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Abstract 

The helical magnetorotational instability of the magnetized Taylor-Couette 
flo\\' is studied numerically in a finite cylinder. A distant upstream insulating 
boundary is shown to stabilize the convective instability entirely while reducing 
the growth rate of the absolute instability. The reduction is less severe with larger 
height. After modeling the boundary conditions properly, the wave patterns 
observed in the experiment turn out to be a noise-sustained convective instability. 
After the source of the noise resulted from unstable Ekman and Stewartson layers 
is switched off, a slowly-decaying inertial oscillation is observed in the simulation. 
We reach the conclusion that the experiments completed to date have not yet 
reached the of absolute instability. 

Subject headings: accretion, accretion disk-instability-(magnetohydrodynamics:) 
:VIHD -methods: numerical 

1. Introduction 

The magnetorotational instability (MRl) is probably the main source of turbulence and 
accretion in sufficiently ionized astrophysical disks (Balbus & Hawley 1998). Due to this 
crucial role in astrophysics, substantial efforts have been spent worldwide to observe MRl in 
a laboratory setting (.Ii et 2001; Goodman & .Ii 2002; Noguchi et a1. 2002; Sisan et a1. 2004; 
Velikhov et a1. 2006), but MRl has never been conclusively demonstrated in the laboratory. 
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:Most experiments have been done in cylindrical geometry with a background flow that 

approximates the ideal Couette rotating profile: 

(1) 

2 2 db 2(n 2) d nI ((• n. 2)/(('2-1'12) an 1'11'22 Hl n)H2/'(:2 n H2 aret1lerotationWlerea .6:2T2-oq7'1 1'2 -r1 ,~q an 
speed of the inner and outer cylinder and rl and r2 are the radius of the inner and outer 
eylindeL respectively (see Fig. 1). For axially periodic or infinite magnetized Taylor-Couette 
flow. l\IRI-like modes have been shown theoretically to grow at much reduced magnetic 

Reynolds number Rem 0 1r1 (1'2 1'd /'7 and Lundquist number S = FA.01'l (1'2 - 1'd Iry in 
the presence of a combination of axial and current-free toroidal field 

(2) 

than the standard MRI (S.~vIRI) with purely axial magnetic field (Hollerbach & Ri.idiger 
2005: Riidiger et a1. 2(05). Here the cylindrical coordinates (1', cp, z) are used. B~ and lJ 

are constants. The Alfvim speed is defined as V~4,O B~ / vi47fp.rl and p are the magnetic 
diffusivity and density of the fluid, respectively (see 1). 

The Potsdam ROssendorf Magnetic Instability Experiment (PROMISE) group claimed 
to have observed this kind of helical MRI (HMRI) experimentally (Stefani et 2006: Riidiger 

et aL 2006: Stefani et aL 2007b). However we have shown that the wave pattern observed in 
PROMISE is not a global instability, but rather a transient disturbance somehow excited by 

the Ekman circulation and then transiently amplified as it propagates along the background 
axial Poynting flux with nonzero group and phase velocities, but is then absorbed once it 
reaches the jet formed at midheight between two neighboring Ekman cells (Lin et aL 20(7). 
PROMISE group have accordingly updated the experimental facility to PROMISE II to allow 
for two split rings at both cndcaps: the inner ring attached to the inner cylinder and outer 
ring attached to the outer cylinder. If the width of the inner ring is chm;en appropriately 
.r-v 0.4(1'2 rd, the magnetized Ekman circulation could be significantly reduced, therefore 
removing one of the possible disturbance sources, i. the unsteady jet (Szklarski 20(7). 

with other examples in the literatires, such as drifting dynamo waves (Tobias et a1. 
1998; Proctor et a1. 20(0), it is of vital importance to distinguish absolute instability from 

convective instability in a traveling wave experiment like PROMISE. For a traveling wave 
the positivity of the growth rate implies only an amplification of the perturbation as it. 

moves downstream. In one case, despite the movement of the wave packet, the perturbation 
increases wit hout limit in the course of time at any point fixed in space: t his kind of instability 

with respect to any infinitesimal perturbations will be called absolute instability. In the other 
case, the packet is carried away so swiftly that at any point fixed in space the perturbation 

tends to zero as t --> x: this kind will be called convective instability (Landau & Lifshitz 
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1987) the details of §2). For PROMISE II, it appears that under the experimental 

conditions the second kind occurs. 

