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Abstract

The helical magnetorotational instability of the magnetized Taylor-Couette
flow is studied numerically in a finite cylinder. A distant upstream insulating
boundary is shown to stabilize the convective instability entirely while reducing
the growth rate of the absolute instability. The reduction is less severe with larger
height. After modeling the boundary conditions properly, the wave patterns
observed in the experiment turn out to be a noise-sustained convective instability.
After the source of the noise resulted from unstable Ekman and Stewartson layers
is switched off, a slowly-decaying inertial oscillation is observed in the simulation.
We reach the conclusion that the experiments completed to date have not yet
reached the regime of absolute instability.

Subject headings: accretion, accretion disk-—instability—(magnetohydrodynainics:)
MHD —methods: numnierical

1. Introduction

The magnetorotational instability (MRI) is probably the main source of turbulence and
accretion in sufficiently ionized astrophysical disks (Balbus & Hawley 1998). Due to this
crucial role in astrophysics, substantial efforts have beeu spent worldwide to observe MRI in
a laboratory setting (Ji et al. 2001; Goodman & Ji 2002; Noguchi et al. 2002; Sisan et al. 2004;
Velikhov et al. 2006), but MRI has never been conclusively demonstrated in the laboratory.
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Most experiments have been done in cylindrical geometry with a background flow that
approximates the ideal Couette rotating profile:

Q=a+b/r? (1)

where a = (Quri—r?)/(r2—r?) and b = r#r3 (2, — D) /(72 —r?), Q) and Oy are the rotation
speed of the inner and outer cylinder and ry and 7y are the radius of the inner and outer
cylinder. respectively (see Fig. 1). For axially periodic or infinite magnetized Taylor-Couette
flow. MRI-like modes have been shown theoretically to grow at much reduced magnetic
Reyuolds number Re,, = Qri(ry — r1)/n and Lundquist number S = Vaori(rs —r1)/n in
the presence of a combination of axial and current-free toroidal field

B° = B (e, + fri/re,) (2)

than the standard MRI (SMRI) with purely axial magnetic field (Hollerbach & Rudiger
2005; Rudiger et al. 2005). Here the cylindrical coordinates (r, ¢, z) are used. B? and 3
are constants. The Alfvén speed is defined as V4o = B?/\/4mp. 1 and p are the magnetic
diffusivity and density of the fluid, respectively (see Fig. 1).

The Potsdam ROssendorf Magnetic Instability Experiment (PROMISE) group claimed
to have observed this kind of helical MRT (HMRI) experimentally (Stefani et al. 2006; Riidiger
et al. 2006; Stefani et al. 2007b). However we have shown that the wave pattern observed in
PROMISE is not a global instability, but rather a transient disturbance somehow excited by
the Ekman circulation and then transiently amplified as it propagates along the background
axial Poynting Hux with nonzero group and phase velocitics, but is then absorbed once it
reaches the jet formed at midheight between two neighboring Ekman cells (Liu et al. 2007).
PROMISE group have accordingly updated the experimental facility to PROMISE I to allow
for two split rings at both endcaps: the inner ring attached to the inner cylinder and outer
ring attached to the outer cylinder. If the width of the inner ring is chosen appropriately
~ 0.4(ry — ry), the magnetized Ekman circulation could be significantly reduced, therefore
removing one of the possible disturbance sources, i.e. the unsteady jet (Szklarski 2007).

As with other examples in the literatires, such as drifting dynamo waves (Tobias et al.
1998; Proctor et al. 2000), it is of vital importance to distinguish absolute instability from
convective instability in a traveling wave experiment like PROMISE. For a traveling wave
the positivity of the growth rate implies only an amplification of the perturbation as it
moves downstream. In one case, despite the movement of the wave packet, the perturbation
increases without limit in the course of time at any point fixed in space; this kind of instability
with respect to any infinitesimal perturbations will be called absolute instability. In the other
case, the packet is carried away so swiftly that at any point fixed in space the perturbation
tends to zero as t — oc; this kind will be called convective instability (Landau & Lifshitz
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1987) (see the details of §2). For PROMISE II, it appears that under the experimental
conditions the second kind occurs.

