

LA-UR- 08-6086

Approved for public release;
distribution is unlimited.

<i>Title:</i>	Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion
<i>Author(s):</i>	R. Ribeiro, Z # 171295, T-10/T-Division
<i>Intended for:</i>	Journal of Immunology

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Experimentally-induced immune activation in natural hosts 2 of SIV induces significant increases in viral replication and CD4⁺ T cell depletion

4
Running title: Experimental immune activation increases SIV replication

6
8 Ivona Pandrea^{*†}, Thaidra Gaufin^{*‡}, Jason M. Brenchley[§], Rajeev Gautam^{*}, Christopher
Monjure^{*}, Aarti Gautam^{*}, Clint Coleman^{*‡}, Andrew A. Lackner^{*‡}, Ruy M. Ribeiro[¶], Daniel
C. Douek[#], and Cristian Apetrei^{*††}

10 *Divisions of Comparative Pathology and Microbiology, Tulane National Primate Research
12 Center, Covington, LA 70433; [†]Department of Pathology and [‡]Department of Microbiology and
14 Immunology, School of Medicine, [§]Immunopathogenesis Unit, Lab. of Molecular Microbiology,
16 National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda,
18 MD 20892, [¶]Los Alamos National Laboratory, Los Alamos NM, [#]Human Immunology Section,
Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Bethesda, MD 20892, ^{††}Department of Tropical Medicine, School of Public
Health, Tulane University, New Orleans, LA 70112;

20
Key words: AIDS, cell activation, T cells, Lipopolysaccharide, cell proliferation, Tregs

24 **Abstract**

Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-
26 pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar
to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. *In*
28 *vivo* administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein
(Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and
30 subsequently of viral replication and depletion of intestinal CD4⁺ T cells. Our study indicates
that circulating microbial products can increase viral replication by inducing immune activation
32 and increasing the number of viral target cells, thus demonstrating that immune activation and T
cell proliferation are key factors in AIDS pathogenesis.

34 **Introduction**

Comparative studies of pathogenic HIV/SIV infection in humans and rhesus macaques (Rh) and SIV infection in African nonhuman primate (NHP) natural hosts that generally do not progress to AIDS have resulted in the emergence of a new paradigm of AIDS pathogenesis in which immune activation is a central factor underlying disease progression. According to this model, viral replication during acute infection results in rapid, massive mucosal CD4⁺ T cell depletion in both progressive and non-progressive SIV infections (1-3). During pathogenic HIV/SIV infection, immunologic and structural damage to the mucosal barrier results in microbial translocation from the gut lumen into the systemic circulation, which contributes to chronic immune activation and progression to AIDS (4). It was reported that the degree of immune activation in HIV-infected patients is a better predictor of disease progression rate than plasma viral load (VL) (5). Natural hosts (such as African green monkeys-AGMs, mandrills, and sooty mangabeys) generally do not progress to AIDS when infected with SIV and are able to maintain their intestinal barrier integrity (1, 3), perhaps through the suppression of inflammation (6) and lack of enteropathy, despite significant mucosal CD4⁺ T cell depletion (1, 3). Consequently, natural hosts maintain normal levels of T cell activation, proliferation and apoptosis and show significant recovery of mucosal CD4⁺ T cells during chronic infection despite high levels of viral replication (1, 3, 7). A direct causal relationship between immune activation, viral replication and CD4⁺ T cell depletion has not yet been established in natural hosts and no successful attempt to experimentally induce immune activation was reported thus far. We addressed the question of whether immune activation can be experimentally-induced in AGMs and if it results in increased VL and CD4⁺ T cell depletion.