In a Taylor-Couette experiment bounded by insulating endcaps, Tobias et a1. (1998) 

have pointed out that without any external disturbances except a small initial disturbance 
needed as a seed for the instability, the distant upstream insulating boundary acts as an 

"absorbing" boundary while the characteristics of the dmvnstream endcap is unimportant. 
Due to this absorption the convective unstable state cannot be sustained by a uniform driving 

force, therefore this unstable mode eventually decays (Tobias et a1. 1998). This driving 

is not the noise mentioned before, but the power to drive the instability, which in the usual 

Taylor-Couette experiments can be quantified by the magnetic Reynolds number Rem. This 
conclusion has been rigorously demonstrated in the very resistive limit in §ILC of Liu et a1. 

(2006a) a perturbative approach and §ILD of Liu et a1. (2006a) using a modifed \V1\B 
showing that the insulating endcap entirely stabilizes the HMRI mode, which is a 

convective unstable mode given the parameters of PROMISE experiment. 

absorbing boundary is essential to the development, regardless of hO\'I/ distant it may 

be, The height only defers the time when we have to wait for the boundary-induced 

dissipation to dominate (Tobias et aL 1998). On t he other hand, if Rem exceeds a higher 

threshold RemJ, the driving force of the overcome the dissipation and a globally 

unstable mode appears (Tobias et al 1998). Therefore in a bounded system the unstable 

mode appears at Rend rather than Rem .c ) is the critical magnetic Reynolds 
number for the onset of the convective unstable mode without the "absorbing" boundary. 
Tobias et a1. (1998) has showed that in the presence of an "absorbing" boundary and 
h. a global unstable mode appears when 

where is the critical magnetic Reynolds number corresponding to the onset of the 
absolute instability without the "absorbing" boundary. 

raised a big obstacle for people to observe absolutely unstable HrvIRI in the 
laboratory. The advantage of HMRI itself,i.c., unstable with a low critical Reynolds number 
(3 orders lower than the 8MRI) conflicts with the necessarily high threshold of the onset of an 
absolute HMRI mode, i.e., excited at a reasonably high critical magnetic Reynolds number, 

thus high Reynolds number, \vhich vv'Ould result in much more severe end-effects than people 

had expected. Moreover the fact that the critical Lundquist number must usually increase 

together with the magnetic Reynolds number and high ratio of toroidal-to-poloidal magnetic 

field requirement > 1) would even worsen the situation. 

\Ve also find that by nonlinear numerical simula.tion the insulating endcap reduces the 
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growth rate of the absolute instability somewhat. The higher the height 11 is, the less the 
growth rate is reduced (Table 1). 

In a typical experiment. the experiment is, however, highly likely affected by small exter­
nal noise eit her from a physical cause or experimental imperfection such as the misalignment 
of the cylinders. If the system is convectively unstablE': i.e., disturbances grow as they move 

downstream. noise would sustain structures in the system even if no global mode is unstable 
(Deissler 1987; Proctor et aL 2000). In the present paper, we show by numerical simulations 
that the perturbations from the unstable magnetized residual Ekman layer and Stewartsol1 
layer at the upper endeap would play the role of "noise" generator, though this perturba­

tion level is reduced with increasing axial magnetic field (Liu 2008). "Vhat is observed in 
PROl\lISE II turns out to be a noise-sustained convective traveling wave, not the absolute 
unstable mode. 

This paper is organized as follows: §2 presents the wave packet analysis in a unbounded 
cylinder, which is the basis of the following sections. \Ve report the nonlinear simulation 

results with partially conducting boundary conditions of PROl\HSE II experiment in §3. The 
final conclusions and implications to the RVIRI experiments are given in §4. 

2. Wave Packet Analysis in an Unbounded Cylinder 

Assuming a cylinder of infinite height h, kz is a continuous variable. Let the gap width 
be fixed and finite, so k,. 7r/(r2 - rd. We define til(] total \vavenumber K = Jki: + k; and 
the growth rate ~/. 

Since the fast growing mode is the dominant mode, here we focus on waves with vertical 
wavenmnber kz dose to that of the fastest growing mode, k~. The range of values of kz lies 
near the point for which i(kz) is a maximum, i.c. di/dkz = 0 at kz k~ [as seen from Fig. 2 
(a)]. Let a slight perturbation occurs near the middle of the fimv rv 0) in the format of a 
wave packet as follows: 

Br(z, t = 0) boexp (-
2 . 

[2 exp(ik~ (3) 
.1 

where we have llsed the envelope exp( - Z2 /2£2) to confine the perturbation around the 

central part of thE' cylinder, where L O(h). In the course of time, the components forrv 

which f(k z ) > 0 will be amplified, while the remainder will be damped. The amplified 
\vave packet thus formed will also be carried downstream with a velocity equal to the group 

velocity dw/dkz of the packet, where w IRw + h and is the real part of the frequency; 

since we are now considering waves whose wave numbers lies in a small near the point 
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where dryI dk;: = 0, the quantity 

is real, and is therefore the actual velocity of propagation of the packet. This downstream 
displacement of the perturbations is very important, and causes the complications of absolute 
instability v.s. convective instability. 

