assume 

Prob(C4 =1) =P4 (7) 

We have observed ~ passes in N4 'tests, and ~ ~ Binomial(N4 ,P4) 

System data 

The system consists of five components in series, with the observed pass/fail data 

at various ages. We have ~~I passes in NSI tests at age lSI' for i =1, ... , ns . We express 

system reliability as 

probeS =11 I) =Prob(C1 =11 1)-Prob(C2 11 I) 
-Prob(C,I =1It)-Prob(C32 = 11 t)-Prob(C4 1) (8) 

Hence, we model ~'I ~ Binomial(N""Prob(S 11 ts/)) at each time considered. 
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Since the best allocation will be dependent on the data already collected, Table 1 

describes the data observed for each of the eight data types for the various ages. Given 

the costs given in Figure 2, the total cost of the initial data is $40,000 (400 system tests 

each at $50 = 20,000; 400 component 1 tests each at $10 $4,000, etc.). Note that the 

lifetime data for component 3.1 and the non-aging pass/fail data for Component 4 are not 

associated with any particular age, and hence were not performed on components of a 

specified age, as the other forms of data are. Figure 3 shows estimates of the various 

components and the system with uncertainty (90% credible intervals) based on the initial 

data using a Bayesian approach. 

Suppose than an additional $30,000 is available to collect more data. Based on 

logistical and practical constraints, possible allocations are identified in Tables 2 and 3. 

A vail able systems are between I and 5 years old, and sufficient components and parts 

from a large population are available to allow for all of the suggested allocations. 

Twenty-one allocations were considered: seven divisions of the budget across data types 

are considered, with three distributions of ages for each of the seven divisions. Collecting 

the component data naturally grouped into two sets of components: Group 1 components 

are those with costs of$10 per observation (CI, SS3 and C4), while Group 2 components 

are those with $5 per observation costs (C2a, C2b, C31 and C32). For example, allocation 

3B (half system data and half component data with more older data) would contain 300 

new observations from all eight data types with 20 observations of each type of age 1, 40 

observations of age 2, ... , and 100 observations of age 5. If for a particular allocation the 

total number of observations is not divisible by 15, then the number of observations at 

each of the 5 ages is rounded to the nearest observation. 

The objective of this resource allocation problem is to identify the best allocation 

to maximally improve prediction of system reliability for systems aged 5 to 7 years. In 

the following sections, we describe the criteria used to compare allocations (Section 2), 

and then provide additional details for the algorithm described above to estimate the 

expected improvement in precision for each allocation (Section 3), before providing 

results in Section 4. Section 5 discusses some strategies for generalizing the solution to 
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give an optimal solution across the range of data types, beyond just the specific 

allocations identified. 

2. Criteria for Comparing Allocations 

In determining the best allocation, we want to select based on a reduction of the 

uncertainty of the estimation of system reliability. There are number of consideration in 

selecting a single number summary of the improvement. We should consider the metric 

of uncertainty, and where we wish to predict reliability. In addition, given that we will be 

simulating data from the estimated reliability distributions using the posteriors of the 

various parameters, we should select an appropriate summary across the range for 

samples generated. 

Several possible measures of uncertainty are possible for any age at which we 

wish to predict. We could look at the variance of posterior distribution for system 

reliability, the width of a particular (I-a)100% credible interval, or the entropy of the 

estimate. Wynn (2004) shows that under certain restrictive conditions which are not 

applicable to our particular situation, these different measures of uncertainty are all 

asymptotically equivalent. However, in general and in our example, these different 

measures of uncertainty may lead to different relative rankings of the allocations. Hence 

it is important to consider how the results of the new analysis will be used and select a 

metric that most appropriately summarizes that aspect of uncertainty. In our example, 

system reliability will be reported with the median of the posterior, and a 90% credible 

interval. Hence the width ofthe 90% credible interval at a particular age is a sensible 

measure of uncertainty. 