56 Materials and Methods

Animals, infection, treatments and samples

58 Ten Caribbean AGMs (*Chlorocebus sabaeus*) were included. They received plasma equivalent to
300 tissue culture-infective dose (TCID) 50 of SIVagm.sab92018 (7). Animals were housed and
60 handled at the Tulane National Primate Research Center in accordance with American
Association for Accreditation of Laboratory Animal Care, *Guide for the Care and Use of*
62 *Laboratory Animals* (U.S. Public Health Service) and the Animal Welfare Act. Tulane
University Institutional Animal Care and Use Committee approved all protocols and procedures.
64 Acute infection follow-up was done on blood samples collected as described (3, 8). During
chronic infection, the AGMs were split in 2 groups: monkeys in the first group (n=6) received
66 intravenously 20 U/kg of LPS (*Escherichia coli*, lot G; U.S. Pharmacopeia, Rockville, MD).
After treatment, blood samples were collected every 2 hours for 6 hours and then daily for the
68 first 4 days. Additional samples were collected at days 7 and 14 post-LPS treatment. To evaluate
if the observed effect was not due to repeated sampling and anesthesia episodes, 4 of the 6
70 AGMs received a control inoculation consisting of saline in the same volume as the LPS
administration 1 month after the last blood draw. The same sampling schedule as for the LPS
72 study was employed during saline administration.

Monkeys in the second group (n=4) were treated with Ontak® (Ligand Pharmaceutical
74 Incorporated, San Diego, CA). Three Ontak treatments consisting of daily administration (15
mg/kg) for five consecutive days every 2 months were administered to each monkey in this
76 study. Blood samples were collected prior to Ontak administration and then at days 4, 8, 12, 15
and 18 post-treatment initiation.

78 ***Tissue sampling***

Blood samples were collected as reported (3, 7) and plasma and mononuclear cells were isolated
80 as described (3, 7) for VL quantification, cytokine determination and flow-cytometry.

Viral quantification

82 Plasma VLs were quantified as described (6, 9). Assay sensitivity was 100 copies/ml.

Abs and flow cytometry

84 Whole blood was stained for flow cytometry as described (3, 47). Monoclonal Abs used were:
86 CD3- FITC or CD3-PerCP; CD20-PE; CD8-PerCP or CD8-PE; CD4-allophycocyanin or CD4-
88 PerCP; HLA-DR-PerCP; CD95-FITC or CD95-allophycocyanin; CD28-allophycocyanin or
90 CD28-PE; and Ki-67-FITC (BD Biosciences). All Abs were validated and titrated using AGM
92 and Rh PBMC. Data were acquired with a FACSCalibur flow cytometer (BD Immunocytometry
Systems) and analyzed with CellQuest software (BD Biosciences). CD4⁺ and CD8⁺ T cell
percentages were obtained by first gating on lymphocytes, then on CD3⁺ T cells. Memory,
activation, and proliferation markers were determined by gating on lymphocytes, then on CD3⁺
T cells and finally on CD4⁺CD3⁺ or CD8⁺CD3⁺ T cells.

Cytokine determination

94 Cytokine testing in plasma was done using a sandwich immunoassay-based protein array
96 system, the Human Cytokine 25-Plex (Biosource International, Camarillo, CA, USA) as
98 instructed by the manufacturer and read by the Bio-Plex array reader (Bio-Rad Laboratories,
Hercules, CA, USA) which uses Luminex fluorescent-bead-based technology (Luminex
Corporation Austin, TX, USA).

100 ***sCD14 measurement***

Plasma sCD14 levels were measured using a commercially available ELISA (R&D systems).

102 Plasma was diluted 1:300 and assay was performed in duplicate according to the manufacturer's protocol.

104 ***Statistics***

Paired t-test was used to analyze data when we only had one series of measurements (LPS

106 experiments and RT-PCR data). Linear-mixed effects models were used to analyze the Ontak data with three series of measurements, using the data of the first 10 days after administration.

108 Monkeys were considered random effects; time and Ontak treatment were used as additive fixed covariates. Calculations were done in Excel (Microsoft, WA) and the software package R.