\Ve can approximate the dispersion relation like (Fig. 2): 

(kJ = "kz : 
~I .K 

o CJ ( . .0 :2At = ,(kJ , 2 Itz - K. z ) , (6) 

in which ,,2 = = 4(1 + Ro)n2 and Ro = 1/2dln Oldln rain - 1 is the Rossby 
nllmber. \Ve know 0 when k;:; = O. Thus CJ = 2,°I k~2. And in order to simplify the 
derivation, we assume [{ Rj constant from now on (though this is not a good approximation, 
we can get some insightful results from simple approximation). From Eq. 5, we 

V~ = ;,,1K. 

At later time t > 0 

Br ,t) = Br(kz1 0) exp(r(kJt + iJ5f,w(kz)t) 

= Br(kz, 0) exp{ %(kz - k~?lt + iK~ t} , (7) 

if we define D the result can be expressed as: 

(8) 

In Eq. 8, As t -1 0, Eq. 8 can be simplified as: 

(9) 

which is a "transient" growing phase. t -1 00, 

V:2) 1Br(z, t) = bo L exp [(iO - 2~ t exp[ik~(z + l!~t)l (10) 

Obviously, If < Ala = Vg
212CJ, we will get convective instability, that is, it starts with 

a transiently growing phase (Eq. 9), followed by a phase asymptotically decaying to zero 
(Eq. 10). If > we will get absolute instability. 



-6­

3. Noise-Sustained Convective Instability in PROMISE II Experiment 

In order to reduce the undesirable effects induced by the endcaps and also the accom­

panying hydromagnetic asymmetries, Szklarski (2007) have proposed to split both endcaps 

into two rings which are attached to both cylinders and found that if the width of the inner 

ring is chosen to be 0.4D (see Fig. 1), where D = r2 - rj is the gap between the inner 

and outer cylinder, the magnetic energy in term of bc.p, where b'f is the perturbed azimuthal 

magnetic field, is minimized. Therefore the magnetized Ekman circulation is significantly 

reduced, leading to a satisfactory ideal Couette state (Eq. 1) in the bulk flow. PRO~nSE 

has been accordingly updated to PRO~nSE II adopting this idea. 

While we have confirmed their conclusions (Fig. 3) (Please note that in Szklarski (2007), 

this conclusion is derived with (3 = 0, i. e., no background toroidal magnetic field, while 

our simulation results show that this conclusion is also valid with nonzero (3), here we 

report nonlinear simulations with the ZEUS-NIP 2.0 code (Hayes et al. 2006), which is a 

time-explicit, compressible, astrophysical ideal MHD parallel 3D code, to which we have 

added viscosity, resistivity (with subcycling to reduce the cost of the induction equation), 

and partially conducting boundary conditions (Liu et al. 2007), for axisymmetric flows in 

cylindrical coordinates (r, yJ, z). It has been demonstrated that the finite conductivity (T}cu = 
102 2 1l.335 X cm s- ) and thickness of the copper vessel are important, and this noticeably 

improves agreement with the measurements compared to previous much simplified boundary 

condition (Liu et al. 2007). Please note that in this paper JL = 02/01 = 0.26, rather than 

JI = 0.27 reported in previous work. The parameters of PROMISE II as reported in or 

inferred from Stefani et al. (2007a) are used: gallium density p = 6.35 g cm-:3, magnetic 

diffusivity 77 = 2.43 x 10:3 cm2 
S-1, magnetic Prandtl number Prm == 1/ IT} = 1.40 x 10-6 

; 

Reynolds number Rc == 01rl(r2 - rdll/ = 1775; axial current I z = 6000A; toroidal-coil 

currents Ie; = 0,50,75,120 A: and dimensions as in Fig. l. 

For comparison, we start with purely hydrodynamic (unmagnetized) simulations (Fig. 4). 

From Fig. 4 (a), after splitting the endcaps into two rings, the two big Ekman cells are divided 

into fom smaller cells and localized near the endcaps. Compared to the simulation results 

of PRO:tvnSE (Liu et al. 2007), there is not an flapping "jet" near the mid-plane as in the 

usual Ekman circulations. This removes the possible noise from this unsteadiness. However 

from Fig. 4 (b), there are some perturbations near both endcaps, which supply the possible 

sources of noise in the system. These perturbations are resulted from unstable Ekman layer 

and Stewartson layer (Liu 2008). The magnitude of this noise is around ±0.2 mm S-I. As we 

will see later (Fig. 5), this unsteadiness is reduced by increasing axial magnetic field (Gilman 

1971; Liu 2008). 