In a Taylor-Couette experiment bounded by insulating endcaps, Tobias et al. (1998)
have pointed out that without any external disturbances except a small initial disturbance
needed as a seed for the instability, the distant upstream insulating boundary acts as an
“absorbing” boundary while the characteristics of the downstream endcap is unimportant.
Due to this absorption the convective unstable state cannot be sustained by a uniform driving
force, therefore this unstable mode eventually decays (Tobias et al. 1998). This driving force
is not the noise mentioned before, but the power to drive the instability, which in the usual
Taylor-Couette experiments can be quantified by the magnetic Reynolds number Re,,. This
conclusion has been rigorously demonstrated in the very resistive limit in §I1.C of Liu et al.
(2006a) using a perturbative approach and §I1.D of Liu et al. (2006a) using a modifed WKB
analysis, showing that the insulating endcap entirely stabilizes the HMRI mode, which is a
convective unstable mode given the parameters of the PROMISE experiment.

The absorbing boundary is essential to the development, regardless of how distant it may
be. The larger height only defers the time when we have to wait for the boundary-induced
dissipation to dominate (Tobias et al. 1998). On the other hand, if Re,, exceeds a higher
threshold Rey ¢, the driving force of the system overcome the dissipation and a globally
unstable mode appears (Tobias et al. 1998). Therefore in a bounded system the unstable
mode appears at Re,, s rather than Re,, .. where Re,, . is the critical magnetic Reynolds
number for the onset of the convective unstable mode without the “absorbing” boundary.
Tobias et al. (1998) has showed that in the presence of an “absorbing” boundary and large

h, a global unstable mode appears when
Rey > Reps = Reo + O(h7%),

where Rey,, is the critical magnetic Reynolds number corresponding to the onset of the
absolute instability without the “absorbing” boundary.

This has raised a big obstacle for people to observe absolutely unstable HMRI in the
laboratory. The advantage of HMRI itself, i.e., unstable with a low critical Reynolds number
(3 orders lower than the SMRI) conflicts with the necessarily high threshold of the onset of an
absolute HMRI mode, i.e., excited at a reasonably high critical magnetic Reynolds number,
thus high Revnolds number, which would result in much more severe end-effects than people
had expected. Moreover the fact that the critical Lundquist number must usually increase
together with the magnetic Reynolds number and high ratio of toroidal-to-poloidal magnetic
field requirement (3 > 1) would even worsen the situation.

We also find that by nonlinear numerical simulation the insulating endcap reduces the
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growth rate of the absolute instability somewhat. The higher the height h is, the less the
growth rate is reduced (Table 1}.

In a typical experiment, the experiment is, however, highly likely affected by small exter-
nal noise either from a physical cause or experimental imperfection such as the misalignment
of the cylinders. If the system is convectively unstable. i.e., disturbances grow as they move
downstream. noise would sustain structures in the system even if no global mode is unstable
(Deissler 1987; Proctor et al. 2000). In the present paper, we show by numerical simulations
that the perturbations from the unstable magnetized residual Ekman layer and Stewartson
layer at the upper endcap would play the role of “noise” generator, though this perturba-
tion level is reduced with increasing axial magnetic field (Liu 2008). What is observed in
PROMISE II turns out to be a noise-sustained convective traveling wave, not the absolute
unstable mode.

This paper is organized as follows: §2 presents the wave packet analysis in a unbounded
cylinder, which is the basis of the following sections. We report the nonlinear simulation
results with partially conducting boundary conditions of PROMISE 11 experiment in §3. The
final conclusions and implications to the HMRI experiments are given in §4.

2. Wave Packet Analysis in an Unbounded Cylinder

Assuming a cylinder of infinite height h, &, is a continuous variable. Let the gap width
be fixed and finite, so k, = 7/(ry — (). We define the total wavenumber K = /k? + k2 and

the growth rate ~.

Since the fast growing mode is the dominant mode, here we focus on waves with vertical
wavenumber k., close to that of the fastest growing mode, kY. The range of values of k, lies
near the point for which v(k,) is a maximum, i.e. dvy/dk, = 0 at k, = k" [as seen from Fig. 2
(a)]. Let a slight perturbation occurs near the middle of the flow (z ~ 0} in the format of a
wave packet as follows:

2

Bz.t=0)=b -
( ) OGXP< 9Lz

) exp(ik’z) (3)

where we have used the envelope exp(—22/2L?) to confine the perturbation around the
central part of the cylinder, where L ~ O(h). In the course of time. the components for
which ~4(k;) > 0 will be amplified, while the remainder will be damped. The amplified
wave packet thus formed will also be carried downstream with a velocity equal to the group
velocity dw/dk, of the packet, where w = Rw + iy and Rw is the real part of the frequency;

since we are now considering waves whose wave numbers lies in a small range near the point



where dv/dk, = 0, the quantity
Vy = dw/dk, = d(Rw)dk, (4)

is real, and is therefore the actual velocity of propagation of the packet. This downstream
displacement of the perturbations is very important, and causes the complications of absolute
instability v.s. convective instability.