110 Results and Discussion

We previously reported that, in chronically SIVagm-infected AGMs, normal levels of immune activation are associated with normal levels of T cell apoptosis and proliferation, as well as a lack of enteropathy and plasma lipopolysaccharide (LPS) levels which are similar to those in uninfected monkeys (3). To provide proof-of-concept data that release of bacterial components into the systemic circulation results in increased immune activation and viral replication, we initially administered a single dose of LPS to six chronically SIVagm-infected AGMs. This resulted in a transient increase in the frequency of activated CD4⁺ T-cells (Figure 1a) (p=0.02) and was accompanied by a transient but very rapid increase in VL (Figure 1b). One of the animals had VL comparable to those observed at the peak of viral replication during acute infection (Figure 1b). Moreover, the LPS was bioactive *in vivo* as indicated by increases in plasma levels of sCD14 (Figure 1c). To confirm that these increases in immune activation and viral replication were specifically induced by the LPS administration, we then treated 4 of the animals with saline alone and observed no effect (Figure 1a and b).

A second mechanism which may explain the lack of immune activation in natural SIV infections involves regulatory T cells (Tregs) (6). Previously we determined that the ratio between the total number of Tregs and conventional CD4⁺ T cells is higher in uninfected AGMs compared to uninfected Rh in both the inductive and effector lymphoid sites of the intestine (10). Furthermore, the level of FoxP3 in CD4⁺ T cells sorted from intestine was higher in AGMs compared with Rh (10). Additionally, we reported differences in the dynamics of Tregs in SIVagm-infected AGMs compared to SIVmac-infected Rh, such that FoxP3 expression was increased at day 1 post-SIVagm infection in AGMs but at a later time point in SIVmac-infected Rh (6). The same applies to cytokines associated with Tregs in that TGF β and IL-10 are

increased very early in SIVagm infection but only late in SIVmac infection (6). Thus, the
134 mobilization of Tregs may be of insufficient rapidity and quantity to be effective in controlling
immune activation in SIVmac-infected Rh.

136 To examine Treg involvement in the suppression of immune activation in AGMs, we conducted
an *in vivo* Treg-depletion study in SIVagm-infected AGMs. We used Ontak (Denileukin
138 diftitox), an FDA-approved drug which depletes CD25⁺ cells in humans. Ontak is a fusion
protein which combines a recombinant IL-2 and a cytoidal diphtheria toxin moiety. Three
140 Ontak treatments (of 5 daily injections) were administered at 2-month intervals to chronically
SIV-infected AGMs. Ontak did not change the total numbers of CD4⁺ CD25⁺ T-cells (p=0.79)
142 (Figure 2a) but it reduced the percentage of these cells (p=0.0001) (Supplementary Figure 1 and
Supplementary Table 1). The absolute numbers (p=0.28) and percentages (p=0.48) of Tregs
144 defined by FoxP3 expression were also not decreased, however a transient increase in FoxP3
expression was observed by quantitative PCR (p=0.006 at day 4) during Ontak administration
146 (Supplementary Figure 2). Ontak also failed to induce a decrease in Treg function, as sorted
Tregs from treated AGMs were as capable of inhibiting the cell proliferation of conventional
148 CD4⁺CD25^{neg} T cells as Tregs purified from non-treated AGMs (Supplementary Figure 3).

However, T-cell functional measurements revealed increased proliferation of conventional CD4⁺
150 T cells in the Ontak-treated AGMs, which was confirmed by significant increases in the
frequency of T-cells expressing the proliferation marker Ki-67 (p=0.003 for CD4⁺ and p=0.0002
152 for CD8⁺, Figure 2c, d). Over the 5 days of Ontak administration, we also found significant
increases of both percentages (p<0.00005) and absolute numbers (p=0.02) of peripheral CD4⁺ T
154 cells (Supplementary Figure 4), as well of effector memory CD4⁺ T cells (p=0.006), which are
preferentially depleted in SIV/HIV infections (Supplementary Figure 5). It is therefore possible