The objective of the study is to predict reliability well for systems with ages 

between 5 and 7 years. Several potential choices of metric might make sense: we may 

wish to select a single age (say age 6) and compare the width of credible intervals at that 

age. Alternately, we may wish to integrate the area between the credible interval lines 

across the range of ages, or consider a weighted average of several specific ages (with 

weights selected to reflect our relative interest in different ages). While the integrated 

area may be the most precise summary of uncertainty across the range of ages, we select 
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a relatively simple proxy for this by considering the arithmetic average of the widths of 

the credible intervals at ages 5, 6 and 7 years. 

Finally, we need to select an appropriate summary across the various samples of 

data generated for each allocation. A couple of intuitive choices would be to look at the 

median or average width across the samples or an upper percentile. The median or 

average would represent a "typical" improvement with the new data, while an upper 

percentile would estimate a "worst case" improvement. In our case, we consider both the 

median and 90th percentiles of the average width of the 90% credible intervals, where we 

average over the system estimates at ages 5, 6 and 7 years. 

As a baseline, based on the Table 1 data, the width ofthe intervals at ages 5, 6 and 

7 years are 0.071, 0.136 and 0.214, respectively. The average of these widths is 0.140. 

When new data are added to the analysis, we would expect that each of these intervals 

would become narrower. 

3. Details of Algorithm for Assessing Allocations 

In this section we consider some of the details for performing the algorithm 

described in the Introduction for the example. Step 1 uses a Bayesian approach and 

assumes that we have a well-defined model which allows us to write down the likelihood 

for all the types of data that we have observed. Equations (1 )-(8) provide a mechanism 

for including each type of observed data into a global likelihood which is a function of 

the 13 parameters of the model. Component 1 has parameters aO,a1 , Component 2 has 

, 2 2 2
YO'YI'D2 ,8 ,a , Component 3.1 has A,f3, Component 3.2 has 17o,17"V ,and 

Component 4 has parameter p 4 • Let e denote the vector of the 13 model parameters. 

The Bayesian approach combines prior information about e with the information 

contained in the data. The prior information is described by a prior density 1C (e) and 

summarizes what is known about the model parameters before any data are observed. 

Here, we assume that little is known, and therefore choose diffuse proper prior 

distributions, which allow for the possibility of a wide range of values for the model 

parameters. (ao,ai' D; ,10,11,170,171 - Normal(O, 1 02
), 8, a, A, /3, v ~ Gamma(1, 1) , 

P4 ~ Beta(9, 1) ) The information provided by the data is captured by the data sampling 
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model ~ (y 10) known as the likelihood, which is based on Equations (1 )-(8). The 

combined infonnation is described by the posterior density, 7r ( 01 y). We evaluate the 

posterior density using Bayes' Theorem [Degroot (1970)] as 

Jl"(01 y) IX fey 10)Jl"(0). 

When the fonn of the posterior density is well known, the distributional fonn of 

the posterior density can be obtained in closed fonn. For more general forms of the 

posterior density, we can use recent advances in Bayesian computing to approximate the 

posterior distribution via Markov chain Monte Carlo [Gelfand and Smith (1990), Casella 

and George (1992), Chib and Greenberg (1995)]. That is, Markov chain Monte Carlo 

(MCMC) algorithms produce draws (i.e., samples) from the joint posterior distribution of 

o by sequentially updating each model parameter conditional on the current values of 

the other model parameters. These draws of the posterior of 0 are easy to work with in 

evaluating system reliability at a given age which is a function of 0. That is, we obtain a 

draw from the posterior of system reliability at a given age by evaluating the system 

reliability with a draw of the posterior of 0 . 

As a result of the Bayesian analysis performed based on the initial data, we obtain 

posterior distributions for all 13 parameters. To incorporate the uncertainty in the 

estimates of model parameters, values are sampled from the posterior of each parameter 

and new data are generated based on these values. For example, for allocation lA, we 

wish to generate 120 (600* 115) new observations at each of ages 1,2, .. " 5. A draw from 

the joint posterior of all 13 parameters is selected, say draw (k), yielding parameter values 

(a6k1 ,a1(k),. •. , p~k)). The probability of a successful system test is estimated at age 1 

using probeS =11 t =1) in equation (8) with the draw values. Then a binomial would be 

generated ~;(l) ~ Binomia/(120,Prob(S = 11 t = 1)). This data would then be combined 

with the original data to give the total number ofsuccesses Y"')(1) + ~;(l) out of (80 + 120) 

200 test of systems at age 1. The process would be repeated for ages 2 through 5. 