Figure. 5 disphys vertical velocities near the outer cylinder in sinllllations corresponding 
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to the experimental runs of Stefani et 301. (200730) for several values of the toroidal current, 

1'1" A wave pattern similar to that in the experimental data (Stefani et a1 2007a) is 
seen. Since now t here is no jet, the traveling ,vave is propagating to the bottom endcap and 

absorbed there while in the old PROlvIISE experiment, the traveling wave disappears at the 
jet (Lin et a1. 2007). We also notice that the perturbation near the upper endcap weakens 

\vith strong axial magnetic field. This could be explained by a more stable magnetized 
residual Ekman layer and Stewartson layer (Liu 2008). Both the weakening of the noise 
sources and disappearance of the amplifying mechanism leads to a rather steady state with 

I", 120 A. 

It is highly possible that there is much noise in the real experiment due to some experi­
mental imperfection such as misalignment and in the numerical simulation such as numerical 
noise. Also t he noise could result from physical causes such as the unsteady Ekman layer or 
Stewart son These noises would cause a noise-sustained convective instability in the 
system as in Proctor et 301. (2000). The continuous impulse from the noise sources would 
have the system always in the state of ·'transiently growing" phase (Eq. 9). This results 

in similar wave patterns as the ones from the primary instability without noise. which are 
observed in PROMISE and PROMISE II experiments and simulations (Liu et a1. 2007). The 
noise-induced wave pattern is ahvays susceptible to noise-induced disruption as discussed by 
Deissler (1987). That is exactly what we found and in Liu et 301. (2007). \Ve can see 

this point more clearly by following Liu et a1. (2007): performing a simulation that begins 
v·lith the experimental boundary conditions until the traveling waves are well established, 
and then switches abruptly to ideal-Couette endcaps (Fig. 6). After the switch, the traveling 

waves disappear after one axial propagation time and slowly decaying inertial oscillations 
(asymptotically to zero) result. The main difference in result.s between Liu et a1. (2007) and 
the present simulation are: (1) there is no jet, thus the traveling waves are absorbed Ilear 
the bottom endcap both before and after the switch: (2) there is no change of wave speed 
associated with the switch since the background state does not change much before and 
the switch. \Ve reach the conclusion that even the endcaps are split into two rings as in 
PROMISE II, the wave patterns observed in the experiment are not global instability, but 
rather noised-sustained convective instability. 

4. Discussion 

In this paper, nonlinear simulations of the helical magnetorotational instability in a 
magnetized Taylor-Couette flow are performed. The geometry mimics PROMISE II ex­
periment with endcaps split into two rings. The partially conducting boundary condition 
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introduced in Liu et al. (2007) is used. The waves patters change with applied magnetic field 

as in the experiment. However via numerical tests, we find that the wave patterns observed 

in PROMISE II experiment are not due to a global instability, but rather a noise-sustained 

convective instability. 

The importance of the distinction between absolute and convective instability in a 

bounded system with broken reflection symmetry is discussed. The addition of the toroidal 
magnetic field breaks the axial symmetry of the system. In such cases, the effects of distant 

upstream insulating boundaries on the absolute instability differs remarkably from the ones 

on the convective instability. The insulating endcap would only reduce the growth rate of the 

absolute instability, but would stabilize the convective instability entirely, however distant 

it may be. For the absolute instability, the more distant insulating endcap would less reduce 
the growth rate, while for the convective instability the more distant endcap would only have 

the system wait longer for the dissipation due to the "absorption" boundary to dominate. 

These discoveries cast great obstacles for people to observe the helical magnetorotational 
instability in the laboratory: An absolute HMRI is needed to observe the global unstable 

mode in the experiment. 

Unfortunately it is not easy to derive the critical magnetic Reynolds number RCmJ of 
the absolute HMRI analytically in a bounded system. However we can get a rough estimate 

of Rem,a, i.e., the critical magnetic Reynolds number of the absolute HMRI in an unbounded 

system, by wave packet analysis (§2) and the approximate dispersion relation from Fig. 2. 
From Fig. 2, we derive the group velocity Vg 1.08 em S-l, ,0 0.31 S-l, k~ rv 0.52 cm- 1 

rv rv 

and CJ 2.29 cm2 S-l. Therefore ,0 - Vg
2 /2CJ 0.05 S-l > 0, which corresponds to anrv rv 

absolute HMRI instability with Rem,a 0.07. We therefore conjecture that RemJ - Rem,a +rv 

0(h- 2
) 2, 0.07 in PROMISE II. The critical magnetic Reynolds number is somehow one order 

of magnitude lower than the standard MRI, but still requires Reynolds number Re 105 
rv . 