156 that this increase in overall T cell proliferation masked any partial depletion of both CD4⁺ CD25⁺
158 T cells and Tregs. Importantly, Ontak administration induced increases in T-cell immune
160 activation, as measured by HLA-DR expression on both CD4⁺ (p=0.07) and CD8⁺ T-cells
(p=0.002) (Figure 2e, f), as well as by the dynamics of pro-inflammatory cytokines IL-1
(p=0.004), IL-8 (p=0.02) and IL-12 (p=0.01) (Figure 2g-i). As can be seen in the figures these
162 had different dynamics, IL-1 and IL-12 showed an early increase (less than 5 days), whereas DR
PCR were also increased (p=0.005 at day 4), similar to primary infection, confirming an increase
164 of immune activation after the Ontak treatment (Supplementary Figure 6). Ontak administration
resulted in significant upregulation of genes associated with immune activation, such as CD80,
166 HLA-DR, IL-3, IL-4, Toll-like receptors 4 and 6, IL12 receptor and IL-17 receptor as well
downregulation of TGF- β 1, CD3z, CD3d, CD3g and T-box21 genes (data not shown). Finally,
168 this marked increase in immune activation resulted in a significant increase in viral replication in
all treated chronically SIVagm-infected AGMs (p=0.0001, Figure 2j) These increases in viral
170 replication were up to the levels of the peak VLs. Moreover, in two animals, increased viral
replication was maintained between the first two treatments. Consequently, at the end of the
172 Ontak treatment, CD4⁺ T cell were significantly depleted in the intestine (p=0.0001, Figure 2b).

Taken together, our data provide proof-of-concept that experimental induction of immune
174 activation in natural hosts of SIV infection drives increases in viral replication and mucosal
CD4⁺ T cell depletion. In the first set of the experiments we observed that a single low-dose LPS
176 administration results in increased immune activation and a consequent increase in viral
replication, thus adding weight to the concept that microbial translocation contributes to systemic
178 immune activation and disease progression. In the second set of experiments, a more persistent

and significant increase in immune activation, and consequently a more robust and sustained
180 increase in VL and significant depletion of mucosal CD4⁺ T cells, was obtained after Ontak
administration in chronically SIVagm-infected AGMs. Although Ontak did not induce
182 significant Treg depletion, the drug has potential to induce immune activation as it contains an
IL-2 moiety combined with a TLR ligand (the diphtheria toxin) that interacts with the innate
184 immune system. The increases in immune activation in both experiments through TLR ligand
stimulation demonstrate that interaction between innate and adaptative immune systems are
186 functional in the natural hosts and can induce significant increase of viral replication and CD4⁺ T
cell depletion in this animal model that otherwise is characterized by very stable chronic
188 lentiviral infection. Our results are in agreement with a recent study showing augmentation of
viral replication at mucosal sites during early SIVmac infection of Rh due to increased immune
190 activation driven by CTLA-4 blockade (11) and with data reporting that the levels of VLs in
sooty mangabeys depends on the availability of activated CD4⁺ T cells (12).

192

Therefore, our results demonstrate that immune activation and proliferation of the target cells for
194 the virus are key factors in AIDS pathogenesis. These data suggest that therapeutic strategies to
reduce immune activation should be explored, in addition to the classic antiretroviral therapies,
196 in preventing progression to AIDS in chronically HIV-infected individuals.

Acknowledgements

198 We thank Donald Sodora and Preston Marx for helpful discussion, Division of Veterinary
Medicine of TNPRC for animal care, and Robin Rodriguez for help in preparing the figures.

200

Disclosures

202 The authors have no financial conflict of interest.

204 References

1. Gordon, S., N. R. Klatt, J. M. Milush, J. Engram, R. M. Dunham, M. Paiardini, E. A. Strobert, C. Apetrei, I. Pandrea, S. Staprans, D. L. Sodora, and G. Silvestri. 2007. Severe depletion of mucosal CD4+ T cells in AIDS-free SIV-infected sooty mangabeys. *J Immunol* 179:3026-3034.
2. Grossman, Z., M. Meier-Schellersheim, W. E. Paul, and L. J. Picker. 2006. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. *Nat Med* 12:289-295.
- 212 3. Pandrea, I., R. Gautam, R. Ribeiro, J. M. Brenchley, I. F. Butler, M. Pattison, T. Rasmussen, P. A. Marx, G. Silvestri, A. A. Lackner, A. S. Perelson, D. C. Douek, R. S. Veazey, and C. Apetrei. 2007. Acute loss of intestinal CD4+ T cells is not predictive of SIV virulence. *J Immunol* 179:3035-3046.
- 216 4. Brenchley, J. M., D. A. Price, T. W. Schacker, T. E. Asher, G. Silvestri, S. Rao, Z. Kazzaz, O. Lambotte, D. Altmann, B. R. Blazar, B. Rodriguez, L. Teixeira-Johnson, A.