For the different allocations, different types of new data are generated. All of the 

generated data are created using the estimated model parameters from the initial analysis. 
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For many of the allocations, new data for all or most of the data types are required at each 

of ages 1 through 5 years. For Component 3.1, new lifetime data are created consistent 

with the estimated parameter values A(k), p(k) • Since there is no aging for Component 4, 

new binomial data are generated using the draw estimate p~kl. In our example, for each 

allocation, we sample 100 draws from the posterior, and generated a new data set for 

each, and then re-ran the analysis with the combined data. Once the new parameter 

posteriors are obtained, the width of the 90% credible interval for system reliability at 

each of ages 5, 6 and 7 years was calculated. Then an average of these three widths was 

obtained for each new analysis. The results from these 100 new analyses were used to 

find the median average width and the 90th percentile average width for each allocation. 

It should be apparent from the description above, that this approach to estimating 

the improvement in precision for a particular allocation can be computationally very 

intensive. For our simple example where we are comparing 21 different allocations, 21 x 

100 2100 different data sets need to be created and then combined anal yses of the 

original data with a particular generated data set performed. If each analysis is time­

consuming, then resource allocation will become a very time intensive procedure. 

4. Results for Example 

In this section we consider the results from our comparison of the 21 possible 

allocations. Table 4 summarizes the median and 90th percentile average widths based on 

the 100 generated samples and new analyses for each allocation. Recall that the average 

width for the original data was 0.140. By changing the total budget from $40,000 to 

$40,000+$30,000=$70,000, we are able to realize substantial reduction in the width of 

the intervals. The best allocation for both criteria is 5B, with the narrowest predicted 

median and 90th percentile average credible intervals. 

As we might have expected, the "more older" data allocations (B) are consistently 

best for predicting in the age ranges 5 to 7 years. In addition, the allocations with more of 

the group 1 component data (allocations 4 and 5) perform well. By examining Figure 3, 

we can see that group 1 components tend to correspond to components with lower 

reliablities at older ages. Recall that the variability of proportions becomes larger as the 
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probability of success moves away from one. Hence by obtaining more data for these 

data types we are able to reduce uncertainty more substantially than for a highly reliable 

component. 

Based on these results the best available allocation to maximally reduce the 

uncertainty of our system reliability predictions for ages 5, 6 and 7 years is to collect new 

data as listed in Table 5. Recall that the average width of the 90% credible interval based 

on the original data was 0.140. By adding the $30,000 of additional data, we can expect 

that there is a 50% chance of reducing the average width of the interval to less than 0.079 

(a 43% reduction) and a 90% chance of reducing it to less than 0.092 (a 34% reduction). 

It should be noted that some of the allocations have an observed 90th percentile 

that is actually wider than that observed in the original analysis. This suggests that if we 

choose a bad allocation of new data to collect, the uncertainty in our model estimates may 

not be improved. While this may not seem possible intuitively, one explanation might be 

that sampling variability from some new data may actually introduce some additional 

uncertainty, instead of reducing it. It should be noted that this is only occurs for the 90th 

percentile, as this represents a "worst case" reduction of uncertainty across possible data 

sets consistent with the model parameter estimates. 

5. Modeling Allocation Results as a Cost-Based Mixture Experiment 

Sometimes instead of being asked to select a best allocation from a list of possible 

allocations, we are allowed to suggest a best allocation subject to some constraints. In this 

case, we may wish to characterize the allocation space with a response surface model, 

and use optimization techniques to find a best allocation. We now consider how this 

might work for our example. We can think of the allocation space as a mixture-process 

space (Cornell, 2002), where the mixture variables are the proportion of cost for the new 

allocation for each data type, and the process space allows us to consider the possible 

distribution of ages within a data type. In this case, since there are practical restrictions 

on how much data from any year can be considered, we create a single process factor 

with values -1 corresponding to "less older data", 0 for equal data at all years, and +I for 

"more older data". 
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Recall that mixture variables are subject to the constraint that the proportion of 