We can approximate the dispersion relation like (Fig. 2):

k.
Rw = Rw(k.}) = r—
w uJ( =) KK : (5>
a ] 5
v =5(k,) =" - 5(1;2 — k92, (6)

in which r2? = L 2(r?Q)? = 4(1 + Ro)? and Ro = 1/2dIn Q/dInr = a/Q — 1 is the Rosshy
number. We know v = 0 when k&, = 0. Thus ¢ = 27°/k%. And in order to simplify the
derivation, we assume K =5 constant from now on (though this is not a good approximation,
we can get some insightful results from this simple approximation). From Eq. 5, we get

V, =r/K.

At later time ¢ > 0

B, (k.. t) = B, (k.. 0) exp(7

(k2 )t + iRuw(k. )t)
= By(k:,0) exp{[y" — Z(k;

— k)t + inket} (7)

if we define D = +/L? + ot, the result can be expressed as:

L 0 (2 + Vgt)? 7.0 ;
B.(z,t) = bOB exp(y't) exp {—W explik(z + Vyt)]. (8)
In Eg. 8, Ast — 0, Eq. 8 can be simplified as:
B, (2,t) = byexp(7"t) explik?(2 + V,t)]. (9)

which is a “transient” growing phase. As t — oc,

Br(z, t) == bo

L *‘/r()
e KO _ _9> t} explihd(= + V)] (10)

gt

]
9

Obviously, If ¥ < ~, = E-"';,/ 20, we will get convective instability, that is, it starts with
a transiently growing phase (Eq. 9), followed by a phase asymptotically decaying to zero
(Eq. 10). If 4% > ~,, we will get absolute instability.
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3. Noise-Sustained Convective Instability in PROMISE 11 Experiment

In order to reduce the undesirable effects induced by the endcaps and also the accom-
panying hydromagnetic asymmetries, Szklarski (2007) have proposed to split both endcaps
into two rings which are attached to both cylinders and found that if the width of the inner
ring is chosen to be 0.4D (see Fig. 1), where D = 7, — 1| is the gap between the inner
and outer cylinder, the magnetic energy in term of b,, where b, is the perturbed azimuthal
magnetic field, is minimized. Therefore the magnetized Ekman circulation is significantly
reduced, leading to a satisfactory ideal Couette state (Eq. 1) in the bulk flow. PROMISE
has been accordingly updated to PROMISE II adopting this idea.

While we have confirmed their conclusions (Fig. 3) (Please note that in Szklarski (2007),
this conclusion is derived with ¢ = 0, i.e., no background toroidal magnetic field, while
our simulation results show that this conclusion is also valid with nonzero ), here we
report nonlinear simulations with the ZEUS-MP 2.0 code (Hayes et al. 2006), which is a
time-explicit, compressible, astrophysical ideal MHD parallel 3D code, to which we have
added viscosity, resistivity (with subcycling to reduce the cost of the induction equation).
and partially conducting boundary conditions (Liu et al. 2007), for axisymmetric flows in
cylindrical coordinates (7, ¢, z). It has been demonstrated that the finite conductivity (ne, =
1.335 x 102 cm?s!) and thickness of the copper vessel are important, and this noticeably
improves agreement with the measurements compared to previous much simplified boundary
condition (Liu et al. 2007). Please note that in this paper p = 5/ = 0.26, rather than
it = 0.27 reported in previous work. The parameters of PROMISE II as reported in or
inferred from Stefani et al. (2007a) are used: gallium density p = 6.35g cm ™2, magnetic
diffusivity 7 = 2.43 x 10’ cm? s, magnetic Prandtl number Pr, = v/n = 1.40 x 107%
Reynolds number Re = Qyr(ry — r)/v = 1775; axial current I, = 6000 A; toroidal-coil
currents I, = 0.50, 75,120 A; and dimensions as in Fig. 1.