218 Landay, J. N. Martin, F. M. Hecht, L. J. Picker, M. Lederman, S. G. Deeks, and D. C.
220 Douek. 2006. Microbial translocation is a cause of systemic immune activation in chronic
HIV infection. *Nature Medicine* 12:1365-1371.

222 5. Giorgi, J. V., L. E. Hultin, J. A. McKeating, T. D. Johnson, B. Owens, L. P. Jacobson, R.
Shih, J. Lewis, D. J. Wiley, J. P. Phair, S. M. Wolinsky, and R. Detels. 1999. Shorter
survival in advanced human immunodeficiency virus type 1 infection is more closely
224 associated with T lymphocyte activation than with plasma virus burden or virus
chemokine coreceptor usage. *J Infect Dis* 179:859-870.

226 6. Kornfeld, C., M. J. Ploquin, I. Pandrea, A. Faye, R. Onanga, C. Apetrei, V. Poaty-
Mavoungou, P. Rouquet, J. Estaquier, L. Mortara, J. F. Desoutter, C. Butor, R. Le Grand,
228 P. Roques, F. Simon, F. Barre-Sinoussi, O. M. Diop, and M. C. Muller-Trutwin. 2005.
Antiinflammatory profiles during primary SIV infection in African green monkeys are
230 associated with protection against AIDS. *J Clin Invest* 115:1082-1091.

232 7. Pandrea, I., C. Apetrei, J. Dufour, N. Dillon, J. Barbercheck, M. Metzger, B. Jacquelin,
R. Bohm, P. A. Marx, F. Barre-Sinoussi, V. M. Hirsch, M. C. Muller-Trutwin, A. A.
Lackner, and R. Veazey. 2006. Simian immunodeficiency virus (SIV) SIVagm.sab
234 infection of Caribbean African green monkeys: New model of the study of SIV
pathogenesis in natural hosts *J Virol* 80:4858-4867.

236 8. Pandrea, I., R. M. Ribeiro, R. Gautam, T. Gaufin, M. Pattison, M. Barnes, C. Monjure, C.
Stoulig, G. Silvestri, M. Miller, A. S. Perelson, and C. Apetrei. 2008. Simian
238 immunodeficiency virus SIVagm dynamics in African green monkeys. *J Virol* 82:3713-
3724.

240 9. Pandrea, I., C. Kornfeld, M. J.-I. Ploquin, C. Apetrei, A. Faye, P. Rouquet, P. Roques, F.
Simon, F. Barré-Sinoussi, M. C. Müller-Trutwin, and O. M. Diop. 2005. Impact of viral
242 factors on very early in vivo replication profiles in SIVagm-infected African green
monkeys. *J Virol* 79:6249-6259.

244 10. Coleman, C. A., M. C. Muller-Trutwin, C. Apetrei, and I. Pandrea. 2007. T regulatory
cells: aid or hindrance in the clearance of disease? *J. Cell. Mol. Med.* 11:1291-1325.

246 11. Cecchinato, V., E. Tryniszewska, Z. M. Ma, M. Vaccari, A. Boasso, W. P. Tsai, C.
Petrovas, D. Fuchs, J. M. Heraud, D. Venzon, G. M. Shearer, R. A. Koup, I. Lowy, C. J.
248 Miller, and G. Franchini. 2008. Immune activation driven by CTLA-4 blockade augments
viral replication at mucosal sites in simian immunodeficiency virus infection. *J Immunol*
250 180:5439-5447.

12. Klatt, N. R., F. Villinger, P. Bostik, S. N. Gordon, L. Pereira, J. C. Engram, A. Mayne, R.
252 M. Dunham, B. Lawson, S. J. Ratcliffe, D. L. Sodora, J. Else, K. Reimann, S. I. Staprans,
A. T. Haase, J. D. Estes, G. Silvestri, and A. A. Ansari. 2008. Availability of activated
254 CD4+ T cells dictates the level of viremia in naturally SIV-infected sooty mangabeys. *J
Clin Invest* 118:2039-2049.