"ingredients" must sum to 1. In our case, we require that the sum of the proportions of the 

costs sum to 1, which implies that each allocation that we consider has the same total 

cost. This is quite natural as we would likely want to examine the reduction in width of 

the credible intervals for comparable allocations with the same cost. Ifwe consider the 

allocations 1 and 2, we can illustrate how to represent these in mixture experiment 

notation. Let Xi represent the proportion of the total cost from each data type. Then 

allocation 1 corresponds to 100% of the budget being spent on system data. Therefore, 

allocation 1 would be represented as 

Allocation 2 has new data for each of the component types, with 600 new observations 

for each ofC1 through C4. Some ofthe component data costs $10 per observation, while 

for others the cost is $5 per observation. Hence we would summarize the allocation 2 as a 

mixture as 

Since 600*$10 = $6000 for component 1 represents 20% of the total available new 

budget. Hence, we can model any allocation considered as a mixture combination based 

on cost. We can then fit a second order response surface model to the observed responses, 

here the median or 90th percentile average width of the ages 5, 6 and 7 years with the 

model 

Y = IfJ,X, + IfJIjXiX/ + IB;XiP+t: (9) 
, }"" , 

where the fJ,X, are the mixture main effect terms, the fJUXiXj are the mixture second 

order effect terms, and the B;X,P are the mixture-process interactions. Recall that 

because of the constraint that all ingredients must sum to 1, there are no intercept, process 

main effects and no pure quadratic mixture terms in the second order mixture-process 

model. The usual regression assumption of t: ~ iid N(O,(J':) apply to the error term. 

Because we have eight data types, this leads to a model in (9) with 8 + 28 + 8 = 

44 terms, but we only have 21 allocations with which to estimate this model. Hence, we 

propose to consider a simplified version of the model. In this case, since there are 
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restrictions on collecting equal numbers of observations for group 1 data types and equal 

numbers for group 2 data, it is natural to re-express the model in terms of three 

ingredients: system, group 1 components and group 2 components. This leads to mixture 

combinations of 

and 

(Xs,XCGl ,Xcm ) =(0,.6,.4) 

for allocations 1 and 2, respectively. The proportions for allocation 2 are based on 60% 

(or $18000) ofthe budget being spent on data for components 1,4 and sub-system 3. The 

remainder of the budget ($12000) is spent on component data of types 2a, 2b, 3.1 and 3.2. 

Allocations 3 through 7 correspond to the following mixture combinations based on the 

new groupings: (.5,.3,.2), (.5,.5,0), (0,1,0), (.5,0,.5), (0,0,1), respectively. This grouping 

of data types into 3 categories leads to a simplified model with just 3 + 3 + 3 = 9 terms, 

which is easily estimable with our 21 allocations. 

Figure 4 shows the design space for possible allocations based on the reduced 

number of data types and the simplified process variable structure for the distribution of 

the different ages of systems explored. Figure 5 shows the 7 allocations from Table 2 

with the new grouping of components. Note that these allocations are well distributed 

throughout the mixture region, and hence should allow good estimation of the model 

parameters. 

The model was estimated based on the 21 allocations with the results for both 

criteria shown in Figures 6 and 7. The models fit the observed allocations well with 

R;dj = 99.85% and 99.85% for the median and 90th percentile of the average widths, 

respectively. In this case, the best allocation for maximally reducing the uncertainty in 

the prediction of system reliability subject to the restriction of sampling by groups 1 or 2 

for the component data corresponds to exactly what was sampled with allocation 5B. This 

allocation was observed to give a median average width ofO.79, and is predicted from 

our model to give a value ofO.80. Similarly for the 90th percentile of the average width, 

the observed and predicted values are very similar. 
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Alternately, since it is clear from the initial results that the "more older data" are 

consistently best, we may wish to exclude the other distributions and only focus on 

appropriate modeling of the allocations with this distribution of ages in a mixture model 

of the form Y =L PIX[ + L L PI/XIXI +£. We also note that since the data in the 
, J*'.­

response surface modeling are simulated, it is possible to propose and evaluate 

allocations outside of the constraints required for actual allocations. This provides an 

opportunity to consider a designed experiment in the allocation space that allows for 

good estimation of the response surface. Ifwe selected possible allocations that did not 

keep the proportions of component data fixed within group 1 and 2, we would be able to 

explore if the grouping of components into these practically convenient groups is 

advantageous from the prediction perspective. 