For comparison, we start with purely hydrodynamic (unmagnetized) simulations (Fig. 4).
From Fig. 4 (a), after splitting the endcaps into two rings, the two big Ekman cells are divided
into four smaller cells and localized near the endcaps. Compared to the simulation results
of PROMISE (Liu et al. 2007), there is not an flapping “jet” near the mid-plane as in the
usual Ekman circulations. This removes the possible noise from this unsteadiness. However
from Fig. 4 (b), there are some perturbations near both endcaps, which supply the possible
sources of noise in the system. These perturbations are resulted from unstable Ekman layer
and Stewartson layer (Liu 2008). The magnitude of this noise is around +0.2 mm s!. As we
will see later (Fig. 5). this unsteadiness is reduced by increasing axial magnetic field (Gilman
1971; Liu 2008).

Figure. 5 displays vertical velocities near the outer cylinder in simulations corresponding
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to the experimental runs of Stefani et al. (2007a) for several values of the toroidal current,
I,. A wave pattern very similar to that in the experimental data (Stefani et al. 2007a) is
seen. Since now there is no jet. the traveling wave is propagating to the bottom endcap and
absorbed there while in the old PROMISE experiment, the traveling wave disappears at the
jet (Lin et al. 2007). We also notice that the perturbation near the upper endecap weakens
with strong axial magnetic field. This could be explained by a more stable magnetized
residual Ekman layer and Stewartson layer (Liu 2008). Both the weakening of the noise
sources and disappearance of the amplifying mechanism leads to a rather steady state with
I,=120A.

It is highly possible that there is much noise in the real experiment due to some experi-
mental imperfection such as misalignment and in the numerical simulation such as numerical
noise. Also the noise could result from physical causes such as the unsteady Ekman layer or
Stewartson layer. These noises would cause a noise-sustained convective instability in the
system as in Proctor et al. (2000). The continuous impulse from the noise sources would
have the system always in the state of “transiently growing” phase (Eq. 9). This results
in similar wave patterns as the ones from the primary instability without noise, which are
observed in PROMISE and PROMISE II experiments and simulations (Liu et al. 2007). The
noise-induced wave pattern is always susceptible to noise-induced disruption as discussed by
Deissler (1987). That is exactly what we found here and in Liu et al. (2007). We can see
this point more clearly by following Liu et al. (2007): performing a simulation that begins
with the experimental boundary conditions until the traveling waves are well established,
and then switches abruptly to ideal-Couette endcaps (Fig. 6). After the switch, the traveling
waves disappear after one axial propagation time and slowly decaying inertial oscillations
(asymptotically to zero) result. The main difference in results between Liu et al. (2007) and
the present simulation are: (1) there is no jet, thus the traveling waves are absorbed near
the bottom endcap both before and after the switch; (2) there is no change of wave speed
associated with the switch since the background state does not change much before and after
the switch. We reach the conclusion that even after the endcaps are split into two rings as in
PROMISE 11, the wave patterns observed in the experiment are not global instability, but
rather noised-sustained convective instability.

4. Discussion

In this paper, nonlinear simulations of the helical magnetorotational instability in a
magnetized Taylor-Couette How are performed. The geometry mimics PROMISE II ex-
periment with endcaps split into two rings. The partially conducting boundary condition



introduced in Liu et al. (2007) is used. The waves patters change with applied magnetic field
as in the experiment. However via numerical tests, we find that the wave patterns observed
in PROMISE II experiment are not due to a global instability, but rather a noise-sustained
convective instability.

The importance of the distinction between absolute and convective instability in a
bounded system with broken reflection symmetry is discussed. The addition of the toroidal
magnetic field breaks the axial symmetry of the system. In such cases, the effects of distant
upstream insulating boundaries on the absolute instability differs remarkably from the ones
on the convective instability. The insulating endcap would only reduce the growth rate of the
absolute instability, but would stabilize the convective instability entirely, however distant
it may be. For the absolute instability, the more distant insulating endcap would less reduce
the growth rate, while for the convective instability the more distant endcap would only have
the system wait longer for the dissipation due to the “absorption” boundary to dominate.
These discoveries cast great obstacles for people to observe the helical magnetorotational
instability in the laboratory: An absolute HMRI is needed to observe the global unstable
mode in the experiment.