Therefore we need to rotate the cylinder typically with more than one hundred rpm. Such 
rotation rates are of course achievable, however with such a Reynolds number the advantage 

of HIvIRI with much lower Reynolds number, thus much lower end-effects, is not so great 

as people had exppcted. Moreover in most HMRI nnstable modes (] > 1 is preferred, this 

rvsuggests a toroidal magnetic field typically at I, 000 G, which requires axial currents 

> 104 A inside the inner cylinder. This is a big engineering challenge in itself. 

The author would like to thank Jeremy Goodman and Hantao ,Ii for their very inspiring 

discussion and constructive comments. The author would also like to thank James Stone 

for the advice on the ZEUS code, Stephen Jardin for the advice to implement fully insu­

lating boundary conditions and Frank Stefani for pointing out the distinction between the 

convective instability and absolute instability in a bounded Taylor-Couette experiment at 
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!II II 

I 
16cm 

Fig. 1.~ Computational domain for simulations of PROMISE II experiment. Region (I): 
Inner copper cylinder, angular velocity 0.1 , (II): outer copper cylinder, 0.2 , (III): liquid 

gallium; (IV): vacuum. Thick dashed line: insulating inner ring, corotating with the inner 
cylinder. Thick dash-dot line: insulating outer ring, corotating with the outer cylinder. The 
jUllction of these two rings lies at 40% of the (D = 1'2 - 1'1) between the inner and outer 
cylinder (Szklarski 2(07). Dimensions: 1'1 4.0 ern; 1'2 = 8.0 ern: II 40.0 em; du;I = 1.0 em; 

dWII = 1.5 ern: 0 1 3.6 rpm; D.2/21r O.9~36 rpm. Note that f.1 0.2/0.] = 0.26, rather 
than It = 0.27 used in previous work (Stefani et a1. 2006; Riidiger et a1. 2006; Liu et a1. 2007; 
Stefani et a1. 2007b). The exact configuration of the toroidal coils unavailable to us, 
1:lix coils (black rectangles) with dimension1:l as 1:lhOWll were used, with 67 turns in the two 

coil1:l nearest the midplane and 72 in the rest. Currents I:p were adjusted to reproduce the 

reported Hartmann numbers Ha == B~1'1 
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Fig. 2. (a) Growth Rate ,; (b) Real Frequency lRw. * Linear Calculation, - Approximation 
by Eq. 5 and 6. T[ 4.0 cm, T2 = 8.0 cm, fh = 101.25 rpm, Sl2 26.325 rpm, 
220.5 G, 4.0; material properties are based on gallium: T/ 2.43 x 103 s 
v 3.4 x 10-3 S-1 and p = 6.35 g cm-3. The calculations are performed using a code 

(Goodman & Ji 20(2) adapted to allmv for a helical field. Vertical periodicity is assumed, 
but the radial equations are solved directly by finite differences with perfectly conducting 
boundary conditions (§II.B of Liu et a1. (2006a)). 
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Fig. 4.- Purely hydrodynamic (unmagnetized) simulations. Left: Time-(l'vTLClged poloidal 

flow stream function Yi ; Rzght: (color) Axial velocities [mm s- L1 WTSUS time and depth 

s:1.mplecl at. ". = 6.5 cm., for t.he parameters of the PROrvIISE II experilLwut wit.hout. any 

magnetic fielcl. ~ote height increases upward from the bottom endcap. No-slip velocity 

boundary conditions are imposed at the rigidly rotating endcaps. The stracly part of the 

resulting Ekman circnlation is snppressed in right panel by subtracting t.he time average at. 

each height. 
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Fig. 5.- (color). Axial velocities [mm S-l] versus time and depth sampled at r = 6.5cm, for 

the parameters of the PROMISE II experiment with toroidal currents I.p as marked. No-slip 
velocity boundary conditions are imposed at the rigidly rotating endcaps. The st.eady part of 

the resulting Ekman circulation is suppressed in these plots by subtracting the time average 

at each height. The \NaVeS appear to be absorbed near the bottom endcap. 
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(color). An extC'llded version of the case Ie;; = 75 A shown in Fig. 5 but without 

subtraction of the time a.verH.~e . After t = 360 s , the no-slip boundary condition at both 

endeaps is svvitched to an idpal Couette profile (Eq. 1). A slowly decayed inertial oscillation 

is resulted. 
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