Regardless of the approach, it is beneficial to evaluate the proposed optimal 

allocation directly as well. In our example, the best allocation turns out to be one that we 

have already evaluated. This will not be true in general. By comparing the responses from 

the confirmatory run with those predicted by the response surface model, we can assess 

the goodness-of-fit of the model and also verify that the suggested allocation matches 

expected model results. 

6. Discussion and Conclusions 

In the example considered, the relative cost of the system data relative to 

obtaining measures on the individual components is equal. Namely, both a single system 

observation and one observation for each component cost $50. We also considered 

changing the relative cost of these, by changing the system data costs to $25 and $100 per 

observation. This did change the relative ranking of some of the allocations, but for each 

of the new scenarios, allocation 5B remained the best choice. This is perhaps not 

surprising since this allocation does not involve any system level data, and the system 

level data does not appear to be as beneficial as additional component level data. 

Typically, we would expect that changing the relative costs of the different data types 

would lead to different best allocations based on a fixed budget. 

The suggested best allocation is highly dependent on what original data were used 

in the first analysis as well as on the reliability of the individual components. Data types 
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that are already abundant represented in the original data are less likely to yield 

substantial improvement in the reduction of prediction uncertainty, as there are 

diminishing returns on additional data. As well, components that are highly reliable have 

less associated uncertainty in their estimation, and hence require less total data to feel 

confident that they are well understood. The ideal candidate for a large proportion of the 

new allocation is a data type that has relatively less data and has reliability that is less 

reliable or changing over time. 

Given that there may be some uncertainty about the correctness of the system 

structure model, it may be beneficial to consider including some system level data when 

possible to validate the statistical model used to combine the component data into a 

system reliability estimate. See Anderson-Cook (2008) for details on testing the series 

assumption for a system. Additionally, including a measure of discrepancy in the model 

to allow estimation of potential differences in system reliability estimate from various 

data sources may also be advisable. 

In this paper we propose an algorithm for evaluating different allocations of 

resources. With a focus on predicting reliability well at user-specified ages of interest, 

and by accounting for the uncertainty associated with both our parameter estimates and 

sampling variability from the new data, we are able to rank competing allocations and 

their potential value. As an initial approach, we compare a fixed number of possible 

allocations and determine a best allocation. However, it may also be desirable to estimate 

an optimal allocation within the ranges of allocations consistent with logistical and 

practical constraints. By fitting a mixture or mixture-process response surface model to 

the results of the evaluated allocations, we can find optimal proportions of the budget to 

be spent on each data type. A further extension would be to use an automated search 

algorithm, such as a genetic algorithm, to find a best allocation, subject to the constraints. 

The methodology proposed would be appropriate for any meta-analysis where we 

have different data types which we wish to combine in a single analysis to estimate a 

primary response of interest. Integrating the relative cost of the data is important, as for 

different data types the associate costs can vary substantially and this will impact the 

amount of a particular data type that can be obtained subject to the available resources. 

The general nature of the algorithm makes it widely applicable to various scenarios, but 
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the computationally intense nature of the algorithm may mean that it is not practical for 

some applications where a single analysis takes considerable time and computer power. 
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T bl a e 1 D ata Types Dor S,ystem

l===. Amount of Initial Data 
Data Type Age 1 i Age 2 Age 3 Age 4 ' .. Age5 NoA~ 

~§ystem P/F at age 80 80 80 80 80 i 
Comp 1 P/F at age 80 80 80 80 .80 

, Comp 2 (a) Testset 80 , 80 80 80 80 
i degradation 
I (b) P/F at age 80 80 80 , 80 80 
I Sub:-Sys3 P/F at age 80 80 80 80 80 
I Comp3.1 Lifetime 400 
I Comp3.2 Testset ' 80 80 80 i 80 80 

I
lcom~4 

degradation i 

P/F i • 400 

Table 2: Allocations Considered 
! Allocation System CI ! C2a C2b SS3 C31 C32 C4 
LU!!!! s!stem) 600 

~600~.. 2 (all component) 600 600 600 600 600 600 
I 3 (Yz S!S, Yz comI>l 300 300 300 300 300 300 300 300 
i 4 (Yz S!S,Yz grp I cOIllP) 300 500 500 500 
· 5 (all grp I comp) 1000 1000 1000 

6 (Yz sys, Yz grp 2 comp) 300 750 750 750 750 
7 (all grp 2 comp) 1500 1500~ 1500 1500 

.. '--.. 