Unfortunately it is not easy to derive the critical magnetic Reynolds number Re,, ¢ of
the absolute HMRI analytically in a bounded system. However we can get a rough estimate
of Rep ., i.e., the critical magnetic Reynolds number of the absolute HMRI in an unbounded
system, by wave packet analysis (§2) and the approximate dispersion relation from Fig. 2.
From Fig. 2, we derive the group velocity V, ~ 1.08 cms !, % ~ 0.31s7%, &Y ~ 0.52cm ™!
and 0 ~ 229cm®s™'. Therefore v* — V?/20 ~ 0.05s™' > 0, which corresponds to an
absolute HMRI instability with Re, , ~ 0.07. We therefore conjecture that Re,,r = Rey, o+
O(h~?) 2 0.07 in PROMISE II. The critical magnetic Reynolds number is somehow one order
of magnitude lower than the standard MRI, but still requires Reynolds number Re ~ 10°.
Therefore we need to rotate the cylinder typically with more than one hundred rpm. Such
rotation rates are of course achievable, however with such a Reynolds number the advantage
of HMRI with much lower Reynolds number, thus much lower end-effects, is not so great
as people had expected. Moreover in most HMRI unstable modes & > 1 is preferred, this
suggests a toroidal magnetic field typically at ~ 1,000G, which requires axial currents
> 10* A inside the inner cylinder. This is a big engineering challenge in itself.

The author would like to thank Jeremy Goodman and Hantao Ji for their very inspiring
discussion and constructive comments. The author would also like to thank James Stone
for the advice on the ZEUS code, Stephen Jardin for the advice to implement fully insu-
lating boundary conditions and Frank Stefani for pointing out the distinction between the
convective instability and absolute instability in a bounded Taylor-Couette experiment at



-9 —

2007 APS-DPP annual meeting. This work was supported by the US Department of En-
ergy, NASA under grants ATP03-0084-0106 and APRAQ04-0000-0152, the National Science
Foundation under grant AST-0205903.

REFERENCES
Balbus. S. & Hawley, J. 1998, Rev. Mod. Phys., 70, 1
Deissler, R. 1987, Physica D, 25, 233
Gilman, P. 1971, Phys. Fluids, 14, 7
Goodman, J. & Ji, H. 2002, J. Fluid Mech., 462, 365

Hayes, J. C., Norman, M. L., Fiedler, R. A., Borduner, J. O., Li, P. S., Clark, S. E.. ud Doula.
A., & Low.. M.-M. M. 2006, Astrophys, J. Suppl., 165, 188

Hollerbach, R. & Riidiger, G. 2005, Phys. Rev. Lett., 95, 124501

Ji, H., Goodman, J., & Kageyama, A. 2001, Mon. Not. R. Astron. Soc., 325, L1
Landau, L. D. & Lifshitz, E. M. 1987, Fluid Mechanics (Butterworth Heinemann)
Liu, W. 2008, Phys. Rev. E, 77, 056314