256

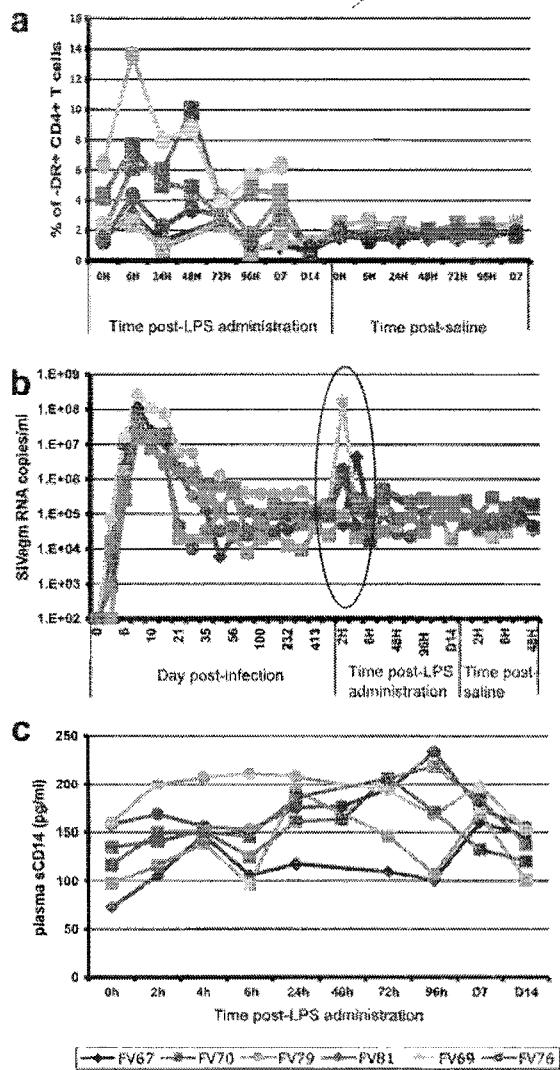
Footnotes

258 1. **Grant support**

This work was supported by NIH/NIAID/NCRR grants RO1 AI064066 and R21AI069935 (IP),
260 R01 AI065325 (CA), and RR-00168 (TNPRC).

262 2. **Abbreviations**

AGM, African green monkey; LPS, Lipopolysaccharide; Rh, rhesus macaque; VL, viral load;
264 PCR, polymerase chain reaction; LN, lymph node; Tregs, T regulatory cells.


266 3. **Address correspondence and reprint request to:**

Dr. Ivona Pandrea
268 Division of Comparative Pathology
Tulane National Primate Research Center
270 18703 Three Rivers Road
Covington, LA 70433
272 Phone: (985) 871-6408
Fax: (985) 871-6510
274 E-mail: ipandrea@tulane.edu


Figure legends

276 **Figure 1. *In vivo* LPS and saline administration in chronically SIVagm-infected AGMs.** A
single dose of LPS induces a transient but significant increase in activation of CD4⁺ T cells (a), a
278 transient increase in the VL (b) and an increase in plasma sCD14 (c). In FV75, VL reaches the
levels of virus replication from the primary infection. Saline administration in the same AGMs
280 did not modify the steady-state of the chronic SIVagm infection (a, b).

282 **Figure 2. Impact of Ontak administration in chronically SIVagm-infected AGMs.** Although
Ontak did not induce significant depletion of CD25⁺ CD4⁺ T-cells (Tregs) (a), at the end of
284 treatment, mucosal CD4⁺ T cells were significantly depleted (b). Significant increases in the cell
proliferation of CD4⁺ (c), CD8⁺ T cells (d), as well as immune activation of CD4⁺ (e) and CD8⁺
286 T cells (f) were observed after Ontak administration. This increase in immune activation was
confirmed by the dynamics of pro-inflammatory cytokines: IL-1 (g), IL-8 (h) and IL-12 (i) and
288 resulted in a significant increase in VLs (j).

Pandrea et al., Figure 1

Pandrea et al., Figure 2