Table 3: Distribution of Ages for Aging Data (System, CI, C2a C2b, SS3, C32) as a 
Pro rt' fTtlNurnberofOb f £ ThtDtpo lOno oa serva lOnor a aa Type 

Age=3 I Age=4 I Age=5 I 
lliequa, ages) 
· Allocation Age = 1 ! Age=2 

1i5 115 115 115 ! 115 I 
1115 2115 3/15 I 4/15 I 5/15• B imore older) .. 


I C less olderl I 5il5 
 4/15 3/15 I 2/15 I I115 ! 

Table 4: Results for Two Criteria for Five Component System Based on Average Width 
of Credible Interval at Ages 5, 6 and 7 Years. The best allocation for each criterion is 
shown in bold. 
~ocation Median Width 90th Percentile Width I 
I • A i BA B C C I 

0.121 0.106 I 0.127 0.137 0.125 0.1441 
0.095 0.088 I 0.106 O. 110 0.104 0.1222 I 

3 ! 0.1230.104 0.095 0.116 0.113 0.132 , 

0.090 0.109 0.109 0.1010.095 0.1284 I I 
0.0990.083 0.079 I 0.099 0.114 i5 0.092 
0.1436 0.126 0.123 0.134 0.139 I 0.146 II 

0.134 0.135 I 0.142 0.1457 
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Table 5: Best Available Allocation for Minimizing the Median and 90th Percentile of the 
Average Width ofthe Age 5, 6 and 7 Year System Reliability Prediction 

Age = 1 I Age=2 -l-Age=3 Age=4 Age=5 No Age Total 
I 
r I 

0 0 0 I 0 I 0 I 0System 
~.-

133 200 1 267 I 333 --WoO­67CI 
0 0 ~3 0 0 0C2a 
0 0C2b 
67 133 200 . 267 333SS3 

0 

E
0 

I l~OO I 
C31 I 0 

i 0 0 I 0 I 0 0C32 0 
I 1000 1000C4 .~.------~----~~~~~~ 
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Figure 1: Overview of resource allocation problem. 

Figure 2: A simple example of a series system with five components and eight possible 
data types. The data types and cost per observation are shown in grey. 

'\:;1l1,~ " F ,Llt:lI Syst<m I' 
, 'fo},)) 

--~-~ 

Tt"·:, .':d ,ll',='T.I,Lm'.'l1 
(S,-::' r 

Phase 1 


CUlTent 
ayailable 

-' Results
dahl .­ ..,. (Estimation 0 A 

and ~ Prediction, "0 
information 
~.--~ 

New 
data 

Phase 2 


New 

Results 


(Estimation 
& Prediction) 

21 




Figure 3: Reliability estimates (median solid line, 90% credible interval- dashed lines) 
for components and system for ages 0 to 7 years based on initial data described in Table 
1. 
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Figure 4: Mixture-Process space for simplified version of the model with three data types 
(system, group 1 components, group 2 components) and distribution of ages as a single 
process variable. 
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Figure 5: Allocations re-expressed in tenns of System data, and Group 1 and 2 
components. 
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Figure 6: Contour plot of response surface model for median of average widths for ages 
5,6 and 7 years. The optimal allocation corresponds to 100% of the data being sampled 
from Group 1 components. 

11wd Comp" Gr.wp Z 

Median of A'I6fagfl Width "Equal AD" More Oldet Dati 

0 

~ 

i ~ t i0.105§ !l ! 
i . i i 

<> <>" 

23 




Figure 7: Contour plot of response surface model for 90th percentile of average widths for 
ages 5, 6 and 7 years. The optimal allocation corresponds to 100% of the data being 
sampled from Group 1 components. 
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