Liu, W., Goodman, J., Herron, 1., & Ji. H. 2006a, Phys. Rev. E, 74, 056302

Liu, W., Goodman, J., & Ji, H. 2006b, Astrophys. J., 643, 306

~~~~~~~~ - 2007, Phys. Rev. E., 76, 016310

Noguchi, K., Pariev, V. 1., Colgate, 5. A., Beckley, H. F., & Nordhaus, J. 2002, Astrophys.
J.. 575, 1151

Proctor, M., Tobias, S., & Knobloch, E. 2000, Physica D, 145, 191
Ridiger, G., Hollerbach, R., Schultz, M., & Shalybkov, D. 2005, Astron. Nachr., 326, 409

Ridiger, G., Hollerbach, R., Stefani, F., Gundrum, T., Gerbeth, G., & Rosner. R. 2006,
Astrophys. J., 649, 1145

Sisan, D. R.. Mujica, N., Tillotson, W. A, Huang, Y., Dorland, W., Hassam, A. B., Anton-
sen, T. M., & Lathrop, D. P. 2004, Phys. Rev. Lett., 93, 114502



- 10
Stefani, F., Gundrum, T., Gerbeth, G., Rudiger, G., Schultz, M., Szklarski, J., & Hollerbach,
R. 2006, Phys. Rev. Lett., 97, 184502

Stefani, F., Gundrum, T., Gerbeth, G., Ridiger, G., Szklarski, J., & Hollerbach, R. 2007a,
in Bull. Amer. Phys. Soc., Vol. 52, abstract GM4.00006

Stefani, F., Gundrum, T., Gerbeth, G., Riidiger, G., Szklarski, J., & Hollerbach, R. 2007b,
New J. Phys., 8, 295

Stone, J. & Norman, M. 1992a, ApJS., 80. 753

~—. 1992b, ApJS., 80, 791

Szklarski, J. 2007, Astron. Nachr., 328, 499

Tobias, S., Proctor, M., & Knobloch, E. 1998, Physica D, 113, 43

Velikhov, E. P.. Ivanov, A. A., Lakhin, V. P., & Serebrennikov, K. S. 2006, Physics Letters
A., 356, 357

Q1h/Vao | 20.3 | 40.6 | 81.2 | periodic
Growth Rate v s71]0.27]0.58 | 0.82 | 1.06

Table 1: Influence of the height A upon the growth rate v of the absolute instability in a
bounded cylinder. r{ = 7.1cem, ro = 20.3cm, Q; = 400rpm, Q5 = 53.3rpm, B, = 500G,
By(r) = 1kG, the height A = 27.9 cm, 55.8 cm and 111.6 c¢m; the material properties are
based on gallium: 7 ~ 2000cm?s™! and p ~ 6 g cm™3, which give Re,, = 2 and S = 2.7,
no explicit viscosity present. The simulations are performed using a modified version of the
astrophysical code ZEUS2D (Stone & Norman 1992a.b; Liu et al. 2006b). The boundary
conditions adopt the one introduced in §I1.D of Liu et al. (2006a). Please note that no-
slip boundary conditions are employed on all applicable boundaries and ideal Couette state
(Eq. 1) is enforced at both endcaps in order to remove the Ekman circulation and possible
disturbances induced by this boundary layer effect. The one labeled “periodic” uses vertically
periodic boundary conditions with periodicity length h = 27.9 cm.

This preprint was prepared with the AAS INTEX macros v5.2.
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Fig. 1.— Computational domain for simulations of PROMISE II experiment. Region (I):
Inner copper cylinder, angular velocity ;. (II): outer copper cylinder, Q,. (IIT): liquid
gallium; (IV): vacuum. Thick dashed line: insulating inner ring, corotating with the inner
cylinder. Thick dash-dot line: insulating outer ring, corotating with the outer cylinder. The
junction of these two rings lies at 40% of the gap (D = ry — 1) between the inner and outer
cylinder (Szklarski 2007). Dimensions: r; = 4.0cm; 7y = 8.0cm: h = 40.0cm; dyyy = 1.0 e
dwrr = 1.5em; Q1/27 = 3.6rpm; Qy/27 = 0.936 rpm. Note that g = 25/ = 0.26, rather
than p = 0.27 used in previous work (Stefani et al. 2006; Riidiger et al. 2006; Liu et al. 2007;
Stefani et al. 2007b). The exact configuration of the toroidal coils being unavailable to us,
six coils (black rectangles) with dimensions as shown were used, with 67 turns in the two
coils nearest the midplane and 72 in the rest. Currents I, were adjusted to reproduce the
reported Hartmann numbers Ha = B%r,/ N2
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Fig. 2.— (a) Growth Rate 7; (b) Real Frequency Rw. * Linear Calculation, - Approximation
by Eq. 5 and Eq. 6. ] = 4.0cm, ro = 8.0cm, Q; = 101.25rpm, {2, = 26.325rpm, B, =
220.5G, 3 = 4.0; the material properties are based on gallium: n = 2.43 x 10%cm?s7!,
v =234x10cem?s ! and p = 6.35 g ecm™>. The calculations are performed using a code
{(Goodman & Ji 2002) adapted to allow for a helical field. Vertical periodicity is assumed,
but the radial equations are solved directly by finite differences with perfectly conducting
boundary conditions (§IL.B of Liu et al. (2006a)).
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Fig. 5.— (color). Axial velocities [mm s~!] versus time and depth sampled at r = 6.5 cm, for
the parameters of the PROMISE II experiment with toroidal currents I, as marked. No-slip
velocity boundary conditions are imposed at the rigidly rotating endcaps. The steady part of
the resulting Ekman circulation is suppressed in these plots by subtracting the time average
at each height. The waves appear to be absorbed near the bottom endcap.
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Fig. 6.— (color). An extended version of the case I, = 75 A shown in Fig. 5 but without
subtraction of the time average. After £ = 360s, the no-slip boundary condition at both
endcaps is switched to an ideal Couette profile (Eq. 1). A slowly decayed inertial oscillation

is resulted.



	LA-UR-08-5429-part1
	LA-UR-08-5429-part2.pdf

